ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

矿产资源潜力评价方法对比及其发展趋势探讨

张津瑞, 陈华, 任军平, 魏振环, 孙凯, 胡鹏, 吴大天, 古阿雷, 孙宏伟, 左立波, 董津蒙

张津瑞, 陈华, 任军平, 等. 矿产资源潜力评价方法对比及其发展趋势探讨[J]. 西北地质, 2023, 56(2): 292-305. DOI: 10.12401/j.nwg.2022018
引用本文: 张津瑞, 陈华, 任军平, 等. 矿产资源潜力评价方法对比及其发展趋势探讨[J]. 西北地质, 2023, 56(2): 292-305. DOI: 10.12401/j.nwg.2022018
ZHANG Jinrui, CHEN Hua, REN Junping, et al. Mineral Resource Assessment Methods Comparison and Its Development Trend Discussion[J]. Northwestern Geology, 2023, 56(2): 292-305. DOI: 10.12401/j.nwg.2022018
Citation: ZHANG Jinrui, CHEN Hua, REN Junping, et al. Mineral Resource Assessment Methods Comparison and Its Development Trend Discussion[J]. Northwestern Geology, 2023, 56(2): 292-305. DOI: 10.12401/j.nwg.2022018

矿产资源潜力评价方法对比及其发展趋势探讨

基金项目: 国家重点研发计划课题“环太平洋和非洲成矿域战略性矿产信息及成矿规律(2021YFC2901804)”,中国地质调查局项目“南部非洲国际合作地质调查(DD20221801)”、“莫桑比克–坦桑尼亚钽锆钛矿资源调查(DD20201150)”和“非洲中东部大型铜–钴资源基地评价(DD20190439)”项目联合。
详细信息
    作者简介:

    张津瑞(1999−),男,硕士研究生,从事矿产资源潜力评价。E–mail:982263219@qq.com

    通讯作者:

    任军平(1980−),男,正高级工程师,从事地质矿产勘查与研究工作。E–mail:rjp2333@126.com

  • 中图分类号: P62

Mineral Resource Assessment Methods Comparison and Its Development Trend Discussion

  • 摘要:

    矿产资源潜力评价是预测一个地区矿产资源找矿潜力的评价方法,先后经历3个阶段:探索和应用阶段、快速发展阶段及信息化阶段。笔者梳理了“三步式”、证据权、预测普查组合、成矿系列、地质异常、综合信息预测、地球化学块体和非线性预测等8种矿产资源潜力评价理论或方法,通过相关应用实例阐述其实用性,分析了国内外应用潜力评价方法获取的研究成果,总结其发展趋势。其中,“三步式”和证据权是目前使用较为广泛的方法,成矿系列则是国内研究的热点。随着科学技术的进步以及数学地质的不断发展,矿产资源潜力评价已步入信息化阶段,三维深部预测将是未来潜力评价重点发展方向。

    Abstract:

    The mineral resource assessment is an evaluation method to predict the prospecting potential of mineral resources in a region. It goes through three stages: exploration and application stage, rapid development stage and information stage. This paper sorts out eight theories or methods for mineral resource assessment, including "Three−Part Form", "Weights of Evidence", prospecting prediction complex, metallogenic series, geological anomalies, comprehensive information prediction, geochemical block and nonlinear prediction, illustrates the practicability of the theory or method through relevant application examples, analyzes the research results obtained by the application of potential evaluation methods at home and abroad, and summarizes their development trends. "Three−Part Form" and "Weights of Evidence" are widely used methods, and the metallogenic series is a hot spot in China. With the advancement of technology and the development of mathematical geology, the evaluation of mineral resource assessment has entered the stage of informatization, and 3D deep prediction may be the major development direction of resource assessment in the future.

  • 萤石,其主要成分是氟化钙(CaF2),是重要的基础性、战略性非金属矿产资源。高端含氟材料在新能源、新材料、新一代信息技术和航空航天等领域的重要性日益凸显,中国、美国、日本、欧盟等国家都将其列为“战略性矿产”或“关键矿产”(陈军元等,2021)。萤石矿在中国属于优势矿产资源,大中型萤石矿床集中于东部沿海、华中和内蒙古中东部(王吉平等,2015)。通过近年地质工作,在中国西部新疆若羌县阿尔金地区卡尔恰尔一带萤石找矿取得重大新发现,已发现卡尔恰尔、小白河沟、库木塔什、拉依旦北、盖吉克、皮亚孜达坂等多处(超)大–中型萤石矿床,改变了中国萤石矿的分布格局,已初步形成西部最重要的萤石矿产资源基地。近年来,阿尔金高压–超高压变质带、蛇绿构造混杂岩带和岩浆岩等基础地质研究方面取得了重要进展,但与萤石矿有关的研究才刚刚起步,主要对地质特征、控矿因素、花岗岩年龄与元素地球化学特征及流体包裹体等方面做了一定研究(高永宝等,2021吴益平等,20212022),总体研究程度较低。目前,卡尔恰尔超大型萤石矿区花岗岩成岩时代还未见报道,成矿流体与物质来源的研究还很薄弱,制约了矿床成因的研究和下一步找矿勘查。

    稀土元素的地球化学性质具有一定特殊性,如化学性质稳定,高度均一化,不易受变质作用影响等,是示踪成矿流体来源和反演热液成矿作用过程的有效手段之一(Lottermoser,1992)。萤石是富稀土矿物,萤石中的Ca2+与稀土离子半径相似,可容纳大量稀土元素,且继承了成矿热液流体中的稀土元素配分型式(Moller,1983Bau et al.,19921995Smith et al.,2000许成等,2001赵省民等,2002许东青等,2009孙海瑞等,2014Sasmaz et al.,2018),在示踪成矿流体来源与演化及矿床成因机理等方面已得到广泛应用(叶锡芳等,2014邹灏等,20142016彭强等,2021许若潮等,2022游超等,2022张苏坤等,2022)。笔者选择阿尔金卡尔恰尔超大型萤石矿带中的卡尔恰尔、小白河沟、库木塔什3处典型萤石矿床为研究对象,简要总结其成矿特征,利用LA–ICP–MS锆石U–Pb测年确定卡尔恰尔矿区碱长花岗岩与片麻状钾长花岗岩的形成时代,通过萤石、方解石的稀土元素地球化学及萤石Sr–Nd同位素等研究,探讨成矿流体特征与成矿物质来源,为区域矿床成因研究和指导找矿提供理论依据。

    研究区位于青藏高原北部边缘,地处柴达木地块与塔里木地块接合部位,大地构造位置主要处于阿尔金造山带(图1a图1b)。区域出露地层以元古界为主,新太古界至新元古界遭受程度不一的变形变质作用改造,以中深变质岩为主(图1c)。新太古界—古元古界阿尔金岩群出露广泛,总体上呈北东向展布,该岩组岩石类型复杂,主要为一套由变质碎屑岩、碳酸盐岩和变质火山碎屑岩组成的变质岩系,主要岩性为黑云斜长片麻岩、斜长或二长变粒岩、石榴矽线黑云片麻岩、二长石英片岩夹石英岩、白云质大理岩、斜长角闪岩透镜体等。中元古界巴什库尔干岩群为一套云母石英片岩、片麻岩、变粒岩、长石石英岩夹变质中基性火山岩、火山碎屑岩的变质岩系。中元古界蓟县纪塔昔达坂岩群可分为下部碎屑岩(木孜萨依组)和上部碳酸盐岩(金雁山组)。新元古界索尔库里群为一套轻变质的碳酸盐岩、碎屑岩夹少量火山碎屑岩地层序列。另外,阿尔金西南缘发育由陆壳深俯冲形成的高压-超高压变质带,岩石的原岩形成时代多为1 000~800 Ma,与区域广泛分布的新元古代花岗片麻岩形成时代基本相同,均与Rodinia超大陆事件引发的全球性岩浆活动相关,而变质时代集中在504~486 Ma之间,代表在~500 Ma发生陆壳深俯冲–碰撞事件(Zhang et al.,2001刘良等,2007张建新等,2010Liu et a1.,2012)。

    图  1  阿尔金造山带卡尔恰尔一带地质矿产图
    Figure  1.  Geological and mineral map of the Kalqiaer area in Altyn Tagh

    区域构造活动频繁,经历了前寒武纪多期变形变质作用的强烈改造和构造置换,以及显生宙以来多期韧性、脆性构造的相互叠加,构造形迹十分复杂。区内构造主要为断裂,褶皱因受到岩浆侵位及断裂构造的破坏,形态极不完整。区域性大断裂由北至南有卡尔恰尔–阔什断裂、盖吉勒断裂、约马克其–库兰勒格断裂、阿尔金南缘断裂(图1c)。围绕区域深大断裂广泛分布次级断裂,主要以北东–近东西向为主。卡尔恰尔–阔什断裂呈北东东向,东西向延伸大于70 km,呈明显带状,是一个长期活动的断裂,该断裂不仅是早期地质构造单元(阿尔金杂岩和中新元古界隆起带)之间的分界线,还对早古生代中酸性侵入岩体的分布有控制作用,卡尔恰尔超大型萤石矿、小白河沟萤石矿即与该断裂及其派生的众多次级断裂关系密切。盖吉勒断裂呈北东向,为一南倾的逆断层,与库木塔什、拉依旦北等萤石矿床的形成密切相关。约马克其–库兰勒格断裂总体为北东东向,出露长约为10 km,在研究区与布拉克北、皮亚孜达坂等萤石矿床的形成关系密切。阿尔金南缘断裂呈北东东向横贯阿尔金南部,长度大于几千公里,构成阿中地块与阿南缘蛇绿混杂岩带的边界(校培喜等,2014)。

