Genesis of the Arqiale Pb-Zn-Cu Deposit in the Western Tianshan, Xinjiang: Evidence from Fluid Inclusions and Isotopes
-
摘要:
阿尔恰勒Pb–Zn–Cu矿床位于新疆西天山乌孙山脉西南缘,矿体产于下石炭统阿克沙克组灰岩中,其产状整体与地层基本一致。由于矿体具有层控特征,矿区地表和深部未见侵入岩体,导致该矿床与岩浆作用的关系尚不清楚。成矿过程大致可分为4个阶段:石榴子石–辉石阶段(I)、阳起石–黑柱石阶段(II)、石英–方解石–多金属硫化物阶段(III)和碳酸盐阶段(IV)。阶段Ⅱ阳起石与阶段Ⅲ石英、方解石和闪锌矿主要发育气液两相水包裹体(L–V型)以及少量单相液相水包裹体(L型)。阶段Ⅱ中阳起石L–V型包裹体均一温度和盐度分别为278~425 ℃和2.1~13.0 wt.% NaCl eqv,阶段Ⅲ热液矿物中L–V型包裹体均一温度和盐度分别为162~342 ℃和0.5~9.0 wt.% NaCl eqv。流体包裹体和C–H–O同位素组成特征显示,初始成矿流体主要为岩浆水,后期大气降水逐渐混入,导致成矿温度和盐度的降低以及矿物质的沉淀。矿石中硫化物的δ34S值变化范围较大(−7.57‰~1.30‰),Pb同位素具有壳幔混合特征。综合矿床地质、流体包裹体和同位素特征,推断阿尔恰勒属于远端矽卡岩型Pb–Zn–Cu矿床,其成矿物质具有深部岩浆和地层的混源特征。矿区内矿体由南侧浅部的Pb–Zn矿化逐步过渡到北侧深部的Cu±Zn矿化,暗示矿区北部深部可能存在隐伏的含矿岩体及接触带铜矿体。
Abstract:The Arqiale Pb–Zn–Cu deposit is located in the southwestern margin of the Wusun Mountain in the Western Tianshan, Xinjiang Province. The orebodies occur in the limestone of Lower Carboniferous Akeshake Formation and are generally consistent with the strata in occurrence. Considering that the orebodies are stratabound and no magmatic rocks are identified in the orefield, whether the deposit is related to magmatism remains controversial. Ore–forming process can be divided into four stages, including garnet-pyroxene stage (I), actinolite–ilvaite stage (II), quartz–calcite–polymetallic sulfide stage (III) and carbonate stage (IV). Two types of inclusions have been identified in the actinolite from stage Ⅱ and quartz, calcite and sphalerite from stage Ⅲ, including the two–phase aqueous inclusions (L–V type) and mono-phase liquid aqueous inclusions (L type). The L–V type inclusions in actinolite have homogenization temperatures and salinities ranging from 278℃ to 425 ℃ and 2.1 wt.% NaCl eqv to 13.0 wt.% NaCl eqv, respectively. By contrast, the L–V type inclusions in stage III hydrothermal minerals have homogenization temperatures and salinities ranging from 162℃ to 342 ℃ and 0.5 wt.% NaCl eqv to 9.0 wt.% NaCl eqv, respectively. Fluid inclusions and C–H–O isotopic compositions indicate that the initial ore-forming fluids were mainly source from magmatic water, with increasing input of meteoric water with time, leading to the decrease of temperatures and salinities, as well as the precipitation of ore-forming materials. The δ34S rations of sulfides in the ores have a wide range (−7.57‰~1.30‰), and the Pb isotopic compositions have the characteristics of crust–mantle mixing. Combined evidence from geology, fluid inclusions and S–Pb–C–H–O isotopes indicate that the Arqiale Pb–Zn–Cu deposit belongs to the distal skarn type deposit, with the ore–forming materials sourcing partially from the magmatic rocks at depth and partially from the strata. The orebodies in the ore field gradually transit from Pb–Zn orebodies at shallow in the south to Cu ± Zn orebodies at depth in the north, implying that the concealed causative intrusions and skarn Cu orebodies in the contact zone may occur in the deep part in the north of the mining area.
