ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义

吴树宽, 陈国超, 李积清, 陈孝珍, 李瑞保, 魏均启

吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92-108. DOI: 10.12401/j.nwg.2022043
引用本文: 吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92-108. DOI: 10.12401/j.nwg.2022043
WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92-108. DOI: 10.12401/j.nwg.2022043
Citation: WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92-108. DOI: 10.12401/j.nwg.2022043

东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义

基金项目: 青海省省级财政资金地质勘查项目(2017042034jc015),中国地质调查局项目(12120114079701),自然资源部成矿作用与资源评价重点实验室开放基金项目(ZS006),长安大学西部矿产资源与地质工程教育部重点实验室开发基金项目(300102261505),河南省科技攻关河南省重点研发与推广专项(212102310030),资源与生态环境地质湖北省重点实验室开放基金项目(KJ2022-35)和南阳理工学院交叉科学研究项目联合资助成果。
详细信息
    作者简介:

    吴树宽(1986−),男,硕士,高级工程师,构造地质学专业,主要从事区域矿产调查研究。E−mail:wushukuan@126.com

    通讯作者:

    陈国超(1979−),男,博士,副教授,构造地质学专业,主要从事造山带构造岩浆作用研究。E−mail: chaoschen@126.com

  • 中图分类号: P59; P584

Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun

  • 摘要:

    东昆仑三叠纪花岗质岩石的研究主要集中于具I型花岗岩特征的大型花岗岩基,而对少量出露的过铝质花岗岩研究较少。东昆仑造山带东段沟里地区战红山花岗斑岩LA−ICP−MS锆石U−Pb同位素定年结果显示,战红山流纹斑岩的结晶年龄为(245±1)Ma。战红山流纹斑岩具有高Si(SiO2=74.50%~75.59%)、富Na(Na2O=4.04%~4.06%),高Na2O/K2O值(1.26~1.76)和铝饱和指数(A/CNK=1.07~1.14),呈弱过铝质−过铝质中钾−高钾钙碱性系列。岩石稀土含量较低,轻、重稀土元素分馏明显,Eu具轻微的负异常和正异常(δEu=0.80~1.06);富集Ba、Rb、Th、K、U等大离子亲石元素,亏损Nb、Ta、Nd、P、Ti等高场强元素,εHf(t)同位素主体呈富集特征(εHf(t)=-4.7~+0.9)。战红山过铝质流纹斑岩具I型花岗岩特征,为早期俯冲洋壳经过幔源岩浆的底侵和外来流体的加入部分熔融的结果。战红山流纹斑岩具弧岩浆岩地球化学特征,结合东昆仑造山带东段岩浆岩分布以及沉积地层特征显示,早三叠世东昆仑地区处于古特提斯洋的俯冲阶段。

    Abstract:

    The study of Triassic granitic rocks in East Kunlun mainly focuses on the large granite batholith with the characteristics of I−type granite, while the study of a small amount of peraluminous granite is less. The LA−ICP−MS zircon U−Pb dating of The Zhanhongshan rhyolite porphyry shows that the crystallization age of the Zhanhongshan rhyolite porphyry is 245±1 Ma. The Zhanhongshan rhyolite porphyry is characterized by high silica (SiO2=74.50%~75.59%), rich Na (Na2O=4.04%~4.06%), high Na2O/K2O ratio (1.26~1.76), and aluminum saturation index (A/CNK=1.07~1.14), which indicate weak peraluminous medium potassium and high potassium calc−alkaline series. The rocks is characterized by low REE content with obvious fractionation of LREE and HREE, slight negative and positive Eu anomalies (δEu=0.80~1.06), also enrichment of LILE and depletion of HFSE. They have enriched Hf isotopic compositions with εHf (t) isotope values of −4.7~+0.9. It is concluded that the peraluminous Zhanhongshan rhyolite porphyry has the characteristics of I−type granite, which is the result of the underplating of the subducted oceanic crust through mantle−derived magma and partial melting with the addition of foreign fluid, and has arc magmatic geochemical characteristics. Combined with the previous data, the study shows that the East Kunlun area was in the subduction stage of the Paleo−Tethys ocean in the Early Triassic.

  • 花岗岩是大陆地壳的主要组成部分(Rudnick et al.,2003),因此,花岗岩的研究对于理解大陆地壳的形成和演化具有重要意义(Hawkesworth et al., 2006Lee et al.,2015Castro,2021)。过铝质花岗岩由于具有较高的SiO2含量和铝饱和指数(A/CNK),一般被认为是S型花岗岩,来自于沉积岩类的部分熔融,可以作为陆陆碰撞的证据(Chappell et al.,1987)。但最新研究显示,部分经演化的I型花岗岩和A型花岗岩也可以具有过铝质花岗岩的特征(Chappell et al.,2012吴福元等,2017)。因此,过铝质花岗岩的成因还存在较大的争议。

    东昆仑造山带位于中央造山系西段,是中央造山带的重要组成部分,具有早古生代晚期和晚古生代早期为主要造山期的大陆复合造山带(殷鸿福等,1997裴先治等,2015Xin et al.,2019Yu et al.,2020)。经过复杂的构造运动,东昆仑造山带岩浆活动剧烈,以出露巨量的花岗岩类为特征,是一条可以与冈底斯花岗岩带相媲美的巨型岩浆岩带,因此,也有东昆仑花岗岩带之称(罗照华等,2002莫宣学等,2007陈国超等,20192020张照伟等,2020)。这些岩浆活动以早三叠世最为剧烈,因此早三叠世花岗质岩石的研究对于东昆仑古特提斯洋的构造岩浆演化具有重要意义。近年来,东昆仑三叠纪花岗质岩石的研究主要集中于具I型花岗岩特征的大型花岗岩基(马昌前等,2015Xiong et al.,20142019Zhou et al.,2020Li et al.,2022),对少量出露的过铝质花岗岩研究较少,一般认为这些过铝质花岗岩具S型花岗岩特征,是东昆仑造山带陆陆碰撞的产物(邓文兵等,2016)。

