ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    东北地区氦气成藏条件与资源前景分析

    张健, 张海华, 贺君玲, 卞雄飞, 张德军, 陈树旺, 孙雷

    张健, 张海华, 贺君玲, 等. 东北地区氦气成藏条件与资源前景分析[J]. 西北地质, 2023, 56(1): 117-128. DOI: 10.12401/j.nwg.2022042
    引用本文: 张健, 张海华, 贺君玲, 等. 东北地区氦气成藏条件与资源前景分析[J]. 西北地质, 2023, 56(1): 117-128. DOI: 10.12401/j.nwg.2022042
    ZHANG Jian, ZHANG Haihua, HE Junling, et al. Analysis of Helium Accumulation Conditions and Resource Prospect in Northeast China[J]. Northwestern Geology, 2023, 56(1): 117-128. DOI: 10.12401/j.nwg.2022042
    Citation: ZHANG Jian, ZHANG Haihua, HE Junling, et al. Analysis of Helium Accumulation Conditions and Resource Prospect in Northeast China[J]. Northwestern Geology, 2023, 56(1): 117-128. DOI: 10.12401/j.nwg.2022042

    东北地区氦气成藏条件与资源前景分析

    基金项目: 中国地质调查局项目“东北地区重要盆地多能源资源地质调查”(DD20221664)资助。
    详细信息
      作者简介:

      张健(1980−),男,正高级工程师,硕士,主要从事油气基础地质调查研究。E-mail:48487885@qq.com

      通讯作者:

      张海华(1986−),男,高级工程师,博士,主要从事岩石学、大地构造学研究。E-mail:zhanghaihua311@163.com

    • 中图分类号: P618.13

    Analysis of Helium Accumulation Conditions and Resource Prospect in Northeast China

    • 摘要:

      氦气作为重要的稀有战略资源越来越受到关注和重视。东北地区氦气资源调查研究程度较低,资源状况不清,富集规律不明。为了认识东北地区氦气资源前景,本文通过对东北地区主要盆地氦气资源调查研究进展与成果进行系统的梳理、分析,结合对松辽、铁法等盆地天然气田含氦情况的调查研究,总结了东北地区氦气富集成藏地质条件。研究认为,东北地区氦气资源主要分布在松辽盆地、海拉尔盆地、辽河盆地、铁法盆地等重点盆地,氦气载体类型主要有烃类、二氧化碳和地层水等,氦气成因类型为壳–幔混合型;东北地区广泛发育的印支期和燕山期花岗岩提供了丰富的氦气来源,深大断裂的发育为氦气的运移聚集提供了必要的通道,良好的保存条件有利于氦气的富集与成藏。

      Abstract:

      As an important and rare strategic resource, helium has attracted more and more attention. Helium resources are abundant in Northeast China, but the degree of investigation is low, the resource status is unclear, and the enrichment is unknown. Based on the systematical analysis of the existing progress and achievements of helium resources in the main basins of Northeast China, combined with the investigation and research of helium content in natural gas fields in Songliao and Tiefa basin, this paper summarizes the geological conditions of helium accumulation in Northeast China and analyzes the prospects of helium resources. It is considered that the helium resources in Northeast China are mainly distributed in Songliao basin, Hailaer basin, Liaohe basin and Tiefa basin. The main types of helium carrier gas are hydrocarbons, carbon dioxide and water–soluble gas. The main genetic type of helium resources is crust–mantle mixed type, which is dominated by crust source. The widely developed Indosinian and Yanshanian granites in Northeast China provide abundant helium sources, and the development of deep faults provides the necessary channels for the migration and accumulation of helium. The good preservation conditions are conducive to the enrichment and accumulation of helium, and the prospect of helium exploration in Northeast China is promising.

    • 植被是陆地生态系统的重要组成部分,在地表能量交换、水平衡和生物循环等方面发挥重要作用。植被对温度、降水等气候因子尤为敏感,被称为气候变化“指示器”,是研究生态系统脆弱程度和全球变化的重要内容(李晓兵等,2000;马明国等,2006)。归一化植被指数(Normalized Difference Vegetation Index,NDVI)能够较好地反映植被覆盖度和长势,被广泛应用于不同时空尺度的植被生长监测中,用于探讨植被与气候因子之间的关系(朴世龙等,2001杨元合等,2006尤南山等,2019杜臻等,2023黄煜等,2023王化齐等,2023)。

      陈云浩等(2001)根据中国植被覆盖与气候因子驱动的区域分异规律,将植被区共划分4个一级区、6个二级区和14个三级区。Wardlow等(2008)研究了美国中部大平原密集种植区植被覆盖与环境条件之间的关系,为农业管理提供科学支持。崔林丽等(2010)分析了中国东部NDVI与气温和降水的响应特征,表明植被NDVI与气温和降水的最大相关系数在中国东部由北向南逐渐减小。袁丽华等(2013)分析黄河流域NDVI时空变化趋势和Hurst指数特征,研究植被覆盖变化的可持续特征。武正丽等(2015)基于MODIS NDVI等数据研究了祁连山地区植被覆盖变化与气候因子的响应关系。孟丹等(2015)通过分析2001~2013年间京津冀地区NDVI数据与降水、气温资料之间的相关关系,表明该区域植被覆盖变化主要受非气候因子驱动,面积占比为89.63%。徐嘉昕等(2020)分析了三江源区17年来NDVI时空分布特征及其与气温和降水之间的关系,表明植被生长季初期气温对NDVI变化的影响大于降水量,但在生长季中期,降水量对部分类型植被的生长影响较大。

      大凌河流域属辽西生态环境脆弱区,流域内山高谷深、地形复杂,受人为与自然因素影响,石漠化、水土流失等问题突出。生态系统稳定直接关系着辽西的经济发展和沿河居民生活(邸志强等,2007王炜航等,2010),前人对该区植被覆盖与气候之间的关系研究较少,且数据陈旧。鉴于此,笔者以大凌河流域为研究区,基于GIS等平台分析最近20年间流域NDVI的时空演变特征,研究了植被变化与降水和温度等气候条件之间的响应关系,为流域生态环境保护与修复提供了科学依据(强建华等,2021王鹏等,2021)。

