ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

阿尔金南缘清水泉堆晶岩年代学、地球化学特征及其地质意义

段星星, 张越, 袁彦伟, 韩宝华, 董越, 何峻岭

段星星, 张越, 袁彦伟, 等. 阿尔金南缘清水泉堆晶岩年代学、地球化学特征及其地质意义[J]. 西北地质, 2023, 56(4): 103-115. DOI: 10.12401/j.nwg.2022041
引用本文: 段星星, 张越, 袁彦伟, 等. 阿尔金南缘清水泉堆晶岩年代学、地球化学特征及其地质意义[J]. 西北地质, 2023, 56(4): 103-115. DOI: 10.12401/j.nwg.2022041
DUAN Xingxing, ZHANG Yue, YUAN Yanwei, et al. Geochronology, Geochemistry and Geological Significance of Cumulates in Qingshuiquan Region, South Altyn Tagh[J]. Northwestern Geology, 2023, 56(4): 103-115. DOI: 10.12401/j.nwg.2022041
Citation: DUAN Xingxing, ZHANG Yue, YUAN Yanwei, et al. Geochronology, Geochemistry and Geological Significance of Cumulates in Qingshuiquan Region, South Altyn Tagh[J]. Northwestern Geology, 2023, 56(4): 103-115. DOI: 10.12401/j.nwg.2022041

阿尔金南缘清水泉堆晶岩年代学、地球化学特征及其地质意义

基金项目: 新疆维吾尔自治区自然科学基金资助项目“绿洲土壤无机碳碳汇及有效性定量分析”(2022D01A149)和中国地质调查局项目“新疆准噶尔盆地−三塘湖盆地重点地区铀矿勘查”(DD20211550)联合资助。
详细信息
    作者简介:

    段星星(1983−),男,博士,高级工程师,主要从事地球化学调查和研究。E−mail:duanxx@foxmail.com

    通讯作者:

    张越(1985−),男,硕士,高级工程师,主要从事基础地质调查。E−mail:413027602@qq.com

  • 中图分类号: P581;P597.3

Geochronology, Geochemistry and Geological Significance of Cumulates in Qingshuiquan Region, South Altyn Tagh

  • 摘要:

    为探讨清水泉地区堆晶岩成岩时代和区域地质构造,选择沿阿尔金南缘主断裂南侧分布的清水泉堆晶辉长岩开展完成了LA−ICP−MS 锆石定年,对堆晶纯橄岩、辉石岩和辉长岩开展了全岩地球化学研究。堆晶辉长岩年龄为(464.8±1.3)Ma,岩石地球化学结果表明:清水泉堆晶岩主量元素具低TiO2 含量,高Mg# 值的特点。纯橄岩、辉石岩和辉长岩稀土元素配分曲线呈现“平坦型”,与富集型大洋中脊玄武岩(E−MORB)配分一致。综合清水泉堆晶岩地化特征和区域地质构造背景认为:清水泉堆晶岩为同源岩浆分异演化的产物,其形成于伸展的构造背景,表明阿尔金南缘板块碰撞在中奥陶世已基本结束。

    Abstract:

    In order to discuss the diagenetic age and regional geological structure of the cumulates in Qingshuiquan area, LA−ICP−MS zircon dating was conduct for the cumulates distributed along the south side of the main fault in the southern margin of Altyn Tagh, and the whole−rock geochemistry of the cumulates, pyroxenites, gabbros and diorites was studied. LA−ICP−MS zircon U−Pb dating of the gabbro yielded a mean 206Pb/238U age of (464.8±1.3) Ma. Geochemical analysis indicates that the main elements of Qingshuiquan cumulates are characterized by low TiO2 and high Mg#. The chondrite−normalized REE patterns are “A flat type”, which is consistent with the REE distribution of enriched mid−ocean ridge basalt (E−MORB). According to the geochemical characteristics of Qingshuiquan cumulate rock and the regional geological tectonic background, it is considered that Qingshuiquan cumulate rock is the product of homologous magma differentiation and evolution, which was formed in the extensional tectonic background, indicating that the plate collision in the southern margin of Altun in the early Middle Ordovician has basically ended.

  • 甘肃省夏河–碌曲地区位于青藏高原东北缘、西秦岭造山带西段,是华北、扬子、羌塘等地块以及祁连、松潘等造山带交汇地带(图1a)(潘桂棠等,1997许志琴等,2006)。秦岭造山带以商丹带和勉略带两条古蛇绿构造混杂岩带,将秦岭划分为华北板块、秦岭微板块和扬子板块(张国伟等,1995王宗起等,2009)。西秦岭造山带为秦岭造山带的西延部分(姜寒冰等,2023),位于文县–徽成盆地–凤太盆地一线以西,东侧为东秦岭造山带,北以宝鸡–天水–武山–临夏为界与祁连造山带相邻,南以玛沁–文县–勉县–略阳为界与松潘–甘孜地块过渡衔接,西与柴达木和昆仑造山带毗邻。西秦岭造山带自新元古代以来,大致经历了Rodinian超大陆裂解,秦祁昆大洋形成,俯冲碰撞造山,板内伸展和陆内叠覆造山等5个演化阶段(冯益民等,2003李平等,2023)。古生代末—三叠纪,“三板块”(华北、秦岭、扬子板块)沿“两缝合带”(商丹带、勉略带)依次向北俯冲碰撞,最终全面碰撞转入板内造山阶段。与此同时,出现了强烈的褶皱、断裂、区域变质作用以及岩浆活动,西秦岭总体构造轮廓在此次运动中基本完成(殷鸿福等,1993张国伟等,1995Zhang,2000)。三叠纪以来的印支运动导致大规模海退,扬子板块和华北板块接触碰撞,西秦岭三叠纪盆地由东向西剪刀式闭合,于晚三叠世后期褶皱隆起成陆(殷鸿福等,1988王汉辉等,2023)。大河坝组是该地区时代最晚的一套海相地层,反映了古特提斯海退过程,但是针对性研究极少。李智斌等(2021)通过少量的岩石化学分析认为大河坝组源区构造背景为大陆岛弧。陈岳龙等(2008)对研究区以东临潭–舟曲一带的三叠系碎屑锆石U-Pb年龄认为物源总体来自盆地北部。笔者通过系统分析西秦岭夏河–碌曲地区中晚三叠统大河坝组碎屑岩的岩石学、地球化学、锆石U-Pb同位素特征,探讨物源区构造背景和属性,为研究区域构造演化、古特提斯洋沉积和海退过程提供证据。

    图  1  研究区地质简图(a据李康宁等,2019修改;b据张国伟等,2004修改)
    CBS. 柴北缘古缝合带;SDS. 商丹古缝合带;KLS. 东昆中古缝合带;AMS. 阿尼玛卿古缝合带;NQL. 北祁连缝合带;MLS. 勉略古缝合带;GL. 甘孜–理塘缝合带
    Figure  1.  Geological sketch map of study area

    研究区地层呈NW向带状展布,向西散开为扫帚状,整体呈一向斜构造(洮河复向斜),向斜核部为晚三叠统大河坝组,向两翼依次为中下三叠统、二叠系、石炭系。三叠系为一套长石砂、泥质板岩复理石建造,局部夹少量砂屑灰岩。二叠系主要岩性组合为长石石英砂岩、微晶灰岩、生物碎屑灰岩、灰质砾岩等;石炭系岩性组合为石英砂岩、长石石英砂岩、碳酸盐岩。

    研究区位于礼县–夏河逆冲推覆构造带的西南缘,夏河–合作区域性逆冲推覆断裂将研究区分为南北两个部分,北部属礼县–夏河逆冲推覆构造带,南部为碌曲–成县逆冲推覆构造带。区内地层强烈褶皱,断裂构造十分发育,构造线方向主要为NWW向,与西秦岭地区区域构造方向一致。区内主断裂构造为NWW向的夏河–合作断裂带,该断裂带斜穿研究区中部,向东与宕昌–两当断裂衔接伸入陕西,向西经过同仁伸入青海。其南侧为大致相互平行的桑科南–格里那断裂带,北部为力士山–围当山断裂带。上述断裂带及其旁侧次级断裂构成了本区的基本断裂构造格架。除了NWW向断裂以外,区内还发育NE向和近SN次级断裂,这些断裂常常错断NWW向断裂。

