Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt
-
摘要:
巴什尔希花岗杂岩体侵位于东昆仑北部与南阿尔金造山带的结合部位。角闪二长花岗岩和灰色二长花岗岩均采自巴什尔希岩体中细粒状似斑状二长花岗岩单元。锆石LA–ICP–MS年代学研究显示其成岩年龄分别为(452.8±3.1) Ma和(454.2±4.8) Ma,后者还获得了一组残留核年龄为(758 ± 15) Ma。样品具有高SiO2含量(71.97%~73.49%和73.28%~74.12%)和高K2O含量(4.80% ~ 5.61%和5.57%~5.79%)的特点,Na2O含量分别为3.01%~3.13%和2.83%~2.91%, CaO含量低,A/CNK 均为1.02~1.07,属于弱过铝质系列花岗岩。稀土配分模式呈 “海鸥型”分布,LREE/HREE值分别为17.80~26.06和9.09~11.79,轻重稀土分馏程度较高,δEu值为 0.31~0.44,中等负Eu异常;富集大离子亲石元素Rb、K、U、Pb,亏损高场强元素 Zr、Hf、Nb、Ta、P、Ti。样品均具有高Si、富碱、相对贫Na、高K、低Ca的岩石地球化学特征。锆石的εHf(t)值为0.86~−8.65,绝大多数为负值,tDM2值为1280~1734 Ma,指示源岩物质源于古中元古代地壳物质。岩浆起源温度均为~800 ℃,熔融压力为0.8~1.0 GPa,表明可能形成于碰撞造山后的初始伸展阶段。通过与南阿尔金以及东昆仑北缘祁漫塔格地区早古生代地质演化历史对比,认为该杂岩体的形成时代、岩浆序列和构造背景与南阿尔金构造域更具亲缘性。
Abstract:The Bashenerxi granitic complex intruded at the junction of East Kunlun and South Altyn orogenic belt. In this paper, the hornblende monzogranite and the gray monzonitic granite are both derived from the porphyritic monzogranite unit in the Bashenerxi intrusion. Zircon LA–ICP–MS geochronology shows that the diagenetic ages are (452.8±3.1) Ma and (454.2±4.8) Ma, respectively. A group of age (758±15) Ma is concentrated in the core of zircon. The content of SiO2 is between 71.97% and 74.12%, A/CNK =1.02~1.07, K2O = 4.80%~5.79%, and Na2O =2.83%~3.13%, which belongs to high–silica, high–potassium and peraluminous granites. The distribution pattern of rare earth elements is characterized by “gull type” distribution with strong negative europium anomaly (δEu=0. 31~0.44), enrichment of large ion lithophile elements Rb, K, U, Pb and high field strength elements Zr, Hf, Nb, Ta, and loss of Sr, P, Ti. Zirconium saturation thermometer show that the magma origin temperature was about 800 ℃, and the melting pressure was about 0.8~1.0 GPa. The samples are characterized by peraluminous, alkali rich, relatively poor in sodium, high in potassium and low in calcium. and they are strongly depleted in Ba, Sr, Ti, P and Eu, according this characterized, rock was judged to be S–type granite. The epsilon εHf(t)value of the rocks is 0.86~−8.65. The age of the two–stage Hf model (tDM2) = 1280~1784 Ma, mainly derived from the Paleo–Mesoproterozoic accretive crust. Based on the regional tectonic evolution and tectonic discrimination, it is considered that the rocks were formed after the Altyn deep subduction continental crust plate was broken off, and the regional tectonic background changed from compression to extension.
-
Keywords:
- Bashenerxi /
- monzogranite /
- petrogenesis /
- tectonic setting
-
秦岭造山带作为中国大陆中央造山带的重要组成部分,是由华北与华南板块自新元古代以来经过长期复杂的汇聚作用形成的一条复合型造山带(Mattauer et al.,1985;Kroner et al.,1993;Meng et al.,1999;张国伟等,1996,2001;裴先治等,2002;Dong et al.,2011,2015,2016;Wu et al.,2013)。秦岭造山带东连大别–苏鲁超高压变质岩带,西延昆仑、祁连造山带,夹持于华南、祁连、东昆仑等多个块体之间,形成了“三块夹两缝”的构造格局(Meng et al.,1999;张国伟等,2001,2004;冯益民等,2003)。商丹缝合带位于北部,是古生代秦岭–大别微地块与华北板块碰撞产物(张国伟等,2001),而位于南部的勉略缝合带是勉略洋盆在三叠纪闭合,最终扬子板块与南秦岭–华北克拉通碰撞产物(Dong et al.,2011,2021);张国伟等(2001)提出西秦岭–松潘大陆构造结来解决其复杂的演化历史和动力学机制。
西秦岭造山带发育了大量的印支期花岗岩(Sun et al.,2002;张成立等,2008;Qin et al.,2009;Zhu et al.,2011,2013;Wang et al.,2013;Xiong et al.,2016),形成于250~225 Ma以及225~200 Ma两个阶段,大量研究(张宏飞等,2005;Cao et al.,2011;Li et al.,2015;Luo et al.,2015)认为西秦岭印支期花岗岩总体化学成分偏基性,属于准铝质–过铝质、高钾–钾玄岩系列I型花岗岩;且发育大小不一的暗色包体,代表一定程度的岩浆混合(李永军,2004;Qin et al.,2010;Li et al.,2015;王晓霞等,2015)。但是西秦岭印支期花岗岩形成的构造环境依旧有不同的观点,包括①形成于后碰撞环境(张成立等,2008,徐学义等,2014)。②印支早期花岗岩形成于活动陆缘下地壳的部分熔融(黄雄飞等,2013),而印支晚期花岗岩形成于华南与华北板块的全面碰撞过程(Qin et al.,2009;Cao et al.,2011;Zhu et al.,2011)。③形成于洋盆消减环境(Jiang et al.,2010)。④形成于活动陆缘,晚三叠世末期洋盆消失并导致随后的全面陆陆碰撞(LI et al.,2015)。但由于西秦岭缺少与碰撞有关的蛇绿岩或高压变质带,也没有古老基底出露,对于这些花岗岩的成因、来源与构造属性依旧存在争议。金维浚等(2005)首次在西秦岭发现了238~245 Ma埃达克岩,并将该埃达克岩形成环境解释为板块消减的活动陆缘环境,此环境下增厚下地壳熔融作用有关;近些年也不断有西秦岭210~250 Ma埃达克岩的发现(邱庆伦等,2008;张旗等,2009;Qin et al.,2010;徐学义等,2014;冯小明等,2021),揭示西秦岭在印支期曾经存在一个大于50 km的增厚地壳。埃达克岩地球化学特征的花岗岩研究对于俯冲–碰撞体系的制约、造山带深部物质循环、造山带构造动力学过程等具有十分重要的科学意义,但关于西秦岭埃达克岩的研究工作依旧相对薄弱。笔者对甘肃宕昌–舟曲地区新发现的埃达克质花岗岩体进行岩相学、岩石地球化学以及高精度锆石U-Pb年代学研究,探讨该区花岗岩的性质与成因,为西秦岭造山带在晚三叠世的岩石成因、岩浆源区以及构造演化提供证据。
1. 地质背景与样品描述
西秦岭造山带北接祁连地块,南邻巴颜喀拉–松潘甘孜地块,西连东昆仑与柴达木地块,东延东秦岭佛坪穹窿(图1)。研究区位于西秦岭造山带东段(图1b),主要出露一套志留纪沉积于深海盆地环境下的深色细碎屑岩和碳酸盐岩,以及一套泥盆纪—三叠纪台地相碳酸盐岩夹碎屑岩建造(图1c、图1d)。研究区内印支期花岗岩也十分发育,总体呈椭圆状、树枝状近EW向展布。
图 1 西秦岭造山带构造划分图及研究区地质图a.西秦岭构造简图据冯益民等(2002)修改;b.西秦岭印支期岩浆岩分布图据冯益民等(2002)修改;c.茹树沟和燕麦层花岗岩岩地质简图;d.憨班花岗岩地质简图Figure 1. General tectonic map of West Qinling area and geological map of study area笔者研究花岗岩出露于西秦岭宕昌、舟曲地区的燕麦层、憨班与茹树沟。燕麦层岩体分布于宕昌县上漳湾村池地山~燕麦层一带(图1),总体近EW向椭圆状展布,西侧分叉,长约为3.9 km,宽约为1.8 km,出露面积约为4.29 km2。岩体侵入三叠纪大河坝组(Td)之中,接触证据主要有烘烤边、冷凝边和岩石破碎蚀变。岩体含有暗色包体,主包体要成分为英云闪长岩,包体呈椭圆状,大小不一,约为1 cm×2 cm~5 cm×10 cm。岩体主体为二长闪长岩与中细粒花岗闪长岩,二长闪长岩位于岩体西侧,出露面积约为3.37 km2,围岩强烈角岩化。岩石主要由钾长石(35%)、斜长石(32%),黑石英(28%)、云母(3%),角闪石(2%)组成,副矿物有磁铁矿、榍石和磷灰石等。
憨班岩体位于舟曲县憨班乡南东方向约3.5 km处(图2)。岩体呈椭球状岩株出露,长轴为4.7 km,短轴为3.3 km,面积约为13.2 km2。岩体侵入志留系舟曲组(Sz)细碎屑岩夹粉砂质板岩中,构造位置为南秦岭陆缘逆冲带白龙江复背斜北翼。接触围岩变质为黑云母角岩、黑云母石英角岩、黑云母堇青石角岩,宽为5~150 m;岩体内部含有暗灰色-灰黑色闪长质包体,包体大小为2~15 cm,宽为1~4 cm,均呈NW向展布;同时发育黑云母、角闪石、石英等单矿物析离体,析离体大小为5 mm,形态呈豆荚状,眼球状;包体、析离体与母岩间界线平直清楚。岩体主要由花岗闪长岩组成:中-粗粒似斑状花岗闪长岩侵入体,由斜长石(41%)、石英(20%)、黑云母(10%)、钾长石(8%)等组成。斜长石矿物可见环带结构,岩石中含有粒状榍石、小柱粒状磷灰石,局部分布小团粒状金属矿物。含斑中–细粒花岗闪长岩侵入体,主要由斜长石(50%)、石英(25%)和钾长石(18%)组成,暗色矿物含量约6%,主要为黑云母;斑晶成分为斜长石,含量为1%~5%,大小为0.2 cm×0.5 cm~1 cm×5 cm。个别斜长石隐约见环带,零星分布针柱状磷灰石。
2. 分析方法
2.1 LA-ICP-MS锆石U-Pb同位素测年
用于锆石U-Pb定年的样品为新鲜的二长闪长岩与花岗闪长岩,锆石分选在河北省廊坊市地质服务有限公司完成,首先通过电磁分离方法进一步去除磁性杂质,之后通过重液分选富集锆石颗粒,在双目镜下挑选出无包裹体、透明度高、无裂纹和晶型完好的锆石颗粒在双面胶上定向排列,使用环氧树脂固化,抛光使锆石暴露;之后,采集阴极发光图像(CL),用HNO3清洗并制靶。同位素年龄样测定由南京大学国家重点实验室采用LA-ICP-MS方法完成,测试结果用Glitter软件进行处理,并采用 Andersen(2002)的方法校正同位素比值,最终的年龄计算和图表绘制使用Isoplot3.23v软件,每一个分析点的同位素比值和同位素年龄的误差(标准偏差)为1σ,206Pb/238U加权平均年龄按 95%的置信度给出,详细处理过程参考文献Yuan 等(2004)。