    战红山流纹斑岩是在东昆仑战红山地区新识别出一套侵位于早三叠世火山岩具过铝质特征的次火山岩。张新远等(2020)李积清等(2021)分别对战红山地区的火山岩和花岗斑岩开展了初步年代学和地球化学研究,但是对流纹斑岩的形成时代、源区特征和岩石成因还未有深入研究。基于以上,笔者对战红山流纹斑岩开展锆石U−Pb年代学、岩石地球化学和同位素地球化学方面的研究,查明战红山流纹斑岩的源区特征和岩石成因,进而为东昆仑在晚古生代构造演化提供一定佐证。

    东昆仑造山带位于青藏高原东北部,是中央造山带的重要组成部分,由北向南可以划分为东昆北构造带、东昆中构造带和东昆南构造带(于淼等,2017Dong et al.,2018裴先治等,2018)。研究区位于东昆中构造带与东昆南构造带结合部位(图1a),二者以东昆中构造混杂带为分界。东昆中构造混杂岩带是一条多旋回复合型碰撞缝合带,具有复杂的物质组成和构造变形,由岛弧型岩块、陆缘沉积岩岩块和强变形基质组成,为昆中弧后小洋盆拉伸–俯冲消减的产物(Li et al.,2020a2020b)。东昆中构造带以广泛出露古元古界金水口岩群中深变质基底岩系为特征,变质程度可达高绿片岩相–麻粒岩相,局部达榴辉岩相(陈有炘等,2011何凡等,2020)。早泥盆世契盖苏组磨拉石建造不整合覆盖在基底岩系之上,在坑得龙一带分布有石炭系哈拉郭勒组碳酸盐岩夹碎屑岩建造。东昆南构造带发育大面积三叠纪沉积地层,包括洪水川组、闹仓坚沟组及希里可特组海相和海陆交互相沉积地层(李瑞保等,2015陈国超等,2019)。研究区岩浆活动丰富,岩浆岩岩性变化较大,从英云闪长岩、花岗闪长岩、二长花岗岩和正长花岗岩皆有出露,但以花岗闪长岩和二长花岗岩为主,大部分花岗岩含有暗色微粒包体,为岩浆混合作用的产物(李瑞保等,2018Zhao et al.,2020)。

    图  1  东昆仑造山带构造位置图(a)和战红山地区地质简图(b)
    1.第四系;2.早三叠世火山岩;3.三叠系;4.石炭系;5.下—中泥盆统契盖苏组;6.寒武纪长石山蛇绿构造混杂岩;7.古元古界金水口岩群;8.中三叠世正长花岗岩; 9.早三叠世花岗闪长岩; 10.中奥陶世花岗岩;11.变砂岩岩块;12.橄榄岩岩块;13.玄武岩岩块;14.糜棱岩;15.流纹斑岩脉;16.地质界线;17.角度不整合界线;18.断层界线;19.同位素样品采样点
    Figure  1.  (a) Tectonic location map of East Kunlun orogenic belt and (b) sketch geological map of the Zhanhongshan area

    战红山流纹斑岩位于东昆仑造山带东段都兰县沟里乡东部(图1a),侵位于早三叠世火山岩中,与围岩呈侵入接触关系,宽约为10~230 m,长轴走向近北西西向。战红山地区早三叠世火山岩岩石类型变化较大,主要为英安岩和流纹岩,局部夹流纹质凝灰岩(张新远等,2020)。火山岩西侧、北侧、东侧分别与早三叠世花岗闪长岩、古元古界金水口岩群、三叠系洪水川组碎屑岩呈断层接触,南部被第四系覆盖(图1b)。研究显示,研究区火山岩的形成时代为早三叠世(244~248 Ma)(付彦文等,2019张新远等,2020)。

    战红山流纹斑岩呈浅肉红色(图2a),由斑晶(30%)和基质(70%)2部分组成。斑晶主要为石英、斜长石和黑云母,斑晶长轴主体为0.40~2.48 mm。石英斑晶呈半自形粒状或熔蚀呈浑圆状,具熔蚀港湾边,部分聚在一起呈聚斑状出现。斜长石斑晶呈半自形粒状晶,具绢云母化。黑云母斑晶被绿泥石及白云母交代,析出不透明矿物,保留片状形态。基质以钾长石纤维和石英纤维组成的长英质球粒为主,球粒多为0.06~0.32 mm,形成球粒结构(图2b)。

    图  2  战红山流纹斑岩野外露头(a)和镜下显微照片(b)
    Q.石英;Pl.斜长石;Bi.黑云母
    Figure  2.  (a) Outcrop photos and (b) photomicrographsof the typical textures for the Zhanhongshan rhyolite porphyry

    样品采集于东昆仑造山带东段战红山地区流纹斑岩露头,共采集锆石U−Pb定年样品1件,样品编号为ZHS-1,采样点地理坐标为N 35°33′52″,E 98°43′08″;岩石地球化学样品5件,样品编号为ZHS-1~ZHS-5。

    锆石挑选、制靶、阴极发光照相及锆石LA−ICP−MS测试工作均在西北大学大陆动力学国家重点实验室完成,锆石定年所用ICP−MS为Agilengt 7500a,激光剥蚀系统为德国MicroLas公司Geolas200M,该系统由德国Lambda Physik 公司的ComPex102 Excime激光器(物质为ArF,波长为193 nm)与MicroLas公司的光学系统组成。激光剥蚀直径为32 um,剥蚀深度为20~40 um。实验载气为He,元素含量采用用美国国家标准技术研究所研制的人工合成硅酸盐玻璃标准参考物质NIST SRM610作为外标,选择29Si作为内标元素进行校正。软件采用ICPMSDataCal(Anderson,2002)V8.3程序进行锆石同位素比值及元素含量计算。并按照Anderson的方法,用ComPbCorrection进行了普通铅校正。年龄计算及谐和图采用Isoplot3软件完成。所有数据点年龄值的误差均为1σ,采用206Pb/238U年龄,其加权平均值具95%的置信度(Ludwig,2003)。分析结果见表1