    区内岩浆岩十分发育,除夏河、阿姨山、达尔藏、德乌鲁和美武等规模较大的花岗岩类岩基外,还出露大量小岩株和岩脉。岩基主要呈NW向串珠状展布于夏河–合作断裂以北,与区域构造线方向一致,岩性主要为花岗闪长岩、石英闪长岩、石英闪长斑岩及黑云母花岗岩等,岩体中可见大量镁铁质暗色微粒包体。中酸性小岩株和岩脉在区内广泛发育,岩性主要为闪长岩–闪长玢岩、石英闪长岩–石英闪长斑岩以及花岗闪长岩–花岗闪长斑岩等。成岩时代大多为250~210 Ma(黄雄飞,2016李康宁等,2020)。此外,在德乌鲁和美武岩体之间还分布有大面积的中酸性火山岩,岩性主要为安山岩、英安岩和英安角砾熔岩。火山岩化学成分与侵入岩相当,均属钙碱性系列(刘伯崇等,2018)。

    大河坝组位于洮河复向斜核部,分布面积较大,呈西宽东窄楔形向东尖灭,向西与青海隆务河群连通。大河坝组为一套数千米厚的砂板岩互层的复理石建造,表现出浅海陆棚沉积的特征(张新虎,2013),为古特提斯洋沉积体系的重要组成部分(殷鸿福等,19881993)。该套地层总体岩性为各种杂砂岩、长石砂岩夹粉砂岩、板岩,或二者互层,偶夹薄层、透镜状灰岩。砂岩成分成熟度低,物源区稳定性较差,具剥蚀强烈、搬运快速的特点。横向上岩性变化不大,出露宽度向东逐渐变窄,向西逐渐变宽。纵向上从下到上,灰岩夹层、泥质板岩逐渐减少,砂岩增多,砂岩粒度变粗,上部常有含砾砂岩出现,总体上呈下细上粗,反映了水体变浅的过程。自下向上岩石颜色有变浅的趋势,从深灰色逐渐变为浅灰色–灰绿色–灰褐色;沉积构造下段以水平层理、沟模、槽模为主,上段以平行层理、波痕、交错层理为主。大河坝组主要由以下3种基本层序组成(图2),其中基本层序A类和基本层序B占绝对优势。

    图  2  大河坝组基本层序
    Figure  2.  Basic sequences of the Daheba Formation

    基本层序A(图2图3a):出现在该组下部,由厚层中细粒杂砂岩、薄层细粒砂岩、板岩组成。砂岩包括钙质砂岩、长石砂岩、石英长石砂岩、长石石英杂砂岩、岩屑石英砂岩,板岩包括泥质板岩、钙质粉砂质板岩、砂质板岩、千枚岩等。砂岩以块状层理为主、见平行层理;砂岩底面平直,板岩占比较大,属复理石建造。

    图  3  大河坝组砂岩宏观露头特征及显微照片
    Figure  3.  Field exposure of the sandstones of the Daheba Formation

    基本层序B(图2图3b):由具递变层理的杂砂岩、具平行层理的粉砂岩、粉砂质板岩、泥质板岩组成的韵律沉积。砂岩底部多含有撕裂泥质板岩砾石。砂岩、粉砂岩、粉砂质板岩中发育平行层理、斜层理、交错层理、透镜状层理、波状层理及砂球沉积构造(图3c),重荷模、沟模(图3d)构造发育,具浅海陆棚相沉积特征。

    基本层序C(图2):主要出现在该组上段,由砾岩、含砾砂岩、杂砂岩、粉砂岩、板岩组成,砂岩、粉砂岩发育大量的交错层理、水平层理、透镜状、脉状层理,波状层理、斜层理、羽状斜理、波痕构造。反映水动力条件较强,快速沉积的特点,具浅海陆棚环境沉积特征。

    地球化学研究样品采自西秦岭夏河县南部大河坝组(图1),砂岩岩性有长石砂岩、岩屑长石砂岩、含砾长石砂岩(图3a图3f)等。主微量元素分析由自然资源部兰州矿产资源监督检测中心完成,主量元素在RIX2100型X荧光光谱仪上完成,分析精度>1%。微量元素分析仪器为Agilent 7500a型等离子体质谱仪,分析误差<5%。

    锆石制靶、CL照相和U-Pb年龄由南京宏创地质勘查技术服务有限公司完成,Teledyne Cetac Technologies 公司Analyte Excite 193nm激光系统、Nu Instrument公司Nu Plasma II型MC-ICP-MS测试仪器,测试方法为激光剥蚀(LA)–多接收器电感耦合等离子质谱(MC-ICP-MS)。同位素比值校正外部标准值为标准锆石91500,同位素比值和元素含量计算采用软件ICPMSDATACAL11处理,为避免铅丢失,对于>1000 Ma的古老锆石,锆石年龄采用207Pb/206Pb年龄, 206Pb/238U年龄<1000 Ma的锆石,锆石年龄选用206Pb/238U年龄,利用ISOPLOT/Ex_ver3获得谐和年龄和图解。

    图  6  研究区中晚三叠世大河坝组砂岩锆石阴极发光图像及打点位置
    Figure  6.  Cathodoluminescence (CL) images and dotting position of zircon from sandstone of Daheba Formation during the middle-late Triassic in the study area

    大河坝组砂岩中SiO2含量中等,为64.11%~68.27%,平均为65.45%;Al2O3含量为13.61%~15.19%,平均为14.51%;Fe2O3含量为0.82%~1.72%,平均为1.25%;TiO2含量为0.40%~0.56%,平均为0.51%;CaO含量为2.39%~3.32%,平均为3.06%;MgO含量为0.06%~0.10%,平均为0.08%;CaO含量相对较高可能与钙质胶结有关(表1)。

    表  1  大河坝组砂岩主量元素(%)、微量元素(10−6)分析结果
    Table  1.  The contents of major elements (%) and trace elements (10−6) the sandstones of the Daheba Formation
    样品
    编号
    YQ-5 YQ-6 YQ-7 YQ-8 样品
    编号
    YQ-5 YQ-6 YQ-7 YQ-8
    岩石
    名称
    岩屑长
    石砂岩
    长石砂岩 岩屑长
    石砂岩
    长石砂岩 岩石名称 岩屑长
    石砂岩
    长石砂岩 岩屑长
    石砂岩
    长石砂岩
    SiO2 64.14 68.27 65.28 64.11 V 89.5 82.8 85.6 84.8
    TiO2 0.56 0.4 0.52 0.54 La 102.86 41.35 42.78 45.6
    Al2O3 14.66 13.61 14.58 15.19 Ce 190.74 78.57 80.42 87.06
    Fe2O3 1.35 1.12 0.82 1.72 Pr 20.32 8.71 8.98 9.57
    FeO 3.42 2.85 3.19 2.36 Nd 73.09 31.92 32.97 34.91
    MnO 0.1 0.06 0.07 0.08 Sm 12.62 6.05 6 6.11
    MgO 0.1 0.06 0.07 0.08 Eu 2.35 1.24 1.3 1.27
    CaO 3.32 2.39 3.18 3.32 Gd 10.07 4.9 4.91 4.95
    Na2O 2.9 3.23 3.01 3.13 Tb 1.41 0.71 0.7 0.68
    K2O 2.29 2.15 2.41 2.46 Dy 8.41 4.34 4.23 4.08
    P2O5 0.22 0.15 0.15 0.16 Ho 1.62 0.83 0.81 0.78
    H2O+ 2.71 2.05 2.57 2.6 Er 4.81 2.47 2.39 2.32
    LOI 4.96 4.3 4.68 5.26 Tm 0.66 0.35 0.33 0.31
    Total 100.73 100.63 100.55 101 Yb 4.44 2.35 2.2 2.11
    Cs 3.76 5.2 7.16 4.81 Lu 0.65 0.34 0.32 0.3
    Rb 100 91.4 92.7 81.0 Y 39.44 20.37 20.03 19.73
    Ba 519 434 502 466 Fe2O3T 5.15 4.29 4.37 4.35
    Th 19.2 17.4 15.5 18.4 Fe2O3/K2O 0.59 0.52 0.34 0.7
    U 4.26 2.68 2.32 2.12 Fe2O3T+MgO 5.26 4.35 4.44 4.42
    Nb 20.5 13.2 12.4 11.2 Al2O3/SiO2 0.23 0.2 0.22 0.24
    Ta 1.56 1.05 1.03 0.84 K2O/Na2O 0.79 0.66 0.8 0.78
    Sr 190 222 388 286 Al2O3/(CaO+Na2O) 2.36 2.42 2.35 2.35
    Zr 586 334 244 246 ΣREE 434.06 184.13 188.35 200
    Hf 11.6 9.2 8.2 7.5 LREE/HREE 12.53 10.3 10.85 11.88
    Li 41.8 46.2 40.2 35.2 La/Yb 23.17 17.57 19.44 21.6
    Sc 13.2 10.6 10.8 11 (La/Yb)N 2.19 1.66 1.83 2.04
    Ga 20 17.4 16.2 15.3 δEu 0.62 0.67 0.71 0.68
    Tl 0.45 0.45 0.45 0.4 Sc/Cr 0.2 0.18 0.18 0.19
    Co 13 11 11.2 10.4 Th/Sr 0.1 0.08 0.04 0.06
    Cr 65.3 58.9 59 58.3 Th/U 4.51 6.49 6.68 8.68
    Ni 22.8 21.4 23 20.3 Zr/Hf 50.52 36.3 29.76 32.8
    下载: 导出CSV 
    | 显示表格