2.2 主、微量元素测试
对两件二长闪长岩和两件花岗闪长岩开展全岩主量、微量元素分析,采样均选取新鲜无蚀变岩石。样品分析在国土资源部武汉岩矿测试中心完成。主量元素采用型号ZSX Primus II X射线荧光光谱仪进行分析,微量及稀土元素分析采用型号Agilent 7500电感耦合等离子质谱完成,样品采用酸溶法。主量元素分析误差<5%;微量元素和稀土元素检测限<5×109,相对偏差<5%。分析方法见柳小明等(2002)。
3. 分析结果
3.1 锆石U-Pb年代学
二长闪长岩(YMC)与花岗闪长岩(HB)中的锆石多呈无色透明,半自形-自形柱状,锆石晶体长80~200 μm。阴极发光图像表明多数锆石内部发育清晰震荡环带结构,属于典型岩浆锆石(图3)。对挑选的锆石进行LA-ICP-MS U-Pb同位素测试,将测试得到的数据点进行普通铅校正后,获得有效点33个,其中燕麦层15个、憨班18个(表1)。去除古老继承锆石,其他测试点均集中于一致曲线,表明测试的锆石几乎没有U、Pb同位素的后期改变,数据置信度较高。燕麦层206Pb/238U表面年龄为215~224.7 Ma(表1),206Pb/238U表面年龄加权平均值为(219.4±1.5)Ma(MSWD=1.2<2);憨班206Pb/238U表面年龄为216.1~227.8 Ma(表1),206Pb/238U表面年龄加权平均值为(222.1±1.9)Ma(MSWD=1.5),加权平均值的误差与单个分析误差基本一致,数据点在谐和图(剔除4个年龄偏老的测点)内成群分布(图4),代表了岩浆结晶锆石的年龄,表明燕麦层与憨班岩体形成于晚三叠世中期。
3.2 地球化学特征
燕麦层二长闪长岩样品低SiO2(含量平均为54.43%)、TiO2=0.86%~0.91%(岛弧玄武岩平均为0.8),高Al2O3(平均为18.15%),MgO含量3.35%~3.48%,Mg#平均为41.44,Na2O/K2O平均0.87,A/CNK=0.85~0.87,里特曼指数为4.01(表2)。在TAS图(图5a)中,数据点位于二长闪长岩区域;在硅钾图(图5b)中,数据点位于钾玄岩系列,属准铝质碱性二长闪长岩。燕麦层二长闪长岩的稀土总量(ΣREE)变化范围为238.82×10−6~262.02×10−6,平均为250.42×10−6;轻、重稀土比值(LREE/HREE)为16.58~16.97,平均为13.89;轻重稀土分馏明显,轻稀土强烈富集,重稀土趋势平缓;(La/Yb)N值为19.74~20.14,平均为19.99;具弱负Eu异常,δEu为0.85~0.88,平均为0.87(表1)。稀土模式配分曲线基本一致,右倾特征明显。微量元素中富集Th、U和K等大离子亲石元素(LILE),亏损Nb、Ta、P和Ti等高场强元素(HFSE),Rb/Sr值为0.03~0.05,高Sr、低Y,Sr/Y值为42.57~42.92,Nb/Ta值为16.43~17.76。
表 2 花岗岩的主量 (%)、稀土和微量元素(10−6)Table 2. Major (%) and trace elements (10−6) data for the granite in Tanchang元素 YMC1 YMC2 HB1 HB2 HB3 HB4 RSG1 RSG2 RSG3 SiO2 53.96 54.90 70.98 72.99 73.20 67.78 58.94 60.48 62.92 Al2O3 18.59 17.7 14.19 14.41 14.75 15.50 15.84 15.65 15.40 Fe2O3 1.54 2.96 1.32 0.28 0.20 0.61 1.51 1.36 0.63 FeO 6.40 5.14 1.85 1.67 0.78 2.02 5.12 4.50 4.93 CaO 6.76 6.38 1.74 1.23 1.51 2.56 5.00 3.82 3.11 MgO 3.35 3.48 0.80 0.25 0.25 1.10 3.34 2.84 2.27 K2O 3.49 3.75 4.06 4.57 4.26 4.79 4.50 4.72 4.79 Na2O 3.19 3.12 3.99 3.97 3.92 4.13 2.88 3.28 3.13 TiO2 0.863 0.910 0.336 0.129 0.120 0.430 0.796 0.691 0.591 P2O5 0.409 0.336 0.131 0.038 0.053 0.200 0.293 0.236 0.188 MnO 0.119 0.124 0.057 0.027 0.021 0.059 0.114 0.103 0.089 LOI 0.24 0.25 0.07 0.06 0.20 0.20 0.79 1.48 1.09 Cr 36.00 40.50 62.70 8.71 2.97 25.90 87.80 49.00 35.80 Ni 14.80 14.90 11.50 2.57 22.10 22.00 12.20 16.20 10.20 Co 26.10 27.00 5.54 1.22 3.45 5.13 16.70 17.00 15.30 Li 35.9 31.8 166.0 68.9 95.6 70.5 39.5 31.8 41.0 Rb 23.7 37.5 193.0 288.0 191.0 180.0 69.1 41.8 31.0 Cs 4.43 3.96 24.10 1.84 19.80 10.70 10.20 6.17 8.95 Sr 794 779 292 198 224 912 557 472 333 Ba 868 751 724 768 846 1390 853 1182 1045 V 154.0 186.0 41.0 27.2 5.3 46.0 110.0 122.0 110.0 Sc 9.89 10.60 2.29 0.92 2.17 4.65 8.24 8.50 6.83 Nb 18.4 15.1 27.6 48.7 10.4 19.3 26.4 20.4 20.9 Ta 1.12 0.85 2.36 1.07 1.35 1.31 1.71 1.46 1.67 Zr 208.0 264.0 302.0 1270.0 84.9 282.0 350.0 251.0 215.0 Hf 5.11 6.02 8.38 28.10 2.71 6.43 8.60 6.46 5.91 Be 2.44 2.24 10.30 8.63 7.08 6.91 3.71 3.04 3.04 U 5.15 3.62 4.56 29.60 3.50 10.40 9.26 6.77 8.43 Th 14.60 12.80 17.70 49.90 8.63 26.33 28.10 21.10 20.80 La 54.3 48.6 57.6 17.6 17.1 80.8 76.2 57.3 49.0 Ce 103.0 91.4 106.0 33.2 32.6 152.0 142.0 106.0 88.0 Pr 11.20 10.20 10.80 3.62 3.75 16.90 14.00 10.80 8.95 Nd 47.60 43.90 43.50 15.00 13.20 59.10 55.20 43.10 35.50 Sm 8.28 7.84 7.32 3.18 2.98 10.00 9.14 7.23 6.08 Eu 2.17 2.00 1.58 0.69 0.73 2.38 1.86 1.57 1.44 Gd 6.62 6.27 5.73 2.54 2.36 7.38 7.60 6.05 5.07 Tb 0.86 0.84 0.68 0.33 0.30 0.91 0.98 0.78 0.67 Dy 4.25 4.22 2.97 1.43 1.46 4.32 5.00 3.94 3.37 Ho 0.79 0.78 0.50 0.21 0.24 0.76 0.96 0.74 0.64 Er 2.10 2.10 1.29 0.52 0.55 1.91 2.66 2.04 1.75 Tm 0.30 0.30 0.18 0.07 0.07 0.25 0.40 0.30 0.27 Yb 1.78 1.79 1.03 0.36 0.43 1.70 2.40 1.82 1.57 Lu 0.27 0.28 0.16 0.06 0.06 0.25 0.37 0.29 0.25 Y 18.50 18.30 12.20 5.44 6.96 21.60 23.50 18.20 15.40 ΣREE 262.02 238.82 251.54 84.25 82.79 352.60 342.27 260.16 217.96 LREE 226.55 203.94 226.80 73.29 70.36 313.56 298.40 226.00 188.97 ΣY 35.47 34.88 24.74 10.96 12.43 39.04 43.87 34.16 28.99 (La/Yb)N 20.14 17.94 36.71 32.14 28.53 34.09 20.95 20.79 20.6 δEu 0.88 0.85 0.73 0.73 0.81 0.81 0.67 0.71 0.78 δCe 0.94 0.92 0.95 0.93 0.95 0.96 0.96 0.95 0.93 注:样品HB3和HB4数据引自刘明强,2012。 图 5 宕昌花岗岩分类图解(部分数据引自刘明强,2012)a.全碱-硅图解;b.K2O-SiO2图解;c.A/NK-A/NCK图解,虚线是I型与S型花岗岩的分界;d.K2O-Na2O图解Figure 5. TAS, K2O-SiO2, A/NK-A/CNK and K2O-Na2O diagrams of Tanchang granite憨班花岗闪长岩样品高Si(SiO2含量平均71.24%)和Al(Al2O3含量14.19%~15.5%),低Mg(MgO含量平均为0.60%)、Fe(Fe2O3T含量平均为2.36%)和Ca(CaO含量平均为1.76%),TiO2含量平均为0.25%,Mg#平均为29.91,Na2O+K2O平均为8.42%,Na2O/K2O平均为1.10,A/CNK=0.93~1.07,里特曼指数平均为2.54。在TAS图(图5a)中,一件样品落入石英二长岩区域,其他样品全部位于花岗岩区域,为准铝质-过铝质高钾钙碱性花岗岩。主量元素的岩石地球化学特征与埃达克岩相似。憨班花岗闪长岩的稀土总量(ΣREE)变化范围为82.79×10−6~352.6×10−6,平均为192.29×10−6;轻、重稀土比值(LREE/HREE)为12.86~18.09,平均为15.55,明显发生轻重稀土的分馏;(La/Yb)N值为28.53~36.71,平均为32.87;具弱负铕异常,δEu为0.73~0.81,平均为0.77。稀土模式配分曲线基本一致,右倾特征明显。微量元素中富集Th、U和K等LILE元素,亏损Nb、Ta、P和Ti等HFSE元素,Rb/Sr平均为0.79,Sr/Y值为23.93~42.22(平均为33.68),Nb/Ta值为7.70~45.51(平均为19.90)。
茹树沟花岗岩SiO2含量为58.94%~62.92%,Al2O3含量为15.4%~15.84%,Fe2O3T含量平均为7.58%,CaO含量平均为3.98%,TiO2含量平均为0.69%(大陆地壳平均为0.69%),Mg#值平均为42.72,Na2O+K2O值为7.38%~8%,富K、贫Na(图5d),Na2O/K2O值平均为0.66,A/CNK=0.84~0.96,里特曼指数平均为3.41。在TAS图(图5a)中总体位于二长岩至石英二长岩区域,硅钾图(图5b)中投点位于钾玄岩系列。A/NK-A/NCK图解(图5c)中投点位于准铝质区域,主量元素的地球化学特征类似于埃达克质岩石。茹树沟花岗岩的稀土总量(ΣREE)为217.96×10−6~342.27×10−6,平均为273.46×10−6;轻、重稀土比值(LREE/HREE)为13.59~20.37,平均为14.24,轻重稀土分馏明显,与总体趋势一致;(La/Yb)N值为20.60~20.79,平均为20.78;具弱负Eu异常,δEu值为0.67~0.78,平均为0.72。稀土模式配分曲线基本一致,右倾特征明显。微量元素中富集Th、U和K等LILE元素,亏损Nb、Ta、P和Ti等HFSE元素,Rb/Sr值平均为0.10,Sr/Y值为21.62~25.93,平均为23.75,Nb/Ta值为7.70~45.51(平均为19.90)。
