ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义

    田龙, 康磊, 刘良, 盖永升

    田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28-45. DOI: 10.12401/j.nwg.2022028
    引用本文: 田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28-45. DOI: 10.12401/j.nwg.2022028
    TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology, 2023, 56(2): 28-45. DOI: 10.12401/j.nwg.2022028
    Citation: TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology, 2023, 56(2): 28-45. DOI: 10.12401/j.nwg.2022028

    东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义

    基金项目: 国家自然科学基金项目“南阿尔金两期埃达克岩成因及其对洋–陆俯冲转换过程的指示意义”(41602052),大陆动力学国家重点实验室自主研究课题“南阿尔金吐拉地区镁铁–超镁铁质岩浆作用成因”联合资助。
    详细信息
      作者简介:

      田龙(1992−),男,硕士研究生,矿物学、岩石学、矿床学专业。E–mail:1006018753@qq.com

      通讯作者:

      康磊(1987−),男,博士,讲师,从事岩石大地构造学与成因矿物学研究。E–mail: kanglei@nwu.edu.cn

    • 中图分类号: P581

    Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt

    • 摘要:

      巴什尔希花岗杂岩体侵位于东昆仑北部与南阿尔金造山带的结合部位。角闪二长花岗岩和灰色二长花岗岩均采自巴什尔希岩体中细粒状似斑状二长花岗岩单元。锆石LA–ICP–MS年代学研究显示其成岩年龄分别为(452.8±3.1) Ma和(454.2±4.8) Ma,后者还获得了一组残留核年龄为(758 ± 15) Ma。样品具有高SiO2含量(71.97%~73.49%和73.28%~74.12%)和高K2O含量(4.80% ~ 5.61%和5.57%~5.79%)的特点,Na2O含量分别为3.01%~3.13%和2.83%~2.91%, CaO含量低,A/CNK 均为1.02~1.07,属于弱过铝质系列花岗岩。稀土配分模式呈 “海鸥型”分布,LREE/HREE值分别为17.80~26.06和9.09~11.79,轻重稀土分馏程度较高,δEu值为 0.31~0.44,中等负Eu异常;富集大离子亲石元素Rb、K、U、Pb,亏损高场强元素 Zr、Hf、Nb、Ta、P、Ti。样品均具有高Si、富碱、相对贫Na、高K、低Ca的岩石地球化学特征。锆石的εHft)值为0.86~−8.65,绝大多数为负值,tDM2值为1280~1734 Ma,指示源岩物质源于古中元古代地壳物质。岩浆起源温度均为~800 ℃,熔融压力为0.8~1.0 GPa,表明可能形成于碰撞造山后的初始伸展阶段。通过与南阿尔金以及东昆仑北缘祁漫塔格地区早古生代地质演化历史对比,认为该杂岩体的形成时代、岩浆序列和构造背景与南阿尔金构造域更具亲缘性。

      Abstract:

      The Bashenerxi granitic complex intruded at the junction of East Kunlun and South Altyn orogenic belt. In this paper, the hornblende monzogranite and the gray monzonitic granite are both derived from the porphyritic monzogranite unit in the Bashenerxi intrusion. Zircon LA–ICP–MS geochronology shows that the diagenetic ages are (452.8±3.1) Ma and (454.2±4.8) Ma, respectively. A group of age (758±15) Ma is concentrated in the core of zircon. The content of SiO2 is between 71.97% and 74.12%, A/CNK =1.02~1.07, K2O = 4.80%~5.79%, and Na2O =2.83%~3.13%, which belongs to high–silica, high–potassium and peraluminous granites. The distribution pattern of rare earth elements is characterized by “gull type” distribution with strong negative europium anomaly (δEu=0. 31~0.44), enrichment of large ion lithophile elements Rb, K, U, Pb and high field strength elements Zr, Hf, Nb, Ta, and loss of Sr, P, Ti. Zirconium saturation thermometer show that the magma origin temperature was about 800 ℃, and the melting pressure was about 0.8~1.0 GPa. The samples are characterized by peraluminous, alkali rich, relatively poor in sodium, high in potassium and low in calcium. and they are strongly depleted in Ba, Sr, Ti, P and Eu, according this characterized, rock was judged to be S–type granite. The epsilon εHft)value of the rocks is 0.86~−8.65. The age of the two–stage Hf model (tDM2) = 1280~1784 Ma, mainly derived from the Paleo–Mesoproterozoic accretive crust. Based on the regional tectonic evolution and tectonic discrimination, it is considered that the rocks were formed after the Altyn deep subduction continental crust plate was broken off, and the regional tectonic background changed from compression to extension.

    • 图  1   东昆仑巴什尔希区域地质图(据黎敦朋,2010修编)

      Figure  1.   Geological map of the Bashenerxi region of the East Kunlun Mountains

      图  2   东昆仑巴什尔希角闪二长花岗岩和灰色二长花岗岩野外露头和显微镜岩石学照片

      a.角闪二长花岗岩;b.灰色二长花岗岩;c.角闪二长花岗岩正交镜下照片;d.灰色二长花岗岩正交镜下照片;Amp.角闪石;Bi.黑云母;Kfs.钾长石;Pl.斜长石;Qz.石英;Tur.电气石

      Figure  2.   Field outcrops and petrographic microscopic photographs of granite

      图  3   东昆仑地区巴什尔希花岗岩岩石类型判别图解

      a. SiO2–K2O图解(Rickwood,1989);b. A/CNK–A/NK分类图解(Peccerillo et al.,1976);c.TAS图解(Middlemost,1994

      Figure  3.   Classification diagram of Bashenerxi granites from the eastern Kunlun area