    大河坝组砂岩中Al2O3/SiO2值为0.2~0.24,平均为0.22(表1),说明砂岩成熟度相对均一,未经历强烈的搬运改造或蚀变作用(闫臻等,2006)。Al2O3/(CaO+Na2O)变化范围小、比值低(2.35~2.42,平均为2.37),说明砂岩中长石含量较高。Fe2O3/K2O值为0.34~0.7,平均为0.54,变化较大,部分砂岩比值相对较高,可能有富铁矿物的存在(表1)。在SiO2/Al2O3-Na2O/K2O及SiO2/Al2O3-Fe2O3/K2O砂岩分类图解(图4)中,均落入杂砂岩区域,推测大河坝组砂岩可能经历了相对近源或较为快速的成岩过程。

    图  4  砂岩SiO2/ Al2O3-Na2O/K2O(a)和Fe2O3/K2O-SiO2/Al2O3(b)分类图解(底图a据Roser et al.,1988;底图b据Herron,1988
    Figure  4.  (a) SiO2/Al2O3-Na2O/K2O and (b) Na2O/K2O-SiO2/Al2O3 classification diagrams of sandstones

    大河坝组样品稀土元素总量较高,ΣREE值为184×10−6~434×10−6,平均为252×10−6表1)。在球粒陨石标准化配分图(图5a)上,曲线呈右倾型,各样品曲线互相平行,说明这些砂岩源区一致。样品具有Eu负异常,δEu值为0.62~0.71,平均为0.67,与上地壳δEu(0.64)相当接近。轻重稀土分异明显,轻稀土较重稀土分馏程度高,LREE/HREE值为10.3~12.53,(La/Yb)N 值为12.61~16.62。轻稀土元素(LREE)富集,重稀土相对亏损。

    图  5  稀土元素球粒陨石标准化配分图解(a)和微量元素原始地幔标准化蛛网图(b)(标准化数据据Sun et al.,1989
    Figure  5.  (a) Chondrite-normalized REE pattern and (b) primitive mantle-normalized trace clement spider diagrams

    在微量元素的原始地幔标准化蛛网图(图5b)中,表现为Nb、Ta、Ti、HREE等高场强元素(HFSE)相对亏损,而Rb、Th、Zr等大离子亲石元素(LILE)则相对富集,具明显的Nb-Ta谷,与岛弧或大陆边缘弧环境类似,均具有一致的配分曲线。Th值为15.5×10−6~19.2×10−6,平均值为17.6×10−6;Zr值为244×10−6~586×10−6,平均值为353×10−6;Co值为10.4×10−6~13×10−6,平均值为11.4×10−6;Ni值为20.3×10−6~23×10−6,平均值为21.9×10−6,Th、Zr、Ti、Co、Ni等不活泼的微量元素值非常接近活动大陆边缘统计值(Bhatia,1983)。

    对大河坝组砂岩中61颗碎屑锆石进行U-Pb定年,得到有效数据59个(表2)。用于测年的碎屑锆石颗粒为无色透明,短柱状、长柱状为主,具明显的振荡环带,部分锆石边部因热液或变质作用出现增生结构(图6)。锆石年龄为253.3~2520 Ma,主要集中在3个阶段(图7)。① 253.3~448.7 Ma(19个),占有效年龄总数31.1%,峰值为278.2 Ma、448.5 Ma。② 1536~2067 Ma(30个),占有效年龄总数49.2%,峰值为1757.6 Ma、1986.4 Ma。③ 2204~2520 Ma(7个),占有效年龄总数11.5%,峰值为2445 Ma。另有,3个锆石年龄为697~1151.2 Ma。大河坝组碎屑锆石年龄主要集中在晚古生代和中元古代—古元古代,锆石年龄最小为253.3 Ma,代表其沉积时间不早于253.3 Ma。