表 1 宕昌花岗岩的LA-ICP-MS锆石U-Pb同位素分析结果Table 1. LA-ICP-MS zircon U-Pb analytic for granite in Tanchang分析号 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ YMC01 0.05250 0.00128 0.24796 0.00609 0.03421 0.00046 0.01144 0.00057 307.2 54.31 224.9 4.95 216.9 2.89 229.9 11.45 YMC02 0.05407 0.00132 0.25328 0.00625 0.03393 0.00046 0.01082 0.00052 373.7 54.04 229.2 5.06 215.1 2.88 217.6 10.40 YMC03 0.05432 0.00087 0.26164 0.00446 0.03489 0.00044 0.01356 0.00049 384.2 35.39 236.0 3.59 221.1 2.72 272.3 9.730 YMC04 0.05114 0.00092 0.24234 0.00456 0.03432 0.00044 0.01042 0.00037 247.3 40.87 220.3 3.73 217.5 2.72 209.6 7.330 YMC05 0.05105 0.00080 0.24077 0.00406 0.03415 0.00043 0.01121 0.00040 243.2 35.85 219.0 3.32 216.5 2.66 225.4 7.950 YMC06 0.05367 0.00142 0.25367 0.00673 0.03428 0.00048 0.00999 0.00048 357.2 58.62 229.6 5.45 217.3 2.99 200.9 9.670 YMC07 0.05249 0.00111 0.24831 0.00536 0.03431 0.00045 0.00944 0.00049 306.6 47.17 225.2 4.36 217.5 2.83 190.0 9.830 YMC08 0.05119 0.00079 0.24143 0.00403 0.03421 0.00043 0.01091 0.00040 249.6 35.28 219.6 3.30 216.8 2.67 219.4 8.020 YMC09 0.05313 0.00090 0.25656 0.00459 0.03503 0.00044 0.00986 0.00049 334.2 37.78 231.9 3.71 221.9 2.77 198.3 9.800 YMC10 0.04926 0.00115 0.23270 0.00550 0.03426 0.00046 0.01022 0.00037 160.3 53.57 212.4 4.53 217.2 2.86 205.4 7.490 YMC11 0.05208 0.00078 0.25146 0.00407 0.03502 0.00044 0.01127 0.00033 288.8 33.88 227.8 3.30 221.9 2.72 226.4 6.500 YMC12 0.05117 0.00088 0.24500 0.00445 0.03473 0.00044 0.01069 0.00047 248.3 39.30 222.5 3.63 220.1 2.76 215.0 9.470 YMC13 0.05059 0.00081 0.24347 0.00416 0.03491 0.00044 0.01057 0.00041 222.3 36.66 221.3 3.39 221.2 2.73 212.5 8.270 YMC14 0.04967 0.00098 0.23991 0.00486 0.03504 0.00046 0.01052 0.00035 179.5 45.20 218.3 3.98 222.0 2.84 211.6 6.940 YMC15 0.04999 0.00086 0.23375 0.00421 0.03392 0.00043 0.01078 0.00041 194.3 39.54 213.3 3.47 215.0 2.69 216.8 8.280 YMC16 0.04976 0.00104 0.24288 0.00524 0.03536 0.00046 0.01102 0.00061 183.6 48.18 220.8 4.28 224.0 2.87 221.5 12.13 YMC17 0.05158 0.00084 0.25216 0.00438 0.03546 0.00045 0.01099 0.00034 266.6 37.12 228.3 3.55 224.7 2.79 220.9 6.760 YMC18 0.05163 0.00110 0.25090 0.00542 0.03525 0.00047 0.01104 0.00045 269.0 48.02 227.3 4.40 223.3 2.91 222.0 9.060 HB01 0.05305 0.00189 0.25753 0.00906 0.03523 0.00054 0.01178 0.00074 331.0 78.97 232.7 7.31 223.2 3.36 236.7 14.74 HB02 0.05156 0.00090 0.25214 0.00461 0.03549 0.00045 0.01367 0.00063 266.0 39.57 228.3 3.74 224.8 2.80 274.4 12.66 HB03 0.07092 0.00113 0.35638 0.00600 0.03647 0.00046 0.02257 0.00091 955.1 32.40 309.5 4.49 230.9 2.88 451.1 18.00 HB04 0.10941 0.00144 2.55872 0.03701 0.16972 0.00213 0.07167 0.00195 1789.6 23.74 1288.9 10.56 1011 11.72 1399 36.70 HB05 0.05021 0.00119 0.24888 0.00599 0.03597 0.00048 0.01414 0.00062 204.9 54.29 225.7 4.87 227.8 3.00 283.8 12.31 HB06 0.04856 0.00088 0.23608 0.00446 0.03529 0.00045 0.01284 0.00063 126.4 42.18 215.2 3.67 223.6 2.80 257.8 12.50 HB07 0.05065 0.00081 0.24780 0.00422 0.03550 0.00044 0.01306 0.00040 225.1 36.59 224.8 3.43 224.9 2.76 262.2 7.900 HB08 0.07471 0.00135 0.54070 0.01013 0.05252 0.00069 0.01954 0.00111 1060.7 36.06 438.9 6.67 330.0 4.20 391.2 21.97 HB09 0.05145 0.00080 0.25447 0.00422 0.03589 0.00045 0.01216 0.00042 260.9 35.23 230.2 3.42 227.3 2.78 244.3 8.290 HB10 0.05057 0.00073 0.24586 0.00387 0.03528 0.00044 0.01097 0.00020 221.1 33.19 223.2 3.15 223.5 2.71 220.5 4.000 HB11 0.05114 0.00070 0.24033 0.00362 0.03410 0.00042 0.01041 0.00037 247.1 31.20 218.7 2.96 216.1 2.60 209.4 7.410 HB12 0.05246 0.00085 0.24971 0.00427 0.03453 0.00043 0.01137 0.00033 305.7 36.25 226.3 3.47 218.8 2.69 228.6 6.510 HB13 0.05077 0.00083 0.24463 0.00424 0.03496 0.00044 0.00986 0.00031 230.3 37.34 222.2 3.46 221.5 2.73 198.2 6.220 HB14 0.05269 0.00071 0.25301 0.00378 0.03483 0.00043 0.01094 0.00027 315.5 30.47 229.0 3.06 220.7 2.66 219.9 5.330 HB15 0.11535 0.00136 0.59237 0.00795 0.03725 0.00045 0.02215 0.00040 1885.4 21.13 472.4 5.07 235.8 2.83 442.7 7.840 HB16 0.05258 0.00076 0.25721 0.00404 0.03548 0.00044 0.01176 0.00029 310.7 32.50 232.4 3.26 224.7 2.73 236.3 5.840 HB17 0.05249 0.00081 0.24983 0.00415 0.03452 0.00043 0.01117 0.00029 306.8 34.89 226.4 3.37 218.8 2.68 224.6 5.720 HB18 0.05237 0.00063 0.25043 0.00343 0.03468 0.00042 0.01039 0.00016 301.5 27.08 226.9 2.78 219.8 2.61 208.9 3.170 HB19 0.05122 0.00071 0.24419 0.00373 0.03457 0.00042 0.01133 0.00033 250.7 31.68 221.8 3.04 219.1 2.64 227.7 6.540 总体来说,燕麦层、憨班与茹树沟花岗岩花岗岩样品ΣREE=82.79×10−6~352.6×10−6,多数为217.96×10−6~262.02×10−6,LREE/HREE值为12.86~18.08,(La/Yb)N值为19.47~40.11,样品具有微弱–弱的负Eu异常(δEu=0.67~0.88)。稀土元素配分模式图中为轻稀土富集而重稀土相对亏损的右倾曲线,变化特征总体一致,为明显的壳幔混合特征(图6)。在微量元素蛛网图(图6a)中,样品曲线跳跃特征明显,总体趋势基本一致,具有Sr的负异常,富集Th、K、U等LILE元素;强烈亏损Nb、Ta、P和Ti等HFSE元素,暗示可能主要来源于大陆下地壳;Nb/Ta值为11.69~17.76,平均为14.65,高于地壳值(11~12)且低于原始地幔与球粒陨石值(约17.5)(Jochum et al.,1997),接近洋壳值(16.8)(Niu et al.,2003),Nb/Ta值反映岩浆源区很可能有幔源的物质成分加入(Jochum et al.,1997);K、Rb等微量元素含量的差异暗示岩浆来源与演化的复杂性。主、微量元素均显示出明显的岩浆混合特征,为较为典型的壳幔花岗岩,也可从其岩体内部含有较多的微粒暗色包体佐证。
图 6 微量元素原始地幔标准化蛛网图(a)与稀土元素球粒陨石表转化分布型式图(b)大陆地壳成分数据源自Rudnick等(2003); 夏河埃达克岩数据源自邱庆伦等(2008)、韦萍等(2013)、徐学义等(2014);温泉埃达克岩数据源自Zhang等(2007)、Zhu等(2013)、徐学义等(2014);标准化值源自Sun等(1989)Figure 6. (a) Primitive mantle-normalized spider diagrams and (b) chondrite-normalized REE distribution patterns4. 讨论
4.1 岩石成因
主、微量元素Harker图解显示(图7),CaO、Al2O3、MgO、TiO2、Fe2O3T、P2O5与SiO2之间都具有较好的负相关关系;而K2O和Na2O与SiO2之间有微弱的正相关关系,δEu随SiO2的变化基本无变化,指示花岗岩岩浆同源演化的特征。稀土元素配分模式图中有微弱的负Eu异常,表明Eu的弱负异常不是由于斜长石的分离结晶作用或者源区大量斜长石残留导致。