      图  4   角闪二长花岗岩和灰色二长花岗岩稀土模式图(a)和微量元素蛛网图(b)(原始地幔值据Sun et al.,1989

      Figure  4.   (a) Patterns of rare earth elements and (b) spider webs of trace elements in granite

      图  5   样品代表性锆石CL图像及U/Pb年龄

      Figure  5.   CL image of representative zircon samples

      图  6   花岗岩锆石U–Pb年龄谐和图

      a、b、d.灰色二长花岗岩锆石U–Pb年龄谐和图及加权平均年龄;c.角闪二长花岗岩锆石U–Pb年龄谐和图及加权平均年龄

      Figure  6.   U–Pb diagrams of concordia and weighted mean ages for zircons

      图  7   锆石的εHf(t)–t图解

      Figure  7.   εHf(t)–t diagram for zircon

      图  8   花岗岩类型判别图解

      Figure  8.   Granite type discrimination diagram

      图  9   角闪二长花岗岩和灰色二长花岗岩源区判别图

      底图a据Sylvester,1998; 底图b据Altherr et al.,2000

      Figure  9.   Source region discrimination diagrams of Bashierxi granites from the eastern Kunlun area

      图  10   角闪二长花岗岩和灰色二长花岗岩构造环境判别图解

      底图a据Batchelor et al.,1985;底图b据Pearce et al.,1984

      Figure  10.   Discriminant diagram of granite tectonic environment

      表  1   角闪二长花岗岩和灰色二长花岗岩地球化学组成(主量元素:%;微量元素:10−6

      Table  1   Element compositions of granite (Major element: %; Trace element: 10−6)

      元素13A-18(a)13A-18(b)13A-18(c)13A-18(d)13A-18(e)13A-18(g)13A-19(a)13A-19(b)13A-19(c)13A-19(d)13A-19(e)13A-19(f)
      SiO272.0973.4973.2271.9772.6772.3173.6774.1273.4973.8473.2873.83
      TiO20.260.290.240.320.310.330.190.200.200.200.190.18
      Al2O313.9813.0913.5113.7613.5513.4813.6113.5313.6413.6113.6513.48
      Fe2O3t2.012.141.742.362.452.211.571.541.531.561.551.51
      MnO0.040.050.030.040.050.040.020.030.030.030.030.03
      MgO0.340.360.290.420.380.380.300.310.280.300.310.28
      CaO1.181.170.921.211.241.210.991.111.171.171.081.06
      Na2O3.133.103.013.043.063.082.912.902.862.902.892.83
      K2O5.514.805.615.195.385.455.755.575.645.605.605.79
      P2O50.080.080.080.100.100.100.070.070.060.070.070.07
      LOI1.071.190.921.100.871.020.880.940.820.930.910.94
      TOTAL99.6999.7699.5799.51100.199.6199.96100.399.72100.299.56100.0
      Li31.228.626.333.137.624.641.847.645.642.244.443.9
      Be4.534.844.104.694.234.892.994.103.383.953.633.45
      Sc3.383.672.693.545.543.423.143.212.892.933.202.84
      V12.913.39.6516.014.113.78.468.098.228.088.157.71
      Cr6.525.636.824.124.334.555.647.207.003.495.003.19
      Co19.232.233.220.224.535.932.336.233.434.835.926.4
      Ni2.333.694.052.382.592.884.934.324.112.393.292.06
      Cu1.562.211.542.534.101.811.411.101.161.031.001.01
      Zn32.738.429.638.043.537.829.333.431.335.731.929.8
      Ga20.820.019.421.521.120.318.619.418.819.018.718.2
      Ge1.571.361.481.521.541.441.531.621.601.611.531.57
      Rb203183187178206208235214224198223240
      Sr80.773.975.983.979.679.586.177.578.679.580.276.0
      Y27.631.320.225.126.823.936.038.333.034.129.733.0
      Zr231230190284239252171172171169171164
      Nb27.630.023.934.633.238.127.230.529.431.329.530.4
      Cs2.752.461.722.573.481.544.834.096.473.615.173.57
      Ba478313393412385424393361384373402370
      La56.465.751.265.065.164.650.450.754.156.860.450.7
      Ce11012910112612812296.998.210410611498.4
      Pr12.414.611.414.514.814.211.111.211.812.113.011.0
      Nd42.151.238.450.151.248.637.938.540.842.245.938.7
      Sm7.308.706.548.949.398.277.607.868.158.248.777.69
      Eu0.950.880.881.000.940.970.770.770.810.800.830.76
      Gd6.007.015.257.137.486.836.756.987.027.227.346.78
      下载: 导出CSV
      续表1
      元素13A-18(a)13A-18(b)13A-18(c)13A-18(d)13A-18(e)13A-18(g)13A-19(a)13A-19(b)13A-19(c)13A-19(d)13A-19(e)13A-19(f)
      Tb0.831.000.680.910.980.911.031.071.011.021.030.97
      Dy4.675.533.624.725.134.675.896.175.605.675.475.43
      Ho0.851.040.640.820.880.791.121.161.031.050.981.02
      Er2.492.971.822.252.372.143.143.332.822.922.652.88
      Tm0.370.420.250.300.320.300.460.490.420.420.380.42
      Yb2.272.521.541.791.971.882.963.152.662.722.422.72
      Lu0.310.340.230.260.270.280.420.450.390.390.350.38
      Hf5.545.794.816.765.726.124.614.634.734.564.814.45
      Ta2.322.231.431.841.872.371.872.522.232.792.242.61
      Pb22.718.917.619.019.418.127.127.629.230.232.629.8
      Th23.329.624.827.326.326.829.634.133.734.734.933.3
      U1.672.091.431.341.861.512.142.902.262.417.962.22
      ΣREE230270209266270258226230241247264228
      LREE17.8020.8314.0318.1719.4217.80204.6207.3219.7225.9243.1207.2
      HREE12.9012.9814.9014.6213.9014.5221.7822.8020.9521.4120.6320.61
      LREE/HREE17.8018.6923.8626.0623.6624.699.409.0910.4910.5511.7910.05
      LaN/YbN0.440.350.460.380.340.4012.1911.5614.5714.9617.8913.37
      δEu0.430.330.440.370.330.390.320.310.320.310.310.32
      δCe0.980.980.980.970.970.940.960.970.970.940.950.97
      δ2.572.052.462.342.402.482.452.312.372.342.382.41
      Al2O3/TiO253.7745.1456.2943.0043.7140.8571.6367.6568.2068.0571.8474.89
      CaO/Na2O0.380.380.310.400.410.390.340.380.410.400.370.37
      K2O/Na2O1.761.551.861.711.761.771.981.921.971.931.942.05
      Rb/Ba0.420.580.480.430.530.490.600.590.580.530.560.65
      Sr/Ba0.170.240.190.200.210.190.220.210.200.210.200.21
      A/CNK1.051.051.061.071.031.021.061.061.051.051.071.05
       注: A/CNK = Al2O3 / (CaO + K2O + Na2O); δ =(K2O+Na2O)2 / (SiO2 -43); δEu = EuN / (SmN+GdN)1/2, δCe = CeN / (LaN + PrN)1/2;原始地幔值据Sun et al.,1989
      下载: 导出CSV