    表  2  大河坝组碎屑锆石U-Pb年龄数据
    Table  2.  U-Pb age data of detrital zircons from Daheba Formation
    测点号元素含量Th/U同位素比值同位素年龄(Ma)谐和
    度(%)
    Pb
    (10−6
    Th
    (10−6
    U
    (10−6
    207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    测值测值测值测值测值测值
    TW - 114.551.537.51.370.11400.00274.25000.11000.26920.00301845.043.01678.022.01536.015.091
    TW - 21641494970.300.10710.00094.30400.05900.29000.00221749.016.01694.211.01642.511.097
    TW - 32.009.5015.40.620.07760.00801.20000.12000.11430.0038990.0200.0792.050.0697.022.087
    TW - 434.363.45100.120.05540.00110.49600.01200.06460.0007408.044.0407.87.8403.54.299
    TW - 560.122.91500.150.12260.00136.11800.10000.36070.00331990.019.01991.014.01985.015.0100
    TW - 632.345.684.70.540.11370.00174.93700.09300.31410.00281848.028.01807.016.01761.014.097
    TW - 737.010670.21.510.12080.00175.98200.11000.35770.00361963.025.01970.016.01971.017.0100
    TW - 83.1016.256.20.290.05450.00370.38900.02700.05160.0009300.0140.0328.020.0324.35.599
    TW - 91.1022.419.01.170.04990.00670.29000.03700.04420.0011-90.0230.0250.030.0278.47.089
    TW - 1027.11121031.080.07790.00172.10500.05000.19560.00201123.043.01149.016.01151.211.0100
    TW - 1174.71031990.520.11170.00124.85000.08200.31280.00291823.019.01791.014.01754.014.098
    TW - 129.102281591.430.05230.00250.28900.01400.04010.0005260.0100.0257.011.0253.33.299
    TW - 1340.745.796.70.470.12160.00165.91100.10000.35200.00361973.024.01961.015.01944.017.099
    TW - 1434.089.283.21.070.10970.00204.70200.10000.31070.00371786.033.01765.018.01744.018.099
    TW - 1517.537.442.90.870.10700.00274.67000.13000.31560.00371718.049.01752.024.01769.019.099
    TW - 166.9033.211.82.810.11060.00564.69000.24000.30710.00621720.0100.01742.044.01724.031.099
    TW - 1733.976.37750.100.05300.00100.31130.00690.04250.0004312.042.0274.85.3268.62.498
    TW - 181031032260.450.12540.00116.56700.09500.37810.00332033.016.02053.613.02067.015.099
    TW - 1932.148.287.50.550.10260.00164.32700.08200.30410.00291661.029.01695.016.01711.014.099
    TW - 217.7012.718.80.680.11440.00315.26000.16000.33160.00491844.052.01854.025.01844.024.099
    TW - 2210.614.326.60.540.11040.00265.09000.13000.33280.00461782.043.01827.022.01851.022.099
    TW - 2345.468.369.10.990.16330.002010.83000.19000.47860.00472484.020.02505.016.02520.021.099
    TW - 247.4033.11010.330.05340.00240.49500.02300.06680.0009301.093.0406.015.0416.95.697
    TW - 2571.91042300.450.10410.00153.89900.07900.27170.00331697.025.01614.017.01549.017.096
    TW - 2638.714663.52.290.12250.00206.17500.12000.36470.00361988.030.01998.017.02004.017.0100
    TW - 2717.814.542.40.340.12320.00256.16000.13000.36250.00421994.036.01995.019.01993.020.0100
    TW - 2831.914456.22.560.11290.00195.01700.10000.32220.00311834.031.01820.017.01800.015.099
    TW - 291121412860.490.11420.00115.17400.07700.32760.00291862.017.01848.113.01827.014.099
    TW - 3025.248.950.60.970.11680.00535.90000.28000.36020.00561907.076.01953.044.01983.026.098
    TW - 3114.12062610.790.05180.00170.31500.01100.04410.0005239.069.0276.98.3277.92.8100
    TW - 3230.179.860.81.310.11640.00195.60900.11000.34890.00341894.029.01915.017.01929.016.099
    TW - 3310.159.11340.440.05400.00200.47700.01800.06200.0007315.078.0393.012.0388.04.499
    TW - 343.795.453.81.770.05080.00400.30800.02300.04440.0008120.0150.0268.019.0279.84.896
    TW - 3527.783.562.21.340.10960.00184.71900.09300.31180.00331780.030.01767.017.01749.016.099
    TW - 361291172290.510.14400.00178.91000.18000.43110.00592273.020.02327.018.02310.027.099
    TW - 3729.436.382.00.440.10770.00164.56600.08600.30770.00311753.027.01740.016.01729.015.099
    TW - 382.301.306.000.210.11850.00575.55000.26000.34290.00731871.087.01891.040.01897.035.0100
    TW - 392.7061.348.71.260.04910.00370.27700.02100.04100.000780.0150.0243.016.0259.04.294
    TW - 4022.254.348.71.120.11330.00215.25500.11000.33630.00341838.034.01857.018.01868.016.099
    TW - 4155.311690.71.280.14820.00168.73000.14000.42620.00402323.019.02309.015.02288.018.099
    TW - 4212.761.41580.390.05680.00170.56400.01800.07210.0008441.068.0452.012.0448.74.599
    TW - 435.4059.11120.530.05110.00290.30100.01700.04250.0007180.0110.0264.014.0268.54.298
    TW - 459.1023.059.70.380.06430.00211.20000.04100.13480.0015695.070.0794.019.0815.08.597
    TW - 465.9080.01080.740.05280.00290.32100.01800.04430.0006230.0110.0279.014.0279.33.8100
    TW - 4717.535.442.50.830.11270.00234.97300.11000.32090.00331829.038.01814.019.01794.016.099
    TW - 4815.32513070.820.05160.00170.28530.00970.04030.0005225.070.0253.87.6254.83.0100
    TW - 4936.117757.53.080.11290.00215.16700.11000.33170.00341836.033.01845.018.01846.016.0100
    TW - 5037.194.472.51.300.12320.00196.13000.12000.35980.00371996.027.01990.017.01981.017.0100
    TW - 5166.390.11240.730.15120.00168.65000.14000.41430.00362354.018.02299.015.02234.016.097
    TW - 521.204.7014.60.320.05430.00580.52500.05500.07110.0019170.0200.0412.038.0442.012.093
    TW - 5348.759.994.30.640.15450.00258.63000.18000.40790.00552395.027.02297.019.02204.025.096
    TW - 546.804.801180.040.05350.00220.41700.01700.05640.0007298.089.0351.012.0353.84.099
    TW - 556.4017.614.01.260.11410.00405.18000.19000.32760.00501826.066.01838.033.01825.024.099
    TW - 5610551.51960.260.17200.002311.02000.27000.46490.00692574.022.02522.023.02460.030.098
    TW - 5792.491.21590.570.16420.001310.47000.16000.46150.00392497.013.02475.414.02446.017.099
    TW - 581.8020.531.10.660.05050.00490.34000.03200.04900.001250.0180.0286.024.0308.17.593
    TW - 5918.752.72540.210.05510.00150.52600.01500.06920.0007379.062.0427.310.0431.54.099
    TW - 6018.631.647.40.670.10800.00224.72200.09900.31740.00321747.037.01767.018.01776.016.099
    TW - 6158.868710210.670.05300.00080.34720.00710.04750.0004317.037.0302.35.3299.12.699
    下载: 导出CSV 
    | 显示表格
    图  7  大河坝组组碎屑锆石年龄谐和曲线图(a)和年龄分布直方图(b)
    Figure  7.  (a) Age concordance curve and (b)distribution histogram of detrital zircon from Daheba Formation

    砂岩的元素组分是岩石矿物组成、化学性质、物质来源的集中反映(何庆斌等,2022李胡蝶等,2023)。石英、黏土矿物、长石类矿物成的富集程度可以用Al2O3/SiO2来衡量,风化过程中镁、铁质矿物的的变化参数为Fe2O3/K2O,而Na2O/K2O指示其化学成熟度,Al2O3/(CaO+Na2O)指示最稳定元素与最不稳定元素关系。Crook(1974)利用砂岩中这几种主量元素的氧化物含量作为参数,判断源区性质及其构造背景。岩浆岛弧:SiO2<58%,K2O/Na2O<1;安第斯型大陆边缘及大陆地壳上部:68%<SiO2<74%,K2O/Na2O<1;大西洋型被动大陆边缘:SiO2>89%,K2O/Na2O>1。研究区砂岩更接近安第斯型活动大陆边缘和大陆地壳上部。在(K2O+Na2O)-SiO2与Al2O3/(CaO+Na2O)-(Fe2O3T+MgO)砂岩源区构造环境判别图解(图8)中,大河坝组砂岩全部落入活动大陆边缘区域。

    图  8  砂岩构造环境(Na2O+K2O)-SiO2(a)和Al2O3/(CaO+Na2O)-(Fe2O3T+MgO)主量元素判别图解(b)(底图a据Roser et al.,1988;底图b据Bhatia,1983
    Figure  8.  (a) Tectonic discrimination diagrams on(Na2O+K2O)-SiO2 and (b) Al2O3/(CaO+Na2O)-(Fe2O3T+MgO)

    稀土微量元素在成岩过程、构造活动中变化极小,其含量主要受沉积物源区性质的影响,可利用稀土微量元素约束构造环境(任栩莹等,2023)。在La-Th-Sc构造环境判别图解中,大河坝组落入活动大陆边缘(图9a);在Th-Sc-Zr/构造环境判别图解中,落入大陆岛弧、活动大陆边缘、被动大陆边缘外部交汇(图9b);在Th-Co-Zr构造环境判别图解中,落入大陆岛弧及其附近(图9c)。综合主量元素和微量元素特征判断,大河坝组主要呈现出活动大陆边缘的特征。

    图  9  大河坝组微量元素源区构造环境判别图(底图据Bhatia et al.,1986
    Figure  9.  Structure environment discrimination diagram of trace elements from stones samples of Daheba formation

    将碎屑沉积物源可划分为长英质火成物源区、中性岩火成物源区、镁铁质火成物源区和石英沉积岩物源区4类(Roser et al.,1988),并提出了主量元素F1-F2(图10a)、F3-F4(图10b)判别函数判别图。在这两个图解中,研究区砂岩均落于中性岩火成岩物源区。由于沉积岩中La、Rb、Ce、Hf、Ti、Sc等稀土微量元素活动性较弱,成岩后具相对稳定,这些元素组合特征对母岩、沉积盆地特征具有较好的反映(Taylor et al.,1981)。K-Rb源区判别图解不仅可以区分长石砂岩和变质杂砂岩,还可以推断原岩为基性还是中酸性。K-Rb判别图解(图10c)显示,大河坝组砂岩全部来自于中酸性岩,并且所有样品均落在长石砂岩与变质杂砂岩交汇的公共区域,这也与实际观察相一致。在La/Th-Hf源岩属性判别图上(图10d),绝大多数样品落入长英质源区向被动边缘过渡区域,有较多的古老沉积物加入。

    图  10  大河坝组砂岩物源属性判别图解(底图a据Roser et al.,1988;底图b据Pettijohn et al.,1973;底图c、d据Floyd et al.,1987
    Figure  10.  Diagram for source attribute discrimination of sandstone in Daheba formation