    表  1  战红山流纹斑岩LA−ICP−MS锆石U−Pb同位素分析结果
    Table  1.  LA−ICP−MS zircon U−Pb isotopic data for the Zhanhongshan rhyolite porphyry
    测点含量(106Th/U同位素比值年龄(Ma)谐和度
    PbThU207Pb/206Pb1b206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U
    178.34542.901907.850.280.04910.00170.26380.00930.03890.0005154792463238796%
    237.07383.19549.670.700.05350.00280.28570.01430.03880.000535011724532551196%
    354.07388.641207.200.320.05240.00230.28200.01200.03910.000530210224732521098%
    443.32284.07973.250.290.05250.00230.28110.01250.03870.000530612824532511097%
    580.34613.891766.080.350.04910.00200.26260.01030.03880.0004154932452237896%
    626.34204.87601.440.340.05370.00270.28770.01480.03870.000536711824532571295%
    775.59638.771396.560.460.05150.00200.27440.00970.03890.0005265892463246899%
    8149.431223.273122.620.390.05280.00180.28120.00940.03870.0005317762453252797%
    994.39663.102305.140.290.05050.00180.27090.00990.03890.0004217832463243899%
    1033.10226.67795.310.290.04570.00250.24240.01250.03880.0005 24532201089%
    1176.66640.531510.440.420.05300.00180.28240.00880.03870.0004328782452253796%
    1277.67528.411679.160.310.05510.00160.29530.00910.03880.0005417652463263793%
    1320.49157.49473.730.330.05880.00310.31670.01660.03900.000756111524642791387%
    1448.60300.471286.350.230.05360.00230.28850.01350.03900.00063549824742571195%
    1576.30570.411647.070.350.04930.00170.26390.00870.03880.0004161802463238796%
    1642.59324.98793.870.410.05720.00330.30630.01670.03890.000550213224632711390%
    17318.24441.11838.710.530.05710.00230.30630.01220.03890.0004494612463271990%
    18595.32645.401419.720.450.05180.00170.27700.00930.03870.0005280712453248798%
    19534.47474.48804.990.590.05070.00220.27110.01170.03880.00042331022453244999%
    20654.52502.77556.830.900.04870.00230.26210.01220.03890.000420011124632361096%
    21398.32230.52498.490.460.05080.00190.27230.00990.03880.0005232872453245899%
    22583.59299.31654.190.460.04980.00190.26730.01010.03890.00051831172463241897%
    23801.29347.04603.130.580.04960.00200.26590.01040.03870.00041761272452239897%
    24796.78264.83402.380.660.05890.00360.31740.02020.03860.000556113324432801686%
    259185.75156.34167.380.930.89160.019728.11350.56960.22710.001913201034232011%
    261238.64991.841269.060.780.07040.00250.38080.01470.03890.00059397324633281171%
    27222.43229.62634.080.360.05140.00260.27520.01310.03880.000425711524532471099%
    28321.80449.121212.880.370.05380.00200.28920.01080.03880.0005365882463258895%
    2974.12146.14388.290.380.05800.00780.31050.03730.03960.000653249425042752990%
    30439.00791.841040.540.760.16720.00531.15170.04610.04940.000925295431167782214%
      注:–表示无数据。
    下载: 导出CSV 
    | 显示表格

    岩石地球化学测试在西北大学大陆动力学国家重点实验室完成。主量元素采用熔片X荧光光谱法XRF(日本理学RIGAKU 2100型)玻璃熔片法分析,测试精度优于5%;首先将200目样品置于105 ℃烘箱中烘干12 h后,准确称取粉末样品50 mg置于Teflon溶样弹中,加入添加剂(1.5 ml高纯HNO3和1.0 ml高纯HF),按照标准测试程序,反复添加、加热、冷却后,最后在离心管中稀释到50 ml;将所得溶液在电感耦合等离子体质质谱仪(ICP−MS)上完成测定,分析精度和准确度优于10%。分析结果见表2

    表  2  战红山流纹斑岩主量元素(%)和微量元素(10−6)分析结果
    Table  2.  Major (%) and trace element (10−6) compositions for the Zhanhongshan rhyolite porphyry
    样品SiO2Al2O3Fe2O3FeOMgOCaONa2OK2OMnOTiO2P2O5LOILiBeScVCrCoNiCu
    ZHS-175.1713.541.260.360.420.934.432.670.040.070.041.325.371.998.515.302.920.591.022.49
    ZHS-275.5912.891.250.360.411.034.043.210.040.080.041.313.821.966.454.231.980.700.953.40
    ZHS-376.2412.671.260.410.430.954.252.670.050.080.041.264.501.856.624.002.440.620.832.67
    ZHS-474.5013.591.330.360.510.844.363.240.040.080.041.335.161.969.424.174.470.591.792.39
    ZHS-575.3113.411.140.360.451.014.462.530.040.080.041.433.701.958.754.701.720.820.632.47
    样品ZnGaRbSrZrNbMoInCsBaHfTaWTlPbBiThUYLa
    ZHS-122.113.871.566.910513.70.740.032.158803.981.180.950.6510.20.259.832.2016.319.7
    ZHS-222.113.287.879.411113.40.710.031.658934.141.131.340.7013.40.1512.42.7622.820.8
    ZHS-321.312.975.050.011013.30.750.032.339524.051.111.310.6113.20.176.832.0616.113.8
    ZHS-420.113.675.947.411213.80.660.031.909294.121.140.910.679.860.246.762.0016.416.2
    ZHS-517.913.669.359.896.413.00.750.021.987093.651.141.130.538.330.159.112.1717.420.4
    样品CePrNdSmEuGdTbDyHoErTmYbLuMg#A/CNKδEu(La/Yb)N(Gd/Yb)NNb/TaTzr
    ZHS-134.03.9313.42.730.772.590.472.650.551.890.271.960.3243.71.140.876.791.0711.57762
    ZHS-222.24.4415.33.350.843.060.613.670.792.630.412.880.4643.61.070.794.850.8611.89762
    ZHS-316.72.799.802.130.732.060.412.560.541.880.282.020.3344.31.091.054.590.8212.05763
    ZHS-419.63.1710.82.340.762.280.442.600.571.830.281.970.3347.31.110.995.550.9312.10764
    ZHS-529.24.0413.72.770.702.610.482.730.591.850.282.010.3347.61.130.796.831.0511.45754
     注:Mg# = 100×[Mg2+(Mg2++Fe2+)]; δEu=EuN/(SmN×GdN1/2;Tzr(℃)=12 900/[LnDz+0.85M+2.95]-273.15, M=(2Ca+K+Na)/(Si×Al)(Watson et al.,1983)。
    下载: 导出CSV 
    | 显示表格