      大凌河全长为435 km,上游分南、北两支,于喀左县大城子东南汇合后,流经朝阳、北漂、凌海、义县等地,最终汇入渤海。大凌河流域地理范围为:E 118°53'~121°52' 、N 40°28'~42°38' ,流域总面积为2.33×104 km2图1)。该流域地貌类型以山地丘陵为主,少量平原区;气候类型属于中温带气候,四季冷暖干湿分明,温度变化较大。该流域多年平均气温为8.3 ℃,平均相对湿度为53%,日照时数为2800 h,年均降雨量为465 mm,年蒸发量为1974.4 mm,年均径流量为1.79×109 m3

      图  1  大凌河流域地理位置图
      Figure  1.  Geographical location map of Daling river basin

      NDVI数据来自中国科学院资源环境科学数据中心发布的中国月度植被指数(NDVI)空间分布数据集(http://www.resdc.cn/DOI),该数据是基于连续时间序列的SPOT/VEGETATION NDVI卫星遥感数据,采用最大值合成法生成的。数据获取时间为1998~2019年,数据格式为ARCGIS GRID格式,空间分辨率为1 km。

      气象数据来源于中国气象数据网(https://data.cma.cn/)。研究区内共有建昌站、喀左站、凌源站、建平站、朝阳站、北票站、阜新站、义县站和凌海站等9个国家气象站点,选取各气象站点1998~2019年每日降水和气温数据,采用平滑样条函数进行插值生成1 km分辨率栅格数据。本研究中地理数据处理与分析采用ArcGIS和Anusplin等软件完成。

      最大值合成法(MaximumValue Composites,MVC)是国际通用的NDVI数据统计方法。通过最大值合成法可以消除大气污染、云、太阳高度角等因素的干扰(陈云浩等,2001王强等,2017)。本研究选取了大凌河流域1998~2019年期间每年3~11月的NDVI值,取每月2期数据的平均值为该月植被指数数据,再通过最大值合成法,提取每个像元的最大值为该年NDVI值,计算公式为:

      $$ {NDVI}_{i}=Max({NDVI}_{ij}) $$ (1)

      式中:NDVIi表示第i年的NDVI值;i取值1~22,分别代表1998~2019年;NDVIij表示第i年第j月的NDVI值;j取值1~9,分别代表3~11月。

      变异系数(Coefficient of Variance,CV),又称为标准离差率或单位风险,是衡量资料中各观测值变异程度的一个统计量,计算公式为:

      $$ CV=\frac{\delta }{\mu }\times 100\text{%}$$ (2)

      式中:$ \delta $为样本标准差,$ \mu $为样本的平均值。

      为反映植被变化的年际和年内特征,采用生长季(3~11月)、春季(3~5月)、夏季(6~8月)和秋季(9~11月)NDVI合成值来表征植被生长,各季节分别为时段内各月份NDVI的平均值。笔者基于像元尺度,计算NDVI与年份的一元线性回归斜率slop(式3)。若slop>0表示NDVI呈增加趋势,slop<0则表示NDVI呈减少趋势。结合回归系数的显著性水平(p值),将研究区NDVI年际变化情况划分为6个类型:极显著降低(p<0.01,slop<0)、显著降低(0.01<p<0.05,slop<0)、不显著降低(p>0.05,slop<0)、不显著增加(p>0.05,slop>0)、显著增加(0.01<p<0.05,slop>0)和极显著增加(p>0.01,slop>0)(尤南山等,2019张新悦等,2021)。

      slop计算公式为:

      $$ slope=\frac{n* \displaystyle \sum\nolimits _{i=1}^{n}i*{NDVI}_{i}- \displaystyle \sum\nolimits _{i=1}^{n}i \displaystyle \sum\nolimits _{i=1}^{n}{NDVI}_{i}}{n* \displaystyle \sum\nolimits _{i=1}^{n}{i}^{2}-{\left( \displaystyle \sum\nolimits _{i=1}^{n}i\right)}^{2}} $$ (3)

      式中:n为监测时间段的年数22,NDVIi表示第i年的植被指数。

      偏相关分析是在消除其他变量影响的前提下计算某两个变量之间的相关性,笔者利用基于像元的偏相关分析法分别研究了气温和降水量对植被NDVI变化的贡献程度,计算公式如下:

      $$ {R}_{xy,z}=\frac{{R}_{xy}-{R}_{xz}{R}_{yz}}{\sqrt{(1-{R}_{xz}^{2})}\sqrt{(1-{R}_{yz}^{2})}} $$ (4)

      式中:Rxyz为自变量z固定后因变量x与自变量y的偏相关系数。RxyRxzRyz分别为变量xy、变量xz、变量yz的皮尔逊相关系数。若Rxy,z>0,表示正相关;若Rxy,z<0,则表示负相关。偏相关系数越大,说明二者相关性越强。偏相关系数的显著性检验采用t检验法完成。

      偏相关系数的显著性检验采用t检验法完成,计算公式如下:

      $$ t=\frac{{R}_{xy,z}}{\sqrt{1-{R}_{zy,z}^{2}}}\sqrt{n-m-1} $$ (5)

      式中:n为样本数(时间序列1998~2019,即n=22),m为自变量的数量。

      复相关分析可研究一个变量与多个变量之间的相关程度,复相关的显著性检验可采用F检验法。复相关系数计算公式如下:

      $$ {R}_{x,yz}=\sqrt{1-(1-{R}_{xy}^{2})(1-{R}_{xz,y}^{2})} $$ (6)

      复相关的显著性检验可采用F检验法,计算公式如下:

      $$ F=\frac{{R}_{x,yz}^{2}}{1-{R}_{x,yz}^{2}}\times \frac{n-k-1}{k} $$ (7)

      式中:n为时间序列年份数,k为自变量的数量。

      从区域尺度看,1998~2019年间大凌河流域多年平均NDVI值为0.49,总体呈显著上升趋势(R2=0.48,p<0.01),其NDVI值从1998年的平均0.49增至 2019 年以来的0.52,年平均增长量为0.0014(图2)。