Chappell等(1992)提出以A/NCK=1.1为花岗岩类型判别界线,大于1.1者为S型,小于1.1的则为I型(图5c),同时发现P的丰度随着较强过铝质S型长英质熔体中长英质熔体晶体的分馏而显著增加,而在类似的较弱过铝质I型花岗岩中P的丰度减少。根据文中花岗岩A/NKC=0.84~1.07,以及P2O5与SiO2的负相关性(图7h),都表明了该花岗岩有I型特征;并且岩石中存在少量角闪石与闪长质暗色微粒包体也指示为I型花岗岩。样品弱Eu负异常与高Sr低Y和Yb等特征与A型花岗岩区分。实验岩石学证明准铝质花岗岩类主要由地壳中基性岩类(玄武质成分)部分熔融形成(Beard et al.,1991;Sisson et al.,2005;Johannes et al.,2012),而过铝质酸性花岗岩类则是碎屑沉积岩类部分熔融的产物(Douce et al.,1998;Patino et al.,1998)。而对基性岩部分熔融实验也表明玄武质岩石来源的熔体Mg#值通常小于45,形成的花岗岩一般显示I型的特征(Rapp et al.,1999)。文中的花岗岩样品Mg#值低(19~43),这些证据表明本研究花岗岩原岩可能是来源于玄武质岩石,而岩石含有大量的暗色包体则表明幔源镁铁质岩浆的机械混合,岩石样品总体相对富钾贫钠与西秦岭下地壳为高K玄武质岩石的推论一致(Zhang et al.,2007)。虽然总体特征一致,但是3个花岗岩体的源区特征或者混染程度存在一定程度的不同,燕麦层、憨班和茹树沟花岗岩SiO2含量(分别平均为54.43%、71.24%和60.78%)存在差异,差异也表现在特征微量元素中,如相容元素Cr、Ni和Co的含量;同时憨班花岗岩Rb/Sr值(0.79)远高于燕麦层和茹树沟(分别平均为0.04与0.10),在稀土元素配分模式图中范围更宽,微量元素跳跃特征更加明显,尤其是HB2样品强烈富集Th、U、Zr和Hf,憨班花岗岩锆石中含有古老继承锆石(表1)等均表明憨班花岗岩相较于燕麦层和茹树沟花岗岩有变沉积岩基底的更多熔融加入。研究认为,区内花岗岩体是古老变玄武质基底与少量古老沉积基底部分熔融同时受到幔源岩浆不同程度混染的结果。
4.2 源区深度
Defant 等(1990)将埃达克岩定义为:年轻的大洋地壳(≤25Ma)俯冲形成的弧岩浆岩系,其地球化学特征为SiO2≥56%,Al2O3≥15%,MgO≤3%(最高不超过6%),低Y(<18×10−6)和Yb(<1.9×10−6),高Sr(>400 ×10−6),低的重稀土元素(HREE)与高场强元素(HFSE)。研究区花岗岩样品大多数具有高Sr(472 ×10−6~779 ×10−6),低Y(15.4 ×10−6~23.5 ×10−6)和Yb(1.57 ×10−6~2.4 ×10−6)的特征,以及较高的(La/Yb)N值(17.94~22.77)与较弱的负铕异常(δEu=0.67~0.88)。根据经典的埃达克岩图解(图8a、图8b),结合张旗等(2012)提出新的Sr-Yb判别图(图8c),样品总体投入了埃达克型区域,位于榴辉岩相趋势演化线上,稀土与微量元素特征与夏河、温泉埃达克岩基本一致(图6),与张成立等(2008)总结西秦岭埃达克岩的地球化学特征一致。通过岩石主微量元素的分析结合前人在西秦岭地区对于埃达克岩的研究,文中样品总体具有埃达克岩的特征。
张旗等(2006,2009)研究C型埃达克岩后指出其形成深度大于50 km。若是花岗岩原岩来自与正常地壳厚度岩石的部分熔融,平衡于斜长石相,因此不会出现强负铕异常,而当地壳厚度超过50Km时,斜长石全部熔融,少有或未有残留。文中花岗岩样品的δEu与SiO2之间不存在负相关性,说明Eu元素的弱亏损与岩浆的分离结晶作用无关,显示了源区部分熔融时并未大量残存斜长石,指示其形成深度可能大于50 km。Rapp等(1999)则认为埃达克质岩浆的源区残留相为榴辉岩,强调石榴子石在部分熔融过程中是与其相容的重稀土及Nb、Ta等高场强元素的主要控制矿物。实验岩石学研究表明(邓晋福等,1996;Xiong et al.,2005),当压力大于1.0 Gpa时,熔体能够与角闪石、石榴子石和单斜辉石同时存在,因为Y和Yb等重稀土元素优先进入石榴子石,同时单斜辉石与斜方辉石的存在也会造成LREE与HREE的分馏;而大于1.5 Gpa的压力使得残留矿物中出现金红石导致与其平衡共存的岩浆熔体强烈亏损Nb、Ta等HFSE元素。文中岩石样品亏损HREE元素,Gd/Yb值为3.16~7.05,埃达克岩图解中总体位于榴辉岩相趋势演化线上(图7a),蛛网图中Nb、Ta强烈负异常,(Dy/Yb)N-(La/Yb)N图解表现为石榴子石残留趋势(图7d),表明源区残留了石榴子石,甚至可能残留金红石。表明源区形成压力至少大于1.2 Gpa,形成深度大于50 km。
研究表明陆壳岩石的Zr/Hf值(36.3)类似于球粒陨石且相对稳定,但元素Hf在角闪石与单斜辉石中的相容性更强,在部分熔融过程若残留角闪石和单斜辉石则会导致岩浆熔体中二者比值的升高(David et al.,2000;Pfander et al.,2007),文中花岗岩样品的Zr/Hf值大多为38.8~45.2,指示源区可能残留了角闪石与单斜辉石。且样品含有较多暗色包体暗示可能与玄武质岩浆的底侵作用有关,可能来自地壳的更深部位(刘明强,2012;张旗等,2012)。综合分析认为花岗岩样品形成深度大于50 km,且受到幔源岩浆的混染,源区可能残留角闪石+石榴子石+单斜辉石。
4.3 构造环境
秦岭复合造山带先后经历了新元古代、古生代与中生代的花岗质岩浆作用,每期岩浆作用都为研究其构造背景提供了大量的信息。研究南秦岭勉略构造带以北的迷坝与光头山等花岗岩体之后,Sun等(2002)确定其形成于晚三叠世(206~220 Ma),晚于勉略洋盆的闭合时代(242~221 Ma)和大别超高压变质时间(240~225 Ma)(李曙光等,1996;郑永飞等,2003)。通过古生物证据以及同位素年代学,张国伟等(2003)认为西秦岭是一近EW向延伸的印支期俯冲碰撞缝合带,提出从东昆仑南缘玛沁、德尔尼及康县接勉略处曾存在勉略有限洋盆,勉略洋二叠纪至三叠纪的打开及最终碰撞造山是EW向穿时性的。冯益民等(2003)认为西秦岭造山带是典型的“碰撞-陆内造山带”,从中晚泥盆世到中三叠世末处于以伸展海盆体系为主的盆山格局或海陆格局,中三叠世拉丁期之后开始由板内伸展阶段向陆内叠覆造山环境转换。西秦岭埃达克质岩石主要形成于235~215 Ma,这些花岗质岩石主要形成于同碰撞晚期或后碰撞环境(王晓霞等,2015)。
在Nb-Y与Ta-Yb判别图解(图9)中岩石样品投点位于同碰撞环境,有向板内环境演化的趋势,图解中的同碰撞环境包括了从碰撞开始至结束的各个时期。大陆碰撞作用发生后还有一段相当长碰撞汇聚期,而且大陆主碰撞期(同碰撞)不利于岩浆上升,大规模的岩浆作用主要出现在主碰撞期后,板内时期之前(后碰撞)(肖庆辉等,2002)。研究区花岗岩属于壳幔花岗岩,是基性下地壳部分熔融与底侵幔源岩浆混染的结果,其形成深度大于50 km,源区残留了角闪榴辉岩相岩石,代表了晚三叠世中期(225~215 Ma)独特的构造环境,即当时岩石圈地幔拆沉导致软流圈上涌,上涌的软流圈部分熔融形成的玄武质岩浆加热当时处于后碰撞体制下的加厚下地壳,使其发生部分熔融,形成类似于埃达克岩的岩浆,相似于西秦岭西段(徐多勋等,2015),同时也能解释研究花岗岩体的特征与其EN向著名的五朵金花岩体(教场坝、柏家庄、碌础坝、中川、正沟)(Zhang et al.,2007),以及宕昌流纹岩(黄雄飞等,2013)等的差异,可能是同一时期的不同深度地壳部分熔融的产物,而210 Ma后已经到了后碰撞板内演化阶段(Yin et al.,1991;李曙光等,1996;穆可斌等,2019)。
图 9 宕昌花岗岩岩石Nb-Y判别图解(a)与Ta-Yb判别图解(b)(Pearce et al.,1984)VAG.火山弧花岗岩;Syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;虚线是产于异常洋脊ORG的边界线Figure 9. (a) Nb-Y diagram and (b) Ta-Yb diagram of the Tanchang granite综上所述,研究区埃达克质花岗质岩石可能是软流圈上涌加热高钾变基性下地壳发生部分熔融形成,岩浆源区伴有幔源岩浆的加入,最终上升侵位形成(图10)。印支末期(225~215 Ma)西秦岭正处于后碰撞环境,存在大于50 km的加厚地壳。
5. 结论
(1)憨班岩体与燕麦层岩体的LA-ICP-MS锆石U-Pb年龄分别为(222.1±1.9)Ma与(219.4±1.5)Ma,其侵位时间为晚三叠世中期。
(2)燕麦层、茹树沟以及憨班岩体具有相似的主量与微量元素特征,属于高钾–钾玄岩、钙碱性–碱性系列,准铝质–弱过铝质I型花岗岩,系同源演化而来,具有埃达克岩的特征,是基性下地壳与少量变沉积岩基底部分熔融与底侵幔源岩浆不同程度混染的结果,其形成深度大于50 km,源区残留了角闪榴辉岩相岩石。
(3)燕麦层、茹树沟以及憨班岩体是华北板块与扬子板块陆陆碰撞之后,地壳加厚,岩石圈地幔拆沉导致软流圈上涌加热加厚下地壳部分熔融的产物,形成于后碰撞环境。
-
图 1 东昆仑巴什尔希区域地质图(据黎敦朋,2010修编)
Figure 1. Geological map of the Bashenerxi region of the East Kunlun Mountains
图 3 东昆仑地区巴什尔希花岗岩岩石类型判别图解
a. SiO2–K2O图解(Rickwood,1989);b. A/CNK–A/NK分类图解(Peccerillo et al.,1976);c.TAS图解(Middlemost,1994)
Figure 3. Classification diagram of Bashenerxi granites from the eastern Kunlun area
图 4 角闪二长花岗岩和灰色二长花岗岩稀土模式图(a)和微量元素蛛网图(b)(原始地幔值据Sun et al.,1989)
Figure 4. (a) Patterns of rare earth elements and (b) spider webs of trace elements in granite
图 9 角闪二长花岗岩和灰色二长花岗岩源区判别图
底图a据Sylvester,1998; 底图b据Altherr et al.,2000
Figure 9. Source region discrimination diagrams of Bashierxi granites from the eastern Kunlun area
图 10 角闪二长花岗岩和灰色二长花岗岩构造环境判别图解
底图a据Batchelor et al.,1985;底图b据Pearce et al.,1984
Figure 10. Discriminant diagram of granite tectonic environment
表 1 角闪二长花岗岩和灰色二长花岗岩地球化学组成(主量元素:%;微量元素:10−6)
Table 1 Element compositions of granite (Major element: %; Trace element: 10−6)