    本次工作的锆石Hf同位素测试利用西北大学大陆动力学国家重点实验室的LA−MC−ICP−MS完成,其中LA(激光剥蚀系统)为澳大利亚ASI公司生产的RESOlution M-50193 nm准分子激光剥蚀系统,其包含:一台193 nm ArF准分子激光器,一个大双室样品室和电脑控制的高精度X-Y样品台移动、定位系统;双室样品池能有效避免样品间交叉污染,较少样品吹扫时间,同时载装样品能力大大提高,减少了频繁换样过程中认为因素的影响。MC−ICP−MS(多接收器电感耦合等离子体质谱议)是荧光果Nu Instrument公司生产的新一代双聚焦多接收等离子体质谱仪Nu Plasma Ⅱ,具有16个法拉杯(Faraday Cup)和5个全尺寸不连续打拿级电子倍增器(FTP,其中2路具有阻滞过滤器RPQ)。详细分析方法与参数同袁洪林等(2003)。分析结果见表3

    表  3  战红山流纹斑岩锆石原位Hf同位素组成
    Table  3.  In–situ Hf isotopic compositions of zircon for the Zhanhongshan rhyolite porphyry
    样品176Hf/177Hf176Yb/177Hf176Lu/177Hf'εHf(tTDMT2DM
    BQSCN-2-010.2826540.0000210.050.000.0017500.0000030.98641211
    BQSCN-2-020.2825930.0000220.040.000.0015230.000005−1.29461345
    BQSCN-2-030.2825420.0000190.060.000.0020580.000019−3.010331462
    BQSCN-2-040.2826140.0000200.060.000.0019690.000007−0.59281304
    BQSCN-2-050.2826210.0000190.070.000.0022330.000009−0.39231289
    BQSCN-2-060.2825990.0000210.040.000.0013440.000009−1.09331331
    BQSCN-2-070.2826020.0000240.070.000.0023970.000007−1.09551333
    BQSCN-2-080.2825670.0000200.110.000.0032830.000044−2.410321422
    BQSCN-2-090.2825500.0000180.060.000.0020110.000018−2.810211446
    BQSCN-2-100.2825250.0000200.050.000.0017110.000016−3.610481498
    BQSCN-2-110.2826160.0000200.070.000.0021570.000010−0.59291301
    BQSCN-2-120.2825230.0000190.040.000.0014310.000004−3.710431501
    BQSCN-2-130.2825630.0000210.060.000.0018940.000010−2.39991416
    BQSCN-2-140.2824950.0000200.070.000.0022390.000006−4.811071570
    BQSCN-2-150.2825810.0000200.070.000.0022380.000010−1.79821379
    下载: 导出CSV 
    | 显示表格

    本次测试挑选出的锆石均为无色透明状,锆石晶型较好,长度为80~170 μm,宽度为50~80 μm,长宽比值为1~2。锆石均显示出清晰的韵律环带(图3a),测点Th/U值为0.23~0.93,平均为0.47,具有岩浆锆石的特点(吴元保等,2004)。本次锆石LA−ICP−MS测年共完成30个测试点,其中4个测点(25、26、29、30)谐和度较低,剩余26个测点较为集中的分布在谐和线上,显示出良好的谐和性(图3b),表明锆石在形成其U–Pb体系一直保持在封闭状态,基本没有Pb的丢失(Corfu et al., 2003)。206Pb/238U加权平均年龄值为(245±1) Ma (MSWD=0.05),代表流纹斑岩的岩浆结晶年龄,为早三叠世。

    图  3  战红山流纹斑岩锆石阴极发光图(CL)、LA−ICP−MS锆石U−Pb年龄与锆石Hf分析结果(蓝色数值)(a)、LA−ICP−MS锆石U−Pb年龄谐和图与锆石206Pb/238U加权平均年龄图(b)
    Figure  3.  (a) Cathodoluminescence photos (CL) of zircons with marked U−Pb ages and Hf isotopic compositions, and (b) LA−ICP−MS zircon U−Pb concordant age diagram and 206Pb/238U weighted mean ages of zirconsfor the Zhanhongshan rhyolite porphyry

    战红山流纹斑岩具有高 的SiO2含量(74.50%~75.59%),平均为75.36%;Na2O含量较高(4.04%~4.46%),平均为4.31%,K2O含量较低(2.53%~3.24%),碱含量偏高(Na2O+K2O为6.92%~7.6%),Al2O3含量偏低(12.67%~13.59%),具有较高的A/CNK(ASI)值(1.07~1.14),平均为1.11,为过铝质中钾钙碱性系列(图4a~图4c);在TAS图中,战红山流纹斑岩落入到流纹岩区域(图4d)。样品具有较低的FeOT、MgO、CaO和TiO2图5),分别为1.14%~1.33%、0.41%~0.51%、0.84%~1.03%和0.07%~0.88%。

    图  4  战红山流纹斑岩A/CNK–A/NK图解(a)(据Maniar et al.,1989)、SiO2–ASI图解(b)(据Frost et al.,2001)、SiO2–K2O图解(c)(据Rollinson,1993)和SiO2–ALK分类命名图解(d)(据Wilson,1989
    战红山早三叠世火山岩数据源自付彦文等(2019)张新远等(2020);战红山花岗斑岩数据源自李积清等(2021);早三叠世花岗岩数据源自Xia等(20152017)Chen等(2017)Shao等(2017)李瑞保等(2018)Song等(2019)王珂等(2020)Guo 等(2020)Li 等(2020b)
    Figure  4.  (a) A/CNK–A/NK diagrams, (b) SiO2–ASI diagrams, (c) SiO2–K2O diagrams, and (d) SiO2–ALK classifying–naming diagrams for the Zhanhongshan rhyolite porphyry
    图  5  战红山流纹斑岩Harker图解
    Figure  5.  Harker diagrams for the Zhanhongshan rhyolite porphyry