      图  2  1998~2019年大凌河流域生长季NDVI值变化趋势图
      Figure  2.  NDVI variation trend during the growing season of Daling river basin from 1998 to 2019

      按照不同季节来看,1998~2019年间大凌河流域在春季、夏季、秋季的NDVI均值分别为0.362、0.739和0.642,整体呈缓慢增长趋势。其中,夏季NDVI增长率最大,为0.0059;秋季(0.0041)次之,春季(0.0034)最小。春季变异系数最大(0.135),其次为夏季(0.065),秋季最小(0.090),说明春季植被覆盖的波动性最明显(图3)。

      图  3  1998~2019年大凌河流域NDVI值按季节变化趋势图
      Figure  3.  Seasonal variation trend of NDVI in Daling river basin from 1998 to 2019

      1998~2019年间,大凌河流域逐像元NDVI值在不同季节的变化趋势见图4图5

      图  4  大凌河流域1998~2019年逐像元NDVI值变化趋势图
      a.春季;b.夏季;c.秋季;d.生长季
      Figure  4.  NDVI variation trend per pixel in Daling river basin from 1998 to 2019
      图  5  大凌河流域1998~2019年逐像元NDVI值变化趋势的显著性图
      a.春季;b.夏季;c.秋季;d.生长季
      Figure  5.  Significance of NDVI trend per pixel in Daling river basin from 1998 to 2019

      大凌河流域22年来生长季92.8%的区域NDVI值呈正增长,其中,增长率大于0.005的面积占总面积的46.8%,主要分布于大凌河中上游。NDVI值增长率位于0.003~0.005、0.001~0.003两个区间的面积比例分别为23.7%、16.3%,主要分布于阜新市以南至锦州市一带,朝阳县、建平县和建昌县有零星分布。此外,阜新市东北部、锦州市南部、朝阳市西部等地,NDVI呈现局部斑块状缓慢负增长,增长率绝对值<0.001(图4表1)。从NDVI变化显著性来看,生长季NDVI以增加趋势为主,面积占比90.8%。其中,不显著增加区域占比为71.2%,主要分布于大凌河流域中上游地区,极显著增加和显著增加区域分别占18.0%和1.6%,主要分布于大凌河中下游的朝阳市、锦州市和阜新市等地(图5表2)。

      表  1  大凌河流域1998~2019年间NDVI变化趋势表
      Table  1.  NDVI variation trend in Daling river basin from 1998 to 2019
      变化率春季(%)夏季(%)秋季(%)生长季(%)
      <−0.00118.54.26.24.8
      −0.001~06.41.22.82.6
      0~0.0018.12.85.45.8
      0.001~0.00314.36.216.016.3
      0.003~0.00514.815.425.023.7
      >0.00537.970.344.746.8
      下载: 导出CSV 
      | 显示表格
      表  2  大凌河流域1998~2019年间NDVI变化的显著性表
      Table  2.  Significance of NDVI change in Daling rver basin from 1998 to 2019
      变化显著性春季(%)夏季(%)秋季(%)生长季(%)
      极显著降低18.23.16.64.3
      显著降低3.30.70.80.1
      不显著降低4.12.12.14.8
      不显著增加33.376.931.071.2
      显著增加12.67.519.31.6
      极显著增加28.69.840.218.0
      下载: 导出CSV 
      | 显示表格

      不同季节,NDVI变化规律存在一定差异。从NDVI增长率来看,不同季节超过六成的区域NDVI变化率大于0.001,尤其是夏季,这一比例为91.9%。另有部分区域NDVI呈缓慢负增长,春季负增长区最大,占总面积24.9%,秋季占比9.0%,夏季最小(占比5.4%)(图4表1)。从NDVI变化的显著性来看,秋季极显著增加区面积占比达40.2%,为所有季节中最高,主要分布于朝阳市东北部、阜新—锦州一带。春季极显著增加区面积占比28.6%,最低的是夏季,这一比例为9.8%。显著增加区,秋季面积最大,占比为19.3%。极显著降低区中,比例最大的是春季,为18.2%,主要集中分布在大凌河下游阜新–锦州一带,建平、喀左等局部有零星分布(图5表2)。

      对大凌河流域22年来生长季NDVI与年降水和平均气温进行偏相关性分析(图6图7)。结果显示,生长季NDVI与气温和降水的评价偏相关系数,分别为−0.24、0.32,表明年际变化水平上,大凌河流域NDVI与气温呈负相关、与降水量呈正相关,且NDVI与年降水量关系更密切。研究区域内NDVI与平均气温呈正、负相关的区域分别占总区域的5.40%、94.60%,对偏相关系数进行显著性检验,可知0.02%的区域通过p<0.01的显著性检验,主要分布在大凌河口。研究区域内NDVI与降水量呈正、负相关的区域,分别占总区域的97.36%、2.64%,其中通过p<0.01显著性检验区域比例为4.40%,主要分布于阜新–义县一带,朝阳和建平等地有零星分布。

      图  6  大凌河流域生长季NDVI与气温的偏相关关系图
      Figure  6.  Partial correlation between NDVI and air temperature in the growing season of Daling river basin
      图  7  大凌河流域生长季NDVI与降水量的偏相关关系图
      Figure  7.  Partial correlation between NDVI and precipitation in the growing season of Daling river basin

      大凌河流域生长季NDVI与气温、降水复相关系数为0~0.90(图8),平均复相关系数为0.38,高值主要集中在阜新县—义县一带,以及朝阳县和建平县部分区域,低值区分布较广,主要分布于大凌河中上游。根据表3确立的分区规则(王强等,2017),统计大凌河流域降水驱动型区域占比为4.33%,主要分布在阜新县、朝阳市等地区,还有部分零星分布在建平县和义县;气温驱动型区域所占面积比为0.03%,主要分布锦州市大凌河入海口;降水、气温共同驱动区域占总面积的2.73%,主要分布在阜新市周边,其他县市均有零星分布。