    (1)华力西期年龄(峰值为278.2 Ma):大河坝组该组锆石年龄数据较多,但西秦岭及邻区该期岩浆年龄报道较少。西秦岭西段江里沟二长花岗岩年龄为269~260 Ma(徐学义等,2014),冷湖地区盐场北山花岗岩年龄为273~265 Ma(董增产等,2015),西秦岭东段中川二长花岗岩年龄为264.4 Ma(徐学义等,2014)。据此认为,该年龄段的锆石主要来自于西秦岭同时期的岩浆岩。

    (2)加里东时期年龄(峰值为466 Ma):该阶段年龄占比较小,但周缘板块这一时期年龄分布较广。南秦岭紫阳一带零星出露有基性岩墙群、火山岩(陈虹等,2014罗金海,2015)。北秦岭发育有500 Ma(陆松年等,2003)、450 Ma(陈隽璐等,2008)、400 Ma(张成立等,2013)等3期岩浆活动。中祁连东段这一时期的岩浆岩有乐都石英闪长岩(446±3 Ma)–黑云母花岗岩(441±4 Ma)–二云母花岗岩(431±4 Ma)、什川二长花岗岩(427±3 Ma)、炳灵寺黑云母花岗岩(432±4 Ma)等(杨贺,2016)。在中南祁连,罗志文等(2015)报道了洼塘地区的花岗岩锆石U-Pb年龄为(416.7±4.3) Ma。考虑二叠纪阿尼玛卿洋的存在,笔者认为大河坝组加里东期锆石主要来自于北秦岭地块和祁连地块。

    (3)中元古代—古元古代时期年龄(峰值为1757 Ma、1986 Ma、2445 Ma):大河坝组砂岩年龄主要集中在该阶段,广泛分布于周缘的华北、祁连等板块。2.6~2.4 Ga和2.0~1.7 Ga是华北板块特征年龄峰值(翟明国等,2007陆松年等,2009)。2.6~2.4 Ga华北板块块体地壳快速增生,有强烈的岩浆活动发生(Zhao et al.,2002Kusky et al.,2003)。~1.8 Ga时期,华北板块内部东西两大陆块发生碰撞,形成华北板块统一基底(Zhao et al.,2005)。祁连造山带北大河群、托赖岩群、湟源岩群、陇山岩群都存在大量古元古代晚期至中元古代年龄,以及少量新太古代至古元古代年龄(何艳红等,2005徐旺春等,2007李怀坤等,2007何世平等,2007陆松年等,2009杨昕,2015曾俊杰等,2021)。据此认为,大河坝组该年龄段的锆石来自于祁连地块、华北地块古老基地以及下伏沉积地层的再旋回沉积。

    综上所述,大河坝组的物源区主要在其北侧,祁连造山带东段、华北板块南缘基底以及北秦岭构造带为其沉积提供了大部分的物质来源,另有部分碎屑可能来自西秦岭同期岩浆岩和多旋回沉积物。

    对前人碎屑锆石测年统计发现,西秦岭三叠系碎屑锆石年龄存在2.5~2.0 Ga、500~400 Ma、 300~250 Ma等3个峰值,且以>1600 Ma古老碎屑锆石占主体(闫臻等,2002Weislogel et al.,20062010陈岳龙等,2008),反映研究区及邻区在三叠纪之前至少发生过3期较大规模的构造–岩浆活动事件。①中元古代—古元古代碎屑锆石则代表了祁连造山带及华北板块南缘的变质基底,反映了Columbia超大陆汇聚期大规模岩浆活动。②早古生代的碎屑锆石年龄时间上与加里东造山运动相当,代表了华北板块、扬子板块俯冲-碰撞运动及其间小规模的岩浆事件。③晚古生代碎屑锆石代表了西秦岭同期岩浆活动,可能与华力西期褶皱基底发生伸展裂陷的地质背景相关,期间发生了较强烈的岩浆活动。

    (1)西秦岭大河坝组为一套浅海陆棚相复理石沉积,岩性组合简单,以砂板岩为主。上从下到上,泥质板岩逐渐减少,砂岩增多,砂岩粒度变粗,上部常有含砾砂岩出现,总体上呈下细上粗,反映了水体变浅、快速沉积的过程。

    (2)西秦岭中晚三叠世大河坝组SiO2含量中等,低CaO、MgO、Al2O3/SiO2,Al2O3/(CaO+Na2O)值低、变化小,Fe2O3/K2O值高。稀土元素总量较高,轻稀土元素(LREE)富集,重稀土相对亏损。轻重稀土分异明显,轻稀土较重稀土分馏程度高。具有Eu负异常,δEu值平均为0.67,接近上地壳δEu值(0.64)。岩石地球化学表明,砂岩岩石类型主要为通常形成在强烈构造活动背景下快速堆积的杂砂岩,物源区构造背景为活动大陆边缘,沉积物源来自上地壳中酸性火成岩。

    (3)碎屑锆石年龄峰值代表了华力西期、加里东期、中元古代—古元古代3期岩浆活动,西秦岭北侧的北秦岭构造带、祁连造山带东段和华北板块南缘基底是其主要沉积物源区,亦有西秦岭同期岩浆岩、早期沉积再旋回沉积物参与。

    致谢:中国地质大学(北京)邱昆峰教授、甘肃省地矿局第三地质矿产勘查院刘伯崇正高级工程师以及匿名审稿老师在写作、审稿过程中提出宝贵意见,在此一并感谢。

  • 图  1   阿尔金构造地质简图(a)(据吴才来等,2014)和清水泉地区地质图(b)

    Figure  1.   (a) The geological sketch maps of Altyn tagh and (b) Qingshuiquan in area

    图  2   阿尔金南缘清水泉堆晶岩野外及镜下照片

    a. 堆晶岩与围岩呈断层接触; b. 堆晶岩中辉长岩韵律结构; c. 堆晶岩中辉长岩强变形带内矿物呈定向排列; d. 堆晶辉石岩与辉长岩接触界限(突变); e. 蛇纹石化纯橄岩; f. 阳起石化辉石岩; g. 蚀变辉长岩; h.辉长岩中细粒绿帘石与黄铁矿共生; i.辉石岩和辉长岩分界(过渡);ol. 橄榄石;Aug 辉石;Act. 阳起石;Pl. 斜长石;Bt. 黑云母;Py. 黄铁矿

    Figure  2.   Field photographs and micrographs of cumulate from Qingshuiquan, southern margin of Altyn tagh

    图  3   阿尔金南缘清水泉堆晶岩Al2O3-CaO-MgO图解(a)(据Coleman,1977)和FAM图解(b)(据Irvine et al.,1971

    Figure  3.   (a) Al2O3-CaO-MgO and (b) FAM diagram of cumulate from Qingshuiquan, southern margin of Altyn tagh

    图  4   清水泉堆晶岩稀土配分模式图(a)和微量元素蛛网图(b)(标准化数据Sun et al.,1989

    Figure  4.   (a) Chondrite–normalized REE patterns and (b) primitive mantle–normalized trace element spider diagrams

    图  5   阿尔金南段清水泉堆晶辉长岩锆石阴极发光图像(a)和谐和图(b)

    Figure  5.   (a) Zircon cathodicluminescence images and (b) zircons U–Pb concordia diagrams of cumulated gabbro in Qingshuiquan, southern margin of Altyn tagh

    图  6   阿尔金南段清水泉堆晶岩 MgO 横坐标 Hark 图解

    Figure  6.   Hark diagram for cumulated gabbro in Qingshuiquan, southern margin of Altyn tagh

    图  7   阿尔金南段清水泉堆晶岩源区判别图(据Maurice et al.,2012

    Figure  7.   Source discrimination diagram of Qingshuiquan, southern margin of Altyn tagh

    图  8   阿尔金南段清水泉堆晶岩Y/15–La/10–Nb/8 (a)(据Cabanis et al.,1989)及 Nb/Zr–Th/Zr 构造背景判别图(b)(据孙书勤等,2007