      表  2   角闪二长花岗岩和灰色二长花岗岩的锆石LA–ICP–MS定年分析表

      Table  2   Table of dating analysis of granite zircon LA–ICP–MS

      样品编号含量( 10−6)Th / U同位素比值年龄值(Ma)
      232Th238U207Pb / 206Pb207Pb / 235U206Pb /238U207Pb /206Pb207Pb /235U206Pb /238U
      13A-18-012153610.59730.05790.00270.57590.02690.07200.0012528104462174487
      13A-18-025564541.22540.05890.00250.58420.02360.07190.000956591467154486
      13A-18-032933690.79410.05780.00320.58480.03000.07370.0010520120468194586
      13A-18-044555260.86480.05550.00360.56300.03660.07320.0011435143453244556
      13A-18-053333820.87130.05680.00280.57060.02750.07300.0011483109458184546
      13A-18-062605100.50910.05540.00250.56240.02450.07350.001042898453164576
      13A-18-073553870.91650.05610.00310.56400.03050.07270.0012457120454204527
      13A-18-081933170.61060.05530.00400.55900.04180.07310.00174331614512745510
      13A-18-093864700.82170.05480.00430.55220.04620.07230.0011406178446304506
      13A-18-101693090.54580.05670.00420.56500.04150.07230.00164801614552745010
      13A-18-115365850.91770.05710.00320.57160.03300.07200.0012494124459214487
      13A-18-124314910.87880.05470.00290.55800.02930.07350.0010398120450194576
      13A-18-134274730.90290.05670.00510.56770.04820.07260.0010480166457314526
      13A-19-01351740.19970.06590.00481.15620.07930.12830.001912001527803777818
      13A-19-02891930.46280.06520.00461.13820.07930.12630.00327811477723876712
      13A-19-031684810.34960.06620.00371.17360.06530.12830.00218131147883177813
      13A-19-047002682.61310.06260.00381.09430.06590.12650.00236941277513276810
      13A-19-053086680.46090.06370.00411.03510.06620.11720.00177311377213371510
      13A-19-061141270.89760.05710.00550.57080.05270.07270.00124941814593445311
      13A-19-071526320.24000.05620.00350.56560.03210.07340.0023457137455214567
      13A-19-0868314740.46370.06760.00411.15810.07590.12300.00268571247813674813
      13A-19-09101921.10820.06360.00511.14020.08910.13090.00147281697734279315
      13A-19-103833491.09750.06640.00341.14320.06170.12410.00228201077742975413
      13A-19-11211250.16460.06320.00661.04190.11280.11960.00397222227255672823
      13A-19-125295820.90770.05650.00300.56170.03030.07190.0011472117453204487
      13A-19-1366911390.58710.05490.00370.56100.03830.07390.0012406150452254597
      13A-19-142664530.58730.06270.00281.06070.04820.12280.0019698967342474611
      13A-19-1544760.58090.06840.00511.18810.08180.12890.00278801567953878216
      13A-19-16861850.46550.06310.00511.10770.08530.12790.00237221727574177613
      13A-19-1728820280.14200.05980.00230.59610.02290.07250.001159483475154517
      13A-19-1833832090.10540.05690.00260.57410.02500.07330.0010487102461164566
      13A-19-194665610.83040.05610.00330.57120.03600.07370.0015457131459234589
      13A-19-202294970.46070.05550.00320.55770.03130.07330.0011435132450204567
      下载: 导出CSV

