Study on Groundwater Cycle in Beijing Pinggu Basin Based on Isotopes and Hydrochemistry
-
摘要:
通过在区域开展地下水同位素、水化学取样分析,研究了平谷泃河和洳河冲洪积扇地下水循环演化特征。分析结果显示:本次所取水样pH值为7.6~8.1,为中性水;阳离子含量均以Ca2+、Mg2+为主,占70%以上,阴离子含量以HCO3−为主,占82%以上,所取水样地下水水化学类型均为HCO3•Ca•Mg 型。研究区浅层第四系松散孔隙水δ2H值和δ18O值分别为64.9‰、9.08‰,深层第四系松散孔隙水δ2H值和δ18O值分别为67.6‰、δ18O值,基岩岩溶水δ2H值和δ18O值分别为64.5‰、9.36‰。基岩岩溶水稳定同位素含量均值与浅层地下水比较接近;浅层第四系松散孔隙水14C含量为46.7%~93.1%,深层水第四系松散孔隙水14C含量为40.23%~61.13%,基岩岩溶水14C含量为46.79%~89.2%,与浅层第四系松散孔隙水比较接近。通过分析研究掌握了北京平谷盆地地下水的循环演化规律,盆地第四系孔隙水和隐伏基岩岩溶水的水力联系,研究成果能够为平谷盆地地下水水文地质概念模型的建立、水文地质参数的初步确定、地下水资源计算评价提供技术支撑。
Abstract:Based on the analysis of groundwater isotope and water chemical sampling in the region, the evolution characteristics of groundwater circulation in the alluvial fan of Juhe and Ruhe rivers in Pinggu were studied. The analysis results show that the pH value of the water sample is between 7.6 and 8.2, which is neutral water. The cationic content is mainly Ca2+ and Mg2+, accounting for more than 70%, and the anionic content is mainly HCO3–, accounting for more than 82%. The water chemical type of the groundwater samples is HCO3•Ca•Mg. In the study area, the stable isotope content of shallow quaternary loose pore water is (δ2H: 64.9 ‰, δ18O: 9.08 ‰), the meanstable isotope content of deep quaternary loose pore water is (δ2H: 67.6 ‰, δ18O: 9.97 ‰), and the stable isotope content of bedrock karst water is (δ2H: 64.6 ‰, δ18O: 9.36 ‰). The average stable isotope content of bedrock karst water is close to that of shallow groundwater. The 14C content of shallow quaternary loose pore water is 46.7%~93.1%, that of deep quaternary loose pore water is 40.23%~61.13%, and that of bedrock karst water is 53.7%~89.2%,which is close to that of shallow Quaternary loose pore water.Through the analysis and research to master the Beijing pinggu basin groundwater circulation evolution, basin quaternary pore water and concealed rock karst water hydraulic connection, research results for pinggu basin groundwater hydrogeological conceptual model and hydrogeological parameters of a preliminary determination, evaluation of groundwater resources calculation provides the technical support.
-
Keywords:
- Pinggu basin /
- hydrochemistry /
- 2H /
- 18O /
- hydraulic connection
-
-
表 1 同位素取样情况表
Table 1 Isotope sampling situation table
样点编号 地理位置 取水层位 取水深度(m) 水位埋深(m) Δ2H (‰) Δ18O(‰) 14C P01 靠山集村吃水井 蓟县雾迷山 16~142 38 −64 −9.09 46.79 P02 平谷金海湖镇政府院内 蓟县雾迷山 30~136 / −63.6 −9.51 79.97 P05 南独乐河镇新农村 蓟县雾迷山 ≥150 / −67 −10.23 75.22 P03 望马台村东 第四系浅层 60~78 15 −61.6 −8.71 86.7 P04 望马台村东北 蓟县雾迷山 ≥70 12 −62.5 −8.8 87.2 P06 平谷张辛庄村供水井 蓟县雾迷山 80~100 35 −63.6 −9.96 85.98 P07 王都庄水源地 第四系浅层 30~40 34 −62 −8.5 / P08 东高村镇西高村西 第四系浅层 20~50 22.4 −62.8 −8.65 / P09 东高村镇西高村西 蓟县雾迷山 ≥117 24.6 −66.7 −9.41 53.7 P10 西鹿角村路东 第四系浅层 20~43 20 −67.2 −9.5 92.21 P11 