ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义

李平, 陈隽璐, 张越, 孙少珍, 郝晨羽

李平, 陈隽璐, 张越, 等. 商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 2023, 56(2): 10-27. DOI: 10.12401/j.nwg.2022020
引用本文: 李平, 陈隽璐, 张越, 等. 商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 2023, 56(2): 10-27. DOI: 10.12401/j.nwg.2022020
LI Ping, CHEN Junlu, ZHANG Yue, et al. The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance[J]. Northwestern Geology, 2023, 56(2): 10-27. DOI: 10.12401/j.nwg.2022020
Citation: LI Ping, CHEN Junlu, ZHANG Yue, et al. The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance[J]. Northwestern Geology, 2023, 56(2): 10-27. DOI: 10.12401/j.nwg.2022020

商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义

基金项目: 中国地质调查局项目“秦岭祁连地区区域地质调查”(DD20230215),“北方造山带重要地区区域地质调查工程”(DD20230005),“西北地区铜镍钴等战略性矿产资源调查”(DD20230032),“西北重大岩浆事件及其成矿作用和构造背景综合研究”(12120114020501)和“西北地区自然资源动态监测与风险评估”(DD20211393)联合资助。
详细信息
    作者简介:

    李平(1983−),男,高级工程师,主要从事岩浆岩石学研究和区域地质调查。E−mail:gogogis@qq.com

    通讯作者:

    陈隽璐(1964−),男,研究员,长期从事大地构造研究工作。E−mail:chjl0116@163.com

  • 中图分类号: P588.12

The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance

  • 摘要:

    位于商丹俯冲增生带南缘山阳–柞水地区的侵入岩类在形成时代主要集中在新元古代(885~621 Ma)和中晚三叠—早白垩世(233~132 Ma)2个阶段,且后者多为秦岭造山带印支期—燕山期造山活动的产物。该构造带内土地沟至池沟地区出露有部分与成矿作用有关的小岩体,锆石LA–ICP MS U–Pb同位素测年结果表明其形成时代为144.4~158.8 Ma,属于晚侏罗世—早白垩世侵入岩类。岩石地球化学特征显示出富集大离子亲石元素,亏损高场强元素,高Sr、低Y的特征。结合区域岩浆岩演化研究,可以认为土地沟–池沟地区晚侏罗—早白垩世侵入岩类的形成可能与西太平洋活动应力作用以及区内的北西向构造系统约束具有密切关联。受此影响,以中南秦岭地区在后碰撞–后造山阶段拆沉和幔源物质上涌作用下,地壳物质发生重熔从而在山阳–柞水一带形成一系列中酸性侵入岩类。

    Abstract:

    Located in the south margin of Shangdan sunduction–accretion belt, intrusive rocks in Shanyang–Zhashui region are mainly formed in two stages: the former is Neoproterozoic (885~621 Ma), and the latter is Middle–Late Triassic and Early Cretaceous (233~132 Ma) that was a result of Qinling orogenic event during Indosinian–Yanshan period. Zirons LA–ICP–MS U–Pb dating of intrusions in Tudigou–Chigou region show them formed between 144.4 Ma and 158.8 Ma, during Late Jurassic and Early Cretaceous. Geochemical study on these rocks reveals, they are enriched in large ion lithophile element (LILE) and depleted in high field strength elements (HFSE), with a high ratio of Sr/Y. Combined with the research on regional magmatic evolution, intrusions formed between Late Jurassic and Early Cretaceous in Tudigou and Chigou may be controlled by the movement of western Pacific and NE faults. And also, with the crustal delamination and the addition of fluid from subduction–accretion belt in post–collision and post–orogenic stages, intrusions from Shanyang– Zhashui region are formed by the melting of crust in Middle–south Qinling.

  • 随着中国西北地区首次成功应用钻井法施工大埋深煤矿立井(刘永宏等,2022),钻井法施工在西北地区如榆林市、延安市、鄂尔多斯市、庆阳市等多地得到蓬勃发展,但钻井法作业过程中产生的废弃钻井泥浆的产量也将逐步增加(申艳军,2022)。泥浆是钻井作业中起到稳定地层压力、保护清洁钻井同时传递动力的重要物质(贺亚维等,2007Chang et al.,2014),如何合理处置废弃钻井泥浆,避免对周围环境造成负担成了众多学者研究的方向,尤其在陕北黄土高原生态环境脆弱区这一问题显得尤为重要。

    陕北地区风积沙分布广泛(昝国盛等,2023),由于风积沙颗粒粒径较大,导致其渗透系数较大,渗透性强且吸附力差,难以涵养水分,保留肥力,农业生产力差(朱启明等,2022),但是由于陕北地区土地资源紧张,风积沙仍是主要的耕作土壤(王雪艳,2022)。

    目前对钻井泥浆的处理方法主要有固液分离法(张浩等,2020雷琦,2022)、固化处理法(杨子健等,2021王丹丹,2023)以及土地耕种法(王富加等,2023)。其中,固液分离法和固化处理法处理成本高昂。土地耕种法是将钻井泥浆的上层清液去除,将沉降的泥浆与土壤按照一定比例进行混合,随后进行耕种,学者们发现钻井泥浆中的各种乳化剂等添加剂中含有较高浓度的氮磷钾等元素(舒畅等,2023),且钻井泥浆中颗粒小且均匀,主要为黏粒(Murtaza,2023Flemming et al.,2024),可以提高土壤肥力,改善土壤性质,因此将钻井泥浆应用于土壤改良,提高土体耕种质量。因此,相对于其他两种方法,土地耕种法的优势在于操作便捷,成本低廉,且西北地区多为风积沙,土地贫瘠,利用钻井泥浆进行土壤改良大有可为。

    关于钻井泥浆在改良土壤方面的研究前人开展了大量研究工作,钻井泥浆可以有效改善沙土的保水性能,当钻井泥浆与沙土比例达到1∶3时,改良效果相对较好(Tawornpruek et al.,2021);有试验表明钻井泥浆可以提高土体颗粒间的粘聚力,降低土体渗水性(Bauder et al.,2005);有学者通过试验发现在使用泥浆小于0.012 m3/m2情况下,加入钻井泥浆对土体的水力特性影响几乎没有影响(Zvomuya et al.,2011);一项研究表明在施用钻井泥浆45天后植株中营养元素显著增加,并且当钻井泥浆施加量小于0.002m3/m2每公顷时不会对植株有任何负面影响(Zvomuya et al.,2009);一些学者的研究结果显示当废弃钻井泥浆施用量为6%时,可以增加高粱植株中的Fe含量以及玉米中的Zn含量(Bauder,1999)。在中国,有试验结果表明通过提高风沙土的养分含量和持水能力,进一步改善植被的生长环境,从而减少水土流失(马猛,2023)。有学者发现煤矿钻井泥浆的成分复杂,主要含有大量含氧化合物、硅酸盐和有机物质等成分(李凤娟等,2023);部分学者通过研究认为煤矿钻井泥浆中的有机物质和其他成分可以促进土壤的肥力和微生物活动,促进植被覆盖和生态环境的改善(王峻等,2023)。因此,钻井泥浆可广泛应用于土壤改良,钻井泥浆作为一种新型土壤改良剂,在改良土壤质地,提高土壤质量,改善种植植株的品质方面有较高的应用价值。

    在陕北矿山地区土壤类型多为风积沙,由于风积沙贫瘠且欠缺保水保肥能力,难以栽种植株,钻井泥浆富含各种无机盐及有机质,且黏粒含量较高,可涵养水分。然而,使用钻井泥浆进行矿山地区风积沙土壤改良以达到修复矿山生态的研究较为鲜少,因此,笔者创新性的将钻井泥浆作为土壤改良剂用于改良风积沙土壤,开展了包括渗透性、蒸散率、颗分以及有效磷、速效K含量在内的一系列理化性质试验并将其作为评判标准,探究废弃钻井泥浆对矿山风积沙地区生态修复的改良效果实际可行性;并进行了相应的盆栽试验,以植株株高、叶片发育、根系发育等关键生长特征参数为指标,对比分析不同处理组之间的植株生长情况,也探究了钻井泥浆应用于陕北矿山生态修复的效果与机理,以期为泥浆资源化利用和陕北矿山生态修复提供理论和试验参考。

    研究区位于榆林市榆阳区可可盖矿区,属于黄河几字弯区内6 大煤炭基地的最大基地——陕北煤炭基地(图1),矿区地处榆林市以西直线距离约30 km,行政区划隶属陕西省榆林市榆阳区小纪汗镇。研究区地形地貌多为沙漠滩地,地表稍有起伏,地质构造简单,岩石主要以软弱–较坚硬岩为主,岩体较完整,以块状及层状结构为主,岩体质量一般,局部地段易发生矿山地质灾害问题(图1)。该地区地表土体主要为风积沙,属于松散~中密状态,不良级配的均匀砂,土壤贫瘠,无机盐含量低,渗透性好,保水保肥能力差。