-
Keywords:
- fluid inclusions /
- S–Pb isotope /
- Distal skarn deposit /
- Arqiale /
- Western Tianshan
-
随着新兴产业的高速发展与低碳经济时代的到来,全球对镍钴金属的需求增长迅猛且前景广阔(张伟波等,2018;王辉等,2019;张照伟等,2021)。丰富的镍钴矿产资源不仅使该国拥有定价权,也提升了国家资源安全供应(Schulz et al.,2018;USGS,2019;Zhang et al.,2019;Li et al.,2019;张照伟等,2020)。目前,中国可利用的镍钴矿床类型相对单一,主要为岩浆Ni–Co硫化物矿床(赵俊兴等,2019;陈华勇,2020;王焰等,2020;李文渊等,2022a)。金川矿床是世界第三、中国最大的岩浆镍钴硫化物矿床,其镍、钴资源储量分别约占国内资源总储量的68.6%和50%,是保障国内镍、钴战略性关键矿产自我供给最重要的资源基地。但由于资源的快速消耗,将严重削弱中国镍、钴资源的自我供给能力,亟需查明矿床深边部找矿潜力,共同致力提升中国镍钴等关键矿产资源控制力和话语权(Maier et al., 2011;侯增谦等,2020;王岩等,2020;张照伟等,2022)。中国目前是全球第一大镍钴金属消费国,然而超过90%的镍钴资源依赖进口,后备资源严重不足(翟裕生,2020;李文渊等,2022a)。鉴于镍钴矿产资源现状,中国新一轮找矿突破战略行动将其列为紧缺战略性矿产,优先部署找矿工作,重点矿山深部是增储上产的核心工作区。
金川矿床自发现以来,经过60余年的地质勘查与研究,对其含矿岩体产状、岩石类型、矿石类型、成矿时代、成矿过程及成矿规律等方面都取得较为一致的认识,认为金川含矿岩体原始产状为“岩床状” 、岩石基性程度及空间形态共同控制矿体分布,基性程度越高,含矿性越好,岩体中下部及空间形态上的突然膨大部位是赋存矿体的关键部位(汤中立等,1995;Naldrett,2011;Chen et al.,2015);金川矿床是“深部熔离–多期侵位”的产物,且多期次成矿元素含量不同的岩浆分别沿不同部位分别上侵,存在多个含矿岩浆入口(Tang et al.,2009;Li et al.,2011;陈列锰等,2015;Duan et al.,2016)。随着对金川矿床深边部及外围勘查的持续加强,对矿床的找矿潜力及勘查方向也有了新的进展,但仍存在诸多找矿方面的具体问题,如地质–地球物理模型的建立和找矿标志的精准约束,矿区地球物理场高背景强干扰条件下探测方法的有效性,含矿岩浆上侵入口位置的精确厘定等,都是制约金川矿床深边部及外围找矿能否实现突破的关键科学问题,亟待解决。笔者围绕金川矿床深边部成矿关键问题和重大找矿需求,通过对金川铜镍矿床成矿特征的深入剖析,研究找矿技术方法有效性;地质、物探深度融合,建立金川矿床地物综合找矿模型;深挖资源潜力,优选找矿新靶区,旨在助推金川镍钴成矿潜力的全面、科学评价和高效找矿勘查。
1. 金川镍钴矿床成矿特征
1.1 区域构造背景
金川镍钴矿床整体位于阿拉善地块西南缘龙首山隆起带中,主体赋存于金川镁铁–超镁铁岩体内(图1)(宋谢炎,2019)。龙首山地区地层自下而上可分为古元古代龙首山岩群、中元古代墩子沟群、新元古代(震旦系)韩母山群/烧火筒沟群和古生代以后的地层。金川矿区及所在的龙首山隆起带经历了多期构造运动,以金川矿床形成时间(831 Ma)为节点,可将区域构造划分为成矿前、成矿期和成矿后构造(李文渊等,2022a)。多期构造活动及其复杂的演化特征,将金川镁铁–超镁铁质岩体及其镍钴矿体重复改造,导致对原始产状难以恢复,并加剧了进一步找矿的复杂性(Sisir et al.,2018;Yao et al.,2018;张照伟等,2021)。龙首山地区岩浆活动强烈,花岗岩类最为发育,分布面积大,多呈岩基产出(图1)。镁铁–超镁铁质侵入岩呈岩墙状、脉状及岩株状产出,断续散布于龙首山区,构成一条重要的镁铁–超镁铁质岩带。伴随侵入活动,岩浆喷发作用亦较强烈,以基性火山岩为主,主要发育于前寒武纪,多已变质,显生宙仅泥盆纪有杏仁状玄武岩喷发(王亚磊等,2023)。根据沉积建造分析,结合岩浆岩同位素定年资料,本区岩浆活动及演化可分为4个阶段:①早元古代基底演化花岗岩作用阶段。②中、晚元古代大陆拉张镁铁质–超镁铁质岩作用阶段。③古生代构造水平挤压花岗岩类作用阶段。④中、新生代断块升降局部中基性火山作用阶段。其中,以②、③阶段岩浆作用为主。
图 1 金川铜镍矿床大地构造位置(a)及龙首山隆起带区域地质简图(b)(据王亚磊等,2023修改)Figure 1. (a) The location of the Jinchuan Ni–Cu deposit in China and (b) simplified geologic map of the Longshoushan terrane1.2 岩体地质特征
龙首山地区的镁铁–超镁铁质侵入体呈岩墙状、岩脉状及岩株状产出,约有20余处,断续分布于龙首山隆起带中(图1),高精度锆石U–Pb年代学研究表明其主要形成于于中、新元古代(焦建刚等,2017)。依据其分布特征,可以将龙首山地区镁铁质–超镁铁质岩带分为西、中、东3个地段:西段岩体包括藏布台、青井子、马莲井、青石窑等单辉岩、橄榄单辉岩岩体,以藏布台岩体为代表;中段岩体包括金川、V号异常、塔马子沟、墩子沟、毛草泉、西井子等二辉橄榄岩岩体,以金川岩体为代表;东段岩体包括小口子、东水崖子、碾磨山、大口子等单辉橄榄岩体,以小口子岩体为代表。
金川含矿岩体的直接围岩为古元古代白家咀子组地层。白家咀子组地层经历了高级变质和多期岩浆侵入,形成了一套以条带–均质混合岩、大理岩、片麻岩为主的岩系。根据沉积和变质特征,白家咀子组自下而上分为3段:第一段为角砾状–均质混合岩、黑云斜长片麻岩、蛇纹大理岩为主;第二段以条带–均质混合岩、含石榴子石二云母片麻岩、及蛇纹大理岩为主,含少量绿泥石英片岩;第三段主要为含石榴子石二云母片麻岩、含蛇纹石大理岩、条带–均质混合岩、以及蛇纹大理岩(图2a)。金川含矿超镁铁质岩体被一系列NEE断层分为四个岩体,由西向东依次为Ⅲ、Ⅰ、Ⅱ、Ⅳ号岩体(图2a),其中Ⅰ和Ⅱ号岩体出露地表,Ⅲ和Ⅳ岩体均被第四系或白家咀子组地层覆盖的隐伏岩体,是通过磁法测量并经钻探验证所发现的。赋矿岩体总体走向约为310°,沿走向长约为6500 m,宽为20~527 m,出露面积约为1.34 km2,倾向SW,倾角为50°~80°,目前已控制最大延深约为1200 m(图2b),且矿体向深部仍未尖灭,局部还表现出“膨大”的特征。依据最新勘探资料,金川岩体中共赋存有4个主要矿体,由西向东依次为Ⅲ-1号、24号、1号、2号(图2b),各矿体深部延伸差别较大,在纵投影图上,其底部呈明显的“锯齿状”特征。其中,Ⅲ-1号矿体与先前勘探结果相比规模及资源储量明显增大,且深部仍有较大找矿潜力。