西鹿角村路东 第四系浅层 66~96 30 −67 −10.18 57.21 P12 西鹿角村路东 第四系深层 127~166 30 −67 −10.4 41.65 P13 西鹿角村路西 第四系深层 216~284 37.5 −69 −10.14 40.23 P14 平谷马昌营镇薄各庄村南S204路西花园 第四系浅层 18~43 10 −62.1 −8.66 93.61 P15 平谷马昌营镇薄各庄村南S204路西花园 第四系浅层 72~98 36.5 −65.8 −8.91 53.77 P16 平谷马昌营镇薄各庄村南S204路西花园 第四系深层 128~160 37 −67 −10.06 61.13 P17 马坊村 第四系浅层 80~100 32 −68 −9.4 46.79 P1 翟各庄村东 长城高于庄 ≥6 24 −65.7 −9.23 / P2 中桥水源地水源井 长城高于庄 ≥163 15 −65.9 −9.38 77.85 P3 中桥水源地水源井 第四系浅层 40~149 30 −64.3 −9.08 76.31 P4 中桥水源地第四系井 第四系浅层 50~80 28.5 −64.9 −9.15 / P5 中桥水源地中桥村西 第四系深层 40~130 28 −67.3 −10.15 / P6 后芮村 第四系浅层 80~148 14 −68 −9.2 60.51 Q 小东沟泉 泉水 / / −61.9 −8.67 / 表 2 水化学测试成果表
Table 2 Hydrochemistry test results
样点
编号钾
(mg/L)钠
(mg/L)钙
(mg/L)镁
(mg/L)重碳酸盐
(mg/L)氯化物
(mg/L)硫酸盐
(mg/L)溶解性总固体
(mg/L)pH值 水化学
类型P01 1.94 9.05 66.1 32.9 253 16.8 16.8 489 7.72 HCO3•Ca•Mg P02 2.21 17.5 70.5 36 317 32.2 25.4 395 7.5 HCO3•Ca•Mg P03 1.89 13.6 62.7 32.8 265 26.8 32.4 353 7.79 HCO3•Ca•Mg P04 1.33 3.69 52 26.2 239 7.09 14.3 379 7.8 HCO3•Ca•Mg P05 1.04 6.19 44.6 23 235 5 6.75 339 7.8 HCO3•Ca•Mg P06 1.17 14.9 53.7 27.7 187 23.9 17.3 392 7.53 HCO3•Ca•Mg P07 1.17 4.04 41.1 23.7 199 18.8 13.8 317.1 7.9 HCO3•Ca•Mg P08 1.53 21.3 97.3 35 413 29.4 41.7 631 7.38 HCO3•Ca•Mg P09 2.81 9.2 46.6 26.4 277 2.96 9.1 366 7.77 HCO3•Ca•Mg P10 1.28 9.41 52.3 20.7 281 5.7 10.6 381 8.02 HCO3•Ca•Mg P11 0.66 21.5 66.5 23.3 328 5.3 4.4 464 7.99 HCO3•Ca•Mg P12 1.84 12.9 45.7 21.1 250 8.7 12.4 359 7.96 HCO3•Ca•Mg P13 2.31 20.8 34.7 23.8 227 4.6 12.9 346 8.1 HCO3•Ca•Mg P14 0.53 26.6 69.7 29.4 400 8.2 10.5 546 7.56 HCO3•Ca•Mg P15 0.95 8.36 61.7 26.1 320 5.9 5.6 435 7.62 HCO3•Ca•Mg p16 0.56 26.3 67.9 28.1 397 6.9 11.1 542 7.64 HCO3•Ca•Mg P17 1.23 11.4 46.7 20.9 247 5.2 12.3 350.2 7.73 HCO3•Ca•Mg P1 1.48 9.16 55.9 21.4 251 15.5 36.8 384 7.94 HCO3•Ca•Mg P2 1.43 10.2 65.4 26.2 253 16.1 22.5 455 7.7 HCO3•Ca•Mg P3 2.61 10 50.5 22.7 247 7.1 17.2 384 7.6 HCO3•Ca•Mg P4 1.49 6.87 55.7 25 281 11.9 9.8 262 7.69 HCO3•Ca•Mg P5 1.51 8.6 74 31.6 268 16.7 23.4 526 7.73 HCO3•Ca•Mg P6 1.02 6.51 47.5 22.8 247 6.1 8.8 349.8 7.94 HCO3•Ca•Mg Q 1 2.93 51.2 27 245 6.17 12.5 378 7.88 HCO3•Ca•Mg 表 3 典型点第四系地下水和基岩岩溶水2H和18O值表
Table 3 2H and 18O values of quaternary groundwater and bedrock karst water at typical points
位置 Δ2H (‰VSMOW) δ18O (‰VSMOW) 望马台村东第四系井 −61.6 −8.7 望马台村东北基岩井 −62.5 −8.8 中桥水源地第四系井 −64.9 −9.2 中桥水源地水源井基岩井 −65.9 −9.4 东高村镇西高村西第四系井 −66.4 −9.41 东高村镇西高村西基岩井 −62.8 −8.65 -
陈宗宇, 齐继祥, 张兆吉,等. 北方典型盆地同位素水文地质学方法应用[M] . 北京: 科学出版社, 2010 CHEN Zongyu, QI Jixiang, ZHANG Zhaoji, et al., Application of Isotope Hydrogeology in Typical Northern Basin[M]. Beijing: Science press 2010
马致远, 环境同位素方法在平凉市岩溶地下水研究中的应用[J]. 地质论评, 2004, 50(4): 433-439 Ma Zhi yuan, Application of the Environmental Isotope Technique to the Study of Karst Groundwater in Pingliang City, Geological Review, 2004 50(4): 433-439.