    区域经历了多期次岩浆活动,新元古代、早古生代、中生代等均有规模不等的中酸性岩浆侵入,多沿阿尔金山呈北东向带状展布,岩石类型复杂,充分反映了造山带花岗岩类型丰富的特点(图1c)。新元古代侵入岩以花岗质片麻岩、花岗闪长质片麻岩为主,主要出露于研究区东部。早古生代侵入岩分布最为广泛,主要岩性有碱长花岗岩、二长花岗岩、黑云母花岗岩、花岗闪长岩等。区域脉岩极为发育,脉岩类型以碱长花岗岩脉、花岗伟晶岩脉为主,呈北东–北东东走向。其中碱长花岗岩脉主要分布于卡尔恰尔深大断裂南侧,在阿尔金岩群和新元古代花岗质片麻岩中尤为发育,受断裂控制明显,出露宽度普遍较窄,该脉岩与萤石矿关系密切(图1c)。花岗伟晶岩脉主要分布于卡尔恰尔深大断裂北侧,主要就位于阿尔金岩群和新元古代花岗质片麻岩中,脉体中矿物以长石和石英为主,个别含矿伟晶岩脉发育有锂辉石、绿柱石、锂云母、铌钽铁矿等稀有金属矿物。

    卡尔恰尔超大型萤石矿区出露地层主要为古元古界阿尔金岩群(Pt1A),为一套角闪岩相的中深变质岩系,萤石矿化主要分布于黑云母斜长片麻岩中,矿脉延伸方向与岩层走向基本一致。矿床位于卡尔恰尔–阔什断裂南侧,该区域深大断裂派生的次一级断裂系统对萤石矿产分布有明显的控制作用,断裂呈北东–近东西向展布,沿构造裂隙大量充填萤石–方解石脉,构成区内重要的赋矿构造。矿区岩浆岩类型主要为碱长花岗岩、片麻状钾长花岗岩,岩体与围岩地层接触界限明显(图2a图2i)。萤石矿化在空间上与碱长花岗岩关系密切,与围岩地层接触关系较明显(图2a图2c)。矿区圈出31条萤石矿体,由众多萤石-方解石细脉构成,多为复脉型矿脉,北东–近东西向带状展布,长度为1710~4580 m,平均厚度为2.36~4.68 m,最大厚度为23.5 m,矿体延伸稳定,连续性好,钻探验证矿脉有收敛增厚趋势,沿倾向控制最大斜深907 m。矿石中矿物成分较为简单,主要是萤石、方解石,少量石英(图2d图2h),萤石呈2阶段成矿,早阶段萤石呈白色、淡绿色,晚阶段萤石呈紫色、紫黑色,可见紫色萤石矿脉穿插白色萤石矿脉,或紫色萤石矿脉发育于白色萤石矿脉边部(图2a图2c)。矿石呈巨晶–粗晶结构、自形–半自形–他形粒状结构、碎裂结构、糜棱结构,矿石自然类型主要有脉状、条带状、角砾状矿石(图2d图2f)。围岩蚀变主要为碳酸盐化、钾化、硅化、高岭土化、绢云母化、绿帘石化等。矿床成因类型属于热液充填型,矿石工业类型主要是CaF2–CaCO3型,CaF2平均品位为33.9%,探明+控制+推断萤石矿石量为6 631万t,矿物量(CaF2)为2 249万t,达超大型规模。

    图  2  卡尔恰尔超大型萤石矿床矿化特征
    a~c.萤石矿化与碱长花岗岩关系密切,与围岩界线较清晰,紫色萤石矿脉穿插或发育于白色萤石矿脉边部;d~e.脉状萤石矿化;f.角砾状萤石矿化;g~h.钻孔中萤石矿化;i.片麻状钾长花岗岩侵入于阿尔金岩群黑云斜长片麻岩中;Cal.方解石;Fl.萤石
    Figure  2.  Photos of mineralization features of Kalqiaer super–large fluorite deposit

    库木塔什萤石矿区出露地层为古元古界阿尔金岩群,岩性主要是黑云斜长片麻岩,其次为大理岩。矿区断裂主要呈北北东向、北东向、近东西向,多为平移断层,并发育韧性–脆性剪切带,北东向及近东西向断裂控制着区内岩脉的发育和展布。矿区内出露的侵入岩主要有碱长花岗岩、片麻状钾长花岗岩,碱长花岗岩脉与萤石矿脉关系十分密切(图3a图3b),脉岩和矿脉均受断裂控制明显。矿区共圈出14条萤石矿化体,多呈北东向,倾向北北西,倾角为40°~70°,地表出露长为50~980 m,宽为0.3~3.6 m。矿石自然类型主要有脉状、角砾状(图3c图3i),矿石中矿物成分较为简单,主要是萤石、方解石,另发育较多磷灰石,包括绿色柱状氟磷灰石和草黄色粒状铈磷灰石(图3e)。矿石具粗晶结构、自形–半自形–他形粒状结构、碎裂结构。矿石工业类型主要为CaF2–CaCO3型,CaF2平均品位为25%。围岩蚀变较为发育,主要为碳酸盐化、钾化、绢云母化、高岭土化等。矿床成因属热液充填型。

    图  3  库木塔什萤石矿床矿化特征
    a~b. 萤石矿化与碱长花岗岩关系密切;c~f. 脉状萤石矿化及其矿物组成;g~i. 角砾状萤石矿化及其矿物组成;Cal. 方解石;Fl. 萤石;Ap. 磷灰石
    Figure  3.  Photos of mineralization features of Kumutashi fluorite deposit

    小白河沟萤石矿区出露地层为古元古界阿尔金岩群,萤石矿化赋存在黑云斜长片麻岩中。矿区出露的侵入岩主要为碱长花岗岩,其与萤石矿脉关系密切(图4a图4b)。矿区构造以近东西向为主。矿区圈定两条萤石矿化带,南侧矿化带长约为2.5 km,宽约为0.4 km,走向北东东;北侧矿化带宽约0.4为 km,长约为1.7 km,走向近东西。萤石矿体走向近东西,倾向北,倾角为30°~40°,该矿床特点是发育高品位矿石,CaF2品位大于50%,局部可达90%以上。矿石类型主要为块状矿石、纹层状矿石(图4c图4f),矿石中矿物主要为萤石,局部发育方解石和少量石英;萤石呈白色、绿色、紫色、紫黑色等。矿石具粗晶结构、自形–半自形–他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变主要为碳酸盐化、钾化、绢云母化、高岭土化等。

    图  4  小白河沟萤石矿床矿化特征
    a~b.萤石矿化与碱长花岗岩关系密切;c.纹层状萤石矿石;d~f.块状萤石矿石
    Figure  4.  Photos of mineralization features of Xiaobaihegou fluorite deposit

    用于锆石U–Pb年龄测试的样品经人工破碎后分选出锆石单矿物,制靶后进行阴极发光及透反射照相,根据图像选测试点位并进行合理数据解释。锆石U–Pb测年在自然资源部岩浆作用成矿与找矿重点实验室进行。激光剥蚀系统为GeoLas Pro,ICP–MS为Agilent 7700x,每时间分析数据包括大约40 s的样品信号和10 s的空白信号,激光剥蚀采用氦气作载气、氩气为补偿气以调节灵敏度。数据分析采用软件Glitter 4.4(Van Achterbergh et al.,2001)完成,详细测试过程和仪器参数可参考李艳广等(2015)。锆石U–Pb年龄谐和图采用Isoplot/Ex_ver 3(Ludwig,2003)软件绘制。

    包含萤石、方解石矿物的矿石样品经过人工破碎后在双目镜下挑纯,挑纯出的小颗粒放入玛瑙研钵中,充分研磨至200目以下呈粉末状用于稀土元素实验测试分析。测试实验在自然资源部岩浆作用成矿与找矿重点实验室完成,萤石、方解石的稀土元素分析测试采用ICP–MS电感耦合等离子体质谱法,检测下限n×10–13n×10–12,检测误差小于10%。

    Rb–Sr、Sm–Nd同位素组成测试在自然资源部中南矿产资源监督检测中心完成。采用热电离质谱仪TRITON分析Rb、Sr、Sm、Nd同位素组成,同位素稀释法计算Rb、Sr、Sm、Nd含量及Sr同位素比值。Nd、Sr同位素比值分析中质量分馏分别采用146Nd/144Nd=0.7219,88Sr/86Sr=8.37521进行幂定律校正。整个分析过程用GBW04411、GBW04419、BCR-2和NBS987、GSW标准物质分别对全流程和仪器进行质量监控。NBS987的87Sr/86Sr测定值为0.71028±1,GBW04411测定值分别为Rb=249.8×10−6、Sr=159.3×10−687Sr/86Sr=0.76005±2,与其推荐值在误差范围内一致。全流程Nd、Sm、Sr、Rb空白分别小于9×10−10 g、3×10−10 g、3×10−9 g和4×10−10 g。

    卡尔恰尔矿区与成矿相关的碱长花岗岩样品中锆石以自形粒状为主,粒径多为50~150 μm,阴极发光图像揭示大部分锆石具有清晰的岩浆韵律环带(图5a)。锆石U含量为233×10−6~1 095×10−6,Th含量为100×10−6~462×10−6,Th/U值为0.2~0.62,平均为0.45,显示出岩浆锆石的特点(表1)(Hoskin et al.,2000)。22个分析点投影于谐和线上及附近,206Pb/238U加权平均年龄为(455.8±2)Ma,代表了岩浆结晶年龄,表明其形成于中—晚奥陶世(图5b)。