      图  8  生长季NDVI气温、降水量的复相关系数(a)与不同驱动因子分区图(b)
      a.偏相关系数;b.不同驱动因子分区
      Figure  8.  (a) Multiple correlation coefficients between NDVI and temperature and (b) precipitation and partitioning of different driving factors in growing season
      表  3  大凌河流域植被覆盖驱动分区规则表
      Table  3.  Vegetation cover driving zoning criteria in the Daling river basin
      NDVI变化类型分区准则面积占比(%)
      rNDVI P,TrNDVI T,PRNDVI,TP
      降水驱动型tt0.01FF0.054.33
      气温驱动型tt0.01FF0.050.03
      气温、降水驱动型tt0.01tt0.01FF0.052.73
      其他因子驱动型FF0.0592.91
       注:表中rNDVIP,T、rNDVIT,P分别为NDVI与降水、气温的偏相关系数,RNDVI,TP则表示NDVI与气温和降水的复相关系数,tF分别为t、F检验的统计量,t0.01表示t检验的0.01显著性水平,F0.05表示F检验的0.05显著性水平。
      下载: 导出CSV 
      | 显示表格

      (1)1998~2019年,大凌河流域NDVI整体呈增加趋势,说明植被覆盖整体变好。不同季节变化趋势各异,夏季NDVI增长率最高,秋季次之,春季增长率最低,且波动最明显。

      (2)大凌河流域植被覆盖空间上呈现不同特征,中上游NDVI增长率较大,变化显著性以不显著为主,说明呈缓慢稳定增长规律。下游地区NDVI增长率整体较小,但变化显著性方面存在多种情况,特别是极显著增加和极显著降低区相邻共存。究其原因,大凌河流域上游以丘陵山区为主,自然资源开发程度较低;下游地区由于人类活动更频繁,对植被的破坏和修复同时进行,造成更复杂的植被覆盖变化规律。

      (3)大凌河流域NDVI总体与平均气温呈负相关、与降水量呈正相关,且NDVI与年降水量关系更密切。区内94.60%的区域NDVI与平均气温呈负相关,其中通过显著性检验(p<0.01)的比例为0.02%,主要分布于大凌河口。区内97.36%的区域NDVI与降水量呈正相关的区域,占总区域的,通过p<0.01显著性检验区域比例为4.40%,主要分布于阜新—义县一带。

      (4)根据前人研究中气候因子驱动评价模型,大凌河流域植被覆盖降水驱动型区域占比为4.33%,主要分布在阜新县、朝阳市等地区;气温驱动型所占面积比为0.03%,主要分布锦州市大凌河入海口;降水、气温共同驱动区域占总面积的2.73%,主要分布在阜新市周边。

    • 图  1   东北地区氦气异常井分布图

      Figure  1.   Distribution map of wells containing helium gas in Northeast China

      图  2   东北地区主要盆地氦同位素分布特征

      Figure  2.   Distribution characteristics of helium isotopes in main basins in Northeast China

      图  3   东北地区3He/4He–He(%)关系图(据徐永昌等,1996a1996b修改)

      Figure  3.   The relationship of 3He/4He–He(%)in Northeast China (Modified according to Xu Yongchang et al., 1996)

      图  4   松辽盆地及周边花岗岩分布特征图

      Figure  4.   Distribution characteristics of granites in Songliao basin and its surrounding areas

      表  1   研究区天然气组分、氦气含量及同位素特征表

      Table  1   Natural gas composition, helium content and isotope characteristics in the study area

      样品号研究区(代号)He(10−63He/4He(10−6R/Ra甲烷
      (%)
      乙烷
      (%)
      丙烷
      (%)
      异丁烷
      (%)
      正丁烷
      (%)
      异戊烷
      (%)
      正戊烷
      (%)
      CO2
      (%)
      22HQ01长岭工区(CL)78.270.42470.303394.110.70.040.33
      22HQ02523.633.18382.274270.881.160.090.0120.41
      22HQ03509.023.07372.195567.491.120.040.0122.52
      22HQ04430.403.05192.179964.681.070.040.0124.01
      22HQ05431.282.37631.697362.181.080.040.010.0127.86
      22HQ06525.693.34762.391164.831.070.0424.03
      22HQ07286.503.17602.268656.40.920.030.0132.62
      22HQ08604.103.17822.270183.861.50.060.016.18
      下载: 导出CSV
      续表1
      样品号研究区(代号)He(10−63He/4He(10−6R/Ra甲烷
      (%)
      乙烷
      (%)
      丙烷
      (%)
      异丁烷
      (%)
      正丁烷
      (%)
      异戊烷
      (%)
      正戊烷
      (%)
      CO2
      (%)
      22HQ09德惠工区(DH)144.471.05450.753285.426.751.290.240.170.060.030.61
      22HQ10152.221.07800.770085.538.131.950.360.30.110.060.54
      22HQ11144.361.06470.760582.518.72.20.410.320.10.050.55
      22HQ12162.170.95200.680084.88.392.650.540.410.140.070.96
      22HQ1310.261.64611.175884.666.161.650.240.250.080.041.28
      22HQ146.201.21290.866385.412.090.230.020.020.0108.68
      22HQ15166.750.29280.209188.344.771.290.230.210.080.031.37
      22HQ16148.451.27500.910783.648.212.010.360.290.10.040.41
      22HQ17172.130.46750.334085.347.982.260.390.40.150.08
      22HQ18196.950.83890.599268.95.381.770.290.350.120.07
      22HQ19236.641.87601.340060.985.512.160.50.490.210.080.52
      22HQ20192.570.44600.3186808.993.080.590.660.230.14
      22HQ2120.190.68430.488884.084.291.270.250.190.080.020.13
      22HQ22英台工区(YT)16.341.83261.3090
      22HQ23264.071.79201.2800
      22HQ24265.131.94881.39200.04
      22HQ25108.910.47460.33900.28
      22HQ26126.050.47180.33700.26
      22HQ27240.421.84941.32100.84
      22HQ28314.112.11961.51409.41
      22HQ29伏龙泉工区(FLQ)22.301.12200.801489.591.070.270.090.060.030.022.09
      22HQ30554.740.33010.235861.630.110.020.01
      22HQ31497.430.06150.043989.43.51.10.210.210.050.04
      22HQ32360.000.32200.230083.094.441.370.270.320.090.080.15
      22HQ33王府工区(WF)238.601.83401.31000.02
      22HQ34119.400.91280.65200.03
      22HQ35326.030.42000.30000.02
      22HQ3610.901.68141.20100.04
      22HQ37224.301.04860.74900.41
      22HQ38243.482.39401.71000.18
      22HQ39铁法盆地(TF)338.420.63980.457083.730.45
      22HQ4091.440.71960.514091.230.52
      22HQ41200.950.50260.359084.490.62
      22HQ42199.500.49000.350092.470.61
      22HQ43219.360.50820.363088.130.430.01
      22HQ44920.100.48160.344093.710.61
      22HQ451062.180.47320.338095.080.36
      22HQ46207.460.47740.341091.350.510.01
      22HQ47149.680.56280.402088.910.72
      22HQ48135.510.50680.3620
      22HQ49236.710.57960.414081.050.5
      22HQ50468.676.19084.422093.250.380.01
      22HQ51199.630.45030.321789.830.60.010.01
      22HQ52276.720.45920.328091.740.51
      下载: 导出CSV
    • 陈践发, 刘凯旋, 董勍伟, 等. 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学, 2021, 32(10): 1436-1449 doi: 10.11764/j.issn.1672-1926.2021.08.006