      表  3   角闪二长花岗岩和灰色二长花岗岩中锆石的Hf同位素分析结果

      Table  3   Hf isotope analysis of zircons in granite

      样品
      编号
      176Yb/177Hf176Lu/177Hf176Hf/177HfεHft2stDM Hf (Ma)tDM2(Ma)
      13A-18-010.050.0017620.282483−0.881.6211321514
      13A-18-020.050.0015830.282457−1.751.4311611566
      13A-18-030.050.0012940.282421−2.721.412001630
      13A-18-040.060.0016250.282473−1.061.4811421529
      13A-18-050.060.0016090.282407−3.411.3312351676
      13A-18-060.040.0013600.282447−1.872.1211671576
      13A-18-070.040.0011880.282443−2.031.2411641580
      13A-18-080.050.0016200.282454−1.721.911671570
      13A-18-090.050.0015470.282414−3.232.0212221661
      13A-18-100.060.0018120.282399−3.852.212551704
      13A-18-110.060.0019010.282344−5.861.9313381831
      13A-18-120.060.0018710.282342−5.722.0513401829
      13A-18-130.040.0012990.282444−2.071.5311691584
      13A-19-010.020.0006070.2823190.861.5013031459
      13A-19-020.030.0006940.2823381.221.3712801431
      13A-19-030.080.0022550.282307−0.441.9813801525
      13A-19-040.030.0009280.2823371.111.3112891438
      13A-19-050.070.0021910.282206−5.291.6915221718
      13A-19-060.050.0013400.282424−2.681.2811811378
      13A-19-070.140.0034920.282289−2.331.8414551596
      13A-19-080.010.0002780.2823823.571.2012061333
      13A-19-090.070.0022190.282266−8.653.7014371676
      13A-19-100.060.0019770.282373−4.463.0412741477
      13A-19-110.050.0016910.282178−5.221.7515421747
      13A-19-120.020.0005360.282231−3.311.3314221630
      13A-19-130.050.0015910.282407−3.531.3812131415
      13A-19-140.030.0008220.282374−4.041.5912341457
      13A-19-150.060.0015580.282331−5.951.2113191547
      13A-19-160.080.0020470.2823671.121.9012861420
      13A-19-170.040.0011040.282280−0.721.6513751542
      13A-19-180.050.0014220.282150−5.612.1415701784
      13A-19-190.050.0015260.282291−7.531.3513751620
      13A-19-200.060.0016550.282383−4.231.2512491457
      13A-19-210.050.0014650.282440−2.160.9211621352
      13A-19-220.070.0019840.282297−7.321.7013841615
      13A-19-230.040.0011860.282341−5.561.1512921524
      下载: 导出CSV

      表  4   角闪二长花岗岩和灰色二长花岗的温度计计算结果

      Table  4   Values for admellite by zircon saturation thermometer

      样品编号锆饱和温度计
      M(×10-6DzrTZr(℃)
      13A-18a1.742147.16793
      13A-18b1.712159.33794
      13A-18c1.742605.78776
      13A-18d1.691744.33816
      13A-18e1.742077.57796
      13A-18f1.761969.10799
      13A-19a1.342893.36796
      13A-19b1.352877.50796
      13A-19c1.362897.50795
      13A-19d1.362928.57794
      13A-19e1.342899.91796
      13A-19f1.363030.87791
       注:TZr(℃) = 12900 / (InDZr + 0.85M + 2.95)-273.15,DZr近似为496000/全岩锆含量,M=(2Ca+K+Na)/(Si×Al),令Si+Al+Fe+ Mg+Ca+Na+K+P=1,均为原子数分数(Watson et al.,1983)。
      下载: 导出CSV

      表  5   巴什尔希花岗岩类锆石年龄统计表

      Table  5   Isotopic ages statistics of the granitoids in the Bashierxi magmatic series

      位置岩性年龄(Ma)构造背景测试方法资料来源
      东昆仑巴什
      尔希地区
      似斑状二长
      花岗岩
      458±9.0 局部拉张构造背景 Zircon U−Pb LA−MC−ICP−MS 高晓峰等,2010
      角闪二长花岗岩 452.9±3.6 碰撞造山后的初始
      伸展构造背景
      Zircon U−Pb LA−ICP−MS 本文
      灰色二 长花岗岩 454.2±4.8 本文
      南阿尔金构
      造带西段
      二长花岗岩 462±2.0 碰撞造山后的抬升初期 Zircon U−Pb LA−ICP−MS 曹玉亭等,2010
      钾长花岗岩 452.8±3.1 俯冲陆壳断离后的
      伸展背景
      杨文强等,2012
      黑云母花岗岩 454.0±1.8 后碰撞初始伸展 Zircon U−Pb
      LA−MC−ICP MS
      康磊,2014
      钾长花岗岩 453.4±2.5
      二长花岗岩 453.1±2.1
      石英闪长岩 458.3±6.2 深俯冲陆壳折返抬升 康磊等,2016b
      东昆仑巴什
      尔希地区
      粗粒碱长花岗岩 432.3±0.8 造山花岗岩(板内和陆缘
      造山带)后造山构造环境
      包亚范等,2008
      黎敦朋等,2010
      碱长花岗岩 430.5±1.2 造山后局部拉张环境 Zircon U−Pb LA−MC−ICP−MS 高永宝等,2011
      碱长花岗岩 422.0±3.0 后碰撞伸展阶段 Zircon U−Pb SIMS 李国臣等,2012
      正长花岗岩 428.2±4.2 Zircon U−Pb LA−ICP−MS 王增振等,2014
      正长花岗岩 422.5±2.3
      正长花岗岩 413.6±2.4 Zircon U−Pb LA−ICP−MS 周建厚等,2014
      南阿尔金构
      造带东段
      似斑状钾长
      花岗岩
      424 造山后伸展阶段 Zircon U−Pb LA−ICP−MS 王超等,2008
      花岗细晶岩 406
      碱性花岗岩 385.2±8.1 造山后的拉张环境 Zircon U−Pb LA−ICP−MS 吴锁平等, 2007
      下载: 导出CSV
    • 包亚范, 刘延军, 王鑫春. 东昆仑西段巴什尔希花岗岩与白干湖钨锡矿床的关系[J]. 吉林地质, 2008(03): 56-59+67.