    图  5  卡尔恰尔萤石矿区碱长花岗岩的锆石CL图(a)和U–Pb年龄图(b)
    Figure  5.  (a) Zircon CL images and (b) U–Pb diagram of alkali feldspar granite from the Kalqiaer fluorite deposit
    表  1  卡尔恰尔萤石矿区碱长花岗岩的锆石LA–ICP–MS U–Pb分析结果表
    Table  1.  LA–ICP–MS zircon U–Pb isotopic data of alkali feldspar granite in Kaerqiaer fluorite deposit
    测试点ThUTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    (×10-6比值比值比值MaMaMa
    KJ011003430.290.05640.00210.57340.02100.07370.0009469.082.6460.213.5457.55.1
    KJ021372710.510.05690.00230.57600.02210.07340.0009487.386.2461.914.3456.95.3
    KJ032234570.490.05530.00140.55800.01360.07330.0007422.155.8450.28.9456.04.2
    KJ041052330.450.05670.00200.57210.01890.07320.0008479.075.0459.412.2455.64.9
    KJ0536410950.330.05880.00130.58960.01220.07270.0007561.047.4470.67.8452.54.0
    KJ061513330.450.05410.00190.55150.01840.07390.0008376.376.1446.012.1455.84.9
    KJ071372820.490.05920.00240.59750.02290.07330.0009572.984.2475.614.6456.05.3
    KJ082063690.560.05470.00210.55130.02050.07310.0009400.183.6445.813.4455.05.1
    KJ091432560.560.05520.00250.56390.02460.07410.0010420.097.5454.016.0451.05.7
    KJ101524300.350.05510.00190.56460.01820.07440.0008416.572.8454.511.8452.34.9
    KJ111272770.460.05740.00190.57960.01840.07320.0008508.171.3464.211.8455.64.8
    KJ121493250.460.05690.00200.57740.01920.07360.0008488.175.2462.812.4457.94.9
    KJ131643980.410.05690.00160.57710.01580.07360.0008487.162.6462.610.2457.84.5
    KJ141993700.540.05590.00160.56740.01580.07360.0008449.163.3456.310.2458.04.5
    KJ152586780.380.05500.00150.55500.01440.07320.0007412.158.9448.39.4455.64.4
    KJ161015090.200.05770.00160.58780.01510.07390.0007519.058.1469.49.6456.64.4
    KJ171684880.340.05700.00160.57990.01510.07390.0007489.059.9464.49.7453.64.5
    KJ182334320.540.05610.00160.56970.01560.07370.0008455.662.3457.810.1455.54.5
    KJ194627970.580.05650.00140.57290.01360.07360.0007470.254.9459.98.8458.04.3
    KJ202934720.620.05700.00170.57670.01600.07350.0008488.863.4462.310.3457.24.6
    KJ211704950.340.05530.00160.56300.01550.07380.0008425.962.3453.410.0454.24.5
    KJ221884150.450.05750.00170.58460.01640.07380.0008510.863.5467.410.5457.94.6
    下载: 导出CSV 
    | 显示表格

    卡尔恰尔矿区片麻状钾长花岗岩样品中锆石以自形粒状为主,颗粒较大,粒径多为60~200 μm,阴极发光图像揭示大部分锆石具有清晰的岩浆韵律环带(图6a)。片麻状钾长花岗岩中锆石的U含量为90×10−6~765×10−6,Th含量为24×10−6~270×10−6,Th/U值为0.33~1.76,平均为0.27,显示出岩浆锆石的特点(表2)。16个分析点投影于谐和线上及附近,206Pb/238U加权平均年龄为(914.5±4.1)Ma,代表了岩浆结晶年龄,表明其形成于新元古代早期(图6b)。

    图  6  卡尔恰尔萤石矿区片麻状钾长花岗岩的锆石CL图(a)和U−Pb年龄图(b)
    Figure  6.  (a) Zircon CL images and (b) U–Pb diagram of gneissic feldspar granite from the Kalqiaer fluorite deposit
    表  2  卡尔恰尔萤石矿区片麻状钾长花岗岩的锆石LA–ICP–MS U–Pb分析结果表
    Table  2.  LA–ICP–MS zircon U–Pb isotopic data of gneissic feldspar granite in Kaerqiaer fluorite deposit
    测试点ThUTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    (×10-6比值比值比值MaMaMa
    KC011584400.360.06850.00171.30240.02980.13800.0014883.449.1846.813.1853.57.8
    KC02243050.080.07050.00171.52060.03480.15660.0016941.948.7938.714.0938.08.8
    KC031004070.250.06890.00151.48170.03050.15610.0015895.444.4922.912.5935.28.4
    KC042294430.520.06980.00141.47710.02690.15380.0015920.939.3921.011.0922.08.1
    KC051404010.350.06850.00141.43640.02800.15230.0015882.942.1904.211.7913.88.2
    KC06642600.250.06860.00161.47250.03350.15590.0016886.648.6919.213.8933.78.8
    KC07972910.330.07370.00161.62550.03400.16010.00161033.744.1980.113.1957.18.8
    KC0828900.320.07600.00302.02980.07600.19390.00261094.575.81125.625.51142.614.1
    KC091374350.310.07050.00141.47880.02790.15220.0014943.440.7921.711.4913.58.1
    KC10274850.050.06980.00141.42770.02690.14850.0014922.440.7900.611.3892.57.9
    KC11793600.220.07000.00161.48200.03130.15360.0015929.045.2923.012.8921.38.5
    KC121757650.230.06860.00131.38800.02480.14690.0014886.939.0883.810.5883.37.7
    KC132706770.400.07030.00131.49730.02500.15460.0014938.136.4929.310.2926.48.0
    KC14842970.280.06940.00161.49650.03360.15660.0016909.947.9928.913.7937.88.8
    KC151034890.210.07100.00141.43750.02590.14690.0014958.638.9904.710.8883.57.8
    KC161352120.640.11060.00194.74300.07520.31140.00301808.631.01774.913.31747.614.7
    KC171037470.140.07100.00121.53220.02470.15660.0014958.035.1943.49.9938.08.0
    KC18513670.140.08770.00162.48950.04150.20610.00201375.534.01269.012.11208.210.5
    KC19804680.170.06880.00141.42770.02650.15060.0014893.240.2900.611.1904.58.0
    KC201025330.190.07010.00131.49330.02580.15460.0014932.537.4927.710.5926.58.1
    下载: 导出CSV 
    | 显示表格

    卡尔恰尔矿床萤石的ΣREE值为39.4×10−6~57.19×10−6,LREE/HREE值为3.20~3.91,(La/Yb)N值为2.97~4.41,δEu值为0.39~0.42。小白河沟矿床萤石ΣREE值为44.73×10−6~65.79×10−6,LREE/HREE值为2.99~3.61,(La/Yb)N值为2.57~3.59,δEu值为0.38~0.44。库木塔什矿床萤石ΣREE值为41.5×10−6~81.01×10−6,LREE/HREE值为6.5~8.53,(La/Yb)N值为11.6~13.55,δEu值为0.46~0.55(表3)。

    表  3  卡尔恰尔(KE)、小白河沟(XB)、库木塔什(KM)矿床的萤石、方解石稀土元素组成表( 10−6
    Table  3.  Rare earth element data of fluorites and calcites from the Kaerqiaer, Xiaobaihegou and Kumutashi deposit
    矿物样号LaCePrNdSmEuGdTbDyHoErTmYbLuYΣREELREEHREELREE/HREE(La/Yb)NδEuδCe

    KE-16.0412.91.858.612.280.322.400.392.320.461.210.191.110.1631.540.2432.008.243.883.900.420.94
    KE-26.4012.21.868.312.290.322.340.382.280.461.180.181.040.1632.039.4031.388.023.914.410.420.86
    KE-38.6418.02.7211.93.180.463.630.583.380.701.850.271.650.2347.657.1944.9012.293.653.760.410.90
    KE-45.7612.91.929.402.780.372.960.512.890.581.580.231.390.2147.343.4833.1310.353.202.970.390.95
    XB-16.4014.12.129.382.620.402.880.472.710.551.440.201.280.1838.344.7335.029.713.613.590.440.93
    XB-27.8118.82.9815.04.260.574.800.784.560.932.420.362.200.3268.665.7949.4216.373.022.550.380.96
    XB-36.6314.72.3911.53.570.453.660.613.630.782.020.301.850.2659.552.3539.2413.112.992.570.380.90
    KM-116.532.74.2111.72.890.512.710.442.370.461.190.161.020.1531.181.0172.518.508.5311.60.550.94
    KM-210.215.41.806.671.640.261.800.301.640.300.780.100.540.0731.541.5035.975.536.5013.550.460.81


    KE-169.916518.466.611.81.418.891.488.021.614.750.855.440.8740.5365.02333.1131.9110.449.220.401.10
    KE-277.718020.774.613.71.6210.31.778.531.785.130.855.760.9846.6403.42368.3235.1010.499.680.401.08
    KE-383.521325.196.818.12.1513.92.5213.52.677.741.348.641.4473.7490.40438.6551.758.486.930.401.13
    XB-110324528.598.818.52.2615.82.6013.22.808.311.489.741.5870.5551.57496.0655.518.947.590.391.09
    XB-215837843.314426.52.9420.03.4117.23.479.911.7211.51.9591.7821.90752.7469.1610.889.860.371.10
    XB-380.120222.883.315.41.8212.32.2110.82.266.971.268.421.3964.4451.03405.4245.618.896.820.391.14
    KM-168.516218.366.813.01.469.771.629.121.735.070.855.700.9245.8364.84330.0634.789.498.620.381.10
    KM-274.716018.964.312.61.288.871.597.701.514.210.724.720.7237.2361.82331.7830.0411.0411.350.351.02
    KM-369.515817.862.212.01.339.011.658.761.704.830.835.660.9443.0354.21320.8333.389.618.810.381.07
    KM-475.116319.965.212.41.319.171.567.651.544.290.744.880.7640.8367.50336.9130.5911.0111.040.361.01
    下载: 导出CSV 
    | 显示表格

    卡尔恰尔矿床方解石ΣREE值为365×10−6~490×10−6,LREE/HREE值为8.48~10.49,(La/Yb)N值为6.93~9.68,δEu值为0.4。小白河沟矿床方解石ΣREE值为451×10−6~822×10−6,LREE/HREE值为8.89~10.88,(La/Yb)N值为7.59~9.86,δEu值为0.37~0.39。库木塔什矿床方解石ΣREE值为354×10−6~368×10−6,LREE/HREE值为9.49~11.04,(La/Yb)N值为8.62~11.35,δEu值为0.35~0.38(表3)。