    图  1  研究区位置图(据申艳军,2022修改)
    a. 矿区风积沙土壤;b. 矿区塌陷灾害
    Figure  1.  Location map of the research area

    室内试验选用材料包括研究区钻井泥浆、风积沙和购买的紫花苜蓿种子(图2)。对现场取回的钻井泥浆和风积沙进行室内渗透性、颗分以及有效磷、速效钾含量测试试验。试验结果(表1)表明:钻井泥PH值6.49,钻井泥浆粒径集中在1~10 um,有效磷含量为659.31 mg/kg,速效钾含量为171.75 mg/kg。风积沙PH值7.55,土壤颗粒粒径集中在0.5~0.25 mm,约占86.9%,有效磷以及速效钾含量分别为19.15 mg/kg、110.24 mg/kg渗透系数为0.2772 cm/s。紫花苜蓿具有耐干旱,耐盐碱,耐寒,耐刈割,同时产量高,品质优,经济效益好等优点,是种植面积最广的豆科牧草,因此选择紫花苜蓿作为盆栽试验植株。

    图  2  试验材料
    a. 风积沙;b. 钻井泥浆;c. 紫花苜蓿种子
    Figure  2.  Sampling in the study area
    表  1  风积沙基本参数
    Table  1.  Physical and chemical properties of undisturbed soil
    渗透系数
    (cm/s)
    颗粒度(mm) 元素含量
    (mg/kg)
    0.5~0.25 0.25~0.075 <0.075 有效磷 速效钾
    0.2772 86.9 8.0 1.8 19.15 110.24
    下载: 导出CSV 
    | 显示表格

    在试验前配置不同钻井泥浆含量的风积沙改良土试样,为便于描述,定义钻井泥浆质量分数:

    $$ \mathit{\text{θ}}=\frac{\mathit{\mathrm{\mathit{W}}_2}}{\mathit{\mathrm{\mathit{W}}_1}+\mathit{\mathrm{\mathit{W}}_2}}\times100\text{%} $$ (1)

    式中:θ为钻井泥浆质量分数;W1为风积沙质量(g);W2为钻井泥浆质量(g)。

    设置Z1、Z2、Z3组其钻井泥浆的质量分数θ分别为5%、10%和15%,同时设置空白对照组(CK),配置好的试样如图3所示。试验分为两部分,第一部分为改良土理化性质试验,探究钻井泥浆的加入对土体理化性质的影响,主要包括渗透性试验、蒸散率试验、颗分试验以及有效磷、速效钾含量测试试验;第二部分为盆栽试验,探究钻井泥浆的加入对植株株高、叶片发育、根系发育等关键生长特征参数的影响。

    图  3  试验样品
    Figure  3.  Test sample

    改良土理化性质试验主要包括渗透性、蒸散率、颗分以及有效磷、速效钾含量测试等试验。渗透性试验使用变水头法测定,采用环刀试样(图4),环刀横截面积为30 cm2。颗分试验使用筛析法,称重不同粒径颗粒筛上的质量并绘制图表,通过蒸散试验测定不同钻井泥浆掺量的蒸散速率(图5),试验保持的恒温温度为45 ℃。有效磷使用碳酸氢钠提取——鉬锑抗比色法,速效钾使用乙酸铵浸提——原子吸收分光光度计法(图6)。

    图  4  渗透性试验仪器
    a. 渗透管;CK. 试样;Z1. 试样;Z2. 试样;Z3. 试样
    Figure  4.  Penetration test instrument
    图  5  蒸散试验仪器
    a. 烘箱;CK. 试样;Z1.试样;Z2. 试样;Z3. 试样
    Figure  5.  Evapotranspiration test instrument
    图  6  有效磷、速效钾试验过程
    a. 试剂;b.试样;c. 浸取样品;d. 分光计
    Figure  6.  Experimental process of available phosphorus and potassium

    通过盆栽试验可分析不同改良配方土壤对于紫花苜蓿生长的影响。试验选择同一品种、同一批次、大小均一、颗粒饱满的种子进行种植。首先使用湿纸巾进行催芽两天备用,然后取配置好的试样,装入高20 cm,直径7 cm花盆中,每盆播种20粒种子,每种配比方案设置3盆平行试验组(图7)。待出芽两周后进行留苗,每盆保留5株长势一致的幼苗,并进行后续观测(图8)。

    图  7  盆栽试样播种后
    Figure  7.  Potted plant samples
    图  8  试验90 d盆栽试样
    CK. 试样;Z1.试样;Z2. 试样;Z3. 试样
    Figure  8.  Harvest potted samples after 90 days of experiment

    盆栽试验结束后,采集植株,每盆选择长势最佳的3株进行叶绿素和关键生长特征参数测量试验。地上部分采集植株叶片,测定鲜重、叶片长宽等指标,随后使用乙醇丙酮法测定叶绿素含量,测定过程(图9),地下部分测定根长以及根径等指标。

    图  9  叶绿素试验仪
    a. 试样;b. 丙酮;c. 乙醇;d 分光仪
    Figure  9.  Chlorophyll tester

    渗透系数代表土体透水能力的强弱,通过试验发现各组样品渗透系数为0.05030.2772 cm/s(图10)。CK组平均渗透系数为0.2772 cm/s;Z3组平均渗透系数为0.0503 cm/s,较CK组下降了81.85%,下降幅度明显;Z1组以及Z2组平均渗透系数较CK组分别下降了33.95%以及56.31%,下降较少。由此可见各组样品的渗透系数与钻井泥浆掺量呈现负相关关系,随着钻井泥浆掺量的增大而逐渐减小。可见,由于钻井泥浆颗粒较小,将钻井泥浆掺入风积沙中,显著提高了改良土细颗粒比例,细小颗粒一方面填充较大颗粒间的空隙,降低了土体的孔隙度,使得水分通道大大减少;另一方面由于其吸附力更强,起到更强的吸附水分的作用类似“海绵吸水效应”,两方面共同作用大大降低了改良土渗透性,减少了水分向下层土体的渗透。

    图  10  样品渗透系数对比图
    Figure  10.  Comparison of permeability coefficients

    改良土颗分试验结果(图11),CK组0.25 mm粒径以下的土壤颗粒占总体的9.8%;Z3组0.25 mm粒径以下的土壤颗粒占总体的33.7%,较CK组提升了343.88%,提升效果显著;Z1组以及Z2组0.25 mm粒径以下的土壤颗粒占比较CK组分别提升了139.79%以及312.24%,提升效果相对较差。

    图  11  样品颗分对比图
    Figure  11.  Comparison of particle size

    CK组0.075 mm粒径以下的土壤颗粒占总体的1.8%;Z3组0.075 mm粒径以下的土壤颗粒占总体的11.3%,较CK组提升了627.78%,占比上升明显;Z1组以及Z2组0.075 mm粒径以下的土壤颗粒占比较CK组分别提升了188.89%以及566.67%,提升幅度较小。

    各组土体小于0.5 mm颗粒所占比重与钻井泥浆掺量呈现正相关关系,随着钻井泥浆掺量的增加而增加。混合土与风积沙粒径均集中于0.5 mm至0.25 mm之间。但是3种混合土土壤粒径在0.25 mm以下以及0.075 mm以下的土壤颗粒在总体中所占比例比较CK组更高。

    由于钻井泥浆所含颗粒较小,粒径多在1~10 μm,原本粒径单一,但是级配不良的风积沙,在加入钻井泥浆后,细小颗粒所占比例得到显著提高,混合土颗粒粒径相差较大,土粒不均匀,级配达到改善,从物理方面来看土壤的性质得到了改良。

    蒸散率试验数据(图12),通过试验发现改良土相较于风积沙,保水能力得到有效提高。CK组在6 h时水分已完全蒸发,Z1组在7 h时水分完全蒸发,较CK组提升了16.67%;Z2组在9 h时水分完全蒸发,较CK组提升了150.00%;Z3组在9 h时水分完全蒸发,较CK组提升了150.00%。

    图  12  蒸散率折线图
    Figure  12.  Line chart of evapotranspiration rate

    可见钻井泥浆大量含有的细小颗粒相对于风积沙的粗颗粒,具有更强的吸附力,可以起到更强的吸附水分的效果;同时在蒸散过程中,钻井泥浆含有的黏粒与周围颗粒彼此固结形成较致密的固体,减少水分的流失,两方面共同作用,使得土体可以有效减缓水分蒸发,达到了“锁住”风积沙水分的良好效果。