      BAO Yafan, LIU Yanjun, WANG Xinchun. Relationship between Bashierxi granite west Dongkunlun and Baiganhu tungsten-tin deposit[J]. Jilin Geology, 2008. 107(03): 56–59, 67.

      曹世泰, 刘晓康, 马永胜, 等. 祁漫塔格地区早志留世侵入岩的发现及其地质意义[J]. 青海科技, 2011, 18(05): 26-30 doi: 10.3969/j.issn.1005-9393.2011.05.010

      CAO Shitai, LIU Xiaokang, MA Yongsheng, et al. Discovery and geological significance of early Silurian intrusive rocks in Qimantage area[J]. Qinghai Science and Technology, 2011, 18(05): 26–30. doi: 10.3969/j.issn.1005-9393.2011.05.010

      曹玉亭, 刘良, 王超, 等. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J]. 岩石学报, 2010, 26(11): 3259-3271

      CAO Yuting, LIU Liang, WANG Chao, et al. Geochemical, zircon U–Pb dating and Hf isotopic compositions studies for Tatelekebulake granite in South Altyn Tagh[J]. Acta Petrologica Sinica, 2010, 26(11): 3259–3271.

      车自成, 刘良, 刘洪福, 等. 阿尔金断裂系的组成及相关中新生代含油气盆地的成因特征[J]. 中国区域地质, 1998(04): 42-49

      CHE Zicheng, LIU Liang, LIU Hongfu, et al. Composition of Altun fault system and genetic characteristics of related Meso Cenozoic petroliferous basins[J]. Regional Geology of China, 1998. (4): 42-49

      陈能松, 何蕾, 王国灿, 等. 东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定[J]. 科学通报, 2002(08): 628-631 doi: 10.3321/j.issn:0023-074X.2002.08.016

      Chen Nengsong, He Lei, Wang Guocan, et al. Precise dating of early Paleozoic metamorphic peak and thrust tectonic deformation in east Kunlun orogenic belt[J]. Chinese Science Bulletin, 2002. (08): 628-631. doi: 10.3321/j.issn:0023-074X.2002.08.016

      陈有炘, 裴先治, 李瑞保, 等. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J]. 现代地质, 2011, 25(03): 510-521 doi: 10.3969/j.issn.1000-8527.2011.03.013

      CHEN Youxin, PEI Xianzhi, LI Ruibao, et al. Zircon U–Pb age of the Xiaomiao formation of Proterozoic in the in the eastern section of the East Kunlun orogenic belt[J]. Geoscience, 2011, 25(03): 510–521. doi: 10.3969/j.issn.1000-8527.2011.03.013

      谌宏伟, 罗照华, 莫宣学, 等. 东昆仑喀雅克登塔格杂岩体的SHRI MP年龄及其地质意义[J]. 岩石矿物学杂志, 2006(01): 25-32 doi: 10.3969/j.issn.1000-6524.2006.01.003

      CHEN Hongwei, LUO Zhaohua, MO Xuanxue, et al. SHRIMP ages of Kayakedengtage complex in the East Kunlun Mountains and their geological implications[J]. Acta Petrologica Mineral, 2006, 25(01): 25–32. doi: 10.3969/j.issn.1000-6524.2006.01.003

      崔美慧. 新疆祁漫塔格鸭子泉中基性火成岩及硅质岩成因[D]. 北京: 中国地质科学院, 2012

      CUI Meihui. Petrogenesis of intermediate–basic igneous rocks from Yaziquan, Xinjiang Qimantag Mountain[D]. Beijing: Chinese Academy of Geological Sciences, 2012.

      第五春荣, 孙勇, 袁洪林, 等. 河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义[J]. 科学通报, 2008(16): 1923-1934 doi: 10.3321/j.issn:0023-074X.2008.16.009

      DIWU Chunrong, SUN Yong, YUAN Honglin, et al. U-Pb chronology, Hf isotope composition and geological significance of detrital zircons from quartzite in Songshan mountain, Dengfeng, Henan province[J]. Chinese Science Bulletin, 2008. (16): 1923-1934. doi: 10.3321/j.issn:0023-074X.2008.16.009

      高晓峰, 校培喜, 谢从瑞, 等. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地质通报, 2010, 29(7): 1001-1008 doi: 10.3969/j.issn.1671-2552.2010.07.005

      GAO Xiaofeng, XIAO Peixi, XIE Congrui, et al. Zircon LA-ICP-MS U-Pb dating and geological significance of Bashierxi granite in the eastern Kunlun area, China[J]. Geological Bulletin of China, 2010, 29(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005

      高永宝, 李文渊. 东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩:岩石学、年代学、地球化学及岩石成因[J]. 地球化学, 2011, 40(4): 324−336.

      GAO Yongbao, LI Wenyuan. Petrogenesis of granites containing tungsten and tin ores in the Baiganhu deposit, Qimantage, NW China: Constraints from petrology, chronology and geochemistry[J]. Geochimica, 2011, 40(4): 324−336.