图 2 金川矿床矿区地质简图(a)及矿床纵投影图(b)(据王亚磊等,2023修改)Figure 2. (a) Geological map of the Jinchuan intrusion, and (b) a projected long section金川含矿镁铁–超镁铁质岩体最初是近水平的岩床状,由于后期构造运动,金川岩浆镍钴硫化物矿床所在的龙首山整体被从深部逆冲推覆而呈现今的陡倾斜,岩体的另一端仍可能赋存厚大的岩浆镍钴硫化物矿体(图3)(王亚磊等,2012;李文渊,2022b)。
图 3 金川岩浆型铜镍矿床成矿模式图(据李文渊,2022b修改)1.玄武岩;2.纯橄岩;3.花岗混合岩;4.二辉橄榄岩;5.矿体;6.逆冲断层Figure 3. Metallogenic model map of Jinchuan magmatic copper–nickel deposit1.3 矿体地质特征
金川镍钴矿床的矿体主要赋存于III矿区、I矿区、II矿区和IV矿区,其中I矿区和II矿区出露地表,其矿体地质特征多有论述(王辰等,2018);III矿区和IV矿区隐伏于地表,文中重点介绍其矿体地质特征。III矿区含矿岩体全部隐伏于第四系下,埋深约为50~100 m,岩体受F8断层影响,相对于I矿区向南西位移约900 m,岩体呈不规则岩墙状,走向NW–SE(图4),倾向SW,倾角为60°~70°。依据目前钻孔资料,岩体长约为600 m,宽度为20~200 m,沿NW–SE方向岩体厚度呈逐渐变大的趋势。在III矿区1580~1380 m水平联合中段平面图上,8行勘探线以西的岩体规模随着深度的增加而急剧变小,甚至尖灭;但在8行勘探线以东,岩体规模厚大,且向下变化不大。依据最新的钻探资料,在4行和6行勘探线深部沿矿体倾向,岩体及矿体表现出“膨大”的趋势,海绵陨铁状富矿的规模也呈变大的趋势。ZK603钻孔中累计见超基性岩体约为82 m,几乎全岩矿化,其中矿石类型为浸染状–海绵陨铁状矿石(49.4 m),另有少量星点状和斑杂状矿石(32.6 m),海绵陨铁状矿石主要位于含矿岩体下部,与下盘围岩直接接触。化学分析结果表明,矿石中Ni含量为0.2%~3.82%,Cu含量为0.2%~3.12%。
图 4 金川镍钴矿床Ⅲ矿区地质简图(据甘肃省地质矿产局第六地质队,1984修改)Figure 4. Geological sketch of Jinchuan nickel–cobalt deposit Ⅲ mining areaZK404和ZK405钻孔中所揭露的镁铁–超镁铁岩体累计厚度均较大,分别为304 m和388 m;ZK404钻孔中主要矿石类型为星点状(图5a、图5b),局部可见浸染状和脉状矿石(图5b、图5c),其Ni含量为0.2%~1.5%,仅4个样品Ni含量大于1%,Cu含量为0.2%~0.99%。在ZK404钻孔中见有厚大的伟晶状二辉橄榄岩(图5d),其橄榄石粒径可达1~2 cm,在先前所划分的各侵入期次中未见该岩相的报道。通过对该钻孔系统的岩心编录,发现该岩相由两侧向中心,橄榄石含量及粒径均变大,基性程度变高,且橄榄石粒径的均一程度较好(Barnes et al.,2013)。除此之外,其中蕴含的硫化物珠滴的含量也较高,表现出一定流动分异的特征(图6)。
Ⅳ矿区位于金川含矿岩体最东侧,西接Ⅱ矿区56行,向东至Ⅳ矿区26~28行勘探线之间,被F62断层横切,东西长约为1300 m(图2)。Ⅳ矿区全部为隐伏岩体,除岩体西段(2~8行勘探线)隐伏于条痕–均质混合岩外,其东段(8~26行勘探线)岩体直接被第四系覆盖,覆盖厚度为60~140 m;与整个金川含矿岩体相比,其走向偏转较大,约呈NW 80°,倾向SW,倾角一般为49°~60°;4行勘探线和6行勘探线的岩体较陡,为64°~67°,总体呈岩墙状,西段呈明显的收缩趋势,东端分叉尖灭。
在Ⅳ矿区纵投影图上(图7),从Ⅱ矿区56行勘探线至Ⅳ矿区2行勘探线,岩体厚度变化不大,但在4行勘探线岩体厚度突然变大,且产状较陡,矿体在4行勘探线和6行勘探线发育,且均发育在岩体底部,规模也较小,至8行勘探线处岩体深部延伸变小,且岩体底部无矿体产出(图7)。由8行勘探线继续向东,在10行勘探线处,岩体进一步变厚大,延深可达1100 m标高水平,矿体再现,赋存于岩体底部(图7),继续向东至岩体延伸进一步变大,产状无明显的变化,但矿体厚度呈逐渐变大的趋势,矿体所占的比例也逐渐增高。从16行勘探线开始,矿体除位于底部外,也开始发育“上悬式”矿体;在20行勘探线以东岩体规模及埋深均急剧变小,但矿体所占的比例却继续变大,直至28行勘探线处岩体尖灭。通过岩体及矿体规模特征、赋存位置及二者之间的比例关系,认为在Ⅳ矿区以8行勘探线为界,其宏观地质特征存在明显差异。
图 7 金川矿床Ⅳ矿区纵投影图(据甘肃省地质矿产局第六地质队,1984修改)Figure 7. Longitudinal projection map of Ⅳ mining area in Jinchuan deposit2. 找矿勘查技术方法
岩浆铜镍硫化物矿床在物探方法上主要表现为“三高一低”的特点,也就是高磁、高重、高极化和低电阻。金川矿区铜镍赋矿岩石在物性上为高磁化强度、中–低电阻率、高密度的组合特征;在异常曲面与平面上,则表现为高磁、重力局部上隆、中等电阻率的异常场组合特征,而完全的低电阻异常区可能由断裂引起,可从已知断裂与矿体之间的关系,侧面圈定矿体所在。在方法技术上,各种磁法对圈定矿体的平面范围极为有效,在剖面反演中具有较好的指示性,但深度需依赖其他方法进行标定,同时对磁性异常引起的深度较难估算。重力与磁配合,可以精准定位隐伏的镁铁–超镁铁质岩体,继而圈定矿体或找矿目标区。尽管金川矿区已实施多次磁测工作,但重力的测量相对缺乏或不系统,对金川矿床深边部隐伏镁铁–超镁铁质岩体的定位不能给出准确判断。鉴于此,重点加强金川矿区重力测量工作,并与磁测数据密切对应,构建地质–地球物理勘查模型,支撑金川矿床深边部找矿靶区精准定位。
2.1 重力异常特征
金川矿区布格重力异常总体表现为南高、北低,北侧以密集梯级带的形式从重力高异常过渡至低异常,反映了龙首山隆起带与潮水盆地衔接时,由古老变质结晶基底转变为第四系覆盖,布格重力异常迅速降低的典型特征。布格重力异常最高值位于工作区中西部,幅值约为277×10−5 m/s2,最低值位于工作区东北角,幅值约为262×10−5 m/s2。
全区布格重力异常以清晰的重力梯级带方式呈现出明显的分区特征,西区呈椭圆状异常,中间高四周低,最高值约为277×10−5 m/s2,西部椭圆状异常被密集的重力梯级带围绕,南北两侧展布方向为NW向,区内长度约为10 km,梯级带紧密,东端密集,西段稍有发散,梯度达7×10−5 m/s2;东侧梯级带展布方向为NE向,区内长度约为8 km,梯级带宽缓,梯度达10×10−5 m/s2;东区布格重力异常呈带状展布,与区域地层的展布方向相一致,总体表现为南高、北低,高值区异常值明显低于西部,最高值约为271×10−5 m/s2,推测东西两区由明显密度差异的地质单元组成,东区中部呈NEE向展布一梯级带,区内长度约为12 km,梯级带西端密集,东端发散,梯度达7×10−5 m/s2。布格重力异常梯级带均是区域性断裂构造在重力场上的反映。