    N-MORB. N 型大洋中脊玄武岩;E-MOEB. E 型大洋中脊玄武岩;WPA. 板内碱性玄武岩;CAB. 钙碱性玄武岩;IAB. 岛弧拉斑玄武岩;BABB. 弧后盆地玄武岩;WPB. 板内玄武岩;Ⅰ. N-MORB; Ⅱ1. 陆缘岛弧火山岩;Ⅱ2.陆缘火山玄武岩;Ⅲ.大洋板内玄武岩海山玄武岩;Ⅳ1.陆内初始、陆缘裂谷拉斑玄武岩;Ⅳ2.大陆拉张玄武岩;Ⅳ3.大陆碰撞玄武岩区;Ⅴ.地幔热柱玄武岩

    Figure  8.   (a) Y/15−La/10−Nb/8 and (b) Nb/Zr−Th/Zr tectonic setting discriminant diagram for Qingshuiquan, southern margin of Altyn tagh

    表  1   阿尔金南缘清水泉堆晶岩主量元素(%)及微量元素(10−6)化学组成表

    Table  1   Major (%) and trace (10−6) elelments data of of cumulate from Qingshuiquan area, southern margin of Altyn tagh

    样品C0C10C14C5C6C7C8K1FC1FC4FC16
    岩石纯橄岩辉石岩辉长岩
    SiO237.3638.0238.3338.4840.9838.0737.9446.6346.6748.1949.45
    TiO20.180.210.110.090.110.130.050.150.410.130.05
    Al2O33.117.432.433.555.42.153.033.9813.2617.62.75
    Fe2O37.714.668.567.195.427.554.354.593.721.783.63
    FeO5.625.854.565.073.555.134.515.056.042.84.37
    TFeO12.5510.0412.2611.538.4211.928.429.189.384.47.63
    MnO0.170.160.160.140.140.160.120.160.180.120.14
    MgO33.0528.2233.9733.7831.9532.3233.8218.4514.5611.4725.49
    CaO1.525.170.681.473.72.322.8518.019.8213.528.13
    K2O0.080.040.010.060.110.060.040.070.410.840.01
    Na2O0.10.220.030.190.370.120.120.152.331.410.61
    P2O50.030.010.020.020.030.020.020.010.040.020.01
    LOL11.051011.149.958.2511.9813.142.752.532.15.33
    H2O+7.45.848.845.625.094.635.371.661.440.992.06
    Total99.9899.9910099.99100.01100.0199.9910099.9799.9899.97
    La0.790.840.850.770.720.780.710.462.010.870.98
    Ce1.831.861.711.791.541.71.721.215.152.32.63
    Pr0.20.220.210.220.180.2190.240.190.770.340.4
    Nd1.011.070.891.090.980.9941.120.93.741.712.1
    Sm0.290.310.250.260.270.2560.290.31.120.530.62
    Eu0.0610.0790.0540.0650.0710.0730.0590.090.570.320.35
    Gd0.430.410.320.30.360.3050.320.411.510.640.61
    Tb0.0790.0720.0610.0590.0630.0550.0540.080.250.110.12
    Dy0.480.480.40.410.460.3730.380.531.820.810.79
    Ho0.110.10.0850.090.10.0820.090.130.40.180.17
    Er0.290.30.230.260.290.230.240.321.10.520.5
    Tm0.0470.0420.0340.0450.050.0360.0390.050.180.0850.077
    Yb0.290.270.220.290.290.2310.260.311.250.550.5
    Lu0.0440.0420.0350.0410.0460.0350.0370.050.180.0850.079
    Y3.042.842.282.592.862.342.393.0710.44.914.2
    Cu8.328.9636.620.731.140.330.626.2419.4368.2
    Pb1.4615.115.45.333.599.62.7374.89.426.2911.9
    Zn61.861.578.768.159.88546.243.810330.662.5
    下载: 导出CSV
    续表1
    样品C0C10C14C5C6C7C8K1FC1FC4FC16
    岩石纯橄岩辉石岩辉长岩
    Cr23602690230013803440170014702100110013704850
    Ni13901090143013301250130013301853922591940
    Co11994.813312393.611210963.957.433.798.8
    Rb2.92.411.332.324.462.031.211.7110.143.10.64
    Cs0.180.170.0850.0660.160.120.0540.110.250.660.067
    Sr18.549.926.322.523.746.931.710.9416225253.7
    Ba20.548.851.724.63128.117.911.414420716.7
    V50.211348.961.97156.636.230820712649.5
    Sc11.314.69.239.598.179.627.1687.61824.83.22
    Nb11.081.090.580.630.70.640.451.230.430.43
    Ta0.210.650.580.310.320.290.220.310.240.180.2
    Zr3.092.342.862.5022.5252.5932.393.2710.95.323.15
    Hf0.230.10.130.110.150.180.1580.170.3580.150.13
    U0.110.110.170.110.090.150.130.10.390.1560.19
    Th0.370.260.160.20.160.280.170.190.310.180.098
    Mg#82.683.583.384.087.283.087.878.373.682.485.7
    δCe1.081.020.951.0310.9810.9811.021.01
    δEu0.530.680.580.710.70.80.590.781.341.681.72
    (La/Yb)N1.842.102.601.791.672.281.841.001.081.071.32
    REE5.956.105.355.695.425.375.565.0320.059.059.93
    LREE4.184.383.964.203.764.024.143.1513.366.077.08
    HREE1.771.721.391.501.661.351.421.886.692.982.85
    LREE/HREE2.362.552.862.812.272.982.911.682.002.042.49
    下载: 导出CSV

    表  2   阿尔金南缘清水泉堆晶辉长岩锆石LA–ICP–MS U–Pb分析结果表

    Table  2   LA–ICP–MS U–Pb analysis results of zircons from Qingshuiquan area, southern margin of Altyn tagh

    编号含量(10−6)同位素比值年龄(Ma)
    PbThU207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U
    15922640.05670.00080.58830.00660.07520.00040.02370.00024781647044672
    2721761890.05620.00070.57760.00490.07440.00040.02410.00014611146334632
    346431120.05410.00060.55680.00440.07460.00030.02190.00013741044934642
    475881840.05410.00070.55590.00560.07440.00040.02390.00013761444944632
    5911482320.05770.00060.59330.00380.07460.00030.02190.0001518747324642
    667971680.06040.00090.62320.00710.07480.00040.02770.00026191649244652
    71493193990.05640.00070.58610.00540.07540.00040.02470.00014681246834692
    86424680.05960.00090.61360.00810.07490.00040.02430.00024784346674642
    91522203940.05110.00060.52750.00430.07510.00030.02040.00012441143034672
    10871883830.05210.00060.53340.00400.07450.00030.01900.0001291943434632
    1147431040.04900.00090.49600.00780.07370.00040.01910.00011482740954582
    12115175760.05550.00060.57170.00360.07500.00030.02160.0001433745924662
    下载: 导出CSV

    表  3   阿南构造混杂岩带中早古生代岩浆事件统计表

    Table  3   The dataing result of main magma events in the South Altyn Tagh

    构造
    位置
    地区岩性年龄(Ma)构造背景来源
    阿南
    构造
    混杂
    岩带
    长沙沟辉石橄榄岩510.6±1.4洋脊扩张和洋壳俯冲消减郭金城等,2014
    花岗闪长岩503±1.7康磊等,2014
    约马克其辉长岩500.7±1.9李向民等,2009
    鱼目泉花岗岩497碰撞造山和陆壳深俯冲孙吉明等,2012
    茫崖二长花岗岩472.1±1.1康磊等,2016
    石英闪长岩469±6后碰撞初始伸展阶段吴才来等,2014
    长沙沟镁铁质−超镁铁质岩体467±1马中平,2009
    清水泉堆晶辉长岩464±1.3本文
    斜长角闪岩461±4王立社,2016a
    斜长花岗岩451~465王立社,2016b
    迪木那里克钾长花岗岩452.8±3.1杨文强等,2012
    塔特勒克布拉克二长花岗岩462±2碰撞造山后初期抬升曹玉亭等,2010
    片麻状花岗岩451±1.7康磊等,2013
    玉素普阿勒克似斑状钾长花岗岩424造山后伸展阶段王超等,2008
    茫崖柴水沟、长春沟二长花岗岩、正长花岗岩404±5、406±4吴才来等,2014
    411±5、406±3
    吐拉碱厂花岗岩385.2±8.1吴锁平等,2007
    下载: 导出CSV
  • 曹玉亭, 刘良, 王超, 等. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J]. 岩石学报, 2010, 26(11): 3259-3271

    CAO Yuting, LIU Liang, WANG Chao, et al. Geochemical Zircon U-Pb Dating and Hf Isotope Compositions Studies for Tatelekebulake Granite in South AItyn Tagh[J]. Acta Petrobgica Sinica, 2010, 26(11): 3259-3271.