马致远, 党书生, 翟美静等, 蓝田汤峪地区地热流体同位素水文地球化学特征及其指示意义[J]. 西北地质, 2017, 50(2), 214-223 Ma Zhiyuan, Dang Shusheng, Zhai Jingmei, et al, The characteristics of Isotopes and Hydrogeochemistry for Geothermal Water in the Tangyu Town in Lantian county[J]. Northwester geology, 2017, 50(2), 214-223.
宋献芳, 李发东, 于静洁等, 基于氢氧同位素与水化学的潮白河流域地下水循环特征[J] . 地理研究, 2007, 26(1): 12-21. Song Xian fang, Li Fa dong, Yu Jing jie, et al, Characteristics of groundwater cycle using deuterium, oxygen-18 and hydrochemistry in Chaobai River Basin, Geography research, 2007 26(1)12-21.
汪集旸, 陈建生, 陆宝宏等. 同位素水文学的若干回顾与展望[J]. 河海大学学报, 2015, 43(5): 406-413 Wang Ji yang , Chen Jian sheng , Lu Bao hong et al. Review and prospect of isotope hydrology[J]. Journal of Hohai University( Natural Sciences), 2015, 43(5): 406-413
王洁青, 周训, 李晓露, 等. 云南兰坪盆地羊吃蜜温泉水化学特征与成因分[J]. 现代地质, 2017, 31(4): 822-831 Wang Jie qing, Zhou Xun, Li Xiao lu, et al Hydrochemical Characteristics and Genesis of Yangchimi Hot Spring in Lanping Basin, Yunnan Province, Geoscience, 2017.31(4): 822-831
于静洁, 宋献方, 刘相超等. 基于δ2H和δ18O及水化学的永定河流域 地下水循环特征解析[J]. 自然资源学报, 2017, 22(3): 416-423 Yu Jing jie, Song Xian fang, liu Xiang chao, et al, A Study of Groundwater Cycle in Yongding River Basin by Using δD, δ18O and Hydrochemical Data, Journal of natural resources, 2017 22(3): 416-423
张人权, 梁杏, 靳孟贵, 等. 水文地质学基础(第六版)[M]. 北京: 地质出版社, 2011: 53–54 ZHANG Renquan, LIANG Xing, JIN Menggui, et al. General Hydrogeology (The sixth edition) [M]. Beijing: Geological Publishing House. 2011: 53–54
张雅, 苏春丽, 马燕华等. 水化学和环境同位素对济南东源饮用水源地地下水演化过程的指示[J]. 环境科学, 2019: 40(6), 2667-2774 Zhang Ya, Su Chun li, Ma Yan hua, et al Indicators of Groundwater Evolution Processes Based on Hydrochemistry and Environmental Isotopes: A Case Study of the Dongyuan Drinking Water Source Area in Jinan City, Environmental science, 2019 40(6), 2667-2774
周训, 金晓媚, 梁四海, 等. 地下水科学专论(第二版. 彩色版)[M]. 北京: 地质出版社, 2017. ZHOU Xun, JIN Xiaomei, LIANG Sihai, et al, Monograph of groundwater science (Second Edition. Color Edition)[M]. Beijing: Geological Publishing House, 2017.
Aggarwal P K, Gat J R, Froehlich K F, et al. Isotopes in the water cycle: past, present and future of a developing science[M]. Berlin: Springer Netherlands, 2005.