剩余重力异常(图8)与布格重力异常相比,浅层局部地质体引起的信息明显增强,主要的团块状异常集中于北侧,呈北西向带状分布,现就与航磁异常对应的剩余重力异常进行分析。金川含矿岩体表现为高磁高重异常区,幅值最高处位于I矿区,剩余异常达5.0×10−5 m/s2,其余各矿区的剩余重力异常约为1.0×10−5~1.5×10−5 m/s2。
2.2 含矿岩体重磁反演计算
对金川矿区布格重力异常–地形回归剩余、化极磁力异常使用最小曲率位场分离技术处理,分别得到剩余重力异常、剩余化极磁力异常。在对含矿岩体研究成果充分认识的基础上,选择一些代表性的含矿岩体平面位置识别成果,结合布格重力异常–地形回归剩余、化极磁力异常数据处理结果进行分析。
金川含矿超基性岩体分布与剩余重力异常图显示(图9),已知的超基性岩体分布对应高重力异常值。金川超基性岩体分布与剩余化极磁力异常图(图10)显示,已知的超基性岩体分布对应高磁力异常值。
2.3 重磁三维建模
利用三维物性反演技术来识别岩体的空间分布(潘力等,2023)。进行三维重力反演的主要依据是在三维空间中超基性岩体与围岩的密度差,对此密度差进行三维重力反演,得到由重力反演的超基性岩体三维空间分布结果。进行三维磁力反演的主要依据是在三维空间中超基性岩体的高磁性,对此磁性差进行三维磁力反演,得到由磁力反演的超基性岩体三维空间分布结果。本次反演在模型构置时采用均匀网格剖分,剖分网格间距为150 m×150 m×150 m,剖分深度为地表以下2000 m深。
在三维重力反演切片图(图11)中,红色对应高密度的超基性岩体和含矿超基性岩体,高值集中在地表以下200~1000 m处,可能对应高密度的超基性岩体,而集中在地形以下500~750 m处的更高的密度差值可能对应了密度更高的含矿超基性岩体,其走向为NW向。根据图12中的俯视图,对应前面划分的岩体平面分布位置,可以展示不同密度阈值的地质体的空间展布并大致圈定超基性岩体空间分布且确定物性,整体走向呈NW向,结合地质和物性的认识,可以圈定超基性岩体(密度)的具体空间展布形式。在三维磁力反演切片图(图12)中,红色对应高磁性的超基性岩体和含矿超基性岩体,高值集中在地形以下50~1000 m处,可能对应高磁性的超基性岩体,而集中在地形以下50~750 m处的更高的磁化强度差值可能对应了磁性更高的含矿超基性岩体,其走向为NW向。
根据由钻井信息推测的矿区地质剖面、剖线位置等已知信息,从而获取各矿区的超基性岩体的空间分布,建立各矿区已知超基性岩体的地质模型。正演超基性岩体地质模型引起的重力异常以及化极磁力异常,对比实际观测重力(化极磁力)异常与地质模型正演重力(化极磁力)异常,可以推测已知超基性岩体和实际超基性岩体的差异,从而推断矿区的深边部是否存在可含矿的超基性岩体,以圈定成矿有利区。
矿区已知超基性岩体三维地质建模结果显示(图13),岩体走向为NW方向,倾向SW,倾角为60°~80°,已知的超基性岩体深度约为500~1800 m,对超基性岩体地质模型进行重力异常正演和化极磁力异常正演。超基性岩体模型重力异常幅值约为5 mGal,最高值位于Ⅱ矿区;超基性岩体化极磁力异常幅值约为2600 nT,最高值位于Ⅱ矿区。对比模型的正演重力、磁力异常和实际观测的重力、磁力异常,发现模型与实测磁力异常的形态较为相似,便于对比分析。为了对比分析岩体模型和实测磁力异常的差异,在矿区上布置了5条测线,这5条测线的模型磁力异常与实测磁力异常对比显示,Ⅲ矿区、Ⅰ矿区和Ⅱ矿区的岩体模型和实测磁力异常形态和幅值较为一致,但是Ⅳ矿区的磁力异常显示实测磁力异常远大于模型正演磁力异常,可以推测Ⅳ矿区深部有未探测高磁性岩体,可以圈定Ⅳ矿区深部为成矿有利区。
综合以上重力测量、重磁反演计算及三维建模数据,金川矿区深边部重磁高值区与地质认识及含矿镁铁–超镁铁质岩体原始产状高度吻合,进一步佐证了金川矿区深边部找矿是岩体另一端找矿的问题,存在尖灭、断离和再现,重磁极值点对应了含矿岩浆上侵入口的精确位置,地质-地球物理综合勘查模型进一步揭示了金川岩浆铜镍硫化物矿床深边部找矿潜力。
3. 深部找矿潜力
基于金川含矿镁铁–超镁铁质岩体的形成机制,综合矿床地质特征和矿体分布规律研究,利用重磁等地球物理异常信息与含矿岩体耦合关系,指出金川岩浆镍钴硫化物矿床深部仍具有较好找矿潜力。结合重磁反演计算和三维建模,重磁高值区与含矿岩体赋存空间基本一致,并且已知含矿岩体与隐伏岩体重磁数据高度吻合,代表了新的找矿方向,具体表现在金川矿床4个矿区不同的勘探线上。III矿区4~6行勘探线沿倾向及III矿区4行勘探线的SE向部位可能代表了含矿岩浆上侵的部位;在Ⅰ矿区21~29行勘探线,岩体仍未尖灭,深部仍有较大的铜镍找矿潜力;Ⅱ矿区1号矿体可能是含矿岩浆至少2次沿不同部位侵位的产物,Ⅱ号岩体2~3行勘探线和10~16行勘探线可能是含矿岩浆侵位的2个关键部位;Ⅱ矿区2号矿体44~50行勘探线之间,深部可能仍有一定的找矿潜力;Ⅳ矿区10~26行勘探线之间的深部可能仍存在富矿体,有必要进一步开展深部钻探验证;Ⅳ号岩体(尤其是8行勘探线以东)也可能代表了深部含矿岩浆上侵的另外一个分支,只是目前已控制部分主要代表了其上部演化程度较高的部分。此外,通过对金川矿床原始产状恢复及矿田构造的研究,金川矿床形成后,遭受了明显逆冲推覆和隆升过程,导致其上部含矿岩体与深部可能存在的含矿岩体之间出现明显的间断,进而也表现出明显的“悬空”特征。
4. 结论
(1)金川岩浆镍钴硫化物矿床整体赋存于镁铁–超镁铁质岩体的中下部,岩体最初产状是近水平的岩床,只是由于后期构造而成现在的陡倾斜,金川矿床深部找矿是岩体的另一端含矿性评价问题。
(2)重磁反演计算及三维建模对金川矿区含矿镁铁-超镁铁质岩体进行精准定位,通过已知含矿岩体与隐伏岩体的重磁数据对比,进一步确定金川矿区隐伏岩体的空间位置,建立的地质–地球物理综合勘查模型可快速揭示找矿靶区或目标区。
(3)综合地质、重磁反演计算及三维建模,指出金川岩浆铜镍硫化物矿床深部存在不同程度的找矿潜力,在III矿区(4~6行勘探线)南东端及Ⅳ矿区南部(8行勘探线以东),是新的重点找矿方向。
-
图 1 中亚造山带构造简图(a、伊犁地块位置简图(b)和伊什基里克成矿带构造简图(c)(据魏虎等,2013;胡耀华,2016;Gao et al.,2009;Dai et al.,2019修改)
Figure 1. (a) Structural sketch of central Asian orogenic belt, (b) tectonic sketch of West Tianshan,(c) structural sketch of Ishkirik metallogenic belt.