    不同泥浆配比试样的有效磷、速效钾含量数据(图13),其中CK组有效磷含量为19.15 mg/kg;Z3组有效磷含量为323.21 mg/kg,较CK组提升了1587.49%;与CK组相比,Z1组以及Z2组有效磷含量提升效果稍差,分别为1099.13%以及1526.01%。由此可以看出泥浆的加入明显提高了风积沙的有效磷含量。

    图  13  样品速效钾、有效磷含量对比图
    Figure  13.  Comparison of quick acting potassium and available phosphorus content

    CK组速效钾含量为110.24 mg/kg;Z3组速效钾含量为131.38 mg/kg,较CK组提升了19.18%,提升效果最佳;相对于CK组,Z1组以及Z2组速效钾含量均有提高,但提高幅度较小,分别为8.38%以及17.36%。速效钾含量提高幅度对比有效磷含量提高幅度相对较小。

    图13可见各组土体有效磷以及速效钾含量与钻井泥浆掺量呈现正相关关系,分析认为钻井泥浆是多种物质的混合物,在生产钻井泥浆时加入的乳化剂中含有丰富的无机盐,通过钻井泥浆中的细小颗粒将无机盐紧密吸附,在与风积沙混合后,显著提高了无机盐含量。

    植株高度可以反映出植株生长的状态,从而间接表示出基质的好坏(秦琪焜等,2022)。经过90 d的种植试验,采集各组改良土种植得到的植株,并对植株高度测量(图14)。汇总不同条件下植株的株高试验数据(图15),CK组植株平均株高为8.1 cm;Z2组植株平均株高为26.0 cm,较CK组植株平均株高提升了220.99%,对植株生长有明显促进效果;Z1组与Z3组植株平均株高较CK组植株平均株高分别提升了202.50%与58.02%,提高幅度较小。可见,随着钻井泥浆的加入,植株的株高得到不同程度增长。

    图  14  株高测量
    Figure  14.  Measurement of plant height
    图  15  株高对比图
    Figure  15.  Comparison of plant height

    相对于风积沙,改良土所具有低渗透性、低蒸散率以及较高的无机盐含量的特点,这些特点为植株生长提供更良好的环境。低渗透性与蒸散率起到涵养水分的作用,为植株生长提供更好的水分环境,而较高的无机盐含量为植株生长补充必须的营养元素,两方面共同作用,在植株生长过程中发挥积极正面作用。此外,试验发现钻井泥浆掺量达到15%,相对于10%钻井泥浆掺量,植株生长会受到一定程度抑制,这说明植株生长与钻井泥浆掺量并非完全呈现正相关关系,其具有峰值掺量。

    经过90 d的种植,使用游标卡尺对各组土体种植得到的植株根系的根径测量(图16)。经过90 d的种植,采集各组土体种植得到的根系进行根长测量(图17)。汇总根径试验数据(图18),CK组植株平均根径为1.06 mm;Z2组植株平均根径为2.50 mm,较CK组植株平均根径提升了135.85%,提升效果明显;Z1组与Z3组植株平均根径较CK组植株平均根径分别提升86.79%与21.70%,提升效果较弱。

    图  16  根径测量
    Figure  16.  Root diameter measurement
    图  17  根长测量
    Figure  17.  Measurement of root length
    图  18  根径、根长对比图
    Figure  18.  Comparison of root diameter and root length

    由根长试验数据(图18)可知,CK组植株平均根长为15.7 cm;Z2组植株平均根长为27.7 cm,较CK组植株平均根长提升了76.43%,提升效果最佳;Z1组与Z3组植株平均根长较CK组植株平均根长分别提升了65.61%与4.01%,提升效果相对较弱。

    各组土体种植得到的植株根系数据与钻井泥浆掺量(0~10%)呈现正相关关系,随着钻井泥浆含量的增加而增加,当钻井泥浆掺量达到15%时,对植株促进生长的效果有所减弱。

    经过90 d的种植,汇总各组土体种植得到的植株叶片测量数据(图19)。由图19可知,CK组叶片平均长度为1.12 cm;Z1组叶片平均长度为2.13 cm,相对CK组叶片平均长度提升90.17%,叶片长度明显提升;Z2组与Z3组叶片平均长度相对CK组叶片平均长度分别提升51.79%与0%,提升效果较差;CK组叶片平均宽度为1.04 cm;Z2组叶片平均宽度为1.67 cm,相对CK组叶片平均宽度提升60.58%,叶片宽度提升最大;Z1组与Z3组叶片平均宽度相对CK组叶片平均宽度分别提升37.50%与11.54%,提升幅度较小。

    图  19  叶片长、宽对比图
    Figure  19.  Comparison of blade length and width

    各组土体种植得到的植株叶片数据与钻井泥浆掺量呈现一定程度的正相关关系,在较低掺量时(10%以下)随着钻井泥浆掺量的增加而增加,但是当钻井泥浆掺量达到15%时,对植株生长的促进效果会减弱。

    经过90 d的种植,对各组土体种植得到的植株叶绿素数据汇总整理(图20)。由图20可知,CK组植株平均叶绿素a含量为1.11;Z2组植株平均叶绿素a含量为1.26,较CK组植株平均叶绿素a含量提升了13.51%,提升效果最优;Z1组与Z3组植株平均叶绿素a含量较CK组植株平均叶绿素a含量分别提升了2.63%与9.00%,提升效果较弱;CK组植株平均叶绿素b含量为2.00;Z2组平均叶绿素b含量为2.28,较CK组平均叶绿素b含量提升了14.0%,提升幅度最大;Z1组与Z3组植株平均叶绿素b含量较CK组平均叶绿素b含量分别提升了2.50%与9.50%,提升幅度较小。从试验数据中可以看出,钻井泥浆的加入可以有效提高植株中叶绿素的含量。

    图  20  叶绿素a、b含量对比图
    Figure  20.  Comparison of chlorophyll content

    经过90 d试验,将种植得到的各组植株采集后称量鲜重(图21)。通过试验数据可知,混合土相较于风积沙,植株鲜重得到有效提高。植株鲜重试验数据见图22,可见CK组植株平均鲜重为0.67 g;Z2组植株平均鲜重为3.53 g,较CK组植株平均鲜重提升了426.87%,提升效果显著;Z1组与Z3组植株平均鲜重较CK组植株平均鲜重分别提升了137.37%与34.33%,提升效果相对较差。

    图  21  鲜重称量
    Figure  21.  Fresh weight weighing
    图  22  鲜重对比图
    Figure  22.  Comparison of fresh weight

    各个试验组中土体由于加入钻井泥浆,土体颗粒中黏粒含量上升,渗透能力降低(图23),提高了土体的保水能力;同时细颗粒填补原土壤中粗颗粒之间较大的间隙,有效对有机质起到保留作用,此外钻井泥浆中有效磷以及速效钾含量较高,适量加入可有效提高土体肥力促进植株生长(图23)。通过试验结果发现(图10图22),钻井泥浆的加入在物理以及化学性质上对土体性质进行改良,使得土体更适宜植株生长,可作为陕北风积沙地区土壤改良剂。但是过量的加入会使得土体各元素含量过高,出现板结等现象反而不利于植株生长(如本研究15%掺量),因此要因地制宜,酌情选择添加量。

    图  23  改良机理
    Figure  23.  Improvement mechanism diagram

    钻井泥浆中丰富的无机盐以及有机质可为植株生长提供充足养分(翟文晰等,2019),低浓度的加入可有效促进植株的生长,这一现象符合前人所作研究(Kisic et al.,2009),由于黄土本身贫瘠,缺乏黏粒以及营养物质(张永双等,2005曹丽花等,2008),少量的钻井泥浆加入即可起到良好的改良效果,但是当持续增大钻井泥浆的掺量直至15%时会出现植株生长情况不如10%泥浆掺量组植株生长情况的现象(图14图22),这是因为过高的泥浆掺量使得土体无机盐含量过高,出现土壤板结,不利于植株吸收水份。

    结合文中试验结果,钻井泥浆的加入可有效改良陕北榆林矿区风积沙,改善级配,降低渗透性,延缓水分蒸发,提高土壤中无机盐含量,增强保水保肥能力,有效提高植株品质。从试验结果中可以看出,10%钻井泥浆混合土综合表现最佳。

    (1)提出了一种钻井泥浆应用于修复矿山生态的方法,并通过开展颗分、渗透性、测定有效磷以及速效钾含量等土体理化性质试验和盆栽试验以植株株高、叶片发育、根系发育等关键生长特征参数为指标评价其修复效果。