元素 13A-18(a) 13A-18(b) 13A-18(c) 13A-18(d) 13A-18(e) 13A-18(g) 13A-19(a) 13A-19(b) 13A-19(c) 13A-19(d) 13A-19(e) 13A-19(f) SiO2 72.09 73.49 73.22 71.97 72.67 72.31 73.67 74.12 73.49 73.84 73.28 73.83 TiO2 0.26 0.29 0.24 0.32 0.31 0.33 0.19 0.20 0.20 0.20 0.19 0.18 Al2O3 13.98 13.09 13.51 13.76 13.55 13.48 13.61 13.53 13.64 13.61 13.65 13.48 Fe2O3t 2.01 2.14 1.74 2.36 2.45 2.21 1.57 1.54 1.53 1.56 1.55 1.51 MnO 0.04 0.05 0.03 0.04 0.05 0.04 0.02 0.03 0.03 0.03 0.03 0.03 MgO 0.34 0.36 0.29 0.42 0.38 0.38 0.30 0.31 0.28 0.30 0.31 0.28 CaO 1.18 1.17 0.92 1.21 1.24 1.21 0.99 1.11 1.17 1.17 1.08 1.06 Na2O 3.13 3.10 3.01 3.04 3.06 3.08 2.91 2.90 2.86 2.90 2.89 2.83 K2O 5.51 4.80 5.61 5.19 5.38 5.45 5.75 5.57 5.64 5.60 5.60 5.79 P2O5 0.08 0.08 0.08 0.10 0.10 0.10 0.07 0.07 0.06 0.07 0.07 0.07 LOI 1.07 1.19 0.92 1.10 0.87 1.02 0.88 0.94 0.82 0.93 0.91 0.94 TOTAL 99.69 99.76 99.57 99.51 100.1 99.61 99.96 100.3 99.72 100.2 99.56 100.0 Li 31.2 28.6 26.3 33.1 37.6 24.6 41.8 47.6 45.6 42.2 44.4 43.9 Be 4.53 4.84 4.10 4.69 4.23 4.89 2.99 4.10 3.38 3.95 3.63 3.45 Sc 3.38 3.67 2.69 3.54 5.54 3.42 3.14 3.21 2.89 2.93 3.20 2.84 V 12.9 13.3 9.65 16.0 14.1 13.7 8.46 8.09 8.22 8.08 8.15 7.71 Cr 6.52 5.63 6.82 4.12 4.33 4.55 5.64 7.20 7.00 3.49 5.00 3.19 Co 19.2 32.2 33.2 20.2 24.5 35.9 32.3 36.2 33.4 34.8 35.9 26.4 Ni 2.33 3.69 4.05 2.38 2.59 2.88 4.93 4.32 4.11 2.39 3.29 2.06 Cu 1.56 2.21 1.54 2.53 4.10 1.81 1.41 1.10 1.16 1.03 1.00 1.01 Zn 32.7 38.4 29.6 38.0 43.5 37.8 29.3 33.4 31.3 35.7 31.9 29.8 Ga 20.8 20.0 19.4 21.5 21.1 20.3 18.6 19.4 18.8 19.0 18.7 18.2 Ge 1.57 1.36 1.48 1.52 1.54 1.44 1.53 1.62 1.60 1.61 1.53 1.57 Rb 203 183 187 178 206 208 235 214 224 198 223 240 Sr 80.7 73.9 75.9 83.9 79.6 79.5 86.1 77.5 78.6 79.5 80.2 76.0 Y 27.6 31.3 20.2 25.1 26.8 23.9 36.0 38.3 33.0 34.1 29.7 33.0 Zr 231 230 190 284 239 252 171 172 171 169 171 164 Nb 27.6 30.0 23.9 34.6 33.2 38.1 27.2 30.5 29.4 31.3 29.5 30.4 Cs 2.75 2.46 1.72 2.57 3.48 1.54 4.83 4.09 6.47 3.61 5.17 3.57 Ba 478 313 393 412 385 424 393 361 384 373 402 370 La 56.4 65.7 51.2 65.0 65.1 64.6 50.4 50.7 54.1 56.8 60.4 50.7 Ce 110 129 101 126 128 122 96.9 98.2 104 106 114 98.4 Pr 12.4 14.6 11.4 14.5 14.8 14.2 11.1 11.2 11.8 12.1 13.0 11.0 Nd 42.1 51.2 38.4 50.1 51.2 48.6 37.9 38.5 40.8 42.2 45.9 38.7 Sm 7.30 8.70 6.54 8.94 9.39 8.27 7.60 7.86 8.15 8.24 8.77 7.69 Eu 0.95 0.88 0.88 1.00 0.94 0.97 0.77 0.77 0.81 0.80 0.83 0.76 Gd 6.00 7.01 5.25 7.13 7.48 6.83 6.75 6.98 7.02 7.22 7.34 6.78 续表1 元素 13A-18(a) 13A-18(b) 13A-18(c) 13A-18(d) 13A-18(e) 13A-18(g) 13A-19(a) 13A-19(b) 13A-19(c) 13A-19(d) 13A-19(e) 13A-19(f) Tb 0.83 1.00 0.68 0.91 0.98 0.91 1.03 1.07 1.01 1.02 1.03 0.97 Dy 4.67 5.53 3.62 4.72 5.13 4.67 5.89 6.17 5.60 5.67 5.47 5.43 Ho 0.85 1.04 0.64 0.82 0.88 0.79 1.12 1.16 1.03 1.05 0.98 1.02 Er 2.49 2.97 1.82 2.25 2.37 2.14 3.14 3.33 2.82 2.92 2.65 2.88 Tm 0.37 0.42 0.25 0.30 0.32 0.30 0.46 0.49 0.42 0.42 0.38 0.42 Yb 2.27 2.52 1.54 1.79 1.97 1.88 2.96 3.15 2.66 2.72 2.42 2.72 Lu 0.31 0.34 0.23 0.26 0.27 0.28 0.42 0.45 0.39 0.39 0.35 0.38 Hf 5.54 5.79 4.81 6.76 5.72 6.12 4.61 4.63 4.73 4.56 4.81 4.45 Ta 2.32 2.23 1.43 1.84 1.87 2.37 1.87 2.52 2.23 2.79 2.24 2.61 Pb 22.7 18.9 17.6 19.0 19.4 18.1 27.1 27.6 29.2 30.2 32.6 29.8 Th 23.3 29.6 24.8 27.3 26.3 26.8 29.6 34.1 33.7 34.7 34.9 33.3 U 1.67 2.09 1.43 1.34 1.86 1.51 2.14 2.90 2.26 2.41 7.96 2.22 ΣREE 230 270 209 266 270 258 226 230 241 247 264 228 LREE 17.80 20.83 14.03 18.17 19.42 17.80 204.6 207.3 219.7 225.9 243.1 207.2 HREE 12.90 12.98 14.90 14.62 13.90 14.52 21.78 22.80 20.95 21.41 20.63 20.61 LREE/HREE 17.80 18.69 23.86 26.06 23.66 24.69 9.40 9.09 10.49 10.55 11.79 10.05 LaN/YbN 0.44 0.35 0.46 0.38 0.34 0.40 12.19 11.56 14.57 14.96 17.89 13.37 δEu 0.43 0.33 0.44 0.37 0.33 0.39 0.32 0.31 0.32 0.31 0.31 0.32 δCe 0.98 0.98 0.98 0.97 0.97 0.94 0.96 0.97 0.97 0.94 0.95 0.97 δ 2.57 2.05 2.46 2.34 2.40 2.48 2.45 2.31 2.37 2.34 2.38 2.41 Al2O3/TiO2 53.77 45.14 56.29 43.00 43.71 40.85 71.63 67.65 68.20 68.05 71.84 74.89 CaO/Na2O 0.38 0.38 0.31 0.40 0.41 0.39 0.34 0.38 0.41 0.40 0.37 0.37 K2O/Na2O 1.76 1.55 1.86 1.71 1.76 1.77 1.98 1.92 1.97 1.93 1.94 2.05 Rb/Ba 0.42 0.58 0.48 0.43 0.53 0.49 0.60 0.59 0.58 0.53 0.56 0.65 Sr/Ba 0.17 0.24 0.19 0.20 0.21 0.19 0.22 0.21 0.20 0.21 0.20 0.21 A/CNK 1.05 1.05 1.06 1.07 1.03 1.02 1.06 1.06 1.05 1.05 1.07 1.05 注: A/CNK = Al2O3 / (CaO + K2O + Na2O); δ =(K2O+Na2O)2 / (SiO2 -43); δEu = EuN / (SmN+GdN)1/2, δCe = CeN / (LaN + PrN)1/2;原始地幔值据Sun et al.,1989。 表 2 角闪二长花岗岩和灰色二长花岗岩的锆石LA–ICP–MS定年分析表
Table 2 Table of dating analysis of granite zircon LA–ICP–MS
样品编号 含量( 10−6) Th / U 同位素比值 年龄值(Ma) 232Th 238U 207Pb / 206Pb 1σ 207Pb / 235U 1σ 206Pb /238U 1σ 207Pb /206Pb 1σ 207Pb /235U 1σ 206Pb /238U 1σ 13A-18-01 215 361 0.5973 0.0579 0.0027 0.5759 0.0269 0.0720 0.0012 528 104 462 17 448 7 13A-18-02 556 454 1.2254 0.0589 0.0025 0.5842 0.0236 0.0719 0.0009 565 91 467 15 448 6 13A-18-03 293 369 0.7941 0.0578 0.0032 0.5848 0.0300 0.0737 0.0010 520 120 468 19 458 6 13A-18-04 455 526 0.8648 0.0555 0.0036 0.5630 0.0366 0.0732 0.0011 435 143 453 24 455 6 13A-18-05 333 382 0.8713 0.0568 0.0028 0.5706 0.0275 0.0730 0.0011 483 109 458 18 454 6 13A-18-06 260 510 0.5091 0.0554 0.0025 0.5624 0.0245 0.0735 0.0010 428 98 453 16 457 6 13A-18-07 355 387 0.9165 0.0561 0.0031 0.5640 0.0305 0.0727 0.0012 457 120 454 20 452 7 13A-18-08 193 317 0.6106 0.0553 0.0040 0.5590 0.0418 0.0731 0.0017 433 161 451 27 455 10 13A-18-09 386 470 0.8217 0.0548 0.0043 0.5522 0.0462 0.0723 0.0011 406 178 446 30 450 6 13A-18-10 169 309 0.5458 0.0567 0.0042 0.5650 0.0415 0.0723 0.0016 480 161 455 27 450 10 13A-18-11 536 585 0.9177 0.0571 0.0032 0.5716 0.0330 0.0720 0.0012 494 124 459 21 448 7 13A-18-12 431 491 0.8788 0.0547 0.0029 0.5580 0.0293 0.0735 0.0010 398 120 450 19 457 6 13A-18-13 427 473 0.9029 0.0567 0.0051 0.5677 0.0482 0.0726 0.0010 480 166 457 31 452 6 13A-19-01 35 174 0.1997 0.0659 0.0048 1.1562 0.0793 0.1283 0.0019 1200 152 780 37 778 18 13A-19-02 89 193 0.4628 0.0652 0.0046 1.1382 0.0793 0.1263 0.0032 781 147 