    岩石稀土元素总量较低,ΣREE为56.0×10−6~85.2×10−6,平均为73.5×10−6,轻稀土元素(LREE)含量为45.89×10−6~74.50×10−6,重稀土元素(HREE)含量为10.08×10−6~14.52×10−6。轻、重稀土元素含量比值ΣLREE/ΣHREE为4.55~6.97,(La/Yb)N值为4.59~6.83,轻重稀土元素分馏较强,富集轻稀土元素,亏损重稀土元素(图6a)。Yb含量为1.96×10−6~62.88×10−6,Lu含量为0.32×10−6~0.46×10−6,Yb/Lu值为6.07~66.24,(Gd/Yb)N值为0.77~1.01,表现出较为平坦的重稀土元素配分模式。δEu值为0.80~1.06,具轻微Eu的负异常和正异常。

    图  6  战红山流纹斑岩球粒陨石标准化稀土元素配分图(a)(标准化值据Boynton,1984)和原始地幔标准化蛛网图(b)(标准化值据Sun et al.,1989
    上地壳、下地壳和全地壳数据源自Rudnick等(2003)
    Figure  6.  (a) Chondrite–normalized REE distribution patterns, and (b) primitive mantle–normalized trace element spider diagramsfor the Zhanhongshan rhyolite porphyry

    在微量元素原始地幔标准化蛛网图上(图6b),战红山流纹斑岩富集大离子亲石元素(Ba、Rb、Th、K、U),具有Nb、Ta、Nd、P、Ti等高场强元素亏损的特点,显示出弧岩浆岩的特征(Thompson et al.,1983Zheng,2019)。

    对用于测年的锆石进行了Lu–Hf同位素组成测定,测定结果及计算的相关参数见表3。样品的176Lu/177Hf值为0.001344~0.003283,平均为0.002016,表明岩浆锆石在流纹斑岩形成之后的地质演化过程中,176Lu经衰变产生的177Hf极少,获取的176Hf/177Hf值基本代表了成岩时岩浆体系的Hf同位素组成,可用于流纹斑岩的成因研究(吴福元等,2007a)。样品的176Hf/177Hf值比较均一,为0.282495~0.282654,平均为0.282575(n=15)。εHf(t)值为−4.8~+0.9(平均为−1.9),二阶段Hf模式年龄(tMD2)为1211 Ma~1570 Ma。

    花岗岩一般可以分为I、S和A型(Whalen et al.,1987Chappell et al.,1992吴福元等,2007b)。从矿物角度,I型花岗岩含有角闪石,S型花岗岩含有堇青石、石榴子石和白云母等过铝矿物,A型花岗岩以含有碱性暗色矿物为特征(例如,霓石、辉石霓石和钠闪石等矿物)。然而,战红山流纹斑岩主要造岩矿物为斜长石、石英、钾长石和黑云母,未见以上花岗岩分类中的特征矿物。

    S型花岗岩为沉积岩部分熔融的产物,一般具有较高的A/CNK值及SiO2和K2O含量,较低的Na2O含量和εHf(t)同位素值(Chappell et al.,2001Clemens et al.,20112012);另外,由于S型花岗岩来自于沉积地层的部分熔融,一般含有源区沉积岩中老的继承锆石(Villaros et al.,2009)。战红山流纹斑岩具有较高的A/CNK值和SiO2含量,具有一定S型花岗岩特征。但是,战红山流纹斑岩的Na2O含量明显高于K2O,Na2O/K2O值为1.26~1.76;战红山流纹斑岩的锆石CL图中,锆石图像均一,未见核边结构,锆石年龄也较为集中,未见老的残留锆石;在SiO2–P2O5图5g)和Rb–Th图中(图7a),不具有S型花岗岩特征。最为重要的战红山流纹斑岩具有较高的εHf(t)同位素值,与东昆仑早寒武纪基底岩系的同位素特征明显不同(图8)。以上特征显示,战红山流纹斑岩不属于S型花岗岩。

    图  7  战红山流纹斑岩Rb–Th图解(a)和(Zr+Nb+Ce+Y)–FeOT/MgO图解(b)(据Whalen et al., 1987
    FG. M+I+S 型高分异花岗岩;OGT. M+I+S 型未分异花岗岩
    Figure  7.  (a) Diagrams of Rb–Th and (b) (Zr+Nb+Ce+Y)–FeOT/MgOfor the Zhanhongshan rhyolite porphyry
    图  8  战红山流纹斑岩锆石εHf(t)–U–Pb年龄图
    白沙河岩组片岩数据据Shao等(2017);早三叠世花岗岩数据同图4,早三叠世镁铁质岩数据据Xiong等(20132014)赵旭等(2018);图中N–MORB、OIB和金水口S–type花岗岩εHf(t)值根据公式εHf(t)=1.59×εNd(t)+1.28(Chauvel et al.,2008Li et al.,2020a);N–MORB的εNd(t)和OIB的εNd(t)数据据郭安林等(2007),金水口S–type花岗岩εNd(t)数据据余能等(2005)
    Figure  8.  Diagrams of zircons εHf(t)–U–Pb ages for the Zhanhongshan rhyolite porphyry

    A型花岗岩由于在贫水的环境中形成,具有较高的熔融温度(>800 ℃),富集FeOT/MgO(平均为22.84)和碱、REE、Zr、Nb、Ta等不相容元素,低CaO,贫Cr、Ni、Sr等相容元素,具有较高的10 000×Ga/Al比值(平均为3.75)和Zr+Nb+Ce+Y含量(下限为350×10−6)(Collins et al.,1982Whalen et al.,1987),并具有显著的负Eu异常,稀土元素配分模式呈海鸥型(Bonin,2007)。全岩锆饱和温度计算显示,战红山流纹斑岩的温度平均为761 ℃,明显低于A型花岗岩;战红山流纹斑岩的FeOT/MgO(2.56~3.01)、10 000×Ga/Al(1.89~1.94)和Zr+Nb+Ce+Y(156×10−6~170×10−6)含量也与A型花岗岩不同;在Zr+Nb+Ce+Y-FeOT/MgO图中(图7b),也不具有A型花岗岩特征。因此,战红山流纹斑岩也不是A型花岗岩。战红山流纹斑岩具有较高的Na2O含量以及Mg#值和Nb/Ta值,SiO2与P2O5呈负相关,Rb与Th呈正相关,显示战红山流纹斑岩为I型花岗岩(Chappell et al.,1992Frost et al.,2001Clemens et al.,2011)。