图 2 阿尔恰勒Pb–Zn–Cu矿区地质图(据Dai et al.,2019)
Figure 2. Sketch geological map of the Arqiale Zn–Pb–Cu deposit
图 3 阿尔恰勒Pb–Zn–Cu矿床3号勘探线剖面图(据Dai et al.,2019修改)
Figure 3. The geological profile of exploration line 3 of the Arqiale Zn–Pb–Cu deposit
图 4 阿尔恰勒Pb–Zn–Cu矿床矿体露头及典型矿石特征
a. 矽卡岩层状矿体,与赋矿灰岩产状基本一致;b. 矽卡岩矿体穿切赋矿灰岩层理;c. 阳起石被黄铜矿–方铅矿–闪锌矿脉穿插;d. 方铅矿矿石被方解石细脉穿插;e. 方解石–硫化物(黄铜矿、闪锌矿和黄铁矿)脉沿着灰岩与阳起石矽卡岩接触带产出;f. 方解石–硫化物(黄铜矿、方铅矿和闪锌矿)脉穿切早阶段阳起石;Act. 阳起石;Ilv. 黑柱石;Qz. 石英;Cal. 方解石;Ccp. 黄铜矿;Py. 黄铁矿;Gn. 方铅矿;Sp. 闪锌矿
Figure 4. Outcrop of orebodies and typical ores in the Arqiale Pb–Zn–Cu deposit
图 5 阿尔恰勒Pb–Zn–Cu矿床矿石显微组构特征
a. 自形石榴子石被黄铜矿包含和交代;b. 自形–半自形黄铁矿被黄铜矿交代;c. 两个世代的黄铜矿,第一世代黄铜矿大片产出、并被闪锌矿交代,第二世代黄铜矿呈乳滴状产出于闪锌矿中;d. 半自形黄铁矿被黄铜矿和方铅矿交代,黄铜矿被方铅矿交代;e. 方铅矿交代闪锌矿,二者粒间充填有方解石;f. 矽卡岩期的石榴子石和阳起石被晚期石英和方解石胶结和交代;g. 放射状阳起石被方解石和石英交代;h. 红棕色闪锌矿被石英细脉穿切,部分闪锌矿破碎成角砾被石英胶结;i. 闪锌矿被晚期方解石细脉穿插;Grt. 石榴子石;Act. 阳起石;Qz. 石英;Cal. 方解石;Ccp. 黄铜矿;Py. 黄铁矿;Sp. 闪锌矿;Gn. 方铅矿
Figure 5. Microfabric characteristics of ore in the Arqiale Pb–Zn–Cu deposit
图 6 阿尔恰勒Pb–Zn–Cu矿床阶段Ⅱ和阶段Ⅲ流体包裹体镜下照片
a.阳起石中L–V型和L型流体包裹体共存于一个视域中;b.阳起石L型包裹体分布于L–V型包裹体附近;c.阳起石中长条状L–V型包裹体;d.方解石中成群分布的L–V型流体包裹体;e.方解石中的负晶形L–V型流体包裹体;f.方解石中L–V型和L型流体包裹体;g.石英中孤立分布的L–V型流体包裹体;h.闪锌矿中孤立分布的L–V型流体包裹体;i.闪锌矿中星散状分布的L–V型流体包裹体
Figure 6. Microscopic images of fluid inclusions in stage Ⅱ and Ⅲ of the Arqiale Pb–Zn–Cu deposit
图 8 阿尔恰勒Pb–Zn–Cu矿床流体包裹体均一温度–盐度散点图(据Wilkinson,2001)
Figure 8. Scatter diagram of homogenization temperatures–salinities of fluid inclusions in the Arqiale Pb–Zn–Cu deposit
图 9 阿尔恰勒Pb–Zn–Cu矿床成矿流体H–O同位素图解(底图a据Taylor,1974)和方解石–灰岩–大理岩的C–O同位素图解(底图b据Hedenquist et al.,1994)
Figure 9. (a) δDH2O versus δ18OH2O diagram of the ore-forming fluids and (b) δ13C versus δ18O isotopic diagram of calicite, limestone and marble from the Arqiale Pb–Zn–Cu deposit
图 10 阿尔恰勒Pb–Zn–Cu矿S同位素直方图(a)和其他S同位素储库对比(b)(其他储库据Hoefs,2009)
Figure 10. (a) Histogram of the sulfur isotopic compositions of sulfides from the Arqiale Pb–Zn–Cu deposit and (b) compare with other sulfur isotope reservoirs
图 11 阿尔恰勒Pb–Zn–Cu矿床矿石中硫化物Pb同位素模式图(底图据Zartman et al.,1981修改)
Figure 11. Tectonic model map of Pb isotope of sulfides of ores from the Arqiale Pb–Zn–Cu deposit
表 1 阿尔恰勒Pb–Zn–Cu矿床气液两相水流体包裹体显微测温结果
Table 1 Temperature measurement results of two–phase aqueous inclusions from the Arqiale Pb–Zn–Cu deposit
成矿阶段 宿主矿物 包裹体类型(数量) 冰点温度(℃) 均一温度(℃) 盐度(wt.% NaCl eqv) 密度(g/m³) 阶段Ⅱ 阳起石 L–V(84) −9.1~−1.2 278~425 2.1~13.0 0.6~0.9 阶段Ⅲ 闪锌矿 L–V(7) −5.4~−2.6 226~265 4.3~8.4 0.8~0.9 方解石 L–V(111) −5.8~−0.3 162~311 0.5~9.0 0.7~1.0 石英 L–V(3) −5.4~1.8 230~342 3.1~8.1 0.7~0.9 表 2 阿尔恰勒Pb–Zn–Cu矿床热液方解石、灰岩和大理岩C–O同位素组成
Table 2 C–O isotopic compositions of hydrothermal calcite, limestone and marble from the Arqiale Pb–Zn–Cu deposit
样号 样品名称 δ13CV-PDB(‰) δ18OV-PDB(‰) δ18OV-SMOW(‰) 资料来源 AE-46 方解石 0.4 −20.6 9.6 本文 AE-75-2 方解石 −0.6 −16.8 13.6 AE-95 方解石 −2.8 −26.6 3.5 AE-107 含化石灰岩 2.1 −13.3 17.1 AE-108 含化石灰岩 2.5 −19.8 10.5 AE-109 含化石灰岩 2.1 −14.6 15.9 AE-42 不含化石灰岩 0.5 −23.5 6.7 AE-50 不含化石灰岩 0.6 −20.7 9.5 AE-54 不含化石灰岩 0.3 −14.3 16.2 AE-58 大理岩 0.8 −22.1 8.1 AE-61 大理岩 −0.3 −20.8 9.5 AE-63 大理岩 2.0 −22.3 7.9 A6 方解石 0.4 −26.0 4.1 Dai et al.,2019 A10 方解石 0.9 −18.3 12.0 A19 方解石 0.1 −25.8 4.3 A20 方解石 −0.2 −26.4 3.7 A22 方解石 0.3 −22.3 7.9 A32 方解石 0.1 −25.4 4.7 A39 方解石 0.2 −24.8 5.4 A46 方解石 0.6 −19.5 10.8 A47 方解石 0.5 −19.7 10.6 A48 方解石 0.8 −19.2 11.1 A49 方解石 0.7 −18.6 11.7 A50 方解石 0.9 −19.0 11.3 A51 方解石 0.6 −19.0 11.3 A55 方解石 0.1 −25.5 4.6 A61 方解石 −0.9 −26.7 3.4 A73 方解石 1.1 −23.8 6.4 AE-75-1 方解石 −0.9 −25.4 4.8 Peng et al.,2022 AE-84 方解石 −1.9 −22.5 7.7 AE-112 方解石 −2.4 −26.1 4.0 AE-115 方解石 −1.0 −24.0 6.2 AE-120 方解石 −2.6 −26.9 3.2 表 3 阿尔恰勒Pb–Zn–Cu矿床矿石中硫化物S同位素组成
Table 3 Sulfur isotopic compositions of sulfides in the ores from the Arqiale Pb–Zn–Cu deposit
样品号 矿物 δ34SV-CDT(‰) 资料来源 样品号 矿物 δ34SV-CDT(‰) 资料来源 AECcp-1 黄铜矿 −5.63 Peng et al.,2022 A31-2 闪锌矿 0.70 Dai et al.,2019 AECcp-2 黄铜矿 −5.81 A45 闪锌矿 −7.00 AECcp-3 黄铜矿 −5.56 A52 闪锌矿 −4.10 AECcp-4 黄铜矿 −6.18 A53 闪锌矿 −6.80 AESpy-1 闪锌矿 −6.43 A54 闪锌矿 0.70 AESpy-2 闪锌矿 −6.03 A60-2 闪锌矿 −6.70 AESpy-3 闪锌矿 −5.92 A63 闪锌矿 0.70 AESpy-4 闪锌矿 −7.12 A82 闪锌矿 1.10 AEPy-1 黄铁矿 −7.13 A56 黄铜矿 −0.10 AEPy-2 黄铁矿 −7.57 A69 黄铜矿 1.20 安玉伟,2013 AEPy-3 黄铁矿 −7.47 A105 黄铜矿 0.90 AEPy-4 黄铁矿 −6.66 A91 黄铜矿 −2.60 A1-1 方铅矿 −0.50 Dai et al.,2019 A113 黄铁矿 −0.40 A2 方铅矿 −1.10 A112 黄铁矿 0.60 A7-1 方铅矿 −1.10 A115 黄铁矿 0.20 A9-1 方铅矿 −0.90 AQL01 方铅矿 1.30 A23 方铅矿 −0.80 AQL02 方铅矿 −4.70 A31-1 方铅矿 −1.50 AQL07 方铅矿 −3.70 A60-1 方铅矿 −7.10 AQL16 方铅矿 −2.60 A1-2 闪锌矿 0.90 AQL01 闪锌矿 −4.20 A4 闪锌矿 0.80 AQL02 闪锌矿 −0.10 A7-2 闪锌矿 0.50 AQL07 闪锌矿 −2.50 A9-2 闪锌矿 0.80 AQL16 闪锌矿 −2.20 表 4 阿尔恰勒Pb–Zn–Cu矿床矿石中硫化物Pb同位素组成