    卡尔恰尔矿区6件萤石的Rb含量为0.03×10−6~0.06×10−6,Sr含量为340×10−6~343×10−6,Sm含量为1.77×10−6~1.83×10−6, Nd含量为6.40×10−6~6.82×10−6 87Rb/86Sr值为0.00029~0.00046,87Sr/86Sr值为0.71005~0.71009,147Sm/144Nd值为0.1626~0.1682,143Nd/144Nd值为0.511917~0.512040(表4)。

    表  4  卡尔恰尔(KE)、小白河沟(XB)、库木塔什(KM)矿床的萤石Sr−Nd同位素组成表
    Table  4.  Sr−Nd isotopic composition of fluorites from Kaerqiaer, Xiaobaihegou and Kumutashi deposit
    样号Rb/10-6Sr/10-687Rb/86Sr87Sr/86SrSm/10-6Nd/10-6147Sm/144Nd143Nd/144Nd
    KE-10.053430.000390.710051.776.550.16330.511987
    KE-20.033400.000290.710051.836.820.16260.511917
    KE-30.043420.000360.710071.796.480.16720.511932
    KE-40.053420.000410.710081.836.710.16550.511975
    KE-50.063420.000460.710091.786.400.16820.512040
    KE-60.053430.000460.710041.806.490.16780.512036
    XB-10.262640.002870.710252.629.360.16960.511930
    XB-20.132930.001310.710152.609.450.16640.511919
    XB-30.183680.001450.710253.2611.880.16590.512039
    XB-40.163990.001180.710232.9810.680.16880.512062
    XB-50.213750.001610.710363.9414.150.16840.512061
    KM-11.301990.018780.709501.323.900.20440.512071
    KM-20.022610.000250.709521.293.880.20020.512061
    KM-30.022080.000290.709551.323.940.20240.512044
    下载: 导出CSV 
    | 显示表格

    小白河沟矿区5件萤石的Rb含量为0.13×10−6~0.26×10−6,Sr含量为264×10−6~399×10−6,Sm含量为2.60×10−6~3.94×10−6,Nd含量为9.36×10−6~14.15×10−687Rb/86Sr值为0.00118~0.00287,87Sr/86Sr值为0.71015~0.71036,147Sm/144Nd值为0.1659~0.1696 ,143Nd/144Nd值为0.511919~0.512062(表4)。

    库木塔什矿区3件萤石的Rb含量为0.02×10−6~1.3×10−6,Sr含量为199×10−6~261×10−6,Sm含量为1.29×10−6~1.32×10−6,Nd含量为3.88×10−6~3.94×10−6 87Rb/86Sr值为0.00025~0.01878,87Sr/86Sr值为0.70950~0.70955,147Sm/144Nd值为0.2002~0.2044,143Nd/144Nd值为0.512044~0.512071(表4)。

    本次研究工作对卡尔恰尔超大型萤石矿区碱长花岗岩进行LA−ICP−MS锆石U−Pb定年,获得成岩年龄为(455.8±2)Ma,表明其形成于中—晚奥陶世。一般岩浆热液型萤石矿的成矿时代稍晚于成矿岩体形成时代,卡尔恰尔一带各萤石矿区均见发育有肉红色碱长花岗岩脉体,萤石矿化主要赋存于岩体内外接触带附近,常见萤石−方解石细脉穿插于碱长花岗岩脉体中,碱长花岗岩因强烈热液活动而发育碳酸盐化、萤石化、硅化、绢云母化等矿化蚀变。同时库木塔什萤石矿的研究显示,该矿区碱长花岗岩体属高氟岩体[w(F)>0.1%],成岩年龄为(450±2.7)Ma(高永宝等,2021),与萤石共生的磷灰石LA−ICP−MS U−Pb年龄为(448±27)Ma(待见刊),均表明该区碱长花岗岩与萤石成矿具有密切的时空、成因关系。

    区域上,阿尔金西南缘发育大规模早古生代岩浆岩,均为阿中地块与柴达木地块之间洋-陆转换过程中岩浆活动的产物(曹玉亭等,2010孙吉明等,2012杨文强等,2012郭金城等,2014徐旭明等,2014董洪凯等,2014康磊等,2016过磊等,2019)。区域超高压变质岩研究表明,峰期变质时代集中于504~486 Ma,退变质作用时代为~450 Ma(Zhang et al.,2001刘良等,2007Liu et al.,2012)。卡尔恰尔周边邻近的花岗岩研究显示,帕夏拉依档沟一带二长花岗岩锆石U–Pb年龄为(460±4 )Ma、正长花岗岩锆石U−Pb年龄为(455±3.6)Ma,形成于挤压体制向拉张体制转换的构造环境(张若愚等,20162018),清水泉一带花岗质岩石锆石U−Pb年龄为(451±4)Ma,形成于伸展构造背景(王立社等,2016),而镁铁−超镁铁质侵入体(465 Ma)暗示此时碰撞造山已转入伸展阶段(马中平等,2011)。上述研究均表明,中—晚奥陶世阿中地块和柴达木地块由挤压造山转变成伸展构造背景,卡尔恰尔超大型萤石矿带正是该时期岩浆活动的产物。另外,区域上发育大规模形成于早—中奥陶世碰撞造山阶段的伟晶岩脉群,如吐格曼锂铍稀有金属矿床的成矿黑云母二长花岗岩锆石U−Pb年龄为475~482 Ma,含矿伟晶岩脉中铌钽铁矿U−Pb年龄为(472±8)Ma、锡石U−Pb年龄为(468±8.7)Ma(徐兴旺等,2019李杭等,2020Gao et al.,2021)。综上,早古生代加里东期是区域萤石矿、锂铍稀有金属矿的重要成矿期,萤石成矿稍晚于锂铍稀有金属矿。

    卡尔恰尔超大型萤石矿区片麻状钾长花岗岩获得LA−ICP−MS锆石U−Pb年龄为(914.5±4.1)Ma,表明其形成于新元古代早期。区域上,阿尔金西南缘已发现多处新元古代花岗(片麻)岩,可能与~900 Ma Rodinia超大陆事件引发的全球性岩浆活动相关,在空间分布上自西向东有江尕勒萨依、库如克萨依、清水泉、肖鲁布拉克、亚干布阳等地区花岗(片麻)岩呈带状分布,构成了一条与Rodinia超大陆汇聚相关的花岗岩带,正是这次构造事件使阿中地块和柴达木地块固结,该类同碰撞型花岗质片麻岩年龄大多为870~945 Ma(王超等,2006校培喜等,2014朱小辉等,2014王立社等,2015李琦等,2018马拓等,2018PAK Sang Wan,2019曾忠诚,2020),卡尔恰尔萤石矿区的片麻状钾长花岗岩即为Rodinia 超大陆汇聚引发的岩浆活动的产物。

    卡尔恰尔、小白河沟、库木塔什矿床萤石、方解石稀土元素特征表明,萤石、方解石的稀土元素配分曲线特征与碱长花岗岩、地层变质杂岩(黑云斜长片麻岩)较相似,均表现为右倾的LREE富集型,具有明显的负Eu异常特征(图7),表明萤石、方解石的稀土可能继承了岩体、地层的稀土配分模式。相比较,库木塔什矿区的萤石矿物具有更高的轻重稀土分馏程度。研究表明,萤石形成过程中REE含量的分布与结晶作用所处阶段有关,一般结晶早阶段的萤石富集 LREE,而结晶晚阶段萤石富集HREE(Moller et al.,1983Schonenberger et al.,2008),卡尔恰尔、小白河沟、库木塔什矿床中萤石均表现为明显的LREE富集型,可知其均形成于结晶作用的早阶段。

    图  7  卡尔恰尔一带萤石矿床的稀土元素配分模式图
    碱长花岗岩与黑云母斜长片麻岩数据引自高永宝等(2021)吴益平等(2021)
    Figure  7.  Normalized REE patterns of fluorite deposits from the Kaerqiaer area

    Moller等(1976) 在全球 150 多个萤石矿床研究基础上提出Tb/La−Tb/Ca双变量关系图解,用以判别萤石的成因类型,Tb/La原子数比值可反映成矿流体中稀土元素的分馏程度, Tb/Ca原子数比值可代表萤石结晶时的化学环境,具成因指示意义;卡尔恰尔、小白河沟、库木塔什矿床的萤石样品点均落在热液成因区域(图8a),表明该区萤石矿均为岩浆热液作用的产物。Y、Ho元素由于半径、电价相近,具有相似的地球化学性质,故Y/Ho值常作为一种重要参数来示踪成矿流体作用过程(Deng et al.,2014Graupner et al.,2015Mondillo et al.,2016),在富含 F 的成矿流体体系中,Y相对于 Ho 元素含量会较富集,两者比值一般大于28(Veksler et al.,2005)。Bau等(1995)在研究欧洲数个萤石矿床后提出La/Ho−Y/Ho关系图,可有效判别成矿流体来源,同源同期结晶的萤石Y/Ho 值不变而在图上表现为直线,而不同来源的萤石Y/Ho 值变化较大。卡尔恰尔、小白河沟、库木塔什矿床萤石样品在La/Ho−Y/Ho图中呈水平直线展布(图8b),且萤石样品Y/Ho 值(68~105)均远大于28,表明该区萤石矿为同源同期流体成矿,成矿流体是具有相同物化性质的富含F 的成矿流体。前已述及,不同矿区萤石、方解石的稀土元素配分模式具有一致性,同样是同源同期流体的反映。同时,图8中可看出卡尔恰尔、小白河沟矿床的萤石矿物Tb/La、La/Ho值相近,且与库木塔什矿床有明显区别,表明同处于卡尔恰尔断裂的卡尔恰尔、小白河沟矿床萤石的稀土分馏程度相近,而处于盖吉勒断裂的库木塔什萤石矿具有相对更高的轻重稀土分馏程度,可能反映同一成矿流体体系下不同断裂处分布的萤石矿床成矿环境略有差异。

    图  8  卡尔恰尔一带萤石Tb/Ca−Tb/La图与La/Ho−Y/Ho图(底图据Moller et al.,1976; Bau et al.,1995
    计算Tb/Ca原子数比采用CaF2中Ca的理论值(51.332 8%)
    Figure  8.  Tb/Ca−Tb/La and La/Ho−Y/Ho diagram of fluorite from the Kaerqiaer area