    战红山流纹斑岩具有较高的SiO2含量和A/CNK值,较低的MgO、Ni和Cr含量,富集Rb、Th、Ba、Cs等大离子亲石元素(LILE),亏损Nb、Ta、Ti等高场强元素(HFSE),在球粒陨石标准化稀土元素配分图和微量元素原始地幔标准化蛛网图上,战红山流纹斑岩的配分模式类似平均地壳(图6),说明战红山流纹斑岩来自于地壳的部分熔融(Rudnick et al.,2003)。

    战红山流纹斑岩具有较高的Mg#值,适中的Nb/Ta和Rb/Sr值,与变杂砂岩和变泥质岩部分熔融形成的熔体明显不同,与变玄武岩部分熔融的岩石相似(图9)。战红山流纹斑岩具有较高的εHf(t)同位素值,明显的高于东昆仑前寒武纪基底,与东昆仑三叠纪花岗岩和镁铁质岩近似(图8)。这些特征说明战红山流纹斑岩不是变沉积岩部分熔融的结果,更可能来自于东昆仑古特提斯俯冲阶段早期形成的岩浆岩。

    图  9  战红山流纹斑岩SiO2–Mg#图解
    地幔熔体据Stern等(1996);地壳熔体(变杂砂岩、变泥质岩、变安山岩、变玄武岩)据Altherr等(2000);在1.0~4.0 GPa 压力下变玄武岩或榴辉岩实验熔体据Rapp(1995a);在0.8~1.6 GPa压力和1 000~1 050 ℃下地壳熔体据Rapp等(1995b)
    Figure  9.  Diagrams of SiO2–Mg# for the Zhanhongshan rhyolite porphyry

    研究显示,花岗岩的成分与源区物质组成最为密切(Gao et al.,2016)。陆弧玄武岩来自于受俯冲流体交代的地幔楔部分熔融,因此具有较高的K2O含量,其部分熔融形成的熔体相对富K2O(Sisson et al.,2005)。战红山流纹斑岩是钠质的,具有较高的Na2O含量和Na2O/K2O值。因此,战红山流纹斑岩应该来自富钠源区。洋壳玄武岩具有较高的Na2O含量,实验岩石学研究表明玄武质岩石在H2O饱和条件下发生低程度部分熔融可以形成过铝质、高Si的Na质花岗岩(Rapp et al.,1995a1995bPetford et al.,1996)。因此,战红山流纹斑岩可能来自于洋壳玄武岩的部分熔融。

    花岗岩的成因与多种因素相关,例如:源区物质组成、熔融环境和后期岩浆演化等因素(Kemp et al. ,2007Castro,2013Collins,2016Clemens et al. ,2020)。过铝质I型花岗岩岩石成因模式主要有以下4种:①准铝质中酸性岩浆岩的结晶分离(Castro,2013Lee et al. ,2014)。②壳幔岩浆混合(Kemp et al. ,2007)。③岩浆与围岩混染(Annen et al. ,2006)。④镁铁质岩石的部分熔融(Sisson,2005Clemens et al. ,2011)。

    岩浆的结晶分异是花岗岩多样化的重要因素,特别是近年来提出的大陆地壳岩浆房存储与化学分异过程,强调岩浆房从地壳深部向浅部运移过程中,分异的花岗质岩浆侵位于不同的地壳层位(Cashman et al.,2017Jackson et al.,2018)。东昆仑早三叠世准铝质低SiO2花岗岩和研究区早三叠世火山岩(战红山流纹斑岩)可能为同源。在Hark图解中(图5),战红山流纹斑岩与东昆仑早三叠世花岗岩和研究区火山岩并没有显示出较好的演化趋势,特别是在主量元素和微量元素分离结晶判别图解中,也没有角闪石、斜长石和黑云母的演化趋势(图10)。因此,准铝中酸性岩浆岩的结晶分离作用不是形成战红山流纹斑岩的主要因素。

    图  10  战红山流纹斑岩SiO2–(Dy/Yb)N图(a)、SiO2–Eu/Eu*图(b)、Sr–Ba图(c)和Eu/Eu*–Sr图(d)
    Figure  10.  (a) Diagrams of whole–rock trace–element SiO2–(Dy/Yb)N, (b) SiO2–Eu/Eu*, (c) Sr–Ba, and(d) Eu/Eu*–Sr for the Zhanhongshan rhyolite porphyry

    壳幔岩浆混合作用一般可以使混合的岩浆含暗色微粒包体,并且具有较高的MgO、Cr和Ni含量(Barbarin,2005)。但这些特征在战红山流纹斑岩中未有体现。因此,壳幔岩浆混合也不能形成战红山流纹斑岩。中酸性岩浆在上侵演化的过程中,可以同化围岩,使围岩的成分进入中酸性岩浆,特别是沉积岩混入可以增加岩浆的Al2O3含量,使岩浆的A/CNK值增高。这种经过混染的岩浆由于捕获了围岩的成分,一般含有捕获锆石,具有富集的εHf(t)同位素特征(Clemens et al.,2012)。战红山流纹斑岩锆石U–Pb年龄较为集中,未有老的捕获锆石,并且εHf(t)同位素值与早三叠世花岗岩近似,说明战红山流纹斑岩没有经过围岩的混染。