    董俊, 黄华良, 尹建华, 等. 东昆仑石头坑德镁铁-超镁铁质岩地质特征及成矿条件分析[J]. 西北地质, 2017, 50(02): 49-60 doi: 10.3969/j.issn.1009-6248.2017.02.005

    DONG Jun, HUANG Hualiang, YI Jianhua, et al. Geological Characteristics of the Shitoukengde Mafic-ultramafic Rocks in East Kunlun and Related Metallogenic Conditions[J]. Northwestern Geology, 2017, 50(02): 49-60. doi: 10.3969/j.issn.1009-6248.2017.02.005

    郭金城, 徐旭明, 陈海燕, 等. 新疆阿尔金长沙沟超镁铁质岩锆石U-Pb年龄及其地质意义[J]. 西北地质, 2014, 47(4): 170-177 doi: 10.3969/j.issn.1009-6248.2014.04.018

    GUO Jincheng, XU Xuming, CHEN Haiyan, et al. Zircon U-Pb Age and Geological Implications of Ultramafic Rocks in Changshagou, Altun Area, Xinjiang Province[J]. Northwestern Geology, 2014, 47(4): 170-177. doi: 10.3969/j.issn.1009-6248.2014.04.018

    高栋, 吴才来, 郜源红, 等. 南阿尔金玉苏普阿勒克塔格花岗岩体锆石U-Pb年代学、地球化学特征及地质意义[J]. 地球科学, 2019, 44(11): 3812-3828.

    GAO Dong, WU Cailai, HAO Yuanhong, et al. Zircon U-Pb geochronology, geochemistry of the Yusupuleke granite pluton in south Altyn and its geological implications[J]. Earth Science, 2019, 44(11): 3812-3828.

    校培喜, 高晓峰, 康磊, 等. 阿尔金-东昆仑西段成矿带地质背景研究[M]. 北京: 地质出版社, 2014

    JIAO Peixi, GAO Xiaofeng, KANG Lei, et al. Study on the Geological Background of the Metallogenic Belt in the Western Section of Altun-East Kunlun[M]. Beijing: Geological Publishing House, 2014.

    康磊, 校培喜, 高晓峰, 等. 茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因: 对阿尔金南缘早古生代构造-岩浆演化的启示[J]. 岩石学报, 2016, 32(06): 1731-1748

    KANG Lei, JIAO Peixi, GAO Xiaofeng, et al. Chronology, Geochemistry and Petrogenesis of Monzonitic Granite and Quartz Diorite in Mangai Area: Its Inspiration to Early Paleozoic Tectonic-magmatic Evolution of the Southern Altyn Tagh[J]. Acta Petrologica Sinica, 2016, 32(06): 1731-1748.

    康磊. 南阿尔金高压—超高压变质带早古生代多期花岗质岩浆作用及其地质意义[D]. 西安: 西北大学, 2014

    KANG Lei. Early Paleozoic Multi-stage Granitic Magmatism and the Geological Significance in the South Altyn Tagh HP-UHP Metamorphic Belt[D]. Xi’an: Northwest University, 2014.

    康磊, 刘良, 曹玉亭, 等. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J]. 岩石学报, 2013, 29(09): 3039-3048

    KANG Lei, LIU Liang, CAO Yuting, et al. Geochemistry, Zircon U-Pb Age and Its Geological Significance of the Gneissic Granite from the Eastern Segment of the Tatelekebulake Somposite Granite in the South Altyn Tagh[J]. Acta Petrologica Sinica, 2013, 29(09): 3039-3048.

    侯红星, 张蜀冀, 胡新茁, 等. 华北克拉通怀安县西洋河地区高压基性麻粒岩锆石U-Pb同位素年龄及地球化学特征[J]. 西北地质, 2022, 55(4): 240-254.

    HOU Hongxing, ZHANG Shuji, HU Xinzhuo, et al. Geochemical Characteristics and Zircon U-Pb Isotope Age of the High-pressure Basic Granulite in the Xiyanghe Area of the North China Craton[J]. Northwestern Geology, 2022, 55(4): 240-254.

    刘良, 康磊, 曹玉亭, 等. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J]. 中国科学: 地球科学, 2015, 45(08): 1126-1137 doi: 10.3969/j.issn.1671-2552.2009.10.009

    LIU Liang, KANG Lei, CAO Yuting, et al. Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn[J], NW China. Science China: Earth Sciences, 2015, 45(08): 1126-1137. doi: 10.3969/j.issn.1671-2552.2009.10.009

    刘良, 车自成, 王焰, 等. 阿尔金高压变质岩带的特征及其构造意义[J]. 岩石学报, 1999, (01): 58-65.

    LIU Liang, CHE Zicheng, WANG Yan, et al. The Petrological Characters and Geotectonic Setting of High-pressure Metamorphic Rock Belts in Altun Mountains[J]. Acta Petrologica Sinica, 1999, 15(1): 57-64.

    刘军, 息朝庄, 黄波, 等. 柴达木西北缘大通沟南山北闪长岩年代学、地球化学特征及其地质意义[J]. 西北地质, 2022, 55(2): 93-105.

    LIU Jun, XI Chaozhuang, HUANG Bo, et al. Geochronology, Geochemistry and Geological Significance of Thediorite in Datonggou Nanshanbei, Northwestern Qaidam Basin[J]. Northwestern Geology, 2022, 55(2): 93−105.

    刘永顺, 于海峰, 辛后田, 等. 阿尔金山地区构造单元划分和前寒武纪重要地质事件[J]. 地质通报, 2009, 28(10): 1430-1438 doi: 10.3969/j.issn.1671-2552.2009.10.009

    LIU YongShun, YU Haifeng, XIN Houtian, et al. Tectonic Units Division and Precambrian Significant Geological Events in Altyn Tagh Mountain, China[J]. Geological Bulletin of China, 2009, 28(10): 1430-1438. doi: 10.3969/j.issn.1671-2552.2009.10.009

    李向民, 马中平, 孙吉明, 等. 阿尔金断裂南缘约马克其镁铁-超镁铁岩的性质和年代学研究[J]. 岩石学报, 2009, 25(04): 862-872 doi: 10.3969/j.issn.1001-1552.2007.01.012

    LI Xiangmin, MA ZhongPing, SUN Jiming, et al. Characteristics and Age Study about the Yuemakeqi Mafic-ultramagic Rock in the Southern Altyn Fault[J]. Acta Petrologica Sinica, 2009, 25(04): 862-872. doi: 10.3969/j.issn.1001-1552.2007.01.012

    马中平, 李向民, 孙吉明, 等. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义—岩石学和地球化学初步研究[J]. 岩石学报, 2009, 25(04): 793-804

    MA Zhongping, LI Xiangmin, SUN Jiming, et al. Discovery of Layered Mafic-ultramafic Intrusion in Changshagou, Altyn Tagh, and Its Geological Implication: A Pilot Study on Its Petrological and Geochemical Characteristics[J]. Acta Petrologica Sinica, 2009, 25(04): 793-804.

    孙吉明, 马中平, 唐卓, 等. 阿尔金南缘鱼目泉岩浆混合花岗岩LA-ICP-MS测年与构造意义[J]. 地质学报, 2012, 86(02): 247-257 doi: 10.3969/j.issn.0001-5717.2012.02.004

    SUN JiMing, MA Zhongping, TANG Zhuo, et al. LA-ICP-MS Zircon Dating of the Yumuquan Magma Mixing Granite in the Southern Altyn Tagh and Its Tectonic Significance[J]. Acta Geologica Sinica, 2012, 86(02): 247-257. doi: 10.3969/j.issn.0001-5717.2012.02.004

    孙书勤, 张成江, 赵松江. 大陆板内构造环境的微量元素判别[J]. 大地构造与成矿学, 2007, 31(01): 104-109 doi: 10.3969/j.issn.1001-1552.2007.01.012

    SUN Shuqin, ZHANG Chengiang, ZHAO Songjiang. Identification of the tectonic settings for continental intraplate by trace elements[J]. Geotectonica et Metallogenia, 2007, 31(1): 104-109. doi: 10.3969/j.issn.1001-1552.2007.01.012

    王立社, 杨鹏飞, 段星星, 等. 阿尔金南缘中段清水泉斜长花岗岩同位素年龄及成因研究[J]. 岩石学报, 2016a, 32(03): 759-774

    WANG Lishe, YANG Pengfei, DUAN Xingxing, et al. Isotopic Age and Genesis of Plagiogranite from Qingshuiquan Area in the Middle of South Altyn Tagh[J]. Acta Petrologica Sinica, 2016, 32(03): 759-774.