      CHEN Jianfa, LIU Kaixuan, DONG Qingwei, et al. Re-search Status of Helium Resources in Natural Gas and Prospects of Helium Resources in China[J]. Natural Gas Geoscience, 2021, 32(10): 1436-1449. doi: 10.11764/j.issn.1672-1926.2021.08.006

      陈新军. 典型富氦区资源特征及开发利用前景分析—以中国石化油气矿业权区为例[J]. 中国国土资源经济, 2021, 04: 84-88

      CHEN Xinjun. Analysis of resource characteristics and exploitation foreground of typical helium rich areas-A case study of sinopec’s oil and gas mining right area [J]. China's land and resource economy, 2021, 04: 84-88.

      陈新军, 陈刚, 边瑞康, 等. 四川盆地涪陵页岩气田氦气资源潜力与成因机理[J/OL]. 天然气地球科学, 2022

      CHEN Xinjun , CHEN Gang , BIAN Ruikang, et al. The helium resource potential and genesis mechanism in Fuling Shale Gas Field, Sichuan Basin[J/OL]. Natural Gas Geoscience. 2022.

      陈树旺,许光,杨建国,等. 松辽盆地及外围油气资源基础地质调查——“十三五”阶段进展与未来工作展望[J]. 地质与资源, 2021, 30(3): 221-231+248.

      CHEN Shuwang, XU Guang, YANG Jianguo, et al. Foundational geological survey for oil and gas resources in Songliao Basin and its periphery areas: Progress and prospect[J]. Geology and Resources, 2021, 30(3): 221-231+248.

      陈树旺, 张健, 郑月娟, 等. 松辽盆地西部斜坡区油气地质调查进展与发现[J]. 中国地质调查, 2019, 6(1): 1-9.

      CHEN Shuwang, ZHANG Jian, ZHENG Yuejuan, et al. Progresses and discoveries of geological survey on oil and gas resourcesrelated to the Upper paleozoic in the western slope of Songliao Basin[J]. Geological Survey of China, 2019, 6(1): 1-9.

      陈振岩, 余炳俊, 郑治宇, 等. 辽河盆地多源天然气复合成因[J]. 沉积学报, 1997, 6( 2): 58-62 doi: 10.14027/j.cnki.cjxb.1997.02.012

      Chen Zhenyan, Yu Bingjun, Zheng Zhiyu, et al. The compound or-igin of polygenic natural gases of the Liaohe Basin[J]. Acta Sedim-entologica Sinica, 1997, 6( 2): 58-62. doi: 10.14027/j.cnki.cjxb.1997.02.012

      董敏, 王宗秀, 董会, 等. 关中盆地花岗岩石英脉流体包裹体与氦气成藏特征研究[J]. 西北地质, 2017, 50(3): 222-230 doi: 10.3969/j.issn.1009-6248.2017.03.023

      DONG Min, WANG Zongxie, DONG Hui, et al. Fluid Inclusions Characteristics of Quartz Vein in Granite and Helium Accumulation in Guanzhong Basin, Shaanxi Province[J]. Northwestern Geology, 2017, 50(3): 222-230. doi: 10.3969/j.issn.1009-6248.2017.03.023

      冯子辉, 霍秋立, 王雪. 松辽盆地北部氦气成藏特征研究[J]. 天然气工业, 2001;21(5): 27-30 doi: 10.3321/j.issn:1000-0976.2001.05.007

      FENG Zhihui, HUO Qiuli, WANG Xue. A study of helium reservoir formation characteristic in the north part of Songliao Basin [J]. Natural Gas Industry, 2001, 21(5): 27-30. doi: 10.3321/j.issn:1000-0976.2001.05.007

      郭占谦. 石油天然气地质论文集[M]. 北京: 石油工业出版社, 2003: 97-109.
      高瑞祺. 松辽盆地油气田形成条件与分布规律[M]. 北京: 石油工业出版社 , 1997.
      顾延景, 张保涛, 李孝军, 等. 济阳坳陷花沟地区氦气成藏控制因素探讨—以花501井为例[J]. 西北地质, 2022, 55(3): 257-266

      GU Yanjing, ZHANG Baotao, LI Xiaojun, et al. Discussion on Helium Resource Accumulation Mechanism in Huagou Area of Jiyang Depression: Taking Well Hua 501 as an Example[J]. Northwestern Geology, 2022, 55(3): 257-266.