    镁铁质岩石的部分熔融可以形成过铝质I型花岗岩。但是,镁铁质岩石的部分熔融受多种因素控制,特别是不同的含水矿物在不同的含水率条件下部分熔融形成的熔体具有不同的特征(Collins et al.,2020)。在5 kbar下,白云母发生脱水熔融的温度约为700 ℃,黑云母约为800 ℃,角闪石约为900 ℃(Patiño Douce et al.,19981999)。战红山流纹斑岩的全岩锆石饱和温度为754~764 ℃,介于白云母和黑云母脱水部分熔融的温度之间。初始物质的K2O/Na2O值对实验熔体的K2O/Na2O值至关重要(Gao et al.,2016)。白云母和黑云母具有较高的K2O含量和K2O/Na2O值,因此,其部分熔融形成的熔体也具有这些特征。但战红山流纹斑岩明显不同。角闪石部分熔融形成熔体的成分除受源岩的成分控制外,与部分熔融的温度也密切相关,随着温度的升高,部分熔融形成的熔体的K2O/Na2O值降低(Clemens et al.,2012)。亏损的洋壳玄武岩由于富含Na2O,其部分熔融形成的熔体与战红山流纹斑岩近似。但是,战红山流纹斑岩的全岩锆饱和温度明显低于角闪石部分熔融的温度,要使角闪石部分熔融必须要有额外的因素。幔源岩浆的底侵和外来水的加入可能是较好的解释。幔源岩浆对下地壳的加热或者软流圈地幔的上涌可以使下地壳的温度升高(Chapman et al.,2021),这种模式也是解释俯冲带大规模岩浆活动的典型模型(Zheng,2019)。另外,水的加入可以降低岩石部分熔融的温度(Collins et al.,2016),例如,在15 kbar的压力下,含4%H2O的玄武岩熔体比无水熔体低约100 ℃,熔体比例高达10%~20% (Collins et al.,2020)。早三叠世东昆仑造山带由于幔源岩浆底侵下地壳,含水镁铁质岩浆在冷却过程可以出溶大量水,这些水在上升过程中进入早期形成镁铁质岩石,使其部分熔融,形成了富Na过铝质战红山流纹斑岩。

    东昆仑造山带早三叠世岩浆活动剧烈,但东昆仑早三叠世构造环境还存在较大争议,主要有俯冲阶段(Xia et al.,2017Xiong et al.,2019)和同碰撞阶段(Huang et al.,2014)2种不同的观点。研究认为,在早三叠世东昆仑可能为古特提斯的俯冲阶段。

    东昆仑造山带早三叠世岩浆活动剧烈,特别是在250~245 Ma期间是岩浆活动的峰值(陈国超等,2019)。这些岩浆岩主体以大型花岗岩基呈东西向带状分部于东昆中构造带(例如,沟里大型花岗岩基)(Zhao et al.,2020),少量分布在东昆仑南构造带(例如,哈拉尕吐花岗岩基)(李瑞保等,2018),分布在东昆南构造带的岩浆岩形成时代主体稍早于东昆仑中构造带。这些岩浆岩由的极性展布可能与东昆仑古特提斯洋由南向北俯冲相关(于淼等,2017Dong et al.,2018)。东昆仑造山带在进入240 Ma后,岩浆活动明显减弱,说明东昆仑造山带在这一时期经历陆陆碰撞作用,不利于岩浆的形成,使这一时期岩浆活动减弱(Zhao et al.,2020)。

    战红山流纹斑岩和东昆仑其他早三叠世岩浆岩富集Rb、Th、U、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,具有活动大陆边缘安第斯型弧岩浆岩特征(图6图11)。这些岩浆岩大部分具I型花岗岩特征,主体呈准铝质中钾-高钾钙碱性系列,同科迪勒拉造山带岩浆岩非常相似(Collins et al.,2020)。东昆仑晚三叠世岩浆活动与早三叠世明显不同。晚三叠世岩浆岩岩石类型丰富,岩浆岩的K2O富集程度比早三叠世岩浆岩明显,主体为高钾钙碱性–钾玄岩系列(陈国超等,2019),并且,东昆仑造山带在这一时期大量出露具A型花岗岩和具埃达克质特征的岩浆岩,显示东昆仑在这一时期处于拉张背景(陈国超等,2013钱兵等,2015邓红宾等,2018)。

    图  11  战红山流纹斑岩Y–Sr/Y图(a)和YbN–(La/Yb)N图(b)(底图据Castillo et al.,2006
    Figure  11.  (a) Diagrams of Sr/Y–Y and (b) (La/Yb)N–YbN for the Zhanhongshan rhyolite porphyry

    沉积方面,早中三叠世,东昆南构造带普遍发育一套弧前盆地沉积体系,包括下三叠统洪水川组、中三叠统闹仓坚沟组,为东昆仑古特提斯洋向北俯冲的沉积反映(李瑞保等,20122015)。东昆仑早三叠世也存在着与洋壳俯冲相关的中压变质作用(陈能松等,2007)。

    前文显示,东昆仑在早三叠世处于东昆仑古特提斯的俯冲阶段。随着洋壳俯冲深度的增加,洋壳变质脱水形成的流体上升进入地幔楔使其部分熔融形成镁铁质岩浆,这些镁铁质岩浆的底侵作用,使不同成分的地壳部分熔融形成了东昆仑早三叠世花岗质岩浆岩。随着俯冲作用的进行,洋壳俯冲角度的变化或者板片断裂作用可以促使软流圈地幔上涌,导致岩石圈地幔部分熔融程度增高,进而使幔源岩浆底侵地壳的能力增强,使东昆仑造山带在早三叠世晚期处于岩浆活动的峰值。

    (1)锆石U-Pb定年结果显示战红山流纹斑岩的结晶年龄为(245±1)Ma,形成于早三叠世。

    (2)早期俯冲阶段形成洋壳玄武岩经过幔源岩浆的底侵和外来流体的加入部分熔融形成了富Na过铝质战红山流纹斑岩。

    (3)战红山流纹斑岩为东昆仑古特提斯俯冲阶段的产物。

  • 图  1   东昆仑造山带构造位置图(a)和战红山地区地质简图(b)

    1.第四系;2.早三叠世火山岩;3.三叠系;4.石炭系;5.下—中泥盆统契盖苏组;6.寒武纪长石山蛇绿构造混杂岩;7.古元古界金水口岩群;8.中三叠世正长花岗岩; 9.早三叠世花岗闪长岩; 10.中奥陶世花岗岩;11.变砂岩岩块;12.橄榄岩岩块;13.玄武岩岩块;14.糜棱岩;15.流纹斑岩脉;16.地质界线;17.角度不整合界线;18.断层界线;19.同位素样品采样点

    Figure  1.   (a) Tectonic location map of East Kunlun orogenic belt and (b) sketch geological map of the Zhanhongshan area

    图  2   战红山流纹斑岩野外露头(a)和镜下显微照片(b)

    Q.石英;Pl.斜长石;Bi.黑云母

    Figure  2.   (a) Outcrop photos and (b) photomicrographsof the typical textures for the Zhanhongshan rhyolite porphyry