    王立社, 李智明, 杨鹏飞, 等. 阿尔金清水泉斜长角闪岩同位素定年及其地球化学特征[J]. 大地构造与成矿学, 2016b, 40(04): 839-852 doi: 10.3969/j.issn.1671-2552.2007.10.016

    WANG Lishe, LI Zhiming, YANG Pengfei, et al. Isotopic Age and Geochemical Characteristics of Qingshuiquan Amphibolite in South Altyn Tagh[J]. Geotectonica et Metallogenia, 2016b, 40(04): 839-852. doi: 10.3969/j.issn.1671-2552.2007.10.016

    王超, 刘良, 张安达, 等. 阿尔金造山带南缘岩浆混合作用: 玉苏普阿勒克塔格岩体岩石学和地球化学证据[J]. 岩石学报, 2008, 24(12): 2809-2819 doi: 10.3321/j.issn:0001-5717.1999.03.001

    WANG Chao, LIU Liang, ZHANG Anda, et al. Geochemistry and Petrography of Early Paleozoic Yusupuleke Tagh Rapakivi-textured Granite Complex, South Altyn: An Example for Magma Mixing[J]. Acta Petrologica Sinica, 2008, 24(12): 2809-2819. doi: 10.3321/j.issn:0001-5717.1999.03.001

    吴才来, 郜源红, 雷敏, 等. 南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J]. 岩石学报, 2014, 30(08): 2297-2323

    WU Cailai, GAO Yuanhong, LEI Min, et al. Zircon SHRIMP U-Pb Dating, Lu-Hf Isotopic Characteristics and Petrogenesis of the Palaeozoic Granites in Mangya Area, Southern Altun, NW China[J]. Acta Petrologica Sinica, 2014, 30(8): 2297-2323.

    吴锁平, 吴才来, 陈其龙. 阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J]. 地质通报, 2007, 26(10): 1385-1392 doi: 10.3969/j.issn.1671-2552.2007.10.016

    WU Suoping, WU Cailai, Chen Qilong. Characteristics and Tectonic Setting of the Tula Aluminous A- type Granite at theSouth Side of the Altyn Tagh Fault, NW China[J]. Geological Bulletin of China, 2007, 26(10): 1385-1392. doi: 10.3969/j.issn.1671-2552.2007.10.016

    许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999, (03): 193-205 doi: 10.3321/j.issn:0001-5717.1999.03.001

    XU Zhiqin, YANG Jinsui, ZHANG Jianxin, et al. A Comparison Between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-slip Fault and the Mechanism of Lithospheric Shearing[J]. Acta Geologica Sinica, 1999, (03): 193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001

    杨文强, 刘良, 丁海波, 等. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J]. 岩石学报, 2012, 28(12): 4139-4150

    YANG Wenqiang, LIU Liang, DING Haibo, et al. Geochemistry, Geochronology and Zircon Hf Isotopes of the Dimunalike Granite in South Altyn Tagn and Its Geological Significance[J]. Acta Petrologica Sinica, 2012, 28(12): 4139-4150.

    张若愚, 曾忠诚, 陈宁, 等. 阿尔金造山带南缘中―晚奥陶世正长花岗岩的发现及其地质意义[J]. 地质通报, 2018, 37(04): 545-558

    ZHANG Ruoyu, ZENG Zhongcheng, CHEN Ning, et al. The Discovery of Middle-Late Ordovician Syenogranite on the Southern Margin of Altun Orogenic Belt and Its Geological Significance[J]. Geological Bulletin of China, 2018, 37(4): 545-558.

    Cabanis B, Lecolle M. Le Diagramme La/10-Y/15-N/8: Un Outil Pour La Discrimination Des Séries Volcaniques et La Mise en Évidence Des Processus De Mélange et/ou de Contamination Crustale[J]. C R Acad Sci Ser II, 1989, 309: 2023-2029. doi: 10.1016/0016-7037(90)90439-R

    Coleman R G. Ophiolite-Ancient Oceanic Lithosphere?[M]. Berlin: Springger Verlag, 1977. doi: 10.1007/s004100050184

    Dilek, Yildirim. Collision tectonics of the Mediterranean region: causes and consequences[J]. Collision Tectonics of the Mediterranean Region: Causes and Consequences. Geological Society of America Special Paper, 2006, 409(1): 1-13. doi: 10.1139/e71-055

    Donnelly K E, Goldstein S L, Langmuir S H, et al. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3): 347-366.

    Feng R, Kerrich R. Geochemistry of Fine-Grained Clastic Sediments in the Archean Abitibi Greenstone Belt, Canada: Implications for Provenance and Tectonic Setting[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 1061-1081. doi: 10.1016/0016-7037(90)90439-R

    Hirschmann M M, Stolpe E M. A Possible Role for Garnet Pyroxenite in the Origin of the “Garnet Signature” in MORB[J]. Contribtions to Mineralogy and Petrology, 1996, 124(2): 185-208. doi: 10.1007/s004100050184

    Irvine T N, Baragar W R A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journel of Earth Science, 1971, 8: 523-548. doi: 10.1139/e71-055

    Ludwig K R. Isoplot: A Geochronological Toolkit for Microsoft Excel[J]. California, Berkeley: Berkeley Geochronol Center Spec Publ, 2003, 4: 1-71.

    Li Y S, Zhang J X, Yu S Y, et al. Origin of Early Paleozoic Garnet Peridotite and Associated Garnet Pyroxenite in the South Altyn Tagh, NW China: Constraints from Geochemistry, SHRIMP U-Pb Zircon Dating and Hf Isotopes[J]. Journal of Asian Earth Sciences, 2015, 100: 60-67. doi: 10.1016/j.jseaes.2015.01.004

    Liu L, Wang C, Cao Y T, et al. Geochronology of Multi-stage Metamorphic Events: Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China[J]. Lithos, 2012, 136-139: 10-26. doi: 10.1016/j.lithos.2011.09.014

    Maurice A E, Basta F F, Khiamy A A. Neoproterozoic nascent island arc volcanism from the Nubian Shield of Egypt: magma genesis and generation of continental crust in intra-oceanic arcs[J]. Lithos, 2012, 132: 1-20. doi: 10.1144/GSL.SP.1989.042.01.19

    Niu Y L, Regelous M, Wendt I J, et al. Geochemistry of Near-EPR Seamounts: Importance of Source vs. Process and the Origin of Enriched Mantle Component[J]. Earth and Planetary Science Letters, 2002, 199(3): 327-345 doi: 10.1016/j.precamres.2013.02.003

    Polat A, Hofmann A W, Rosing M T. Boninite-like Volcanic Rocks in the 3.7-3.8Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-oceanic Subduction Zone Processes in the Early Earth[J]. Chemical Geology, 2002, 184: 231-254. doi: 10.1016/S0009-2541(01)00363-1

    Roex A. Source regions of mid-ocean ridge basalts: evidence for enrichment processes[J]. Mantle Metasomatism, 1987: 389-422.

    Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mmantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Wang C, Liu L, Yang W Q, et al. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China[J]. Precambrian Research, 2013, 230: 193-208. doi: 10.1016/j.precamres.2013.02.003

  • 期刊类型引用(1)

    1. 宋永,唐勇,何文军,龚德瑜,晏奇,陈棡,单祥,刘超威,刘刚,秦志军,阿布力米提·依明,尤新才,任海姣,白雨,高岗. 准噶尔盆地油气勘探新领域、新类型及勘探潜力. 石油学报. 2024(01): 52-68 . 百度学术

    其他类型引用(2)

图(8)  /  表(4)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  57
  • PDF下载量:  52
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-11-19
  • 网络出版日期:  2023-01-15
  • 刊出日期:  2023-08-19

目录

/

返回文章
返回