    (2)钻井泥浆的加入可以有效提高土体黏粒含量,降低土体渗透能力,增强土体保水能力,即泥浆的加入使得风积沙土具有了“海绵吸水效应”,并同时起到了“锁住”风积沙水分的良好效果;同时提高土体无机盐含量,为植株生长提供养分,改善土体理化性质;钻井泥浆的加入对促进植株生长起到正面效果,相对于对照组,试验组种植得到的植株在各项指标上均有更优秀的数据。

    (3)钻井泥浆含量与对植株的促进效果并非呈现完全正相关关系,10%钻井泥浆含量相对于15%钻井泥浆含量在存进植株生长方面更有优势,即研究区泥浆改良矿山风积沙土壤的最优掺入比为10%。

  • 图  1   秦岭山阳–柞水地区地质简图及土地沟–池沟地区侵入岩地质图(据徐学义等,2014吴发富等,2014修改)

    Figure  1.   Geological maps of Shanyang–Zhashui region in Qinling and the intrusions in Tudigou–Chigou region

    图  2   土地沟–池沟地区中酸性岩体显微照片(正交偏光)

    a.池沟花岗闪长岩;b.池沟闪长玢岩;c.白沙沟石英闪长玢岩;d.土地沟石英闪长玢岩;Pl.斜长石;Bi.黑云母;Q.石英;Kfs.钾长石;Ser.绢云母;Hb.角闪石

    Figure  2.   Micrograph for intrusions of Tudigou and Chigou region in XPL view

    图  3   土地沟–池沟地区中酸性岩体锆石CL照片

    a.池沟花岗闪长岩;b.池沟闪长玢岩;c.白沙沟石英闪长玢岩;d.土地沟石英闪长玢岩

    Figure  3.   CL images of intrusions in Tudigou–Chigou region

    图  4   土地沟–池沟地区中酸性岩体锆石U–Pb同位素年龄谐和图

    a.池沟花岗闪长岩;b.池沟闪长玢岩;c.白沙沟石英闪长玢岩;d.土地沟石英闪长玢岩

    Figure  4.   Zircon U–Pb age Concordia diagram for intrusions in Tudigou and Chigou

    图  5   土地沟–池沟地区中酸性岩体SiO2–(Na2O+K2O)图(a)(Irvine et al.,1971Middlemost,1994)和SiO2–K2O图(b)(Richwood,1989

    Figure  5.   (a) SiO2 versus Na2O+K2O Diagram and (b) SiO2 versus K2O Diagram for intrusions in Tudigou–Chigou region

    图  6   土地沟–池沟地区中酸性岩体稀土元素球粒陨石标准化图(a)和 微量元素原始地幔标准化图(b)

    a. 标准化数据自Taylor et al.,1985;b.标准化数据引自Sun et al.,1989

    Figure  6.   (a) Chondrite–normalized REE distribution patterns for the intrusions in Tudigou–Chigou region, and (b) Primitive mantle–normalized trace elements spider diagram

    图  7   土地沟–池沟地区中酸性岩体R1–R2成因环境判别图(Batchelor et al.,1985

    Figure  7.   Diagrams of R1 versus R2 for Intrusions in Tudigou and Chigou

    表  1   土地沟–池沟地区岩体地质特征一览表

    Table  1   Geological characteristics of intrusions in Tudigou–Chigou region

    地名围岩侵入岩组合采集岩性/形成时代蚀变矿化类型
    池沟 中泥盆世地层:长石石英砂岩、石英砂岩夹薄层粉砂质板岩、板岩,夹大理岩 花岗闪长岩、二长花岗岩、石英闪长岩和石英闪长玢岩 花岗闪长岩
    (14CG1)/144.4 Ma
    围岩具角岩化、矽卡岩化,岩体与地层接触部位普遍发育接触变质晕;岩体:钾化、绢云母化、硅化、绿泥石化化,其次有黏土化、黑云母化 Cu、Mo
    闪长玢岩
    (14CG4)/150.7 Ma
    白沙沟 石英闪长玢岩
    (13BS01)/151.0 Ma
    围岩具角岩化、矽卡岩化;岩体:不同程度的绿泥、绿帘石化 Au、Cu
    土地沟 似斑状花岗岩和石英闪长(玢)岩、爆破角砾岩 石英闪长玢岩
    (14TD1)/158.8 Ma
    岩体具钾化、绢云母化、碳酸盐化、高岭土化 Mo
    下载: 导出CSV

    表  2   土地沟–池沟地区中酸性岩体锆石U–Pb同位素物质成分组成表

    Table  2   Zircon LA–ICP MS U–Pb analytical data of the intrusions in Tudigou–Chigou region