      郭通珍, 刘荣, 陈发彬, 等. 青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICPMS锆石U-Pb定年及地质意义[J]. 地质通报, 2011, 30(08): 1203-1211 doi: 10.3969/j.issn.1671-2552.2011.08.004

      GUO Tongzhen, LIU Rong, CHEN Fabin, et al. LA-MC-ICPMS zircon U-Pb dating of Wulanwuzhuer porphyritic syenite granite in the Qimantag Mountain of Qinghai and its geological significance[J]. Geological Bulletin of China, 2011.30(08): 1203-1211. doi: 10.3969/j.issn.1671-2552.2011.08.004

      郝杰, 刘小汉, 桑海清. 新疆东昆仑阿牙克岩体地球化学与~(40)Ar/~(39)Ar年代学研究及其大地构造意义[J]. 岩石学报, 2003(03): 517-522 doi: 10.3969/j.issn.1000-0569.2003.03.017

      HAO Jie, LIU Xiaohan, SANG Haiqing. Geochemical characeristics and 40Ar/39Ar age of the Ayake adamellite and its tectonic significance in the east Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 2003.19(03): 517–522. doi: 10.3969/j.issn.1000-0569.2003.03.017

      康磊, 刘良, 曹玉亭, 等. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J]. 岩石学报, 2013, 29(09): 3039-3048

      KANG Lei, LIU Liang, CAO Yuting, et al. Geochemistry, zircon U–Pb dating and its geological significance of gneissic granite from the eastern segment of the Takelekebulake composite granite in the south Altyn Tagh[J]. Acta Petrologica Sinica, 2013, 29(09): 3039–3048.

      康磊. 南阿尔金高压—超高压变质带早古生代多期花岗质岩浆作用及其地质意义[D]. 西安: 西北大学, 2014.

      KANG Lei. Early Paleozoic Multi-stage Granitic Magmatism and the GeologicalSignificance in the South Altyn Tagh HP-UHP Metamorphic Belt[D]. Xi’an: Northwest Unversity, 2014.

      康磊, 校培喜, 高晓峰, 等. 阿尔金南缘早古生代岩浆作用及碰撞造山过程[J]. 地质学报, 2016a, 90(10): 2527-2550 doi: 10.3969/j.issn.0001-5717.2016.10.001

      KANG Lei, XIAO Peixi, GAO Xiaofeng et al. Early Paleozoic Magmatism and Collision Orogenic Process of the South Altyn[J]. Acta Geologica Sinica, 2016a, 90(10): 2527-2550. doi: 10.3969/j.issn.0001-5717.2016.10.001

      康磊, 校培喜, 高晓峰, 等. 茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因: 对阿尔金南缘早古生代构造-岩浆演化的启示[J]. 岩石学报, 2016b, 32(06): 1731-1748

      KANG Lei, XIAO Peixi, GAO Xiaofeng, et al. Chronology, geochemistry and petrogenesis of monzonitic granite and quartz diorite in Mangai area: Its inspiration to Early Paleozoic tectonic-magmatic evolution of the southern Altyn Tagh[J]. Acta Petrologica Sinica, 2016b, 32(06): 1731-1748.

      黎敦朋, 肖爱芳. 祁漫塔格西段白干湖钨锡矿区巴什尔希花岗岩序列及构造环境[J]. 西北地质, 2010, 43(004): 53-61 doi: 10.3969/j.issn.1009-6248.2010.04.007

      LI Dunpeng, XIAO Aifang. Magmatic sequence and tectonic setting of Bashierxi granite in W-Sn deposit of Baiganhu area, the Western sector of Qimantage Mountains[J]. Northwestern Geology, 2010, 43(04): 53–61. doi: 10.3969/j.issn.1009-6248.2010.04.007

      李国臣, 丰成友, 王瑞江, 等. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义[J]. 地球学报, 2012, 33(02): 216-226

      LI Guochen, FENG Chengyou, WANG Ruijiang, et al. SIMS Zircon U-Pb Age, Petrochemistry and Tectonic Implications of Granitoids in Northeastern Baiganhue W-Sn Orefield, Xinjiang[J]. Acta Geoscientica Sinica, 2012, 33(02): 216–226.

      刘良, 孙勇, 罗金海, 等. 阿尔金英格利萨依花岗质片麻岩超高压变质[J]. 中国科学(D辑: 地球科学), 2003, (12): 1184-1192

      LIU Liang, SUN Yong, LUO Jinhai, et al. Ultra–high pressure metamorphism of granitic gneiss in the Yinggelisayi area, Altyn Mountains, NW China[J]. Science in China (Series D), 2003, (12): 1184–1192.

      刘良, 张安达, 陈丹玲, 等. 阿尔金江尕勒萨依榴辉岩和围岩锆石LA-ICP-MS微区原位定年及其地质意义[J]. 地学前缘, 2007, 14(01): 98-107 doi: 10.3321/j.issn:1005-2321.2007.01.009

      LIU Liang, ZHANG Anda, CHEN Danling, et al. Implications based on LA–ICP–MS zircon U–Pb ages of eclogite and its country rock from Jianggalesayi area, Altyn Tagh[J], China. Earth Science Frontiers, 2007, 14(1): 98–107. doi: 10.3321/j.issn:1005-2321.2007.01.009

      刘良, 陈丹玲, 王超, 等. 阿尔金、柴北缘与北秦岭高压—超高压岩石年代学研究进展及其构造地质意义[J]. 西北大学学报(自然科学版), 2009, 39(03): 472-479

      LIU Liang, CHEN Danling, WANG Chao, et al. New progress on geochronology of high-pressure/ultrahigh-pressure metamorphic rocks from the South Altyn Tagh, the North Qaidam and the North Qinling orogenic, NW China and their geological significance[J]. Journal of Northwest University (Natural Science Edition), 2009.39(03): 472–479.

      马中平, 李向民, 孙吉明, 等. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义——岩石学和地球化学初步研究[J]. 岩石学报, 2009, 25(04): 793-804

      MA Zhongping, LI Xiangmin, SUN Jiming, et al. Discovery of layered mafic–ultramafic instrusion in Changshagou, Altyn Tagh, and its geological implication: A pilot study on its petrological and geochemical characteristics[J]. Acta Petrologica Sinica, 2009, 25(04): 793–804.