772 38 767 12 13A-19-03 168 481 0.3496 0.0662 0.0037 1.1736 0.0653 0.1283 0.0021 813 114 788 31 778 13 13A-19-04 700 268 2.6131 0.0626 0.0038 1.0943 0.0659 0.1265 0.0023 694 127 751 32 768 10 13A-19-05 308 668 0.4609 0.0637 0.0041 1.0351 0.0662 0.1172 0.0017 731 137 721 33 715 10 13A-19-06 114 127 0.8976 0.0571 0.0055 0.5708 0.0527 0.0727 0.0012 494 181 459 34 453 11 13A-19-07 152 632 0.2400 0.0562 0.0035 0.5656 0.0321 0.0734 0.0023 457 137 455 21 456 7 13A-19-08 683 1474 0.4637 0.0676 0.0041 1.1581 0.0759 0.1230 0.0026 857 124 781 36 748 13 13A-19-09 101 92 1.1082 0.0636 0.0051 1.1402 0.0891 0.1309 0.0014 728 169 773 42 793 15 13A-19-10 383 349 1.0975 0.0664 0.0034 1.1432 0.0617 0.1241 0.0022 820 107 774 29 754 13 13A-19-11 21 125 0.1646 0.0632 0.0066 1.0419 0.1128 0.1196 0.0039 722 222 725 56 728 23 13A-19-12 529 582 0.9077 0.0565 0.0030 0.5617 0.0303 0.0719 0.0011 472 117 453 20 448 7 13A-19-13 669 1139 0.5871 0.0549 0.0037 0.5610 0.0383 0.0739 0.0012 406 150 452 25 459 7 13A-19-14 266 453 0.5873 0.0627 0.0028 1.0607 0.0482 0.1228 0.0019 698 96 734 24 746 11 13A-19-15 44 76 0.5809 0.0684 0.0051 1.1881 0.0818 0.1289 0.0027 880 156 795 38 782 16 13A-19-16 86 185 0.4655 0.0631 0.0051 1.1077 0.0853 0.1279 0.0023 722 172 757 41 776 13 13A-19-17 288 2028 0.1420 0.0598 0.0023 0.5961 0.0229 0.0725 0.0011 594 83 475 15 451 7 13A-19-18 338 3209 0.1054 0.0569 0.0026 0.5741 0.0250 0.0733 0.0010 487 102 461 16 456 6 13A-19-19 466 561 0.8304 0.0561 0.0033 0.5712 0.0360 0.0737 0.0015 457 131 459 23 458 9 13A-19-20 229 497 0.4607 0.0555 0.0032 0.5577 0.0313 0.0733 0.0011 435 132 450 20 456 7 表 3 角闪二长花岗岩和灰色二长花岗岩中锆石的Hf同位素分析结果
Table 3 Hf isotope analysis of zircons in granite
样品
编号176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(t) 2s tDM Hf (Ma) tDM2(Ma) 13A-18-01 0.05 0.001762 0.282483 −0.88 1.62 1132 1514 13A-18-02 0.05 0.001583 0.282457 −1.75 1.43 1161 1566 13A-18-03 0.05 0.001294 0.282421 −2.72 1.4 1200 1630 13A-18-04 0.06 0.001625 0.282473 −1.06 1.48 1142 1529 13A-18-05 0.06 0.001609 0.282407 −3.41 1.33 1235 1676 13A-18-06 0.04 0.001360 0.282447 −1.87 2.12 1167 1576 13A-18-07 0.04 0.001188 0.282443 −2.03 1.24 1164 1580 13A-18-08 0.05 0.001620 0.282454 −1.72 1.9 1167 1570 13A-18-09 0.05 0.001547 0.282414 −3.23 2.02 1222 1661 13A-18-10 0.06 0.001812 0.282399 −3.85 2.2 1255 1704 13A-18-11 0.06 0.001901 0.282344 −5.86 1.93 1338 1831 13A-18-12 0.06 0.001871 0.282342 −5.72 2.05 1340 1829 13A-18-13 0.04 0.001299 0.282444 −2.07 1.53 1169 1584 13A-19-01 0.02 0.000607 0.282319 0.86 1.50 1303 1459 13A-19-02 0.03 0.000694 0.282338 1.22 1.37 1280 1431 13A-19-03 0.08 0.002255 0.282307 −0.44 1.98 1380 1525 13A-19-04 0.03 0.000928 0.282337 1.11 1.31 1289 1438 13A-19-05 0.07 0.002191 0.282206 −5.29 1.69 1522 1718 13A-19-06 0.05 0.001340 0.282424 −2.68 1.28 1181 1378 13A-19-07 0.14 0.003492 0.282289 −2.33 1.84 1455 1596 13A-19-08 0.01 0.000278 0.282382 3.57 1.20 1206 1333 13A-19-09 0.07 0.002219 0.282266 −8.65 3.70 1437 1676 13A-19-10 0.06 0.001977 0.282373 −4.46 3.04 1274 1477 13A-19-11 0.05 0.001691 0.282178 −5.22 1.75 1542 1747 13A-19-12 0.02 0.000536 0.282231 −3.31 1.33 1422 1630 13A-19-13 0.05 0.001591 0.282407 −3.53 1.38 1213 1415 13A-19-14 0.03 0.000822 0.282374 −4.04 1.59 1234 1457 13A-19-15 0.06 0.001558 0.282331 −5.95 1.21 1319 1547 13A-19-16 0.08 0.002047 0.282367 1.12 1.90 1286 1420 13A-19-17 0.04 0.001104 0.282280 −0.72 1.65 1375 1542 13A-19-18 0.05 0.001422 0.282150 −5.61 2.14 1570 1784 13A-19-19 0.05 0.001526 0.282291 −7.53 1.35 1375 1620 13A-19-20 0.06 0.001655 0.282383 −4.23 1.25 1249 1457 13A-19-21 0.05 0.001465 0.282440 −2.16 0.92 1162 1352 13A-19-22 0.07 0.001984 0.282297 −7.32 1.70 1384 1615 13A-19-23 0.04 0.001186 0.282341 −5.56 1.15 1292 1524 表 4 角闪二长花岗岩和灰色二长花岗的温度计计算结果
Table 4 Values for admellite by zircon saturation thermometer
样品编号 锆饱和温度计 M(×10-6) Dzr TZr(℃) 13A-18a 1.74 2147.16 793 13A-18b 1.71 2159.33 794 13A-18c 1.74 2605.78 776 13A-18d 1.69 1744.33 816 13A-18e 1.74 2077.57 796 13A-18f 1.76 1969.10 799 13A-19a 1.34 2893.36 796 13A-19b 1.35 2877.50 796 13A-19c 1.36 2897.50 795 13A-19d 1.36 2928.57 794 13A-19e 1.34 2899.91 796 13A-19f 1.36 3030.87 791 注:TZr(℃) = 12900 / (InDZr + 0.85M + 2.95)-273.15,DZr近似为496000/全岩锆含量,M=(2Ca+K+Na)/(Si×Al),令Si+Al+Fe+ Mg+Ca+Na+K+P=1,均为原子数分数(Watson et al.,1983)。 表 5 巴什尔希花岗岩类锆石年龄统计表
Table 5 Isotopic ages statistics of the granitoids in the Bashierxi magmatic series
位置 岩性 年龄(Ma) 构造背景 测试方法 资料来源 东昆仑巴什
尔希地区似斑状二长
花岗岩458±9.0 局部拉张构造背景 Zircon U−Pb LA−MC−ICP−MS 高晓峰等,2010 角闪二长花岗岩 452.9±3.6 碰撞造山后的初始
伸展构造背景Zircon U−Pb LA−ICP−MS 本文 灰色二 长花岗岩 454.2±4.8 本文 南阿尔金构
造带西段二长花岗岩 462±2.0 碰撞造山后的抬升初期 Zircon U−Pb LA−ICP−MS 曹玉亭等,2010 钾长花岗岩 452.8±3.1 俯冲陆壳断离后的
伸展背景杨文强等,2012 黑云母花岗岩 454.0±1.8 后碰撞初始伸展 Zircon U−Pb
LA−MC−ICP MS康磊,2014 钾长花岗岩 453.4±2.5 二长花岗岩 453.1±2.1 石英闪长岩 458.3±6.2 深俯冲陆壳折返抬升 康磊等,2016b 东昆仑巴什
尔希地区粗粒碱长花岗岩 432.3±0.8 造山花岗岩(板内和陆缘
造山带)后造山构造环境包亚范等,2008
黎敦朋等,2010碱长花岗岩 430.5±1.2 造山后局部拉张环境 Zircon U−Pb LA−MC−ICP−MS 高永宝等,2011 碱长花岗岩 422.0±3.0 后碰撞伸展阶段 Zircon U−Pb SIMS 李国臣等,2012 正长花岗岩 428.2±4.2 Zircon U−Pb LA−ICP−MS 王增振等,2014 正长花岗岩 422.5±2.3 正长花岗岩 413.6±2.4 Zircon U−Pb LA−ICP−MS 周建厚等,2014 南阿尔金构
造带东段似斑状钾长
花岗岩424 造山后伸展阶段 Zircon U−Pb LA−ICP−MS 王超等,2008 花岗细晶岩 406 碱性花岗岩 385.2±8.1 造山后的拉张环境 Zircon U−Pb LA−ICP−MS 吴锁平等, 2007 -
包亚范, 刘延军, 王鑫春. 东昆仑西段巴什尔希花岗岩与白干湖钨锡矿床的关系[J]. 吉林地质, 2008(03): 56-59+67. BAO Yafan, LIU Yanjun, WANG Xinchun. Relationship between Bashierxi granite west Dongkunlun and Baiganhu tungsten-tin deposit[J]. Jilin Geology, 2008. 107(03): 56–59, 67.