    样品比值年龄(Ma)组成(10−6
    207Pb/206Pb ±%207Pb/235U ±%206Pb/238U ±%208Pb/232Th ±%207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ208Pb/232Th±1σ204Pb206Pb207Pb208Pb232Th238UTh/U
    池沟花岗闪长岩(14CG1),n=28
    −010.04940.1590.15250.4540.02230.0380.00630.01716939144414321293<2.0830.11.614.383243191.01
    −030.05170.2690.16150.7650.02260.0570.00640.02827363152714441306<2.5119.91.262.952132200.97
    −040.05220.2440.16740.7140.02320.0530.00820.03429657157614831667<2.8117.10.952.151231690.72
    −060.05000.2950.15740.8440.02280.0630.00580.03219874149714541196<2.1024.11.302.752242510.89
    −070.05200.1860.16180.5300.02250.0420.00670.02128842152514431374<1.3333.61.945.043583650.97
    −080.05320.1880.16940.5490.02310.0430.00650.02133841159514731324<1.7434.61.954.193043410.88
    −110.05190.2860.16250.8160.02260.0590.00750.03828568153714541518<2.4013.30.771.4492.21370.67
    −130.05190.2800.15750.7720.02200.0570.00750.03928266149714041538<2.2119.11.172.11342090.64
    −180.05190.3700.15971.0390.02220.0720.00800.052285911509142516210<2.4011.90.751.2782.71280.64
    −190.05230.2400.15890.6630.02200.0510.00780.03430254150614031577<2.4220.51.232.291532250.67
    −200.04860.2800.15020.7930.0220.0590.00740.03813174142714341508<2.1719.11.002.311572060.76
    −220.04990.1350.15570.3910.0220.0350.00720.01719531147314421453<2.2751.42.728.556155351.14
    −230.05210.1730.16340.4990.02270.0400.00700.02229039154414531424<2.7321.51.142.421792210.80
    −240.05240.1790.16240.5090.02240.0410.00730.02330639153414331485<1.5033.71.904.503133560.87
    −250.04980.1850.15660.5360.02270.0440.00730.02418845148514531475<3.7727.41.453.322352810.83
    −260.05000.2070.15610.5920.02260.0470.00740.02619651147514431515<2.3634.71.915.333773661.02
    −270.04930.1970.15820.5830.02320.0460.00700.02716650149514831415<2.2823.51.262.581942460.78
    −290.04970.1670.15810.4910.02300.0410.00750.02318340149414731535<2.7636.11.944.953473810.91
    池沟闪长玢岩(14CG1),n=20
    −020.05130.2830.16910.8500.02390.0630.00780.04425468159715241589<2.4114.20.761.4792.71430.64
    −060.05200.2220.17130.6670.02380.0510.00810.033288511616152316472.4121.81.302.691822320.78
    −070.05110.3360.16931.0170.02400.0720.00920.058249841599153518612<3.0210.10.531.0663.397.40.65
    −080.04610.2140.14780.6440.02320.0480.00750.030454140614831526<1.6719.60.992.601952060.94
    −090.05240.2330.17280.7010.02380.0530.00790.03630653162615231617<2.4620.21.142.271582080.76
    下载: 导出CSV
    续表 2
    样品比值年龄(Ma)组成(10−6
    207Pb/206Pb ±%207Pb/235U ±%206Pb/238U ±%208Pb/232Th ±%207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ208Pb/232Th±1σ204Pb206Pb207Pb208Pb232Th238UTh/U
    −100.05070.2040.16720.6160.02380.0490.00740.03023148157515231506<2.9929.31.483.272032830.71
    −110.04930.2820.16180.8450.02370.0640.00860.04516673152715141739<2.4318.60.962.331531970.77
    −120.05030.2780.16610.8380.02390.0620.00830.04521170156715341679<2.6214.40.771.451031460.70
    −130.05040.2070.16300.6170.02340.0480.00780.03421351153515031587<1.6823.31.192.391762400.73
    −140.04910.2020.16170.6130.02390.0490.00770.03015351152515231566<1.4825.31.343.442592620.98
    −160.05250.3140.16860.9180.02320.0660.00840.051310731588148417110<2.2414.10.871.3999.91510.66
    −170.05070.1690.16880.5220.02410.0430.00840.03122940158515431716<2.0323.71.232.601812340.77
    −180.05020.2270.16450.6810.02370.0530.00790.03520756155615131617<1.8020.31.172.471842130.86
    −200.04830.3560.15601.0820.02340.0670.00820.0611141031471014941671214.916.94.657.7875.31350.55
    −210.04930.3180.15920.9360.02340.0700.00970.056165821508149419611<2.3320.51.072.551702190.77
    −220.05050.2130.16680.6470.02390.0510.00900.04122251157615231838<2.1117.00.891.771151710.67
    −240.04770.1800.15730.5510.02390.0460.00840.0368547148515231717<1.7923.21.182.231582390.66
    −250.05110.2640.16400.7740.02320.0580.00830.04524664154714841679<1.6321.51.232.161662350.70
    −260.04930.2200.15900.6580.02340.0500.00800.03416357150614931617<3.2130.11.534.123213220.99
    −290.05140.2420.16350.7030.02300.0540.00900.04526157154614731819<1.6922.01.242.571832450.74
    白沙沟石英闪长玢岩(13BS01),n=11
    −110.05260.1760.16700.5210.02310.0430.00670.01931539157514731364<1279259.955.050713711568.75
    −120.05230.1180.16470.3590.02290.0340.00620.01030225155314621252<663171.865.7879259018913.6
    −130.05190.2310.16960.6930.02380.0530.00730.03028554159615231486<628526.924.517544168.56.44
    −160.05290.1660.16800.4930.02320.0410.00680.02132536158414831384<111536.534.021359594.56.30
    −170.04930.2810.16050.8380.02370.0640.00660.03616673151715141347<238433.929.519857285.66.68
    −190.05290.2060.17160.6130.02370.0490.00690.02632545161515131405124527.926.217449270.46.98
    −210.05280.2020.17110.6020.02360.0480.00740.02832244160515131506<107231.429.518950679.36.38
    −240.05060.1510.17050.4710.02460.0420.00780.03222734160415731576<85147.042.71373591133.16
    −260.05060.1180.16650.3670.02400.0360.00710.02022325156315321444<73673.266.62818141804.50
    −270.05110.2070.17080.6340.02440.0510.00700.02924848160515531416<51724.622.613339559.76.62
    −280.05520.2490.18400.7520.02430.0570.00800.03842451172615541628<71824.624.513835859.95.97
    下载: 导出CSV
    续表 2
    样品比值年龄(Ma)组成(10−6
    207Pb/206Pb ±%207Pb/235U ±%206Pb/238U ±%208Pb/232Th ±%207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ208Pb/232Th±1σ204Pb206Pb207Pb208Pb232Th238UTh/U
    土地沟石英闪长玢岩(14TDG1),n=16
    −010.05150.1450.17640.4630.02500.0410.00720.02126632165415931464<58929.227.216848769.17.05
    −020.05270.1400.18060.4450.02500.0400.00800.02131729169415931624<41041.739.927272498.27.37
    −030.04960.1020.16980.3330.02490.0350.00750.01718022159315921523<43283.475.237010531965.35
    −050.05120.1290.17500.4120.02490.0390.00780.02325027164415921585<41548.845.42115841145.09
    −060.04860.1170.16700.3770.02510.0380.00760.02012927157316021544<40350.444.62477071176.00
    −070.05130.1100.17610.3560.02500.0360.00820.02225723165315921664<49565.561.42336211534.05
    −080.04930.0860.16880.2860.02490.0320.00810.01816519158215921644<4041111003449392613.59
    −120.05250.1160.17960.3700.02490.0360.00810.02031023168315921644<32861.959.83098621445.95
    −130.05300.1710.18040.5310.02480.0450.00950.03433136168515831917<29442.241.419547898.74.83
    −140.05340.1230.17960.3840.02450.0360.00890.0273472416831562179539154.053.41824791273.75
    −150.04930.1480.16950.4680.02500.0430.00870.03216534159416031756<22832.529.811831975.44.23
    −160.04930.1160.16760.3670.02480.0370.00910.02816226157315821846<32454.349.71674321263.40
    −170.04780.0980.16440.3170.02500.0340.00820.0189322155315921654<36358.752.33199221356.78
    −190.04880.1430.16790.4520.02500.0420.00790.02713933158416031605<50497.789.040612322255.47
    −200.04960.0880.17040.2880.02500.0320.00970.02217918160215921974<17697.690.53318192253.64
    −220.05190.1430.17660.4450.02470.0410.00930.0312842916541583188627949.948.61975171164.45
    下载: 导出CSV
    续表 3
    样号池沟花岗闪长岩池沟闪长玢岩
    14CG1-114CG1-214CG1-314CG1-414CG1-514CG4-114CG4-214CG4-314CG4-4
    V615855.369.670.8136131133124
    Sc8.487.518.229.778.9814.814.514.615.4
    Nb14.414.814.117.216.517.817.91818.7
    Ta1.181.141.161.431.251.421.351.381.46
    Zr179140134180166225233226235
    Hf5.284.123.885.245.016.246.386.286.44
    Be2.042.332.522.672.432.512.432.492.68
    Ga18.919.319.618.618.721.520.120.220.7
    Th1315.514.416.818.111.711.712.614.3
    (La/Sm) N5.016.736.906.716.863.703.934.264.27
    (Gd/Yb) N2.322.812.582.942.872.312.342.502.52
    (La/Yb) N19.2433.6030.1632.6433.7513.5215.0616.8518.36
    δEu1.951.872.211.401.391.461.401.391.38
    K2O/Na2O1.320.951.001.201.300.830.810.840.89
    ACNK1.241.241.231.231.221.211.171.201.21
    下载: 导出CSV
    样号池沟闪长玢岩白沙沟石英闪长玢岩
    14CG4-513BS01-113BS01-213BS01-313BS01-413BS01-513BS01-613BS01-7
    SiO261.9363.5462.7462.9563.1562.9263.0063.14
    Al2O316.2216.0516.1616.2316.0316.1416.1216.02
    Fe2O31.842.723.182.882.832.942.482.8
    FeO2.792.112.182.152.142.252.552.28
    CaO3.763.63.543.493.643.63.463.56
    MgO2.931.881.921.931.931.91.941.93
    K2O3.433.583.433.573.583.513.553.45
    Na2O3.864.784.884.874.824.894.864.88
    TiO20.770.630.650.630.650.640.650.65
    P2O50.560.430.450.440.440.450.460.45
    MnO0.080.120.140.120.120.130.120.12
    LOI1.810.540.710.690.670.610.80.7
    La41.440.23642.520.840.939.419.4
    Ce83.675.468.980.646.178.877.141.2
    Pr9.969.228.599.415.779.499.075.59
    Nd39.435.233.636.423.137.234.223.2
    Sm6.85.985.916.124.566.436.234.58
    Eu2.882.442.422.632.082.622.452.02
    Gd5.644.85.165.233.865.2453.84
    Tb0.810.740.740.770.560.790.730.58
    Dy4.063.563.713.793.083.843.653.11
    下载: 导出CSV
    续表 3
    样号池沟闪长玢岩白沙沟石英闪长玢岩
    14CG4-513BS01-113BS01-213BS01-313BS01-413BS01-513BS01-613BS01-7
    Ho0.750.690.730.720.590.740.680.6
    Er2.011.942.042.071.682.111.911.66
    Tm0.30.280.30.310.260.320.270.25
    Yb1.981.941.992.021.72.111.821.68
    Lu0.30.280.30.30.260.320.290.25
    Y18.817.41817.912.218.917.612.9
    Cu67.475.48274.869.386.980.180.6
    Pb9.6542.341.32747.535.743.131.3
    Zn46.310485.780.110597.384.176.4
    Cr53.315.822.618.115.619.21818.7
    Ni26.611.41512.210.81411.112.2
    Co109.829.949.431010.39.188.75
    Li11.611.711.511.511.812.11212
    Rb73.795.257.879.920.574.275.722
    Sr11401320123013201220133012701020
    Ba39403610369040403800394035803640
    V12391.410110210099.994.799.6
    Sc14.811.710.212.47.0311.810.87.46
    Nb19.217.217.817.418.217.616.816.3
    Ta1.481.361.351.341.451.431.331.28
    Zr243192207209219218177195
    Hf6.515.485.835.846.235.944.975.55
    Be2.332.842.723.132.982.822.322.68
    Ga20.520.420.121.320.521.32019.8
    Th13.611.29.9610.2510.19.253.93
    (La/Sm) N3.934.343.934.482.944.114.082.73
    (Gd/Yb) N2.362.052.152.141.882.052.271.89
    (La/Yb) N15.0014.8612.9815.098.7813.9015.538.28
    δEu1.421.391.341.421.521.381.341.47
    K2O/Na2O0.890.750.700.730.740.720.730.71
    ACNK1.201.071.081.081.061.071.071.07
    下载: 导出CSV