      孟繁聪, 崔美慧, 吴祥珂, 等. 东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件[J]. 岩石学报, 2013(6): 2107-2122

      MENG Fancong, CUI Meihui, WU Xiangke, et al. Magmatic and metamorphic events recorded in granitic gneisses from the Qimantag, East Kunlun Mountains, Northwest China[J]. Acta Petrologica Sinica, 2013 (6): 2107–2122.

      莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007(03): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010

      MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East–Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007.13(3): 403–414. doi: 10.3969/j.issn.1006-7493.2007.03.010

      谈生祥, 郭通珍, 董进生, 等. 青海乌兰乌珠尔地区晚志留世过铝质花岗岩地质特征及意义[J]. 青海大学学报(自然科学版), 2011, 29(01): 36-43 doi: 10.3969/j.issn.1006-8996.2011.01.010

      TAN Shengxiang, GUO Tongzhen, DONG Jinsheng, et al. Geological characteristics and significance of the peraluminous granite in late Silurian epoch in Wulanrvuzhuer region of Qinghai[J]. Journal of Qinghai University(Nature Science), 2011, 29(01): 36–43. doi: 10.3969/j.issn.1006-8996.2011.01.010

      王超, 刘良, 张安达, 等. 阿尔金造山带南缘岩浆混合作用: 玉苏普阿勒克塔格岩体岩石学和地球化学证据[J]. 岩石学报, 2008, 24(12): 2809-2819

      WANG Chao, LIU Liang, ZHANG Anda, et al. Geochemistry and Petrography of Early Paleozoic Yusupuleke Tagh rapakivi-taxtured granite complex, South Altyn: An example for magma mixing[J]. Acta Petrologica Sinica, 2008, 24(12): 2809–2819.

      王德滋, 刘昌实, 沈渭洲, 等. 桐庐I型和相山S型两类碎斑熔岩对比[J]. 岩石学报, 1993, 9(01): 44-54 doi: 10.3321/j.issn:1000-0569.1993.01.005

      WANG Dezi, LIU Changshi, SHEN Weizhou, et al. The contrast between Tonglu I-type and Xiangshan S-type clastoporphyritic lava[J]. Acta Petrologica Sinica, 1993, 9(01): 44-54. doi: 10.3321/j.issn:1000-0569.1993.01.005

      王国灿, 王青海, 简平, 等. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J]. 地学前缘, 2004(04): 481-490 doi: 10.3321/j.issn:1005-2321.2004.04.014

      WANG guocan, WANG Qinghai, JIAN Ping, et al. Zircon SHRIMP ages of Precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun Mountains, Qinghai Province, China[J]. Earth Science Frontiers (China University of Geosciences, Beijing), 2004, 11(4): 481–490. doi: 10.3321/j.issn:1005-2321.2004.04.014

      王国灿, 魏启荣, 贾春兴, 等. 关于东昆仑地区前寒武纪地质的几点认识[J]. 地质通报, 2007(08): 929-937 doi: 10.3969/j.issn.1671-2552.2007.08.003

      WANG guocan, WEI Qirong, JIA Chunxing, et al. Some Ideas of Precambrian Geology in East Kunlun, China[J]. Geology Bulletin of China, 2007, 26(8): 929-937. doi: 10.3969/j.issn.1671-2552.2007.08.003

      王增振, 韩宝福, 丰成友, 等. 新疆白干湖地区花岗岩年代学、地球化学研究及其构造意义[J]. 岩石矿物学杂志, 2014, 33(04): 597-616 doi: 10.3969/j.issn.1000-6524.2014.04.001

      WANG Zengzhen, HAN Baofu, FENG Chengyou, et al. Geochronology, geochemistry and tectonic significance of granites in Baiganhu area, Xinjiang[J]. Acta Petrologica et Mineralogica, 2014, 33(4): 597–616. doi: 10.3969/j.issn.1000-6524.2014.04.001

      吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, (06): 1217-1238 doi: 10.3969/j.issn.1000-0569.2007.06.001

      WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, (6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

      吴锁平, 吴才来, 陈其龙. 阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J]. 地质通报, 2007, 26(10): 1385-1392 doi: 10.3969/j.issn.1671-2552.2007.10.016

      WU suoping, WU cailai, CHEN Qilong. Characteristics and tectonic setting of the Tula aluminous A- type granite at the south side of the Altyn Tagh fault, NW China[J]. Geological Bulletin of China, 2007, 26(10): 1385–1392. doi: 10.3969/j.issn.1671-2552.2007.10.016

      肖爱芳. 东昆仑祁漫塔格山西段鸭子泉志留纪火山岩特征[J]. 陕西地质, 2005, 23(02): 50-60

      XIAO Aifang. Yaziquan Silurian volcanic rocks in western qimantahe mountain of Eastern Kunlun[J]. Geology of Shaanxi, 2005, 23(02): 50–60.

      熊富浩. 东昆仑造山带东段古特提斯域花岗岩类时空分布, 岩石成因及其地质意义[D]. 武汉: 中国地质大学, 2014

      XIONG Fuhao. Spatial-temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoidsin the East Kunlun Orogenic Belt (Eastern Segment) [D]. Wuhan: China University of Geosciences, 2014.

      杨文强, 刘良, 丁海波, 等. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J]. 岩石学报, 2012, 28(12): 4139-4150

      YANG Wenqiang, LIU Liang, DING Haibo, et al. Geochemistry, geochronology and zircon Hf isotopes of the Dimunalike granite in South Altyn Tagn and its geological significance[J]. Acta Petrologica Sinica, 2012, 28(12): 4139–4150.