    δEu特征能记录成矿流体的氧化还原条件及温度,还原条件下形成的萤石因Eu2+具较大离子半径而不利于取代Ca2+进入到晶格中,导致Eu2+与稀土体系分离而形成Eu负异常,氧化条件下形成的萤石通常呈Eu正异常(Bau et al.,1992)。同时强烈的Eu负异常指示沉淀时成矿流体处于中低温环境(<250 ℃),而当温度超过250 ℃时则表现出正Eu异常(Bau et al.,1992)。卡尔恰尔、小白河沟、库木塔什矿床中萤石、方解石的δEu<0,表示沉淀时成矿流体处于还原条件下中低温环境。

    在反映成矿物质来源的 La/Yb−ΣREE关系图中(图9a),不同矿区的萤石样品均落在沉积岩、钙质泥岩区及其附近,说明成矿物质可能一部分来自围岩。在(Y+La)−Y/La 关系图(图9b)中,样品均落在钙碱性花岗岩区域内,说明萤石矿在成因上确实与花岗岩的侵入有密切关系。显然,元素图解不仅展示了围岩地层对成矿物质的影响,还显示了岩浆热液对成矿作用的影响,且该区成矿碱长花岗岩体属高氟岩体[w(F)>0.1%],可为萤石成矿提供氟物质,萤石赋矿地层具有一定选择性,主要为阿尔金岩群中的黑云斜长片麻岩、碳酸盐岩等富钙质岩系。因此,初步认为成矿主要物质之一的 Ca 元素可能主要是由岩浆热液对地层的淋滤萃取而来,而F元素则可能主要来源于成矿岩体碱长花岗岩。

    图  9  卡尔恰尔一带萤石的La/Yb−ΣREE与(Y+La)−Y/La图解(底图据Allegre et al.,1978
    Figure  9.  La/Yb−ΣREE and (Y+La)−Y/La diagram of fluorite from the Kaerqiaer area

    萤石一般具有较低的Rb含量和较高的Sr含量,此次Sr、Nd同位素测试结果显示,卡尔恰尔一带萤石具有较低的Rb/Sr值,使得萤石的87Sr/86Sr组成可以直接代表成矿流体的87Sr/86Sr初始比值。卡尔恰尔矿区萤石的87Sr/86Sr值为0.71005~0.71009,小白河沟矿区萤石的87Sr/86Sr值为0.71015~0.71036,库木塔什矿区萤石的87Sr/86Sr值为0.70950~0.70955,可看出各矿区成矿流体的87Sr/86Sr值基本一致,反映了成矿流体中Sr可能同源。卡尔恰尔矿区萤石的143Nd/144Nd值为0.511917~0.512040,小白河沟矿区萤石的143Nd/144Nd值为0.511919~0.512062,库木塔什矿区萤石的143Nd/144Nd值为0.512044~0.512071,均介于上、下地壳143Nd/144Nd值(0.50071~0.51212)之间。在87Sr/86Sr −143Nd/144Nd图解中(图10),萤石样品点均落于上、下地壳之间区域,说明萤石成矿物质来源于地壳。

    图  10  卡尔恰尔一带萤石的87Sr/86Sr −143Nd/144Nd图解
    Figure  10.  87Sr/86Sr −143Nd/144Nd diagram of fluorite from the Kaerqiaer area

    (1)阿尔金卡尔恰尔超大型萤石矿带成矿与碱长花岗岩关系密切,萤石矿化主要赋存于岩体内外接触带附近,赋矿围岩主要为阿尔金岩群中的黑云斜长片麻岩、碳酸盐岩等富钙质岩系,矿体明显受北东向断裂构造控制,矿石类型主要有脉状、角砾状、块状、条带状矿石,矿物组成主要是萤石、方解石。

    (2)卡尔恰尔超大型萤石矿区与成矿有关的碱长花岗岩成岩年龄为(455.8±2) Ma,结合前人研究,认为该萤石矿带形成于加里东期中—晚奥陶世,为挤压造山转变成伸展构造背景下岩浆活动的的产物。矿区片麻状钾长花岗岩成岩年龄为(914.5±4.1)Ma,形成于新元古代早期,与 Rodinia 超大陆汇聚事件有关。

    (3)稀土元素特征显示,卡尔恰尔、小白河沟、库木塔什3个矿床的萤石、方解石稀土元素配分模式均为右倾的LREE富集型,具有明显负Eu异常,与成矿岩体、围岩地层十分相似,表明萤石、方解石的稀土可能继承了岩体、地层的稀土配分模式。各矿床萤石均为热液成因,表现出同源同期成矿流体的特征,成矿环境为还原条件下的中低温环境。

    (4)各矿区萤石Sr−Nd同位素组成显示成矿物质来源于地壳,结合成矿特征,初步认为Ca可能主要来自于岩浆热液对地层的淋滤萃取,而F可能主要来源于成矿岩体碱长花岗岩。

  • 图  1   印度尼西亚苏门答腊岛斑岩铜(钼)成矿远景区(据胡鹏等,2020修改)

    1. 大中型铜钼矿床;2. 小型铜钼矿床;3. Cu化探异常;4. Au化探异常;5. Mo化探异常;6. 成矿远景区以及编号

    Figure  1.   Porphyry copper (molybdenum) metallogenic prospective area in Sumatra, Indonesia

    图  2   厄立特里亚金矿床预测图(据刘江涛等,2021修改)

    Figure  2.   Prediction map of gold deposits in Eritrea

    图  3   辽宁省金矿成矿系列(据袁和等,2022修改)

    Ⅲ-51-①. 通辽科尔沁盆地煤油气Ⅳ级成矿亚带;Ⅲ-51-②. 库里吐–汤家仗子Ⅳ级成矿亚带;Ⅲ-55-①. 山门–乐山成矿亚带;Ⅲ-55-②. 吉中成矿亚带;Ⅲ-56-①. 铁岭–靖宇成矿亚带;Ⅲ-56-②. 营口–长白山成矿亚带;Ⅲ-56-③. 瓦房店成矿亚带;Ⅲ-57-①. 内蒙隆起东段成矿亚带;Ⅲ-57-②. 燕辽成矿亚带;Ⅲ-57-③. 北镇成矿亚带;Ⅲ-57-④. 马兰峪-绥中成矿亚带;Ⅲ-62-①. 法库Au煤硅灰石Ⅳ级成矿亚带;Ⅲ-62-②. 辽河石油、天然气Ⅳ级成矿亚带

    Figure  3.   Metallogenic series of gold deposits in Liaoning Province

    图  4   基于SMOTE数据集的随机森林方法提取的综合地质异常(据夏庆霖等,2021修改)

    Figure  4.   Comprehensive geological anomalies extracted by random forest method based on SMOTE dataset

    图  5   塔吉克斯坦Au地球化学块体分布图(据范堡程等,2020修改)

    Au-1.卡拉马扎尔东金地球化学块体;Au-2.卡拉马扎尔西金地球化学块体;Au-3.泽拉夫尚西金地球化学块体;Au-4.泽拉夫尚东金地球化学块体;Au-5.穆克苏伊金地球化学块体;Au-6.卡拉库里北金地球化学块体;Au-7.中帕米尔金地球化学块体;Au-8.东南帕米尔金地球化学块体

    Figure  5.   Distribution map of Au geochemical blocks in Tajikistan

    图  6   采用局部奇异性方法圈定的As 异常区(据成秋明,2009修改)

    Figure  6.   As anomalous area delineated by local singularity method

  • 柏坚. 非线性数学地质模型研究及在滇东南金矿成矿预测中的应用[D]. 北京: 中国地质大学(北京), 2010

    BAI Jian. Application of Nonlinear Geomathematical Geology Models to Mineral Resources Prospectivity Mapping for Gold Deposits in Southeast YunNan, China[D]. Beijing: China University of Geosciences(Beijing), 2010.

    毕明丽. 多金属矿产综合信息区域深部成矿预测——以临江市东港地区靶区预测为例[J]. 科学技术与工程, 2020, 20(15): 5942-5947 doi: 10.3969/j.issn.1671-1815.2020.15.008

    BI Mingli. Deep metallogenic prediction of polymetallic mineral comprehensive information area: taking target area prediction of Donggang district in Linjiang City as an example [J]. Science Technology and Engineering, 2020, 20( 15): 5942-5947 doi: 10.3969/j.issn.1671-1815.2020.15.008

    陈永清, 陈建国, 汪新庆, 等. 基于GIS矿产资源综合定量评价技术 [M]. 北京: 地质出版社, 2008

    CHEN Yongqing, CHEN Jianguo, WANG Xinqing, et al. Quantitatively Integrated Assessment Techniques for Mineral Resources Based on GIS[M]. Beijing: Geological Publishing House, 2008

    陈毓川, 裴荣富, 王登红. 三论矿床的成矿系列问题[J]. 地质学报, 2006(10): 1501-1508 doi: 10.3321/j.issn:0001-5717.2006.10.003

    CHEN Yuchuan, PEI Rongfu, WANG Denghong. On Minerogenetic (Metal logenetic) Series: Third Discussion[J]. Acta Geologica Sinica, 2006(10): 1501-1508. doi: 10.3321/j.issn:0001-5717.2006.10.003

    陈毓川, 裴荣富, 王登红等. 八论矿床的成矿系列[J]. 地质学报, 2022, 96(01): 123-130 doi: 10.3969/j.issn.0001-5717.2022.01.011

    CHEN Yuchuan, PEI Rongfu, WANG Denghong, et al. A discussion on minerogenetic series of mineral deposits(Ⅷ) [J]. Acta Geologica Sinica, 2022, 96(01): 123-130. doi: 10.3969/j.issn.0001-5717.2022.01.011

    陈毓川, 裴荣富, 王登红等. 矿床成矿系列——五论矿床的成矿系列问题[J]. 地球学报, 2016, 37(05): 519-527 doi: 10.3975/cagsb.2016.05.02

    CHEN Yuchuan, PEI Rongfu, WANG Denghong, et al. Minerogenetic Series for Mineral Deposits: Discussion on Minerogenetic Series (V)[J]. Acta Geoscientica Sinica, 2016, 37(05): 519-527. doi: 10.3975/cagsb.2016.05.02

    陈毓川, 裴荣富, 王登红等. 论地球系统四维成矿及矿床学研究趋向——七论矿床的成矿系列[J]. 矿床地质, 2020, 39(05): 745-753

    CHEN Yuchuan, PEI Rongfu, WANG Denghong, et al. Four-dimensional metallogeny in earth system and study trends of mineral deposits: A discussion on minerogenetic series (Ⅶ)[J]. Mineral Deposits, 2020, 39(05): 745-753.