    表  3   土地沟–池沟地区中酸性岩体主量元素(%)和微量元素(10−6)地球化学数据表

    Table  3   Major elements (%) and trace elements (10−6) compositions of the intrusions in Tudigou–Chigou region

    样号池沟花岗闪长岩池沟闪长玢岩
    14CG1-114CG1-214CG1-314CG1-414CG1-514CG4-114CG4-214CG4-314CG4-4
    SiO268.0667.568.1367.6168.3360.5760.7160.5361.88
    Al2O316.3216.4316.411615.6316.3116.2115.9916.21
    Fe2O31.251.451.121.331.342.492.462.732
    FeO0.591.070.931.080.853.143.073.082.71
    CaO1.652.132.031.991.884.044.113.953.69
    MgO1.351.241.191.421.442.912.933.022.92
    K2O5.014.014.214.554.723.183.273.223.42
    Na2O3.84.224.233.793.623.844.023.823.84
    TiO20.440.40.390.460.470.770.760.780.75
    P2O50.320.270.290.330.330.530.550.570.55
    MnO0.020.020.020.020.020.090.080.080.07
    LOI1.191.261.061.41.372.141.822.161.92
    La22.834.232.845.552.735.840.14348.9
    Ce42.461.156.282.992.173.678.582.895.1
    Pr4.576.335.78.689.519.019.511011.4
    Nd1621.819.629.131.935.737.339.543
    Sm2.943.283.074.384.966.246.586.527.39
    Eu1.691.741.971.811.992.742.722.722.95
    Gd2.382.482.433.553.885.35.45.525.82
    Tb0.340.340.340.490.570.780.760.790.84
    Dy1.781.661.622.312.553.683.773.74.2
    Ho0.330.30.30.40.440.690.70.680.74
    Er0.880.780.821.021.181.971.991.932
    Tm0.130.110.120.150.170.30.30.280.3
    Yb0.850.730.7811.121.91.911.831.91
    Lu0.130.110.110.150.160.290.270.270.28
    Y8.127.517.4410.311.817.917.317.118.3
    Cu83613809211880130090.372.496.285.5
    Pb13.618.558.27.4727.329.419.123.834.3
    Zn26.626.824.227.327.75654.949.447.8
    Cr16.216.714.517.416.657.750.752.254.1
    Ni10.518.813.515.810.82825.826.427.1
    Co7.381310.810.58.8712.112.212.110.2
    Li7.678.436.839.228.8310.18.481013.1
    Rb10982.512893.114462.772.173.296.2
    Sr82011001210100011001210125012601250
    Ba326031603380312033303970396038403970
    下载: 导出CSV
  • 陈雷, 王宗起, 闫臻, 等. 秦岭山阳-柞水矿集区150~140Ma斑岩-矽卡岩型CuMoFe(Au)矿床成矿作用研究[J]. 岩石学报, 2014, 30(2): 415-436

    CHEN Lei, WANG Zongqi, YAN Zhen, et al. Metallogenesis of 150~140Ma porphyry-skarn CuMoFe(Au) deposit in Shanyang-zhashui ore concentration area, Qinling[J]. Acta Petrologica Sinica, 2014, 30(2): 415-436.

    端木合顺. 陕西凤县--山阳泥盆系同沉积断裂砾岩[J]. 古地理学报, 2000, 2(3): 92-98 doi: 10.3969/j.issn.1671-1505.2000.03.011

    DUANMU Heshun. The Conglomerates Controlled by Synsedimentary Faults of the Devonian in the Fengxian-shanyang‚Shaanxi Province [J]. Journal of Palaeogeography, 2000, 2(3): 92-98. doi: 10.3969/j.issn.1671-1505.2000.03.011

    方维萱, 刘家军. 陕西柞-山-商晚古生代拉分断陷盆地动力学与成矿作用[J]. 沉积学报, 2013, 31(2): 193-209.

    FANG Weixuan and LIU Jiajun. Dynamics of the Late Paleozoic Apart-pull Basin and Its Relationship with Mineralization of Gold-silver-polymetallic-barite-siderite Deposits in Zha-Shan-Shang, Shaanxi Province [J]. Acta Sedimentologica Sinica, 2013, 31(2):193-209.

    弓虎军, 朱赖民, 李博亚, 等. 南秦岭沙河湾、曹坪和柞水岩体锆石 U-Pb 年龄、Hf 同位素特征及其地质意义[J]. 岩石学报, 2009, 25(2): 248-264

    GONG Hujun, ZHU Laimin, LI Boya, et al. Zircon U-Pb ages and Hf Isotopic Characteristics and Their Geological Significance of the Shahewan, Caoping and Zhashui Granitic Plutons in the South Qinling Orogen [J]. Acta Petrologica Sinica, 2009, 25 (2): 248-264.

    郭现轻, 闫臻, 王宗起, 等. 山阳-柞水矿集区李家砭Ti-Fe矿床成矿构造背景研究[J]. 岩石学报, 2014, 30(2): 437-450

    GUO Xianqing, YAN Zhen, WANG Zongqi, et al. Tectonic Setting of Lijiabian Ti-Fe Deposit in Shanyang-zhashui Ore Concentration Area, Qinling Orogen [J]. Acta Petrologica Sinica, 2014, 30(2): 437-450.

    侯增谦, 曲晓明, 杨竹森, 等. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6): 629-651

    HOU Zengqian, QU Xiaoming, YANG Zhunsen, et al. Metallogenesis in Tibetan collisional orogenic belt: Ⅲ. Mineralization in post-collisional extension setting[J]. Mineral Deposits. 2006, 25(6): 629-651.

    侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83(12): 1779-1817

    HOU Zengqian, YANG Zhiming. 2009. Porphyry Deposits in Continental Settings of China: Geological Characteristics, Magmatic Hydrothermal System, and Metallogenic Model[J]. Acta Geologica Sinica, 83(12): 1779-1817.

    李承东, 赵利刚, 许雅雯, 等. 东秦岭造山带龟山岩组的解体及俯冲增生杂岩的厘定[J]. 中国地质, 2019, 46(2): 438-439

    LI Chengdong, ZHAO Ligang, XU Yawen, et al. Disintegration of Guishan Formation-complex and Delineation of Subduction Hyperplasia Complex in East Qinling Orogenic Belt[J]. Geology in China, 2019, 46(2): 438-439.

    李先梓, 严阵, 卢欣祥. 秦岭—大别山花岗岩[M]. 北京: 地质出版社, 1993

    LI Xianzi, YAN Zhen, LU Xinxiang. Granitoids of Qinling-Dabieshan[M]. Beijing: Geological Publishing House, 1993.

    李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 2400-2418 doi: 10.3969/j.issn.0001-5717.2015.12.015

    LI Yanguang, WANG Shuangshuang, LIU Minwu et al. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application [J]. Acta Geologica Sinica, 2015, 89(12): 2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015

    凌文黎, 任邦方, 段瑞春, 等. 南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义[J]. 科学通报, 2007, 52 ( 12): 1445-1456 doi: 10.3321/j.issn:0023-074X.2007.12.015

    LING Wenli, REN Bangfang, DUAN Ruichun, et al. Zircon U-Pb Isotopic Geochronology of Wudangshan Group, Yaolinghe Group and Basic Intrusions and Its Geological Significance [J]. Chinese Science Bulletin, 2007, 52 (12): 1445-1456. doi: 10.3321/j.issn:0023-074X.2007.12.015

    刘春花, 吴才来, 郜源红, 等. 南秦岭东江口、柞水和梨园堂花岗岩类锆石LA-ICP-MS U-Pb年代学与锆石Lu-Hf同位素组成[J]. 岩石学报, 2014, 30(08): 2402-2420

    LIU Chunhua, WU Cailai, HAO Yuanhong, et al. Zircon LA- ICP-MS U- Pb Dating and Lu- Hf Isotopic System of Dongjiangkou, Zhashui, and Liyuantang Granitoid Intrusions, South Qinling Belt, Central China [J]. Acta Petrologica Sinica, 2014, 30(8): 2402-2420.

    刘凯, 赵亮, 任涛, 等. 南秦岭柞水—山阳矿集区成矿特征及找矿方向[J]. 矿产勘查, 2020, 11(5): 849-857 doi: 10.3969/j.issn.1674-7801.2020.05.001

    LIU Kai, ZHAO Liang, REN Tao, et al. Analysis on Metallogenic Characteristics and Prospecting Direction of Zhashui-Shanyang Ore Cluster in South Qinling Mountains[J]. Mineral Exploration, 2020, 11(5): 849-857. doi: 10.3969/j.issn.1674-7801.2020.05.001

    刘仁燕, 牛宝贵, 和政军, 等. 陕西柞水地区小茅岭复式岩体东段LA-ICP-MS锆石U-Pb定年[J]. 地质通报, 2011, 30(2-3): 448-460

    LIU Renyan, NIU Baogui, HE Zhenjun, et al. LA-ICP-MS Zircon U-Pb Geochronology of the Eastern Part of the Xiaomaoling Composite Intrusives in Zhashui Area, Shaanxi, China. Geological Bulletin of China, 2011, 30(2-3): 448-460.