曹世泰, 刘晓康, 马永胜, 等. 祁漫塔格地区早志留世侵入岩的发现及其地质意义[J]. 青海科技, 2011, 18(05): 26-30 doi: 10.3969/j.issn.1005-9393.2011.05.010 CAO Shitai, LIU Xiaokang, MA Yongsheng, et al. Discovery and geological significance of early Silurian intrusive rocks in Qimantage area[J]. Qinghai Science and Technology, 2011, 18(05): 26–30. doi: 10.3969/j.issn.1005-9393.2011.05.010
曹玉亭, 刘良, 王超, 等. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J]. 岩石学报, 2010, 26(11): 3259-3271 CAO Yuting, LIU Liang, WANG Chao, et al. Geochemical, zircon U–Pb dating and Hf isotopic compositions studies for Tatelekebulake granite in South Altyn Tagh[J]. Acta Petrologica Sinica, 2010, 26(11): 3259–3271.
车自成, 刘良, 刘洪福, 等. 阿尔金断裂系的组成及相关中新生代含油气盆地的成因特征[J]. 中国区域地质, 1998(04): 42-49 CHE Zicheng, LIU Liang, LIU Hongfu, et al. Composition of Altun fault system and genetic characteristics of related Meso Cenozoic petroliferous basins[J]. Regional Geology of China, 1998. (4): 42-49
陈能松, 何蕾, 王国灿, 等. 东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定[J]. 科学通报, 2002(08): 628-631 doi: 10.3321/j.issn:0023-074X.2002.08.016 Chen Nengsong, He Lei, Wang Guocan, et al. Precise dating of early Paleozoic metamorphic peak and thrust tectonic deformation in east Kunlun orogenic belt[J]. Chinese Science Bulletin, 2002. (08): 628-631. doi: 10.3321/j.issn:0023-074X.2002.08.016
陈有炘, 裴先治, 李瑞保, 等. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J]. 现代地质, 2011, 25(03): 510-521 doi: 10.3969/j.issn.1000-8527.2011.03.013 CHEN Youxin, PEI Xianzhi, LI Ruibao, et al. Zircon U–Pb age of the Xiaomiao formation of Proterozoic in the in the eastern section of the East Kunlun orogenic belt[J]. Geoscience, 2011, 25(03): 510–521. doi: 10.3969/j.issn.1000-8527.2011.03.013
谌宏伟, 罗照华, 莫宣学, 等. 东昆仑喀雅克登塔格杂岩体的SHRI MP年龄及其地质意义[J]. 岩石矿物学杂志, 2006(01): 25-32 doi: 10.3969/j.issn.1000-6524.2006.01.003 CHEN Hongwei, LUO Zhaohua, MO Xuanxue, et al. SHRIMP ages of Kayakedengtage complex in the East Kunlun Mountains and their geological implications[J]. Acta Petrologica Mineral, 2006, 25(01): 25–32. doi: 10.3969/j.issn.1000-6524.2006.01.003
崔美慧. 新疆祁漫塔格鸭子泉中基性火成岩及硅质岩成因[D]. 北京: 中国地质科学院, 2012 CUI Meihui. Petrogenesis of intermediate–basic igneous rocks from Yaziquan, Xinjiang Qimantag Mountain[D]. Beijing: Chinese Academy of Geological Sciences, 2012.
第五春荣, 孙勇, 袁洪林, 等. 河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义[J]. 科学通报, 2008(16): 1923-1934 doi: 10.3321/j.issn:0023-074X.2008.16.009 DIWU Chunrong, SUN Yong, YUAN Honglin, et al. U-Pb chronology, Hf isotope composition and geological significance of detrital zircons from quartzite in Songshan mountain, Dengfeng, Henan province[J]. Chinese Science Bulletin, 2008. (16): 1923-1934. doi: 10.3321/j.issn:0023-074X.2008.16.009
高晓峰, 校培喜, 谢从瑞, 等. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地质通报, 2010, 29(7): 1001-1008 doi: 10.3969/j.issn.1671-2552.2010.07.005 GAO Xiaofeng, XIAO Peixi, XIE Congrui, et al. Zircon LA-ICP-MS U-Pb dating and geological significance of Bashierxi granite in the eastern Kunlun area, China[J]. Geological Bulletin of China, 2010, 29(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005
高永宝, 李文渊. 东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩:岩石学、年代学、地球化学及岩石成因[J]. 地球化学, 2011, 40(4): 324−336. GAO Yongbao, LI Wenyuan. Petrogenesis of granites containing tungsten and tin ores in the Baiganhu deposit, Qimantage, NW China: Constraints from petrology, chronology and geochemistry[J]. Geochimica, 2011, 40(4): 324−336.
郭通珍, 刘荣, 陈发彬, 等. 青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICPMS锆石U-Pb定年及地质意义[J]. 地质通报, 2011, 30(08): 1203-1211 doi: 10.3969/j.issn.1671-2552.2011.08.004 GUO Tongzhen, LIU Rong, CHEN Fabin, et al. LA-MC-ICPMS zircon U-Pb dating of Wulanwuzhuer porphyritic syenite granite in the Qimantag Mountain of Qinghai and its geological significance[J]. Geological Bulletin of China, 2011.30(08): 1203-1211. doi: 10.3969/j.issn.1671-2552.2011.08.004
郝杰, 刘小汉, 桑海清. 新疆东昆仑阿牙克岩体地球化学与~(40)Ar/~(39)Ar年代学研究及其大地构造意义[J]. 岩石学报, 2003(03): 517-522 doi: 10.3969/j.issn.1000-0569.2003.03.017 HAO Jie, LIU Xiaohan, SANG Haiqing. Geochemical characeristics and 40Ar/39Ar age of the Ayake adamellite and its tectonic significance in the east Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 2003.19(03): 517–522. doi: 10.3969/j.issn.1000-0569.2003.03.017
康磊, 刘良, 曹玉亭, 等. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J]. 岩石学报, 2013, 29(09): 3039-3048 KANG Lei, LIU Liang, CAO Yuting, et al. Geochemistry, zircon U–Pb dating and its geological significance of gneissic granite from the eastern segment of the Takelekebulake composite granite in the south Altyn Tagh[J]. Acta Petrologica Sinica, 2013, 29(09): 3039–3048.
康磊. 南阿尔金高压—超高压变质带早古生代多期花岗质岩浆作用及其地质意义[D]. 西安: 西北大学, 2014. KANG Lei. Early Paleozoic Multi-stage Granitic Magmatism and the GeologicalSignificance in the South Altyn Tagh HP-UHP Metamorphic Belt[D]. Xi’an: Northwest Unversity, 2014.
康磊, 校培喜, 高晓峰, 等. 阿尔金南缘早古生代岩浆作用及碰撞造山过程[J]. 地质学报, 2016a, 90(10): 2527-2550 doi: 10.3969/j.issn.0001-5717.2016.10.001 KANG Lei, XIAO Peixi, GAO Xiaofeng et al. Early Paleozoic Magmatism and Collision Orogenic Process of the South Altyn[J]. Acta Geologica Sinica, 2016a, 90(10): 2527-2550. doi: 10.3969/j.issn.0001-5717.2016.10.001
康磊, 校培喜, 高晓峰, 等. 茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因: 对阿尔金南缘早古生代构造-岩浆演化的启示[J]. 岩石学报, 2016b, 32(06): 1731-1748 KANG Lei, XIAO Peixi, GAO Xiaofeng, et al. Chronology, geochemistry and petrogenesis of monzonitic granite and quartz diorite in Mangai area: Its inspiration to Early Paleozoic tectonic-magmatic evolution of the southern Altyn Tagh[J]. Acta Petrologica Sinica, 2016b, 32(06): 1731-1748.
黎敦朋, 肖爱芳. 祁漫塔格西段白干湖钨锡矿区巴什尔希花岗岩序列及构造环境[J]. 西北地质, 2010, 43(004): 53-61 doi: 10.3969/j.issn.1009-6248.2010.04.007 LI Dunpeng, XIAO Aifang. Magmatic sequence and tectonic setting of Bashierxi granite in W-Sn deposit of Baiganhu area, the Western sector of Qimantage Mountains[J]. Northwestern Geology, 2010, 43(04): 53–61. doi: 10.3969/j.issn.1009-6248.2010.04.007
李国臣, 丰成友, 王瑞江, 等. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义[J]. 地球学报, 2012, 33(02): 216-226 LI Guochen, FENG Chengyou, WANG Ruijiang, et al. SIMS Zircon U-Pb Age, Petrochemistry and Tectonic Implications of Granitoids in Northeastern Baiganhue W-Sn Orefield, Xinjiang[J]. Acta Geoscientica Sinica, 2012, 33(02): 216–226.
刘良, 孙勇, 罗金海, 等. 阿尔金英格利萨依花岗质片麻岩超高压变质[J]. 中国科学(D辑: 地球科学), 2003, (12): 1184-1192 LIU Liang, SUN Yong, LUO Jinhai, et al. Ultra–high pressure metamorphism of granitic gneiss in the Yinggelisayi area, Altyn Mountains, NW China[J]. Science in China (Series D), 2003, (12): 1184–1192.
刘良, 张安达, 陈丹玲, 等. 阿尔金江尕勒萨依榴辉岩和围岩锆石LA-ICP-MS微区原位定年及其地质意义[J]. 地学前缘, 2007, 14(01): 98-107 doi: 10.3321/j.issn:1005-2321.2007.01.009 LIU Liang, ZHANG Anda, CHEN Danling, et al. Implications based on LA–ICP–MS zircon U–Pb ages of eclogite and its country rock from Jianggalesayi area, Altyn Tagh[J], China. Earth Science Frontiers, 2007, 14(1): 98–107. doi: 10.3321/j.issn:1005-2321.2007.01.009
刘良, 陈丹玲, 王超, 等. 阿尔金、柴北缘与北秦岭高压—超高压岩石年代学研究进展及其构造地质意义[J]. 西北大学学报(自然科学版), 2009, 39(03): 472-479 LIU Liang, CHEN Danling, WANG Chao, et al. New progress on geochronology of high-pressure/ultrahigh-pressure metamorphic rocks from the South Altyn Tagh, the North Qaidam and the North Qinling orogenic, NW China and their geological significance[J]. Journal of Northwest University (Natural Science Edition), 2009.39(03): 472–479.