    陈毓川, 裴荣富, 王登红等. 论矿床的自然分类——四论矿床的成矿系列问题[J]. 矿床地质, 2015, 34(06): 1092-1106 doi: 10.16111/j.0258-7106.2015.06.001

    CHEN Yuchuan, PEI Rongfu, WANG Denghong, et al. Natural classification of mineral deposits: Discussion on minerogenetic series of mineral deposits (Ⅳ)[J]. Mineral Deposits, 2015, 34(06): 1092-1106. doi: 10.16111/j.0258-7106.2015.06.001

    成秋明, 李文昌, 夏庆霖, 等. 非线性矿产预测理论方法创立与应用[Z]. 湖北: 中国地质大学(武汉), 2016-01-01

    CHENG Qiuming, LI Wenchang, XIA Qinglin, et al. Establishment and application of nonlinear mineral prediction theory and method[Z]. Hubei: China University of Geosciences (Wuhan), 2016-01-01.

    成秋明, 赵鹏大, 陈建国等. 奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解[J]. 地球科学(中国地质大学学报), 2009, 34(02): 232-242 doi: 10.3799/dqkx.2009.021

    CHENG Qiuming, ZHAO Pengda, CHEN Jianguo. Application of Singularity Theory in Prediction of Tin and Copper Mineral Deposits in Gejiu District, Yunnan, China: Weak Information Extraction and Mixing Information Decomposition[J]. Earth Science(Journal of China University of Geosciences), 2009, 34(02): 232-242. doi: 10.3799/dqkx.2009.021

    成秋明. 成矿过程奇异性与矿产预测定量化的新理论与新方法[J]. 地学前缘, 2007(05): 42-53.

    CHENG Qiuming. Singular mineralization processes and mineral resources quantitative prediction: new theories and methods[J]. Earth Science Frontiers, 2007, 14(5): 042-053

    成秋明. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法[J]. 地球科学, 2006, 31(03): 337-348

    CHENG Qiuming. Singularity-Generalized Self-Similarity-Fractal Spectrum(3S) Models[J]. Earth Science(Journal of China University of Geosciences), 2006, 31(03): 337-348.

    成秋明. 非线性矿床模型与非常规矿产资源评价[J]. 地球科学, 2003, 28(04): 445-454

    CHENG Qiuming. Non-Linear Mineralization Model and Information Processing Methods for Prediction of Unconventional Mineral Resources[J]. Earth Science, 2003, 28(04): 445-454.

    成秋明. 增强证据权(BoostWofE)新方法在矿产资源定量评价中的应用[J]. 吉林大学学报(地球科学版), 2012, 42(06): 1976-1984

    CHENG Qiuming. Application of a Newly Developed Boost Weights of Evidence Model (BoostWofE) for Mineral Resources Quantitative Assessments[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(06): 1976-1984.

    程裕淇, 陈毓川, 赵一鸣. 初论矿床的成矿系列问题[J]. 中国地质科学院院报, 1979(00): 32-58

    CHENG Yuqi, CHEN Yuchuan, ZHAO Yiming. Preliminary Discussion on the Problems of Minerogenetic Series of Mineral Deposits[J]. Bulletin Chinese Acad. Geo. Sci. , 1979(00): 32-58.

    程裕淇, 陈毓川, 赵一鸣等. 再论矿床的成矿系列问题[J]. 中国地质科学院院报, 1983(02): 1-64+134-135

    CHENG Yuqi, CHEN Yuchuan, ZHAO Yiming, et al. Further Discussion on the Problems of Minerogenetic Series of Mineral Deposits[J]. Bulletin Chinese Acad. Geo. Sci. , 1983(02): 1-64+134-135.

    邓军, 战明国, 周伟金等. 基于模糊证据权法的广西典型金矿矿产定量预测[J]. 地质力学学报, 2021, 27(03): 374-390 doi: 10.12090/j.issn.1006-6616.2021.27.03.034

    DENG Jun, ZHAN Mingguo, ZHOU Weijin, et al. Quantitative prediction of mineral resources in typical gold deposits in Gusngxi, China using a fuzzy weights of evidence method[J]. Journal of Geomechanics, 2021, 27(03): 374-390. doi: 10.12090/j.issn.1006-6616.2021.27.03.034

    范堡程, 张晶, 孟广路等. 地球化学块体理论在塔吉克斯坦金资源潜力预测中的应用[J]. 西北地质, 2020, 53(01): 138-145 doi: 10.19751/j.cnki.61-1149/p.2020.01.012

    FAN Chengbao, ZHANG Jing, MENG Guanglu, et al. Application of Geochemical Blocks Theory in the Prediction of Gold Resource Potential in Tajikistan[J]. Northwestern Geology, 2020, 53(01): 138-145. doi: 10.19751/j.cnki.61-1149/p.2020.01.012

    何友宇, 南小龙, 覃金宁等. 衡阳盆地及周缘铜多金属矿成矿系列与找矿新突破[J]. 科学技术与工程, 2022, 22(05): 1775-1785 doi: 10.3969/j.issn.1671-1815.2022.05.007

    HE Youyu, NAN Xiaolong, QIN Jinning, et al. Metallogenic series and prospecting breakthough of copper-polymetallic deposits in the Hengyang Basin and its periphery[J]. Science Technology and Engineering, 2022, 22(05): 1775-1785. doi: 10.3969/j.issn.1671-1815.2022.05.007

    何庆先等. 苏联矿产预测与预测普查组合[M]. 地质矿产部情报研究所,1988

    HE Qingxian, et al. Combination of mineral prediction and prediction census in the Soviet Union[M]. Institute of information, Ministry of Geology and mineral resources,1988

    侯翠霞, 刘向冲, 张文斌等. 成矿预测理论与方法新进展[J]. 地质通报, 2010, 29(06): 953-960 doi: 10.3969/j.issn.1671-2552.2010.06.018

    HOU Cuixia, LIU Xiangchong, ZHANG Wenbin, et al. New method and theory of metallogenic prediction[J]. Geological Bulletin of China, 2010, 29(6): 953-960 doi: 10.3969/j.issn.1671-2552.2010.06.018

    胡鹏, 张海坤, 曹亮等. 印度尼西亚苏门答腊岛斑岩型铜(钼)矿产资源定量评价[J]. 矿床地质, 2020, 39(05): 867-878 doi: 10.16111/j.0258-7106.2020.05.007

    HU Peng, ZHANG Haikun, CAO Liang, et al. Quantitative assessment of porphyry copper(molybdenum)mineral resourcesin Sumatra, Indonesia[J]. Mineral Deposits, 2020, 39(05): 867-878. doi: 10.16111/j.0258-7106.2020.05.007

    李新中, 赵鹏大, 胡光道. 基于规则知识表示的模型单元选择专家系统的实现[J]. 地球科学, 1995, 20(02): 173-178

    LI Xinzhong, ZHAO Pengda, HU Guangdao. Expert system for model until selection based on rule knowledge presentation[J]. Earth Science, 1995, 20(02): 173-178.

    刘同, 刘传朋, 康鹏宇等. 基于GIS的格尔木市分水岭北地区铜金矿综合信息找矿预测[J]. 西北地质, 2020, 53(03): 295-307 doi: 10.19751/j.cnki.61-1149/p.2020.03.027

    LIU Tong, LIU Chuanpeng, KANG Pengyu, et al. GIS-based comprehensive information prospecting prediction of Cu-Au deposit in Fenshuilingbei area, Gulmud City[J]. Northwestern Geology, 2020, 53(03): 295-307. doi: 10.19751/j.cnki.61-1149/p.2020.03.027

    刘江涛, 吴发富, 李福林等. 基于证据权模型的厄立特里亚金矿资源潜力评价[J]. 地质学报, 2021, 95(04): 1292-1305 doi: 10.3969/j.issn.0001-5717.2021.04.024

    LIU Jiangtao, WU Fafu, LI Fuling, et al. Quantitative evaluation of Eritrea gold resources potential based on the weighe of evidence model[J]. Acta Geoscientica Sinica, 2021, 95(04): 1292-1305. doi: 10.3969/j.issn.0001-5717.2021.04.024

    刘俊, 李文昌, 周清等. 藏东类乌齐-左贡成矿带构造演化与成矿作用[J]. 沉积与特提斯地质, 2022, 42(01): 88-104 doi: 10.19826/j.cnki.1009-3850.2022.01004

    LIU Jun, LI Wenchang, ZHOU Qing, et al. Tectonic evolution and mineralization of the eiwuqi-Zogang metallogenic belt [J]. Sedimentary Geology and Tethyan Geology, 2022, 42(01): 88-104. doi: 10.19826/j.cnki.1009-3850.2022.01004

    秦锦华, 王登红, 陈毓川等. 矿田尺度成矿规律与成矿系列研究——以湖南水口山为例[J]. 地质学报, 2020, 94(01): 255-269

    QIN Jinhua, WANG Denghong, CHEN Yuchan, et al. Research on metallogenetic regularity and metallogenic series in ore fields— a case study from the Shuikoushan ore field, Hunan Province[J]. Acta Geoscientica Sinica, 2020, 94(01): 255-269.