      黄福堂, 黄清华, 齐景顺, 等. 松辽及外围盆地多种资源勘探与综合利用的探讨[J]. 国土资源科技管理, 2000, 2(17): 1-6 doi: 10.3969/j.issn.1009-4210.2000.02.001

      HUANG Futang, HUANG Qinghua, QI Jingshun, et al. A Talk on Exploration and Comprehensive Utilization of Resources in Songliao and Its Neighbouring Basins[J]. Scientific and Technological Management of Land and Resources, 2000, 2(17): 1-6. doi: 10.3969/j.issn.1009-4210.2000.02.001

      候贺晟, 王成善, 张交东, 等. 松辽盆地大陆深部科学钻探地球科学研究进展[J]. 中国地质, 2018, 45(04): 641-657 doi: 10.12029/gc20180401

      HOU Hesheng, WANG Chengshan, ZHANG Jiaodong, et al. Deep continental scientific drilling engineering in Songliao Basin: Resource discovery and progress in earth science research[J]. Geology in China, 2018, 45(4): 641-657. doi: 10.12029/gc20180401

      黄华州, 桑树勋, 毕彩芹, 等. 煤层群煤系多套含气系统特征及其合采效果: 以铁法盆地阜新组为例[J]. 沉积学报, 2021, 39(3): 645−655

      HUANG Huazhou, SANG Shuxun, BI Caiqin, et al. Characterist-ics of multi−gas−bearing systems within coal seam groups and the effect of commingled production: A case study on Fuxin Formation, Cretaceous, Tiefa Basin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 645−655.

      李玉宏, 卢进才, 李金超, 等. 渭河盆地富氦天然气井分布特征与氦气成因[J]. 吉林大学学报(地球科学版), 2011, 41(S1): 47-53 doi: 10.13278/j.cnki.jjuese.2011.s1.030

      LI Yuhong, LU Jincai, LI Jinchao, et al. Distribution of the Helium-Rich Wells and Helium Derivation in Weihe Basin[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(S1): 47-53. doi: 10.13278/j.cnki.jjuese.2011.s1.030

      李玉宏, 张文, 王利, 等. 壳源氦气成藏问题及成藏模式[J]. 西安科技大学学报, 2017, 37( 4): 565-572 doi: 10.13800/j.cnki.xakjdxxb.2017.0417

      LI Yuhong, ZHANG Wen, WANG Li, et al. Several is-sues in the accumulation of crust-derived helium and theaccumulation model[J]. Journal of Xi’an University of Science and Technology, 2017, 37( 4): 565-572. doi: 10.13800/j.cnki.xakjdxxb.2017.0417

      李玉宏, 周俊林, 张文. 渭河盆地氦气成藏条件及资源前景[M]. 北京: 地质出版社, 2018.
      李玉宏, 李济远, 周俊林, 等. 氦气资源评价相关问题认识与进展[J]. 地球科学与环境学报, 2022a, 44(3): 363-373 doi: 10.19814/j.jese.2021.11008

      LI Yuhong, LI Jiyuan, ZHOU Junlin, et al. Research progress and new views on evaluation of helium resources[J]. Journal of Earth Sciences and Environment, 2022a, 44(3): 363-373. doi: 10.19814/j.jese.2021.11008

      李玉宏, 李济远, 周俊林, 等. 国内外氦气资源勘探开发现状及其对中国的启示[J]. 西北地质, 2022b, 55(3): 233-240 doi: 10.19751/j.cnki.61-1149/p.2022.03.018

      LI Yuhong, LI Jiyuan, ZHOU Junlin, et al. Exploration and development status of world helium resources and its implications for China[J]. Northwestern Geology, 2022b, 55(3): 233-240. doi: 10.19751/j.cnki.61-1149/p.2022.03.018

      李德生. 中国含油气盆地的构造类型[J]. 石油学报, 1982, 3(3): 1-12 doi: 10.7623/syxb198203001

      LI Desheng. Tectonic types of oil and gas basins in China [J]. ActaPetrolei Sinica, 1982, 3(3): 1-12. doi: 10.7623/syxb198203001

      刘超, 孙蓓蕾, 曾凡桂, 等. 鄂尔多斯盆地东缘石西区块含氦天然气的发现及成因初探[J]. 煤炭学报, 2021, 46(4): 1280-1287 doi: 10.13225/j.cnki.jccs.2021.0152

      LIU Chao, SUN Beilei, ZENG Fangui, et al. Discovery and origin of helium-rich gas on the Shixi area, eastern mar-gin of the Ordos Basin[J]. Journal of China Coal Society, 2021, 46(4): 1280-1287. doi: 10.13225/j.cnki.jccs.2021.0152

      李济远, 李玉宏, 胡少华, 等. “山西式”氦气成藏模式及其意义[J]. 西安科技大学学报, 2022, 42( 3): 529-536 doi: 10.13800/j.cnki.xakjdxxb.2022.0316

      LI Jiyuan, LI Yuhong, HU Shaohua, et al. “Shanxi-type”helium accumulation model and its essentiality[J]. Journal of Xi’an Uni-versity of Science and Technology, 2022, 42(3): 529-536. doi: 10.13800/j.cnki.xakjdxxb.2022.0316

      裴福萍, 许文良, 杨德彬, 等. 松辽盆地南部中生代火山岩: 锆石U-Pb年代学及其对基底性质的制约[J]. 地球科学, 2008, 33(05): 603-617 doi: 10.3321/j.issn:1000-2383.2008.05.003

      PEI Fuping, XU Wenling, YANG Debin, et al. Mesozoic volcanic rocks in the Southern Songliao Basin: Zircon U-Pb ages and their constraints on the nature of Basin basement[J]. Earth Science, 2008, 33(05): 603-617. doi: 10.3321/j.issn:1000-2383.2008.05.003

      彭威龙, 刘全有, 张英, 等. 中国首个特大致密砂岩型(烃类)富氦气田—鄂尔多斯盆地东胜气田特征[J]. 中国科学: 地球科学, 2022, 52(6): 1078-1085

      PENG Weilong, LIU Quanyou, ZHANG Ying, et al. The first extra-large helium-rich gas field identified in a tight sandstone of the Dongsheng Gas Field, Ordos Basin, China[J]. Science China Earth Sciences, 2022, 52(6): 1078–1085.