Table 4 Pb isotope compositions of sulfides of ores from the Arqiale Pb–Zn–Cu deposit
样号 矿物 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ ω Th/U 来源 AE-81-13 方铅矿 18.267 15.567 38.065 9.41 35.46 3.65 Peng et al., 2022 AE-81-14 方铅矿 18.266 15.566 38.059 9.41 35.42 3.64 AE-81-15 方铅矿 18.262 15.561 38.049 9.40 35.36 3.64 AE-81-16 方铅矿 18.269 15.567 38.062 9.41 35.43 3.64 AE-81-17 方铅矿 18.266 15.565 38.058 9.41 35.41 3.64 A2 方铅矿 18.290 15.643 38.294 9.56 36.98 3.74 Dai et al.,2019 A7-1 方铅矿 18.277 15.628 38.242 9.53 36.70 3.73 A9-1 方铅矿 18.298 15.650 38.314 9.57 37.09 3.75 A23 方铅矿 18.305 15.656 38.338 9.59 37.21 3.76 A31-1 方铅矿 18.227 15.552 37.996 9.39 35.25 3.63 A60-1 方铅矿 18.318 15.659 38.348 9.59 37.21 3.76 A1-1 闪锌矿 18.286 15.635 38.282 9.55 36.88 3.74 A1-2 闪锌矿 18.272 15.614 38.201 9.51 36.43 3.71 A4 闪锌矿 18.282 15.633 38.262 9.54 36.80 3.73 A7-2 闪锌矿 18.300 15.651 38.319 9.58 37.11 3.75 A31-2 闪锌矿 18.273 15.610 38.190 9.50 36.34 3.70 A45 闪锌矿 18.295 15.615 38.204 9.51 36.32 3.70 A52 闪锌矿 18.270 15.592 38.134 9.46 35.96 3.68 A53 闪锌矿 18.285 15.613 38.204 9.50 36.36 3.70 A54 闪锌矿 18.266 15.599 38.159 9.48 36.14 3.69 A60-2 闪锌矿 18.324 15.667 38.365 9.61 37.32 3.76 A63 闪锌矿 18.990 15.600 38.491 9.41 33.79 3.48 A82 闪锌矿 18.473 15.723 38.720 9.70 38.49 3.84 A56 黄铜矿 18.314 15.670 38.381 9.61 37.47 3.77 A69 黄铜矿 18.287 15.577 38.068 9.43 35.45 3.64 A105 黄铜矿 18.308 15.668 38.372 9.61 37.45 3.77 A91 黄铜矿 18.300 15.651 38.317 9.58 37.10 3.75 A113 黄铁矿 21.518 15.946 38.182 10.79 28.83 2.59 A112 黄铁矿 18.319 15.647 38.331 9.57 37.02 3.74 A115 黄铁矿 18.310 15.579 38.070 9.43 35.36 3.63 -
安玉伟, 莫江平, 王夏杰. 新疆阿尔恰勒铅锌矿成因和找矿前景[J]. 矿床地质, 2012, S1: 247-248 doi: 10.16111/j.0258-7106.2012.s1.126 AN Yuwei, MO Jiangping, WANG Xiajie. Genesis and prospecting prospect of the Arqiale Pb-Zn deposit in Xinjiang[J]. Mineral Deposits, 2012, S1: 247-248. doi: 10.16111/j.0258-7106.2012.s1.126
安玉伟, 王夏杰. 新疆阿尔恰勒铅锌矿成矿模式[J]. 矿产与地质, 2013, 27(2): 102-105. AN Yuwei and WANG Xiajie. Metallogenic model of Aerqiale Pb-Zn deposit in Xinjiang[J]. Mineral Resources and Geology, 2013, 27(2): 102-105.
代俊峰. 新疆天山晚古生代岛弧环境矽卡岩型铅锌成矿作用[D]. 北京: 中国地质大学(北京), 2019, 1-170. DAI Junfeng. Skarn type lead-zinc mineralization in Late Paleozoic island arc environment, Xinjiang, Tianshan[D]. Beijing: China University of Geosiences (Beijing), 2019, 1-170.
邓明国, 陈伟, 王学武, 等. 滇西芦子园远程矽卡岩Pb-Zn-Fe(Cu)多金属矿床流体包裹体初探及矿床成因探讨[J]. 岩石学报, 2018, 34(05): 1239-1257 DENG Mingguo, CHEN Wei, WANG Xuewu, et al. Fluid inclusion and ore genesis of the Luziyuan distal skarn Pb-Zn-Fe ( -Cu) poly-metallic deposit, West Yunnan, SW China[J]. Acta Petrologica Sinica, 2018, 34(05): 1239-1257.
高俊. 西南天山板块构造及造山运动动力学[D]. 北京: 中国地质科学院, 1993, 1-90. GAO Jun. Plate tectonics and geodynamics of orogenesis of the Southwest Tianshan Mountains[D]. Beijing: Chinese Academy of Geological Sciences, 1993, 1-90.
高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28: 1804-1816 GAO Jun, QIAN Qing, LONG Lingli et al. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China. 2009, 28(12): 1804-1816
胡耀华. 西天山伊什基里克西段矿床成因类型及找矿方向探讨[J]. 新疆有色金属, 2016, S1: 1-4 doi: 10.16206/j.cnki.65-1136/tg.2016.s.001 HU Yaohua. Discussion on genetic types and prospecting direction of the Western Section of Yishjilik deposit in western Tianshan mountains[J]. Xinjiang Non-ferrous Metals, 2016, S1: 1-4. doi: 10.16206/j.cnki.65-1136/tg.2016.s.001
李俊明. 新疆昭苏县阿尔恰勒铅锌矿床成矿流体研究[D]. 北京:中国地质大学(北京), 2019 LI Junming. Study on Ore-Forming Fluids of the Arqiale Lead-Zinc Deposit in Zhaosu, Xinjiang[D]. Beijing: China University of Geosciences (Beijing), 2019.
李永军, 庞振甲, 栾新东, 等. 西天山特克斯达坂花岗岩基的解体及钼找矿意义[J]. 大地构造与成矿学, 2007, 31(4): 435-440. LI Yongjun, PANG Zhenjia, LUAN Xindong, et al. Distribution of Tekesidaban granitic batholith and its significance for Mo prospecting, Western Tianshan Mountains[J]. Geotectonica et Metallogenia, 2007, 31(4): 435-440.
李永军, 辜平阳, 庞振甲, 等. 西天山特克斯达坂库勒萨依序列埃达克岩的确立及钼找矿意义[J]. 岩石学报, 2008, 24(12): 2713-2719. LI Yongjun, Gu Pingyang, PANG Zhenjia, et al. Identification of the adakite rocks of Kulesayi series and its significance of Mo prospecting in the Tekesidaban of western Tianshan[J]. Acta Petrologica Sinica, 2008, 24(12): 2713-2719.