    宋明春, 周明岭, 鲍中义, 等. 胶东深部金矿三维成矿预测及巨大的资源潜力[J/OL]. 金属矿山, 2021: 1−18

    SONG Mingchun, ZHOU Mingling, BAO Zhongyi, et al. 3D Metallogenic Prediction of Deep Gold Deposits for Jiaodong Penninsula and Its Huge Resource Potential[J/OL]. Metal Mine,2021, 1−18.

    孙凯, 张航, 卢宜冠等. 中非铜钴成矿带地质特征与找矿前景分析[J]. 中国地质, 2022, 49(1): 103-120

    Sun Kai, Zhang Hang, Lu Yiguan, et al. Analysis on geological characteristics and prospecting potential of the Central African Cu-Co metallogenic belt[J]. Geology in China, 2022, 49(1): 103-120.

    孙莉, 肖克炎, 娄德波. 中国铝土矿资源潜力预测评价[J]. 地学前缘, 2018, 25(03): 82-94 doi: 10.13745/j.esf.2018.03.007

    SUN Li, XIAO Keyan, LOU Debo. Mineral prospectivity of bauxite resources in China[J]. Earth Science Frontiers, 2018, 25(03): 82-94. doi: 10.13745/j.esf.2018.03.007

    滕菲, 彭丽娜, 孟庆龙等. 证据权法在河北丰宁地区银铅锌多金属矿成矿预测中的应用[J]. 华北地质, 2021, 44(01): 21-26

    TENG Fei, PENG Lina, MENG Qinglong, et al. Applying weight of evidence to predict Ag-Pb-Zn potentiality in Fengning region, Hebei[J]. North China Geology, 2021, 44(01): 21-26.

    王登红, 陈毓川, 徐志刚等. 矿床成矿系列组——六论矿床的成矿系列问题[J]. 地质学报, 2020, 94(01): 18-35 doi: 10.19762/j.cnki.dizhixuebao.2020103

    WANG Denghong, CHEN Yuchuan, XU Zhigang, et al. Minerogenetic series group: discussion on minerogenetic series(Ⅵ) [J]. Acta Geoscientica Sinica, 2020, 94(01): 18-35. doi: 10.19762/j.cnki.dizhixuebao.2020103

    王海芹, 陈莉, 刘继梅等. 山东胶东金矿综合信息矿产预测[J]. 上海国土资源, 2018, 39(04): 107-111 doi: 10.3969/j.issn.2095-1329.2018.04.023

    WANG Haiqin, CHEN Li, LIU Jimei, et al. Comprehensive data regarding mineral prediction for gold mining in the Jiaodong area, Shandong province[J]. Shanghai Land & Resources, 2018, 39(04): 107-111. doi: 10.3969/j.issn.2095-1329.2018.04.023

    王佳营, 张晓军, 姚春亮等. 非线性理论和模糊证据权方法在内蒙古达来庙草原覆盖区钼多金属矿产预测中的应用[J]. 地质调查与研究, 2019, 42(03): 174-184 doi: 10.3969/j.issn.1672-4135.2019.03.003

    WANG Jiaying, ZHANG Xiaojun, YAO Chunling, et al. Application of nonlinear theory and fuzzy weights of evidence methodin metallogenic prediction for Mo polymetalic deposits in the Dalaimiao grassland-covered area, Inner Mongolia[J]. Geological Survey and Researh, 2019, 42(03): 174-184. doi: 10.3969/j.issn.1672-4135.2019.03.003

    王利功, 黄昊, 施亮亮等. 崤山地区金多金属矿综合信息成矿预测[J]. 中国矿业, 2017, 26(S2): 170-175

    WANG Ligong, HUANG Hao, SHI Liangliang, et al. Gold poly-metall multipurpose information metallogenic prognosis in Xiaoshan region[J]. China Mining Magazine2017, 26(S2): 170-175.

    王世称, 陈永良. 夏立显. 综合信息矿产预测理论与方法[M]. 北京: 科学出版社, 2000

    WANG Shicheng, CHEN Yongliang, XIA Lixia. Theory and method of comprehensive information mineral prediction[M]. Beijing: Science Press, 2000

    王世称. 综合信息矿产预测理论与方法体系新进展[J]. 地质通报, 2010, 29(10): 1399-1403 doi: 10.3969/j.issn.1671-2552.2010.10.002

    WANG Shicheng. The new development of theory and method of synthetic information mineral resources prognosis[J]. Geological Bulletin of China, 2010, 29(10): 1399-1403 doi: 10.3969/j.issn.1671-2552.2010.10.002

    王银宏, 严光生, 翟裕生. 三部式潜在矿产资源定量评价与蒙特卡罗模拟[J]. 中国矿业, 2006, 15(06): 14-17 doi: 10.3969/j.issn.1004-4051.2006.06.005

    WANG Yinhong, YAN Guangsheng, ZHAI Yusheng. Three-part quantitative assessments of undiscovered mineral resources and Monte Carlo mulation[J]. China Mining Magazine, 2006, 15(06): 14-17. doi: 10.3969/j.issn.1004-4051.2006.06.005

    夏庆霖, 赵梦余, 王孝臣等. 基于地质异常的内蒙古新达来草原覆盖区钼铜多金属矿产定量预测[J]. 地学前缘, 2021, 28(03): 56-66.

    XIA Qinglin, ZHAO Mengyu, WANG Xiaochen, et al. Quantitative prediction of molybdenum-copper polymetallic mineralresources in the Xindalai grassland-covered area of Inner Mongolia based on geological anomalies. Earth Science Frontiers , 2021 , 28(3): 056-066

    向文帅, 姜军胜, 赵凯. 应用地球化学块体法评价厄立特里亚金矿资源潜力[J]. 中国矿业, 2019, 28(12): 176-182 doi: 10.12075/j.issn.1004-4051.2019.12.003

    XIANG Wenshuai, JIANG Junsheng, ZHAO Kai. The application of geochemical blocksmethods to gold resource assessment in Eritrea[J]. China Mining Magazine, 2019, 28(12): 176-182. doi: 10.12075/j.issn.1004-4051.2019.12.003

    肖克炎, 丁建华, 刘锐. 美国“三步式”固体矿产资源潜力评价方法评述[J]. 地质论评, 2006, 52(06): 793-798 doi: 10.3321/j.issn:0371-5736.2006.06.010

    XIAO Keyan, DING Jianhua, LIU Rui. The Discussion of Three-Part Form of non-fuel Mineral Resource Assessment[J]. Geological Review, 2006, 52(06): 793-798. doi: 10.3321/j.issn:0371-5736.2006.06.010

    肖克炎, 张晓华, 王四龙, 等. 矿产资源GIS评价系统[M]. 北京: 地质出版社, 2000

    XIAO Keyan, ZHANG Xiaohua, WANG Silong, et al. GIS evaluation system of mineral resources[M]. Beijing: Geological Publishing House, 2000

    肖克炎. “深部综合信息矿产资源预测评价”专辑特邀主编寄语[J]. 地球学报, 2020, 41(02): 130-134

    XIAO Keyan. Guest Editor’s Preface to the “Prediction and Assessment of Deep Mineral Resources Based on Integrated Geoinformation” [J]. Acta Geoscientica Sinica, 2020, 41(02): 130-134.

    肖文进, 张忠义, 侯朝勇等. 新疆哈密黑山金矿物化探异常特征及找矿预测[J]. 矿产勘查, 2021, 12(07): 1587-1594. doi: 10.3969/j.issn.1674-7801.2021.07.012

    XIAO Wenjin, ZHANG Zhongyi, HOU Chaoyong, et al. Geophysical and geochemical anomaly characteristics and prospecting prediction of Heishan gold deposit in Hami, Xinjiang, China[J]. Mineral Exploration, 2021, 12(07): 1587-1594. doi: 10.3969/j.issn.1674-7801.2021.07.012

    肖志坚. 基于空间信息网格的长江中下游矿产资源评价方法[D]. 武汉: 中国地质大学(武汉), 2010

    XIAO Zhijiang. The appraise method of mineral resources in middle-lower reaches Changjiang River based on Spatial Information Grid[D]. Wuhan: China University of Geoscience (Wuhan), 2010

    谢学锦, 刘大文, 向运川等. 地球化学块体——概念和方法学的发展[J]. 中国地质, 2002, 29(03): 225-233 doi: 10.3969/j.issn.1000-3657.2002.03.001

    XIE Xuejin, LIU Dawen, XIANG Yunchuan, et al. Geochemical blocks – Development of concept and methodology[J]. Geology in China, 2002, 29(03): 225-233. doi: 10.3969/j.issn.1000-3657.2002.03.001

    徐善法, 王学求, 张必敏等. 中国铀地球化学块体与远景区划分[J]. 地球学报, 2020, 41(06): 785-796 doi: 10.3975/cagsb.2020.082502

    XU Shanfa, WANG Xueqiu, ZHANG Bimin, et al. China’s Uranium Geochemical Blocks: Implications for Delineation of Uranium Prospective Areas[J]. Acta Geoscientica Sinica, 2020, 41(06): 785-796. doi: 10.3975/cagsb.2020.082502

    许逢明, 吴大天, 周永恒, 等. 基于地球化学块体概念的马达加斯加全岛铬资源潜力评价[A]. 中国矿物岩石地球化学学会第17届学术年会论文摘要集[C], 2019: 736−738

    XU Fengming, WU Datian, ZHOU Yongheng, et al. Evaluation of chromium resource potential in Madagascar based on the concept of geochemical blocks[A]. Abstracts of the 17th Annual Meeting of the Chinese Society of Mineral and Rock Geochemistry[C], 2019: 736−738.