      殷鸿福, 张克信. 中华人民共和国区域地质调查报告: 冬给措纳湖(I47C001002)(1∶250 000)[M]. 武汉: 中国地质大学出版社, 2003

      YIN Hongfu, ZHANG Kexin. Report of Regional Geological Survey of the People's Republic of China: Dongjicuona Lake (I47C001002), scale 1: 250000[M]. Wuhan: China University of Geosciences Press, 2003.

      袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 2000, 46(02): 203-211 doi: 10.3321/j.issn:0371-5736.2000.02.012

      YUAN Wanming, MO Xuanxue, YU Xuehui, et al. The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains[J]. Geological Review, 2000, 46(2): 203–211. doi: 10.3321/j.issn:0371-5736.2000.02.012

      张斌, 孙新春, 郭兵, 等. 新疆东昆仑地区鸭子泉-鸭子达坂构造混杂岩的地质特征及其意义[J]. 西北地质, 2014, 47(04): 95-104 doi: 10.3969/j.issn.1009-6248.2014.04.010

      Zhang Bin, Sun Xinchun, Guo Bing, et al. Geological characteristics and significance of Yaziquan–Yazidaban tectonic melange in East Kunlun area, Xinjiang[J]. Northwestern Geology, 2014, 47(04): 95–104. doi: 10.3969/j.issn.1009-6248.2014.04.010

      张建新, 孟繁聪, 万渝生, 等. 柴达木盆地南缘金水口群的早古生代构造热事件: 锆石U-Pb SHRIMP年龄证据[J]. 地质通报, 2003, 22(6): 397-404 doi: 10.3969/j.issn.1671-2552.2003.06.004

      、ZHANG Jianxin, MENG Fancong, WAN Yusheng, et al. Early Paleozoic tectonic thermal events of Jinshui kou Group in the southern margin of Qaidam Basin: Zircon U–Pb SHRIMP age evidence[J]. Geology Bull of China, 2003, 22(6): 397–404. doi: 10.3969/j.issn.1671-2552.2003.06.004

      张建新, 许志琴, 杨经绥, 等. 阿尔金西段榴辉岩岩石学、地球化学和同位素年代学研究及其构造意义[J]. 地质学报, 2001, 75(02): 186-197

      ZHANG Jianxin, XU Zhiqin, YANG Jingsui, et al. Petrology, geochemistry and isotopic chronology of eclogites in the western Altyn section and their tectonic significance[J]. Acta Geologica Sinica, 2001, 75(02): 186–197.

      周建厚, 丰成友, 李大新, 等. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学[J]. 岩石学报, 2015, 31(08): 2277-2293

      ZHOU Jianhou, FENG Chengyou, LI Daxin, et al. Petrology, geochronology and geochemistry of metallogenetic granite in Baiganhu W-Sn deposit, East Kunlun[J]. Acta Petrologica Sinica, 2014, 31(08): 2277–2293.

      Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 2000, 50(1):51-73.

      Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1–4).

      Castillo P R. An overview of adakite petrogenesis[J]. Chinese Science Bulletin, 2006, 51(3): 258-268

      Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: (1-2). doi: 10.1017/S0263593300007720

      Corfu F, Hanchar JM, Hoskin PWO, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy & Geochemistry, 2003. 53(1): 469–500.

      Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1-2): 115–134. doi: 10.1016/0024-4937(90)90043-Z

      Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437. doi: 10.1007/s00410-007-0201-0

      Harris N B W, Inger S. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110(1): 46-56. doi: 10.1007/BF00310881

      Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Zircon, 2003. 53(1): 27-62.

      Johannes W, Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks[J]. Minerals and Rocks. 1996.

      Liu L, Kang L, Cao YT, et al. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China[J]. Science China (Earth Sciences), 2015, 58(09): 1513-1522. doi: 10.1007/s11430-015-5151-1

      Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010. 51(1-2): 537-571. doi: 10.1093/petrology/egp082

      Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994. 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

      Patiňo D A E, Johnston A D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 1991, 107(2): 202-218. doi: 10.1007/BF00310707

      Pearce J A, Harris N B W, Andrew G T. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 959-983.

      Peccerillo A, Taylor SR. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976. 58(1): 63-81

      Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989. 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

      SUN S S, Mcdonough W F. Chemical and isotopic systematic of oceanic basalts: Implication for mantle compostion and processes[J]. Geological Society, London, Special Publications, 1989. 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

      Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3

      Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2), 295–304. doi: 10.1016/0012-821X(83)90211-X

      Williamson B J, Shaw A, Downes H, et al. Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France[J]. Chemical Geology, 1996, 127(1-3): 25-42. doi: 10.1016/0009-2541(95)00105-0

      Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms[J]. Geochimica Cosmochimica Acta, 1994, 58(19): 4127-4145. doi: 10.1016/0016-7037(94)90269-0

      Xiong X L, Adam J, Green TH. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis[J]. Chemical Geology,2005,218(3-4): 339-359.

      Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008. 247: 100-118. doi: 10.1016/j.chemgeo.2007.10.003

      Zheng Z, Chen Y J, Deng X H, et al. Fluid evolution of the Qiman Tagh W-Sn ore belt, East Kunlun Orogen, NW China[J]. Ore Geology Reviews, 2018, 95: 280-291. doi: 10.1016/j.oregeorev.2018.03.002

    图(10)  /  表(6)
    计量
    • 文章访问数:  193
    • HTML全文浏览量:  46
    • PDF下载量:  74
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-02
    • 修回日期:  2022-03-06
    • 网络出版日期:  2022-10-12
    • 刊出日期:  2023-04-19

    目录

      /

      返回文章
      返回