李永胜, 张帮禄, 公凡影, 等. 湖南康家湾大型隐伏铅锌矿床成因探讨: 流体包裹体、氢氧同位素及硫同位素证据[J]. 岩石学报, 2021, 37(06): 1847-1866 doi: 10.18654/1000-0569/2021.06.13 LI Yongsheng, ZHANG Banglu, GONG Fanying, et al. Genesis of the giant Kangjiawan lead-zinc ore deposit in Hunan Province: Evidences from fluid inclusion, H-O and S isotope[J]. Acta Petrologica Sinica, 2021, 37(6): 1847–1866. doi: 10.18654/1000-0569/2021.06.13
刘斌, 沈昆. 流体包裹体热力学[M]. 北京: 地质出版社, 1999, 1-289 LIU Bin and SHEN Kun. Fluid inclusion thermophysics[M]. Beijing: Geological Publishing House, 1999, 1-289.
牛佳, 郑义, 周永章, 等. 桂中盘龙铅锌矿流体包裹体特征及其对钦杭成矿带热水喷流-改造成矿作用的指示[J]. 岩石学报, 2017, 33(03): 753-766 NIU Jia, ZHENG Yi, ZHOU Yongzhang, et al. A fluid inclusions study of the Panlong lead-zinc deposit and its implication for genesis[J]. Acta Petrologica Sinica, 2017, 33(3): 753-766
牛旭宁. 西藏蒙亚啊铅锌矿床成因与找矿方向研究[D]. 北京:中国地质大学(北京), 2019. NIU Xuning. The genesis and prospecting direction of the Mengyaa Pb-Zn Deposit in Tibet[D]. Beijing: China University of Geosciences(Beijing). 2019.
秦来勇, 莫江平, 徐庆鸿, 等. 新疆阿尔恰勒铅锌矿床地质特征及找矿潜力分析. 矿产勘查, 2012, 3: 319-324 QIN Laiyong, MO Jiangping, XU Qinghong, et al. Geological characteristics and prospecting potential analysis of Arqiale Pb-Zn deposit in Xinjiang[J]. Mineral Exploration, 2012, 3: 319-324.
魏虎, 张英宁. 2013. 新疆伊什基里克西段铜多金属成矿地质条件及找矿方向[J]. 新疆地质, 31: 172-178. WEI Hu, ZHANG Yingning. Ore-Forming Conditions and Exploration Direction of Copper-Polymetallic Deposits in the West Yishijilike Region, Xinjian[J]. Xinjiang Geology, 2013, 31: 172-178.
温春齐, 多吉. 矿床研究方法[M]. 成都: 四川科学技术出版社, 2009, 1–230. WEN Chunqi and DUO Ji. Methods of deposit research[M]. Chengdu: Sichuan Science and Technology Press, 2009, 1–230.
张海坤, 胡鹏 , 曹亮, 等. 印度尼西亚戴里Sedex型铅锌矿集区成矿流体特征及成矿物质来源: 流体包裹体及同位素地球化学证据[J]. 地质科技通报. 2020, 39(03): 170–177. ZHANG Haikun, HU Peng, CAO Liang, et al. Characteristics of mineralization fluids and mineralization material sources of the Sedex type Dairi Pb-Zn ore concentration area in Indonesia: Evidence from fluid inclusions and isotopic geochemistry[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 170–177.
朱烨. 新疆昭苏县阿尔恰勒铅锌矿地质特征及找矿预测[D]. 桂林:桂林理工大学, 2018. ZHU Ye. Geological Features and Ore-Prospecting Prediction of Aerqiale Lead-Zinc Deposit in Zhaosu County, Xinjiang[D]. Guilin: Guilin University of Technology, 2018.
朱志敏, 赵振华, 熊小林. 西天山特克斯北中酸性火成岩地球化学特征及成因意义[J]. 岩石学报, 2012, 28(7): 2145-2157. ZHU Zhimin, ZHAO Zhenhua, XIONG Xiaolin. Geochemistry and geodynamics of intermediate-acid igneous rocks in northern Tekesi[J]. Western Tianshan Mountains. Acta Petrologica Sinica, 2012, 28 (7): 2145–2157.
Andrew A, Godwin CI, Sinclair AJ. Mixing line isochrons: A new interpretation of galena lead isotope data from southeastern British Columbia[J]. Economic Geology, 1984, 79: (5): 919-932.
Boveiri Konari M, Rastad E, Peter J M. A sub-seafloor hydrothermal syn-sedimentary to early diagenetic origin for the Gushfil Zn-Pb-(Ag-Ba) deposit, south Esfahan[J]. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 2017, 194(1), 61–90. doi: 10.1127/njma/2016/0041
Bao Z H, Cai K D, Sun M, et al. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China[J]. Journal of Asian Earth Science, 2018, 153: 100–117.
Chaussidon M and Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2835-2846 doi: 10.1016/0016-7037(90)90018-G
Chen F C, Deng J, Shu Q H, et al. Geology, fluid inclusion and stable isotopes (O, S) of the Hetaoping distal skarn Zn-Pb deposit, northern Baoshan block, SW China[J]. Ore Geology Reviews, 2017, 90: 913~927. doi: 10.1016/j.oregeorev.2016.10.013
Claypool G E, Holser W T, Kaplan L R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9
Dai J F, Xue C J, Chi G X, et al. Geological, geochronological and geochemical characteristics and genesis of the Arqiale skarn Zn-Pb deposit, Western Tianshan, Northwest China[J]. Ore Geology Reviews, 2019, 106: 79~96. doi: 10.1016/j.oregeorev.2019.01.020
Deer W A, Howie R A, Zussman J. An Introduction to the Rock Forming Minerals[J]. 3rd Edition. Longman, London: London the Mineralogical Society, 2013, 150~151.
Doe B R, Zartman R E. Plumbotectonics: The phanerozoic. In: Barnes H L (ed. ). Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley and Sons, 1979, 22–70.
Ehya F. The Paleozoic Ozbak-Kuh carbonate-hosted Pb-Zn deposit of East Central Iran: isotope (C, O, S, Pb) geochemistry and ore genesis[J]. Mineralogy and Petrology, 2014, 108, 123–136. doi: 10.1007/s00710-013-0279-1
Gao J, Long L, Klemd R, et al. Tectonic evolution of the South Tianshan Orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 2009, 98: 1221-1238. doi: 10.1007/s00531-008-0370-8
Glorie S, De Grave J, Buslov M M, et al. Formation and Palaeozoic evolution of the Gorny-Altai-Mongolia Suture Zone (South Siberia): Zircon U/Pb Constraints on the igneous record[J]. Gondwana Research, 2011, 20: 465-484. doi: 10.1016/j.gr.2011.03.003
Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 1988, 83(1): 197-202 doi: 10.2113/gsecongeo.83.1.197
Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370: 519. doi: 10.1038/370519a0
Hoefs J. Stable isotope geochemistry. sixth edition ed[M]. Berlin Heidelberg: Springer-Verlag, 2009, 285.
Hoefs J. Stable isotope geochemistry[M]. Berlin: Springer-Verlag. 1997.