    牛宝贵, 何政军, 任纪舜, 等. 秦岭地区陡岭-小磨岭隆起西段几个岩体的SHRIMP锆石U-Pb测年及其地质意义[J]. 地质论评, 2006, 52(6): 826-835 doi: 10.3321/j.issn:0371-5736.2006.06.016

    NIU Baogui, HE Zhengjun, REN Jishun, et al. SHRIMP U-Pb Ages of Zircon from the Intrusion in the Western Douling-Xiaomaoling Uplift and their Geological Significances [J]. Geological Review, 2006, 52(6): 826-835. doi: 10.3321/j.issn:0371-5736.2006.06.016

    裴先治. 东秦岭商丹构造带的组成与构造演化[M]. 西安: 西安地图出版社, 1997

    PEI Xianzhi. Composition and Tectonic Evolution of the Shangdan Structural Zone in the East Qinling, China [M]. Xi’an: Xi’an Cartographic Publishing House, 1997.

    秦江锋. 秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D]. 西安: 西北大学, 2010

    QIN Jiangfeng. Petrogenesis and Geodynamic Implications of the Late-trassic Granitoids from the Qinling Orogenic Belt[D]. Xi’an: Northwest University, 2010.

    任涛, 王瑞廷, 谢桂青, 等. 陕西池沟斑岩型铜矿床含矿岩体地球化学特征、成岩成矿时代及其意义[J]. 矿床地质, 2014, 33(4): 807-820 doi: 10.3969/j.issn.0258-7106.2014.04.011

    REN Tao, WANG Ruiting, XIE Guiqing, et al. Geochemistry and rock-forming and ore-forming epochs of Chigou Cu porphyry deposit in Shaanxi Province, and their implications[J]. Mineral Deposits, 2014, 33(4): 807-820. doi: 10.3969/j.issn.0258-7106.2014.04.011

    尚瑞钧, 严阵. 秦巴花岗岩[M]. 武汉: 中国地质大学出版社, 1988

    SHAN Ruijun, YAN Zhen. Granites of Qinling-Dabashan Mountains [M]. Wuhan: China University of Geosciences Press, 1988.

    王瑞廷, 代军治, 张西社, 等. 陕西秦岭地区与小岩体有关的铜钼多金属矿床成矿背景与找矿预测[M]. 北京: 地质出版社, 2016

    WANG Ruiting, DAI Junzhi, ZHANG Xishe, et al. Metallogenic setting and prospecting prediction of copper-molybdenum deposits related to small instrusions in Qinling, Shaanxi Province[M]. Beijing: Geological Publishing House, 2016.

    王瑞廷, 冀月飞, 成欢, 等. 南秦岭柞水-山阳矿集区金铜矿床成矿规律与找矿方向. 现代地质, 2021, 35(6): 1487-1503

    WANG Ruiting, JI Yuefei, CHENG Huan, et al. Metallogenic Regularities and Future Prospecting Direction of Gold-Copper Deposits in the Zhashui-Shanyang Orefield, Southern Qinling Orogen[J]. Geoscience, 2021, 35(6): 1487-1503.

    王瑞廷, 李剑斌, 任涛, 等. 柞水-山阳多金属矿集区成矿条件及找矿潜力分析[J]. 中国地质, 2008, 35(6): 1291-1298 doi: 10.3969/j.issn.1000-3657.2008.06.025

    WANG Ruiting, LI Jianbin, REN Tao, et al. Metallogenic Conditions and Prospecting Potential of the Zhashui-Shanyang Poly-metal Ore Cluster[J]. Geology in China, 2008, 35(6): 1291-1298. doi: 10.3969/j.issn.1000-3657.2008.06.025

    王瑞廷, 任涛, 孟德明, 等. 柞-山矿集区侵入岩与成矿[J]. 西北地质, 2012, 45(Z1): 29-33

    WANG Ruiting, REN Tao, MENG Deming, et al. Intrusive rocks and mineralization in Zhashui-Shanyang ore oncentration area. Northwestern Geology, 2012, 45(Z1): 29-33.

    王晓霞, 王涛, Ilmari H. , 等. 秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义——元素和Nd、Sr同位素地球化学证据[J]. 岩石学报, 2005, 21(3): 935-946 doi: 10.3321/j.issn:1000-0569.2005.03.031

    WANG Xiaoxia, WANG Tao, Ilmari H. , et al. Genesis of Mafic Enclaves from Rapakivi-textured granites in the Qinling and Its Petrological Significance: Evidence of Elements and Nd, Sr Isotopes [J]. Acta Petrologica Sinica, 2005, 21(3): 935-946. doi: 10.3321/j.issn:1000-0569.2005.03.031

    王晓霞, 王涛, 齐秋菊, 等. 秦岭晚中生代花岗岩时空分布、成因演变及构造意义. 岩石学报, 2011, 27(6): 1573-1593

    WANG Xiaoxia, WANG Tao, QI Qiuju, et al. Temporal- spatial Variations, Origin and Their Tectonic Significance of the Late Mesozoic Granites in the Qinling, Central China[J]. Acta Petrologica Sinica, 2011, 27(6): 1573-1593.

    王宗起, 闫全人, 闫臻, 等. 秦岭造山带主要大地构造单元的新划分[M]. 地质学报, 2009, 83(11): 1527−1546

    WANG Zongqi, YAN Quanren, YAN Zhen, et al. New division of the main tectonic units of the Qinling Orogenic Belt, Central China [M]. Acta Geologica Sinica, 2009, 83(11): 1527−1546.

    吴发富, 王宗起, 王涛, 等. 南秦岭山阳板板山钾长花岗岩体SHRIMP锆石U-Pb年龄与地球化学特征[J]. 矿物岩石, 2012, 32(2): 63 -73.

    WU Fafu, WANG Zongqi, WANG Tao, et al. SHRIMP Zircons U-Pb Age and Geochemical Characteristics of the Banbanshan K-feldspar Granite in Shangyang, Southern Qinling Orogenic Belt [M]. Journal of Mineralogy and Petrology, 2012, 32(2): 63-73.

    吴发富, 王宗起, 闫臻, 等. 秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 岩石学报, 2014, 30(2): 451-471

    WU Fafu, WANG Zongqi, YAN Zhen, et al. Geochemical Characteristics, Zircons U-Pb Ages and Lu-Hf Isotopic Composition of the Yanshanian Intermediate-acidic Plutons in the Shanyang-Zhashui Areas, Qinling Orogenic Belt [J]. Acta Petrologica Sinica, 2014, 30(2): 451-471.

    夏林圻, 夏祖春, 李向民, 等. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因[J]. 西北地质, 2008, 41(03): 1-29 doi: 10.3969/j.issn.1009-6248.2008.03.001

    XIA Linqi, XIA Zuchun, LI Xiangmin, et al. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group Volcanic Rocks and Basic Dyke Swarms from Eastern Part of the South Qinling Mountains [J]. Northwestern Geology, 2008, 41(03): 1-29. doi: 10.3969/j.issn.1009-6248.2008.03.001

    谢桂青, 任涛, 李剑斌, 等. 陕西柞山盆地池沟铜钼矿区含矿岩体的锆石年龄和岩石成因[J]. 岩石学报, 2012, 28(1): 15-26

    XIE Guiqing, REN Tao, Li Jianbin, et al. Zircon U-Pb age and Petrogenesis of ore-bearing granitoids for the Chigou Cu-Mo deposit from the Zhashan basin, Shaanxi Province [J]. Acta Petrologica Sinica, 2012, 28(1): 15-26.

    徐学义, 陈隽璐, 张二朋, 等. 秦岭及邻区地质图(1∶500000)[M]. 西安: 西安地图出版社, 2014

    XU Xueyi, CHEN Junlu, ZHANG Erpeng, et al. Geological Map of Qinling and Its Adjacent Region[M]. Xi’an: Xi’an Cartographic Publishing House, 2014.