      秦胜飞, 李济远. 世界氦气供需现状及发展趋势[J]. 石油知识, 2021, (05): 44-45

      QIN Shengfei, LI Jiyuan. World helium supply and demandstatus and trends[J]. Petroleum Knowledge, 2021, (05): 44-45.

      秦胜飞, 李济远, 王佳美, 等. 中国含油气盆地富氦天然气藏氦气富集模式[J]. 天然气工业, 2022a, 42(7): 125-134 doi: 10.3787/j.issn.1000-0976.2022.07.014

      QIN Shengfei, LI Jiyuan, WANG Jiamei, et al. Helium enrichment model of helium-rich gas reservoirs in petroliferous basins in China[J]. Natural Gas Industry, 2022a, 42(7): 125-134. doi: 10.3787/j.issn.1000-0976.2022.07.014

      秦胜飞, 李济远, 梁传国, 等. 中国中西部富氦气藏氦气富集机理——古老地层水脱氦富集[J]. 天然气地球科学, 2022b, 33(8): 1203-1217

      QIN Shengfei, LI Jiyuan, LIANG Chuanguo, et al. Helium enrichment mechanism of helium rich gas reservoirs in central and western China: Degassing and accumulation from old formation water[J]. Natural Gas Geoscience, 2022b, 33(8): 1203-1217.

      陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]. 地球科学, 2019, 44(3): 1024-1041

      TAO Xiaowan, LI Jianzhong, ZHAO Libin, et al. Helium resources and discovery of first supergiant helium reserve in China: Hetianhe gas field[J]. Earth Science, 2019, 44(3): 1024-1041.

      王江, 张宏, 林东成. 海拉尔盆地乌尔逊含氦 CO2气藏勘探前景[J]. 天然气工业, 2002, 22(4): 109-111 doi: 10.3321/j.issn:1000-0976.2002.04.034

      WANG Jiang, ZHANG Hong, LIN Dongcheng. Exploration prospects of Urxun helium-bearing CO2gas reservoir in Hailar Basin[J]. Natural Gas Industry, 2002, 22(4): 109-111. doi: 10.3321/j.issn:1000-0976.2002.04.034

      王平在, 李明生, 王江. 海拉尔盆地乌尔逊含氦二氧化碳气藏石油地质特征及勘探前景[J]. 特种油气藏, 2003, 10(6): 9-12 doi: 10.3969/j.issn.1006-6535.2003.06.003

      WANG Pingzai, LI Mingsheng, WANG Jiang. Petroleum geology and exploration potential of Wuerxun helium-bearing CO2gas reservoir in Hailaer Basin[J]. Special Oil & Gas Reservoirs, 2003, 10( 6): 9-12. doi: 10.3969/j.issn.1006-6535.2003.06.003

      王杰, 陈践发, 王铁冠, 等. 松辽盆地双城—太平川地区天然气成因类型及气源[J]. 石油学报, 2006, 27(3): 16-21 doi: 10.3321/j.issn:0253-2697.2006.03.004

      WANG Jie, CHEN Jianfa, WANG Tieguan, et al. Gas source rocks and gas genetic type in Shuangcheng⁃Taipingchuan area of Songliao Basin[J]. Acta Petrolei Sinica, 2006, 27(3): 16-21. doi: 10.3321/j.issn:0253-2697.2006.03.004

      王天昊,吕雪川,高肖汉,等.松辽盆地天然气中氦气的检测与提纯方法[J].辽宁石油化工大学学报,2020,40(5):18-21.

      WANG Tianhao,LUXuechuan,GAO Xiaohan,et al.Detection and purification of Helium in natural gas of Songliao Basin[J].Journal of Liaoning Shihua University,2020,40(5):18-21.

      徐永昌, 沈平, 陶明信, 等. 东部油气区天然气中幔源挥发份的地球化学—I. 氦资源的新类型: 沉积壳层幔源氦的工业储集[J]. 中国科学(D辑), 1996a, 26(1): 1-8

      XU Yongchang, SHEN Ping, TAO Mingxin, et al. Geo-chemistry of mantle-derived volatiles in natural gas from oil and gas regions, Eastern China: I A new type of helium: industrial storage of mantle-derived helium in sedimentary crust[J]. Scientia Sinica Terrae, 1996a, 26(1): 1-8.

      徐永昌, 沈平, 刘文汇, 等. 东部油气区天然气中幔源挥发份的地球化学—Ⅱ. 幔源挥发份中的氦、氩及碳化合物[J]. 中国科学 (D辑: 地球科学), 1996b, 26(2): 187-192

      XU Yongchang, SHEN Ping, LIU Wenhui, et al. Geochemistry of mantle-derived volatiles from natural gas in eastern oil and gasregion-Ⅱ. Helium, argon and carbon compounds in mantle-derived volatiles [J]. Scientia Sinica Terrae, 1996b, 26(2): 187-192

      徐永昌, 傅家谟, 郑建京. 天然气成因及大中型气田形成的地学基础[M]. 北京: 科学出版社, 2000

      XU Yongchang, FU Jiamo, ZHENG Jianjing. Origin of natural gas and geosciences of largeand medium gas fields [M]. Beijing: Science Press, 2000.

      余星, 肖俊, 陈汉林, 等. 松辽盆地基底显生宙岩浆热事件: 来自营城组火山岩捕获错石的SHRIMP定年证据[J]. 岩石学报, 2008, 24(05): 1123-1130

      YU Xing, XIAO Jun, CHEN Hanlin, et al. Phanerozoic magmatic events in the basement of Songliao basin: SHRIMP dating of capture zircons from Yingcheng formation volcanic rocks[J]. Acta Petrologica Sinica, 2008, 24(05): 1123-1130.