    薛顺荣, 胡光道, 丁俊. 成矿预测研究现状及发展趋势[J]. 云南地质, 2001, 20(04): 411-416 doi: 10.3969/j.issn.1004-1885.2001.04.010

    XIU Shongrong, HU Guangdao, DING Jun. The current situation and development trend of metallogenetic prognosis [J]. Yunnan Geology, 2001, 20(04): 411-416. doi: 10.3969/j.issn.1004-1885.2001.04.010

    叶天竺, 肖克炎, 成秋明, 等. 矿产定量预测方法 [M]. 北京: 地质出版社, 2010

    YE Tianzhu, XIAO Keyan, CHENG Qiuming, et al. Quantitative prediction method of mineral resources[M]. Beijing: Geological Publishing House, 2010

    袁峰, 张明明, 李晓晖等. 成矿预测: 从二维到三维[J]. 岩石学报, 2019, 35(12): 3863-3874 doi: 10.18654/1000-0569/2019.12.18

    YUAN Feng, ZHANG Mingming, Li Xiaohui, et al. Prospectivity modeling: From twodimension to three-dimension[J]. Acta Petrologica Sinica, 2019, 35(12): 3863-3874. doi: 10.18654/1000-0569/2019.12.18

    袁和, 王登红. 辽宁省金矿成矿规律及成矿系列[J]. 中国地质调查, 2022, 9(02): 73-82 doi: 10.19388/j.zgdzdc.2022.02.07

    YUAN He, WANG Denghong. Metallogenic regularity and series of gold deposits in Liaoning Province [J]. Geological Survey of China, 2022, 9(02): 73-82. doi: 10.19388/j.zgdzdc.2022.02.07

    张生元, 成秋明, 张素萍等. 加权证据权模型和逐步证据权模型及其在个旧锡铜矿产资源预测中的应用[J]. 地球科学(中国地质大学学报), 2009, 34(02): 281-286 doi: 10.3799/dqkx.2009.028

    ZHANG Shengyuan, CHENG Qiuming, ZHANG Suping, et al. Weighted Weights of Evidence and Stepwise Weights of Evidence and their Applications in Sn-Cu Mineral Potential Mapping in Gejiu, Yunnan Province, China[J]. Earth Science(Journal of China University of Geosciences), 2009, 34(02): 281-286. doi: 10.3799/dqkx.2009.028

    赵鹏大, 陈永清, 刘吉平, 地质异常成矿预测理论与实践[M]. 武汉: 中国地质大学出版社, 1999

    ZHAO Pengda, CHEN Yongqing, LIU Jiping, Theory and practice of geoanomaly in mineral exploration[M]. Wuhan: China University of Geosciences Press, 1999.

    赵鹏大, 池顺都. 初论地质异常[J]. 地球科学, 1991, 16(03): 241-248

    ZHAO Pengda, CHI Shundu. A Preliminary view on Geological Anomaly[J]. Earth Science, 1991, 16(03): 241-248.

    赵鹏大, 孟宪国. 地质异常与矿产预测[J]. 地球科学, 1993, 18(01): 39-47+127

    ZHAO Pengda, MENG Xianguo. Geological Anomaly and Mineral Prediction[J]. Earth Science, 1993, 18(01): 39-47+127.

    赵鹏大. “三联式”资源定量预测与评价——数字找矿理论与实践探讨[J]. 地球科学, 2002, 27(05): 482-489

    ZHAO Pengda. “Three-Component” Quantitative Resource Prediction and Assessments: Theory and Practice of Digital Mineral Prospecting[J]. Earth Science, 2002, 27(05): 482-489.

    赵震宇, 王世称, 孟令顺等. 陕南地区金矿床综合信息预测[J]. 吉林大学学报(地球科学版), 2004, 34 02): 287-291 doi: 10.13278/j.cnki.jjuese.2004.02.025

    ZHAO Zhenyu, WANG Shicheng, MENG Lingshun, et al. Synthetic information prediction of the gold mineral resources in southern Shaanxi Province[J]. Journal of Jilin University( Earth Science Edition), 2004, 34(02): 287-291. doi: 10.13278/j.cnki.jjuese.2004.02.025

    郑有业, 次琼, 高顺宝等. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向[J]. 地学前缘, 2021, 28(03): 379-402 doi: 10.13745/j.esf.sf.2021.1.19

    ZHENG Youye, CI Qiong, GAO Shunbao, et al. The Ag-Sn-Cu polymetallic minerogenetic series and prospecting direction in the western Gangdese belt, Tibet[J]. Earth Science Frontiers, 2021, 28(03): 379-402. doi: 10.13745/j.esf.sf.2021.1.19

    朱裕生. 矿产资源评价方法学导论[M]. 北京: 地质出版社, 1984

    ZHU Yusheng. Introduction to mineral resources evaluation methodology[M]. Beijing: Geological Publishing House, 1984

    朱裕生. 矿产资源潜力评价在我国的发展[J]. 中国地质, 1999,(11): 31-33+23

    ZHU Yusheng, Development of mineral resources assessment in China[J]. Geology in China, 1999,(11): 31-33+23.

    Agterberg F P , Gradstein F M . Recent developments in quantitative stratigraphy[J]. Earth Science Reviews, 1988, 25(1):1-73.

    Qiuming Cheng, F. P. Agterberg. Fuzzy Weights of Evidence Method and Its Application in Mineral Potential Mapping[J]. Natural Resources Research, 1999, 8(1).

    Fu Changliang, Chen Kaixu, Yang Qinghua, et al. Mapping gold mineral prospectivity based on weights of evidence method in southeast Asmara, Eritrea[J]. Journal of African Earth Sciences, 2021, 176: 104143.

    Liu, J. , Cheng, Q. A Modified Weights-of-Evidence Method for Mineral Potential Prediction Based on Structural Equation Modeling[J] . Nat Resour Res 28, 1037–1053(2019).

    Singer D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources [J]. Nonre-newable Resources, 1993, 2(2): 69–81.

    Singer D A, Menzie W D, Sutphin D M, et al. Mineral deposit density−An update[A]. In. Schulz K J, ed. Contributions to global mineral resource assessment research[M]. U. S. Geological Survey Professional Paper, 2001, 1640: A1–A13.

    Tao, J. , Yuan, F. , Zhang, N. , et al. Three-Dimensional Prospectivity Modeling of Honghai Volcanogenic Massive Sulfide Cu–Zn Deposit, Eastern Tianshan, Northwestern China Using Weights of Evidence and Fuzzy Logic[J]. Math Geosci 53, 131–162 (2021).

    WANG Xueqiu, SHEN Wujun, ZHANG Bimin, et al. Relationship of Geochemical Blocks and Ore Districts: Examples from the Eastern Tianshan Metallogenic Belt, Xinjiang, China[J]. Earth Science Frontiers, 2007, 14(5): 116–123. doi: 10.1016/S1872-5791(07)60040-2

    Zientek M L, Bliss J D, Broughton D W, et al. Sediment-Hosted stratabound copper assessment of the Neoproterozoic Roan Group, Central African Copperbelt, Katanga Basin, Democratic Republic of the Congo and Zambia[M]: U. S. Geological Survey Scientific Investigations Report 2010–5090–T, 2014: 162.

  • 期刊类型引用(12)

    1. 贾伍慧,刘凯,余成华,朱伟,邓岳飞. 锶同位素在地质学领域的分析技术与应用研究进展. 岩矿测试. 2025(02): 149-160 . 百度学术
    2. 何治亮,杨鑫,高键,云露,曹自成,李慧莉,杨佳奇. 特提斯洋与古亚洲洋协同演化控制下的塔里木台盆区油气富集效应. 石油与天然气地质. 2024(03): 637-657 . 百度学术
    3. 连政,汪东,殷豫江,张小林. 若羌盖吉克萤石矿地质特征及成矿构造环境分析. 新疆地质. 2024(02): 250-253 . 百度学术
    4. 万弘,欧阳永棚,陈祺,蒋起保,曾闰灵,杨立飞,邓腾,李增华. 赣东上水桥萤石矿床萤石微量元素地球化学特征及其对矿床成因的指示. 西北地质. 2024(04): 80-96 . 本站查看
    5. 张建芳,陈浩然,伍江涵,王振,张琨仑,吕鹏瑞,曹华文,邹灏. 萤石矿床成因研究方法及发展趋势. 西北地质. 2024(04): 97-112 . 本站查看
    6. 沈金祥,张建芳,曹华文,喻黎明,方乙,邹灏. 浙江缙云县吾山萤石矿床成因:来自稀土元素、流体包裹体、红外光谱的制约. 西北地质. 2024(04): 37-49+305 . 本站查看
    7. 高永宝,陈康,王亮,赵辛敏,李艳广,刘明,张龙,王元伟,张毅,刘基. 阿尔金西段库木塔什萤石矿床成因:磷灰石U-Pb年龄、原位Sr-Nd同位素、地球化学约束. 西北地质. 2024(04): 1-20+305 . 本站查看
    8. 刘天航,唐卫东,高永宝,魏立勇,何佳乐,范堡程,张羽,董梦杰. 内蒙古北山花石头山萤石矿床成因:萤石微量、稀土和H-O同位素制约. 西北地质. 2024(04): 66-79 . 本站查看
    9. 马少兵,裴秋明,王亮,韩术合,梁翼,孙清飞,沈家乐. 内蒙古喀喇沁旗大西沟萤石矿床成因:来自稀土元素、流体包裹体和H-O同位素的制约. 西北地质. 2024(04): 50-65 . 本站查看
    10. 张毅,高永宝,刘明,王元伟,陈康,张龙,景永康,刘靖宇. 阿尔金西段库木塔什萤石矿床成矿流体特征及成矿机制探讨. 西北地质. 2024(04): 21-36 . 本站查看
    11. 张寿庭,邹灏,方乙,曹华文,裴秋明,唐利,王亮,高永璋,张伟,徐旃章. 热液脉型萤石矿床隐伏矿体定位预测综合技术方法. 矿床地质. 2024(04): 785-801 . 百度学术
    12. 郭宇,陈登,汤子程,刘志臣,张晓东. 黔东北地区金亮萤石矿床稀土元素地球化学特征与成矿物质来源. 矿物学报. 2023(06): 873-881 . 百度学术

    其他类型引用(3)

图(6)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  51
  • PDF下载量:  94
  • 被引次数: 15
出版历程
  • 收稿日期:  2021-12-11
  • 修回日期:  2022-08-14
  • 网络出版日期:  2022-10-09
  • 刊出日期:  2023-04-19

目录

/

返回文章
返回