    闫臻, 王宗起, 王涛, 等. 秦岭造山带泥盆系形成构造环境: 来自碎屑岩组成和地球化学方面的约束[J]. 岩石学报, 2007, 23(5): 1023-1042 doi: 10.3321/j.issn:1000-0569.2007.05.016

    YAN Zhen, WANG Zengqi, WANG Tao, et al. Tectonic Setting of Devonian Sediments in the Qinling Orogen: Constraints from Detrital Modes and Geochemistry of Clastic rocks [J]. Acta Petrologica Sinica, 2007, 23(5): 1023-1042. doi: 10.3321/j.issn:1000-0569.2007.05.016

    闫臻, 王宗起, 陈雷, 等. 南秦岭山阳-柞水矿集区构造-岩浆-成矿作用[J]. 岩石学报, 2014, 30(2): 401-414

    YAN Zhen, WANG Zongqi, CHEN Lei, et al. Tectono-magmatism and Metallogeneses of Shanyang-Zhashui Ore Concentration Area in Qinling Orogen[J]. Acta Petrologica Sinica, 2014, 30(2): 401-414.

    严阵. 陕西省花岗岩[M]. 西安: 西安交通大学出版社, 1985.

    YAN Zhen. Granite from Shaanxi Province [M]. Xi’an: Xi’an Jiaotong University Press, 1985.

    阎明, 刘树文, 李秋根, 等. 南秦岭迷魂阵岩体LA-ICP-MS锆石U-Pb年代学和Lu-Hf同位素特征[J]. 岩石学报, 2014, 30(2): 390-400

    YAN Ming, LIU Shuwen, LI Qiugen, et al. LA-ICP-MS Zircon U-Pb Chronology and Lu-Hf Isotopic Features of the Mihunzhen Pluton in the South Qinling Tectonic Belt [J]. Acta Petrologica Sinica, 2014, 30 (2): 390-400.

    杨恺, 刘树文, 李秋根, 等. 秦岭柞水岩体和东江口岩体的锆石U-Pb年代学及其意义[J]. 北京大学学报(自然科学版), 2009, 45(5): 841-847 doi: 10.13209/j.0479-8023.2009.125

    YANG Kai, LIU Shuwen, LI Qiugen, et al. LA-ICP-MS Zircon U-Pb Geochronology and Geological Significance of Zhashui Granitoids and Dongjiangkou Granitoids from Qinling, Central China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(5): 841-847. doi: 10.13209/j.0479-8023.2009.125

    张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(3): 304-316 doi: 10.3969/j.issn.1006-7493.2008.03.003

    ZHANG Chengli, WANG Tao and WANG Xiaoxia. Origin and Tectonic Setting of the Early Mesozoic Granitoids in Qinling Orogenic Belt [J]. Geological Journal of China Universities, 2008, 14(3): 304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003

    张国伟, 张本仁, 袁学诚等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001

    ZHANG Guowei, ZHANG Benren, YUAN Xuecheng, et al. Qinling orogenic belt and continental dynamics [M]. Beijing: Beijing: Science Press, 2001.

    张银龙. 陕西省山阳县小河口地区酸性-中酸性岩体地质特征及其成矿地质条件分析[J]. 陕西地质, 2002, 20(2): 27-38. doi: 10.3969/j.issn.1001-6996.2002.02.004

    ZHANG Yinlong. Geological features and the metallogentic conditions ofacid-intermediate acid small rock bodies in Xiaohekou area of Shangyang County, Shaanxi Province [J]. Shaanxi Geology, 2002, 20(2): 27-38. doi: 10.3969/j.issn.1001-6996.2002.02.004

    赵东宏, 杨忠堂, 李宗会, 等. 秦岭成矿带成矿地质背景及优势矿产成矿规律[M]. 北京: 科学出版社, 2019.

    ZHAO Donghong, YANG Zhongtang, LI Zonghui, et al. Geological Setting and Metallogenic Regularity of Dominant Minerals in Qinling Metallogenic Belt[M]. Beijing: Science Press, 2019.

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitid rock series using multicationic parameters [J]. Chemical Geology, 1985, 45: 43-55.

    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks [J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. doi: 10.1139/e71-055

    Ludwig K R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel [J]. Berkeley Geochronology Center Special Publication, Berkeley, 2003: 70.

    Martin H. , Smithies R. H. , Rapp R. , et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution [J]. Lithos, 2005, 79: 1-24. doi: 10.1016/j.lithos.2004.04.048

    Middlemost E. A. H. Naming materials in magma-igneous rock system [J]. Earth Sciences Reviews, 1994, 7: 215-224.

    RichWood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos, 1989, 22: 247-263 doi: 10.1016/0024-4937(89)90028-5

    Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes [A]. In: Saunders A D, Norry M J (eds) Magmatism in the Ocean Basins[M]. Geological Society, London, Special Publications, 1989, 42: 313-345

    Taylor S R, McLennan S M. The Continental Crusts: Its Composition and Evolution [M]. Oxford: Blackwell Scientific Publications, 1985.

    Wilson M. Igneous Petrogenssis[M]. London: Unwin Hyman Ltd, 1989.

    YAN Zhen, WANG Zengqi, Yan Quanren, et al. Devonian Sedimentary Environments and Provenance of the Qinling Orogen: Constraints on Late Paleozoic Southward Accretionary Tectonics of the North China Craton [J]. International Geology Review, 2006, 48(7): 585-618. doi: 10.2747/0020-6814.48.7.585

    YAN Zhen, WANG Zengqi, Yan Quanren, et al. Geochemical Constraints on the Provenance and Depositional Setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the Tectonic Evolution of the Qinling Orogenic Belt [J]. Journal of Sedimentary Research, 2012, 82(1): 9-20. doi: 10.2110/jsr.2012.4

  • 期刊类型引用(12)

    1. 贾伍慧,刘凯,余成华,朱伟,邓岳飞. 锶同位素在地质学领域的分析技术与应用研究进展. 岩矿测试. 2025(02): 149-160 . 百度学术
    2. 何治亮,杨鑫,高键,云露,曹自成,李慧莉,杨佳奇. 特提斯洋与古亚洲洋协同演化控制下的塔里木台盆区油气富集效应. 石油与天然气地质. 2024(03): 637-657 . 百度学术
    3. 连政,汪东,殷豫江,张小林. 若羌盖吉克萤石矿地质特征及成矿构造环境分析. 新疆地质. 2024(02): 250-253 . 百度学术
    4. 万弘,欧阳永棚,陈祺,蒋起保,曾闰灵,杨立飞,邓腾,李增华. 赣东上水桥萤石矿床萤石微量元素地球化学特征及其对矿床成因的指示. 西北地质. 2024(04): 80-96 . 本站查看
    5. 张建芳,陈浩然,伍江涵,王振,张琨仑,吕鹏瑞,曹华文,邹灏. 萤石矿床成因研究方法及发展趋势. 西北地质. 2024(04): 97-112 . 本站查看
    6. 沈金祥,张建芳,曹华文,喻黎明,方乙,邹灏. 浙江缙云县吾山萤石矿床成因:来自稀土元素、流体包裹体、红外光谱的制约. 西北地质. 2024(04): 37-49+305 . 本站查看
    7. 高永宝,陈康,王亮,赵辛敏,李艳广,刘明,张龙,王元伟,张毅,刘基. 阿尔金西段库木塔什萤石矿床成因:磷灰石U-Pb年龄、原位Sr-Nd同位素、地球化学约束. 西北地质. 2024(04): 1-20+305 . 本站查看
    8. 刘天航,唐卫东,高永宝,魏立勇,何佳乐,范堡程,张羽,董梦杰. 内蒙古北山花石头山萤石矿床成因:萤石微量、稀土和H-O同位素制约. 西北地质. 2024(04): 66-79 . 本站查看
    9. 马少兵,裴秋明,王亮,韩术合,梁翼,孙清飞,沈家乐. 内蒙古喀喇沁旗大西沟萤石矿床成因:来自稀土元素、流体包裹体和H-O同位素的制约. 西北地质. 2024(04): 50-65 . 本站查看
    10. 张毅,高永宝,刘明,王元伟,陈康,张龙,景永康,刘靖宇. 阿尔金西段库木塔什萤石矿床成矿流体特征及成矿机制探讨. 西北地质. 2024(04): 21-36 . 本站查看
    11. 张寿庭,邹灏,方乙,曹华文,裴秋明,唐利,王亮,高永璋,张伟,徐旃章. 热液脉型萤石矿床隐伏矿体定位预测综合技术方法. 矿床地质. 2024(04): 785-801 . 百度学术
    12. 郭宇,陈登,汤子程,刘志臣,张晓东. 黔东北地区金亮萤石矿床稀土元素地球化学特征与成矿物质来源. 矿物学报. 2023(06): 873-881 . 百度学术

    其他类型引用(3)

图(7)  /  表(8)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  58
  • PDF下载量:  88
  • 被引次数: 15
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-05-15
  • 网络出版日期:  2022-09-21
  • 刊出日期:  2023-04-19

目录

/

返回文章
返回