Leach D L, Bradley D C, Huston D, et al. Sediment-Hosted Lead-Zinc Deposits in Earth History[J]. Economic Geology, 2010, 105 (3), 593–625. doi: 10.2113/gsecongeo.105.3.593
Leach D L, Marsh E, Emsbo P, et al. Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska [J]. Economic Geology, 2004, 99: 1449-1480 doi: 10.2113/gsecongeo.99.7.1449
Leach D L, Sangster D F, Kelley K D, et al. Sediment-hosted lead-zinc deposits: A global perspective[J]. Economic Geology 100th Anniversary Volume, 2005, 561-607.
Long L, Gao J, Klemd R, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: implications for continental growth in the Southwestern Central Asian Orogenic Belt[J]. Lithos, 2011, 126 (3-4): 321–340.
Lin L, Qian Q, Wang Y, et al. Gabbroic pluton in the Dahalajunshan Formation volcanic rocks from northern Zhaosu, Western Tianshan: Age, geochemistry and geological implications[J]. Acta Petrologica Sinica, 2015, 31, 1749-1760.
Massawe R J, Lentz D R. Petrogenesis and U–Pb (titanite) age of Cu–Ag skarn mineralization in the McKenzie Gulch area, northern New Brunswick, Canada[J]. Journal of Geochemical Exploration, 2022, 232, 106902 doi: 10.1016/j.gexplo.2021.106902
Meinert L D. , Dipple G M, Nicolesu W. World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, and Richards JP (eds.)[J]. Economic Geology 100th Anniversary Volume, 2005, 299–336.
Ohmoto H, Rye R O. Isotopes of sulfur and carbon. In: Barnes H L[J]. Geochemistry of Hydrothermal Deposits, 1979, 2nd Edition. New York: John Wiley and Sons: 509–611.
Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67: 551-578. doi: 10.2113/gsecongeo.67.5.551
Peng Y W, Zou H, Leon B, et al. A newly identified Permian distal skarn deposit in the Western Tianshan, China: New evidence from geology, garnet U-Pb geochronology and S-Pb-C-H-O isotopes of the Arqiale Pb Zn Cu deposit[J]. Ore Geology Reviews, 2022, 143: 104754. doi: 10.1016/j.oregeorev.2022.104754
Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation. Harlow[M]. Longman Scientific and Technical Press, 1993, 306–308.
Rajabi A, Rastad E, Canet C, et al. The Early Cambrian Chahmir shalehosted Zn–Pb deposit, Central Iran: an example of vent-proximal SEDEX mineralization[J]. Mineralium Deposita, 2015, 50, 571–590. doi: 10.1007/s00126-014-0556-x
Samson I M, Russell M J. Genesis of the Silvermines zinc lead-barite deposit, Ireland: Fluid inclusion and stable isotope evidence[J]. Economic Geology, 1987, 82: 371-394. doi: 10.2113/gsecongeo.82.2.371
Serguei G S, Sergey G K, Svetlana S D, et al. Geology, mineralization, fluid inclusion, and stable isotope characteristics of the Sinyukhinskoe Cu-Au skarn deposit, Russian Altai, SW Siberia[J]. Ore Geology Reviews, 2019, 112: 103039. doi: 10.1016/j.oregeorev.2019.103039
Sheppard S M F. Characterization and isotopic variations in natural waters[J]. Reviews in Mineralogy, 1986, 16: 165-183.
Shu Q H, Chang Z S, Mavrogenes J. Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: an example at the Haobugao Zn–Pb skarn[J]. China Geology, 2021, 49.
Sun G T, Zhou J X, Luo K, et al. New insights into the hydrothermal evolution of skarn deposits: A case study of the Dongzhongla Pb-Zn deposit in Tibet, SW China[J]. Journal of Asian Earth Sciences, 2020, 191, 104215. doi: 10.1016/j.jseaes.2019.104215
Su W B, Cai K D, Sun M, et al. Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: Insight from temporal-spatial character, petrogenesis and tectonic significance[J]. Lithos, 2018, 310-311: 241–254.
Taylor H P. The Application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1974, 69: 843–883.
Vezzoni S, Dini A, Sergio Rocchi S. Reverse telescoping in a distal skarn system(Campiglia Marittima, Italy)[J]. Ore Geology Reviews, 2016, 77, 176–193. doi: 10.1016/j.oregeorev.2016.03.001
Wang C M, Deng J, Carranza EJM et al. Nature, diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China[J]. Ore Geology Reviews, 2014, 56: 327-351. doi: 10.1016/j.oregeorev.2013.06.004
Wilkinson JJ. Fluid inclusions in hydrothermal ore deposits[J]. Lithos, 2001, 55(1-4): 229~272. doi: 10.1016/S0024-4937(00)00047-5
Xiao W, Windley B F, Allen M B, et al. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage[J]. Gondwana Research, 2013, 23: 1316-1341. doi: 10.1016/j.gr.2012.01.012
Xu R, Lia W C, Deng M G, et al. Genesis of the superlarge Luziyuan Zn-Pb-Fe(-Cu) distal skarn deposit in western Yunnan (SW China): Insights from ore geology and C-H-O-S isotopes[J]. Ore Geology Reviews, 2019, 109: 944-955.
Xu X Y, Wang H L, Li P, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati(Narati) area In western Tianshan, Xinjiang, China: implications for Paleozoic tectonic evolution[J]. Journal of Asian Earth Sciences, 2013, 72: 33-62. doi: 10.1016/j.jseaes.2012.11.023
Yu J, Li N, Qi N, et al. Carboniferous-Permian Tectonic Transition Envisaged in Two Magmatic Episodes at the Kuruer Cu-Au Deposit, Western Tianshan (NW China)[J]. Journal of Asian Earth Sciences, 2018, 153: 395-411. doi: 10.1016/j.jseaes.2017.07.048
Zartman RE and Doe BR. Plumbotectonics: The model[J]. Tectonophysics, 1981, 175(1-2): 135-162.
Zaw K, Peters S G, Cromie P, et al. Nature, diversity of deposit types and metallogenic relations of South China[J]. Ore Geology Reviews, 2007, 31, 3-47. doi: 10.1016/j.oregeorev.2005.10.006
Zhao C T, Sun J G, Chu X L, et al. Metallogeny of the Ergu Fe-Zn polymetallic deposit, central Lesser Xing’an Range, NE China: Evidence from skarn mineralogy, fluid inclusions and H-O-S-Pb isotopes[J]. Ore Geology Reviews, 2021, 135 104227.
Zhu X Y, Zhen S M, Cheng X Y, et al. The sulfur-lead isotope geochemistry of MVT Pb-Zn deposits in Devonian system in South China[J]. Acta Geologica Sinica-English Edition, 2017, 91, 213–231.
-
期刊类型引用(5)
1. 孟凡超,秦丽媛,王扬州,刘朋,周瑶琪. 华北克拉通中生代幔源岩浆岩放射性元素生热率的时空差异与主控因素. 中国石油大学学报(自然科学版). 2024(01): 36-45 . 百度学术
2. 袁星芳,杨明爽,王晓翠,柳禄湧,钟振楠,李方舟. 山东威海市呼雷汤地热水化学、成因与开发潜力. 地质通报. 2024(01): 143-152 . 百度学术
3. 邵誉炜,毛绪美,查希茜,李翠明,赵桐. 水化学和同位素揭示的广东儒洞地热咸水形成机制. 地质通报. 2024(05): 779-788 . 百度学术
4. 陆宇,姜星. 地热资源勘查中水文地质调查的运用. 中国资源综合利用. 2024(05): 74-77 . 百度学术
5. 汪名鹏. 音频大地电磁测深法在深部地热构造勘查中的应用. 西北地质. 2024(04): 240-251 . 本站查看
其他类型引用(0)