马中平, 李向民, 孙吉明, 等. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义——岩石学和地球化学初步研究[J]. 岩石学报, 2009, 25(04): 793-804 MA Zhongping, LI Xiangmin, SUN Jiming, et al. Discovery of layered mafic–ultramafic instrusion in Changshagou, Altyn Tagh, and its geological implication: A pilot study on its petrological and geochemical characteristics[J]. Acta Petrologica Sinica, 2009, 25(04): 793–804.
孟繁聪, 崔美慧, 吴祥珂, 等. 东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件[J]. 岩石学报, 2013(6): 2107-2122 MENG Fancong, CUI Meihui, WU Xiangke, et al. Magmatic and metamorphic events recorded in granitic gneisses from the Qimantag, East Kunlun Mountains, Northwest China[J]. Acta Petrologica Sinica, 2013 (6): 2107–2122.
莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007(03): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010 MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East–Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007.13(3): 403–414. doi: 10.3969/j.issn.1006-7493.2007.03.010
谈生祥, 郭通珍, 董进生, 等. 青海乌兰乌珠尔地区晚志留世过铝质花岗岩地质特征及意义[J]. 青海大学学报(自然科学版), 2011, 29(01): 36-43 doi: 10.3969/j.issn.1006-8996.2011.01.010 TAN Shengxiang, GUO Tongzhen, DONG Jinsheng, et al. Geological characteristics and significance of the peraluminous granite in late Silurian epoch in Wulanrvuzhuer region of Qinghai[J]. Journal of Qinghai University(Nature Science), 2011, 29(01): 36–43. doi: 10.3969/j.issn.1006-8996.2011.01.010
王超, 刘良, 张安达, 等. 阿尔金造山带南缘岩浆混合作用: 玉苏普阿勒克塔格岩体岩石学和地球化学证据[J]. 岩石学报, 2008, 24(12): 2809-2819 WANG Chao, LIU Liang, ZHANG Anda, et al. Geochemistry and Petrography of Early Paleozoic Yusupuleke Tagh rapakivi-taxtured granite complex, South Altyn: An example for magma mixing[J]. Acta Petrologica Sinica, 2008, 24(12): 2809–2819.
王德滋, 刘昌实, 沈渭洲, 等. 桐庐I型和相山S型两类碎斑熔岩对比[J]. 岩石学报, 1993, 9(01): 44-54 doi: 10.3321/j.issn:1000-0569.1993.01.005 WANG Dezi, LIU Changshi, SHEN Weizhou, et al. The contrast between Tonglu I-type and Xiangshan S-type clastoporphyritic lava[J]. Acta Petrologica Sinica, 1993, 9(01): 44-54. doi: 10.3321/j.issn:1000-0569.1993.01.005
王国灿, 王青海, 简平, 等. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J]. 地学前缘, 2004(04): 481-490 doi: 10.3321/j.issn:1005-2321.2004.04.014 WANG guocan, WANG Qinghai, JIAN Ping, et al. Zircon SHRIMP ages of Precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun Mountains, Qinghai Province, China[J]. Earth Science Frontiers (China University of Geosciences, Beijing), 2004, 11(4): 481–490. doi: 10.3321/j.issn:1005-2321.2004.04.014
王国灿, 魏启荣, 贾春兴, 等. 关于东昆仑地区前寒武纪地质的几点认识[J]. 地质通报, 2007(08): 929-937 doi: 10.3969/j.issn.1671-2552.2007.08.003 WANG guocan, WEI Qirong, JIA Chunxing, et al. Some Ideas of Precambrian Geology in East Kunlun, China[J]. Geology Bulletin of China, 2007, 26(8): 929-937. doi: 10.3969/j.issn.1671-2552.2007.08.003
王增振, 韩宝福, 丰成友, 等. 新疆白干湖地区花岗岩年代学、地球化学研究及其构造意义[J]. 岩石矿物学杂志, 2014, 33(04): 597-616 doi: 10.3969/j.issn.1000-6524.2014.04.001 WANG Zengzhen, HAN Baofu, FENG Chengyou, et al. Geochronology, geochemistry and tectonic significance of granites in Baiganhu area, Xinjiang[J]. Acta Petrologica et Mineralogica, 2014, 33(4): 597–616. doi: 10.3969/j.issn.1000-6524.2014.04.001
吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, (06): 1217-1238 doi: 10.3969/j.issn.1000-0569.2007.06.001 WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, (6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
吴锁平, 吴才来, 陈其龙. 阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J]. 地质通报, 2007, 26(10): 1385-1392 doi: 10.3969/j.issn.1671-2552.2007.10.016 WU suoping, WU cailai, CHEN Qilong. Characteristics and tectonic setting of the Tula aluminous A- type granite at the south side of the Altyn Tagh fault, NW China[J]. Geological Bulletin of China, 2007, 26(10): 1385–1392. doi: 10.3969/j.issn.1671-2552.2007.10.016
肖爱芳. 东昆仑祁漫塔格山西段鸭子泉志留纪火山岩特征[J]. 陕西地质, 2005, 23(02): 50-60 XIAO Aifang. Yaziquan Silurian volcanic rocks in western qimantahe mountain of Eastern Kunlun[J]. Geology of Shaanxi, 2005, 23(02): 50–60.
熊富浩. 东昆仑造山带东段古特提斯域花岗岩类时空分布, 岩石成因及其地质意义[D]. 武汉: 中国地质大学, 2014 XIONG Fuhao. Spatial-temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoidsin the East Kunlun Orogenic Belt (Eastern Segment) [D]. Wuhan: China University of Geosciences, 2014.
杨文强, 刘良, 丁海波, 等. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J]. 岩石学报, 2012, 28(12): 4139-4150 YANG Wenqiang, LIU Liang, DING Haibo, et al. Geochemistry, geochronology and zircon Hf isotopes of the Dimunalike granite in South Altyn Tagn and its geological significance[J]. Acta Petrologica Sinica, 2012, 28(12): 4139–4150.
殷鸿福, 张克信. 中华人民共和国区域地质调查报告: 冬给措纳湖(I47C001002)(1∶250 000)[M]. 武汉: 中国地质大学出版社, 2003 YIN Hongfu, ZHANG Kexin. Report of Regional Geological Survey of the People's Republic of China: Dongjicuona Lake (I47C001002), scale 1: 250000[M]. Wuhan: China University of Geosciences Press, 2003.
袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 2000, 46(02): 203-211 doi: 10.3321/j.issn:0371-5736.2000.02.012 YUAN Wanming, MO Xuanxue, YU Xuehui, et al. The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains[J]. Geological Review, 2000, 46(2): 203–211. doi: 10.3321/j.issn:0371-5736.2000.02.012
张斌, 孙新春, 郭兵, 等. 新疆东昆仑地区鸭子泉-鸭子达坂构造混杂岩的地质特征及其意义[J]. 西北地质, 2014, 47(04): 95-104 doi: 10.3969/j.issn.1009-6248.2014.04.010 Zhang Bin, Sun Xinchun, Guo Bing, et al. Geological characteristics and significance of Yaziquan–Yazidaban tectonic melange in East Kunlun area, Xinjiang[J]. Northwestern Geology, 2014, 47(04): 95–104. doi: 10.3969/j.issn.1009-6248.2014.04.010
张建新, 孟繁聪, 万渝生, 等. 柴达木盆地南缘金水口群的早古生代构造热事件: 锆石U-Pb SHRIMP年龄证据[J]. 地质通报, 2003, 22(6): 397-404 doi: 10.3969/j.issn.1671-2552.2003.06.004 、ZHANG Jianxin, MENG Fancong, WAN Yusheng, et al. Early Paleozoic tectonic thermal events of Jinshui kou Group in the southern margin of Qaidam Basin: Zircon U–Pb SHRIMP age evidence[J]. Geology Bull of China, 2003, 22(6): 397–404. doi: 10.3969/j.issn.1671-2552.2003.06.004
张建新, 许志琴, 杨经绥, 等. 阿尔金西段榴辉岩岩石学、地球化学和同位素年代学研究及其构造意义[J]. 地质学报, 2001, 75(02): 186-197 ZHANG Jianxin, XU Zhiqin, YANG Jingsui, et al. Petrology, geochemistry and isotopic chronology of eclogites in the western Altyn section and their tectonic significance[J]. Acta Geologica Sinica, 2001, 75(02): 186–197.
周建厚, 丰成友, 李大新, 等. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学[J]. 岩石学报, 2015, 31(08): 2277-2293 ZHOU Jianhou, FENG Chengyou, LI Daxin, et al. Petrology, geochronology and geochemistry of metallogenetic granite in Baiganhu W-Sn deposit, East Kunlun[J]. Acta Petrologica Sinica, 2014, 31(08): 2277–2293.
Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 2000, 50(1):51-73.
Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1–4).
Castillo P R. An overview of adakite petrogenesis[J]. Chinese Science Bulletin, 2006, 51(3): 258-268
Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: (1-2). doi: 10.1017/S0263593300007720
Corfu F, Hanchar JM, Hoskin PWO, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy & Geochemistry, 2003. 53(1): 469–500.
Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1-2): 115–134. doi: 10.1016/0024-4937(90)90043-Z
Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437. doi: 10.1007/s00410-007-0201-0
Harris N B W, Inger S. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110(1): 46-56. doi: 10.1007/BF00310881
Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Zircon, 2003. 53(1): 27-62.
Johannes W, Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks[J]. Minerals and Rocks. 1996.
Liu L, Kang L, Cao YT, et al. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China[J]. Science China (Earth Sciences), 2015, 58(09): 1513-1522. doi: 10.1007/s11430-015-5151-1
Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010. 51(1-2): 537-571. doi: 10.1093/petrology/egp082
Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994. 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
Patiňo D A E, Johnston A D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 1991, 107(2): 202-218. doi: 10.1007/BF00310707
Pearce J A, Harris N B W, Andrew G T. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 959-983.
Peccerillo A, Taylor SR. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976. 58(1): 63-81
Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989. 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5
SUN S S, Mcdonough W F. Chemical and isotopic systematic of oceanic basalts: Implication for mantle compostion and processes[J]. Geological Society, London, Special Publications, 1989. 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2), 295–304. doi: 10.1016/0012-821X(83)90211-X
Williamson B J, Shaw A, Downes H, et al. Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France[J]. Chemical Geology, 1996, 127(1-3): 25-42. doi: 10.1016/0009-2541(95)00105-0
Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms[J]. Geochimica Cosmochimica Acta, 1994, 58(19): 4127-4145. doi: 10.1016/0016-7037(94)90269-0
Xiong X L, Adam J, Green TH. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis[J]. Chemical Geology,2005,218(3-4): 339-359.
Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008. 247: 100-118. doi: 10.1016/j.chemgeo.2007.10.003
Zheng Z, Chen Y J, Deng X H, et al. Fluid evolution of the Qiman Tagh W-Sn ore belt, East Kunlun Orogen, NW China[J]. Ore Geology Reviews, 2018, 95: 280-291. doi: 10.1016/j.oregeorev.2018.03.002