      杨振宁, 李永红, 刘文进, 等. 柴达木盆地北缘全吉山地区氦气形成地质条件及资源远景分析[J]. 中国煤炭地质, 2018, 30(6): 64-70 doi: 10.3969/j.issn.1674-1803.2018.06.13

      YANG Zhenning, LI Yonghong, LIU Wenjin, et al. Geological conditions of helium formation and resource prospect analysis in Quanjishan area, northern Qaidam Basin[J]. Coal Geology of China, 2018, 30( 6): 64-70. doi: 10.3969/j.issn.1674-1803.2018.06.13

      钟鑫. 松辽盆地北部氦气分布特征及控制因素[J]. 地质调查与研究, 2017, 40(4): 300–305

      ZHONG Xin. Distribution characteristics and control factors of helium gas in northern Songliao Basin[J ]. Geological survey and research, 2017, 40(4): 300-305.

      张亮亮, 孙庆国, 刘岩云, 等. 氦气全球市场及我国氦气安全保障的建议[J]. 低温与特气, 2014, 32(3): 1-5 doi: 10.3969/j.issn.1007-7804.2014.03.001

      ZHANG Liangliang, SUN Qingguo, LIU Yanyun, et al. Global marbet of helium and suggestion for helium supply security of China[J]. Low Temperature and Specialty Gases, 2014, 32( 3): 1-5. doi: 10.3969/j.issn.1007-7804.2014.03.001

      张明升, 张金功, 张建坤, 戚林河. 氦气成藏研究进展[J]. 地下水, 2014, 36(3), 189-191 doi: 10.3969/j.issn.1004-1184.2014.03.084

      ZHANG Mingsheng, ZHANG Jingong, ZHANG Jiankun, et al. Research progress on helium accumulation [J]. Ground Water, 2014, 36(3), 189-191. doi: 10.3969/j.issn.1004-1184.2014.03.084

      张云鹏, 李玉宏, 卢进才, 等. 柴达木盆地北缘富氦天然气的发现—兼议成藏地质条件[J]. 地质通报, 2016, 35( S1): 364-371

      ZHANG Yunpeng, LI Yuhong, LU Jincai, et al. The discovery and or-igin of helium-rich gas on the northern margin of the Qaidam Basin[J]. Geological Bulletin of China, 2016, 35(S1): 364-371.

      张文, 李玉宏, 王利, 等. 渭河盆地氦气成藏条件分析及资源量预测[J]. 天然气地球科学, 2018, 29(2): 236-244

      ZHANG Wen, LI Yuhong, WANG Li, et al. The analysis of helium accumulation conditions and prediction of helium resource in Weihe Basin[J]. Natural Gas Geoscience, 2018, 29(2): 236-244

      张晓宝, 周飞, 曹占元, 等. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J]. 天然气地球科学, 2020, 31(11): 1585-1592.

      ZHANG Xiaobao, ZHOU Fei, CAO Zhanyuan, et al. Finding of the Dongping economic Helium gas field in the Qaidam Basin, and Helium source and exploration prospect[J]. Natural Gas Geoscience, 2020, 31 (11) : 1585- 1592.

      张海华, 张健, 陈树旺, 等. 松辽盆地北部三叠纪重要火山-岩浆事件——对晚古生代地层时限的约束[J]. 地质与资源, 2021, 30(6): 249-256

      ZHANG Haihua, ZHANG Jian, CHEN Shuwang, et al. Significant Triassic volcanic-magmatic event in the northernsongliao basin: constraints on the Late Paleozoic Stratigraphic Timing[J]. Geology and Resources, 2021, 30(6): 249-256.

      张哲, 王春燕, 王秋晨, 等. 浅谈中国氦气供应链技术壁垒与发展方向[J]. 油气与新能源, 2022, 34(2): 14-19 doi: 10.3969/j.issn.2097-0021.2022.02.003

      ZHANG Zhe, WANG Chunyan, WANG Qiuchen, et al. Barries and Development Directions of Helium Supply Chain in China[J]. Petroleum and New Energy, 2022, 34(02): 14-19. doi: 10.3969/j.issn.2097-0021.2022.02.003

      张乔, 周俊林, 李玉宏, 等. 渭河盆地南缘花岗岩中生氦元素(U、Th)赋存状态及制约因素研究—以华山复式岩体为例[J]. 西北地质, 2022, 55(3): 241-256

      ZHANG Qiao, ZHOU Junlin, LI Yuhong, et al. The Occurrence State and Restraint Factors et of Helium-produced Elements (U, Th) in the Granites from the Southern Margin of Weihe Basin: Evidences from Huashan Complex[J]. Northwestern Geology, 2022, 55(3): 241-256.

      Anderson S T. Economics, helium, and the U. S. federal helium reserve: Summary and outlook[J]. Natural Resources Research, 2018, 27(4): 455-477. doi: 10.1007/s11053-017-9359-y

      Kaneoka I, Takakka N. Noble-gas state [J]. Chemical Geology (Isotope Geoscience section), 1985, 52: 75-95. doi: 10.1016/0168-9622(85)90008-9

      Mamyrin B A, Tolstikhin I N. Helium isotopes in nature[M]. Amsterdam, Elsevier, 1984, 175–179.

      Wu Fuyuan, Sun Deyou, Ge Wenchun, et al. Geochronology of the Phanerozoic granitoids in northeastern China [J]. Journal of Asian Earth Sciences, 2011. 41, 1–30. doi: 10.1016/j.jseaes.2010.11.014

    • 期刊类型引用(2)

      1. 王晓红,辛守英,阳丽虹,马明浩,焦琳琳. 塞罕坝植被覆盖时空分异与驱动机制研究. 西部林业科学. 2024(01): 163-171 . 百度学术
      2. 鲁金萍,李满根,多玲花,陈念楠. 江西吉安市近20 a植被覆盖度时空演变的特征及驱动因素分析. 江西科学. 2024(05): 974-981+1059 . 百度学术

      其他类型引用(1)

    图(4)  /  表(2)
    计量
    • 文章访问数:  122
    • HTML全文浏览量:  56
    • PDF下载量:  53
    • 被引次数: 3
    出版历程
    • 收稿日期:  2022-09-27
    • 修回日期:  2022-11-21
    • 网络出版日期:  2023-01-09
    • 刊出日期:  2023-02-19

    目录

    /

    返回文章
    返回