    图  3   战红山流纹斑岩锆石阴极发光图(CL)、LA−ICP−MS锆石U−Pb年龄与锆石Hf分析结果(蓝色数值)(a)、LA−ICP−MS锆石U−Pb年龄谐和图与锆石206Pb/238U加权平均年龄图(b)

    Figure  3.   (a) Cathodoluminescence photos (CL) of zircons with marked U−Pb ages and Hf isotopic compositions, and (b) LA−ICP−MS zircon U−Pb concordant age diagram and 206Pb/238U weighted mean ages of zirconsfor the Zhanhongshan rhyolite porphyry

    图  4   战红山流纹斑岩A/CNK–A/NK图解(a)(据Maniar et al.,1989)、SiO2–ASI图解(b)(据Frost et al.,2001)、SiO2–K2O图解(c)(据Rollinson,1993)和SiO2–ALK分类命名图解(d)(据Wilson,1989

    战红山早三叠世火山岩数据源自付彦文等(2019)张新远等(2020);战红山花岗斑岩数据源自李积清等(2021);早三叠世花岗岩数据源自Xia等(20152017)Chen等(2017)Shao等(2017)李瑞保等(2018)Song等(2019)王珂等(2020)Guo 等(2020)Li 等(2020b)

    Figure  4.   (a) A/CNK–A/NK diagrams, (b) SiO2–ASI diagrams, (c) SiO2–K2O diagrams, and (d) SiO2–ALK classifying–naming diagrams for the Zhanhongshan rhyolite porphyry

    图  5   战红山流纹斑岩Harker图解

    Figure  5.   Harker diagrams for the Zhanhongshan rhyolite porphyry

    图  6   战红山流纹斑岩球粒陨石标准化稀土元素配分图(a)(标准化值据Boynton,1984)和原始地幔标准化蛛网图(b)(标准化值据Sun et al.,1989

    上地壳、下地壳和全地壳数据源自Rudnick等(2003)

    Figure  6.   (a) Chondrite–normalized REE distribution patterns, and (b) primitive mantle–normalized trace element spider diagramsfor the Zhanhongshan rhyolite porphyry

    图  7   战红山流纹斑岩Rb–Th图解(a)和(Zr+Nb+Ce+Y)–FeOT/MgO图解(b)(据Whalen et al., 1987

    FG. M+I+S 型高分异花岗岩;OGT. M+I+S 型未分异花岗岩

    Figure  7.   (a) Diagrams of Rb–Th and (b) (Zr+Nb+Ce+Y)–FeOT/MgOfor the Zhanhongshan rhyolite porphyry

    图  8   战红山流纹斑岩锆石εHf(t)–U–Pb年龄图

    白沙河岩组片岩数据据Shao等(2017);早三叠世花岗岩数据同图4,早三叠世镁铁质岩数据据Xiong等(20132014)赵旭等(2018);图中N–MORB、OIB和金水口S–type花岗岩εHf(t)值根据公式εHf(t)=1.59×εNd(t)+1.28(Chauvel et al.,2008Li et al.,2020a);N–MORB的εNd(t)和OIB的εNd(t)数据据郭安林等(2007),金水口S–type花岗岩εNd(t)数据据余能等(2005)

    Figure  8.   Diagrams of zircons εHf(t)–U–Pb ages for the Zhanhongshan rhyolite porphyry

    图  9   战红山流纹斑岩SiO2–Mg#图解

    地幔熔体据Stern等(1996);地壳熔体(变杂砂岩、变泥质岩、变安山岩、变玄武岩)据Altherr等(2000);在1.0~4.0 GPa 压力下变玄武岩或榴辉岩实验熔体据Rapp(1995a);在0.8~1.6 GPa压力和1 000~1 050 ℃下地壳熔体据Rapp等(1995b)

    Figure  9.   Diagrams of SiO2–Mg# for the Zhanhongshan rhyolite porphyry

    图  10   战红山流纹斑岩SiO2–(Dy/Yb)N图(a)、SiO2–Eu/Eu*图(b)、Sr–Ba图(c)和Eu/Eu*–Sr图(d)

    Figure  10.   (a) Diagrams of whole–rock trace–element SiO2–(Dy/Yb)N, (b) SiO2–Eu/Eu*, (c) Sr–Ba, and(d) Eu/Eu*–Sr for the Zhanhongshan rhyolite porphyry

    图  11   战红山流纹斑岩Y–Sr/Y图(a)和YbN–(La/Yb)N图(b)(底图据Castillo et al.,2006

    Figure  11.   (a) Diagrams of Sr/Y–Y and (b) (La/Yb)N–YbN for the Zhanhongshan rhyolite porphyry

    表  1   战红山流纹斑岩LA−ICP−MS锆石U−Pb同位素分析结果

    Table  1   LA−ICP−MS zircon U−Pb isotopic data for the Zhanhongshan rhyolite porphyry

    测点含量(106Th/U同位素比值年龄(Ma)谐和度
    PbThU207Pb/206Pb1b206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U
    178.34542.901907.850.280.04910.00170.26380.00930.03890.0005154792463238796%
    237.07383.19549.670.700.05350.00280.28570.01430.03880.000535011724532551196%
    354.07388.641207.200.320.05240.00230.28200.01200.03910.000530210224732521098%
    443.32284.07973.250.290.05250.00230.28110.01250.03870.000530612824532511097%
    580.34613.891766.080.350.04910.00200.26260.01030.03880.0004154932452237896%
    626.34204.87601.440.340.05370.00270.28770.01480.03870.000536711824532571295%
    775.59638.771396.560.460.05150.00200.27440.00970.03890.0005265892463246899%
    8149.431223.273122.620.390.05280.00180.28120.00940.03870.0005317762453252797%
    994.39663.102305.140.290.05050.00180.27090.00990.03890.0004217832463243899%
    1033.10226.67795.310.290.04570.00250.24240.01250.03880.0005 24532201089%
    1176.66640.531510.440.420.05300.00180.28240.00880.03870.0004328782452253796%
    1277.67528.411679.160.310.05510.00160.29530.00910.03880.0005417652463263793%
    1320.49157.49473.730.330.05880.00310.31670.01660.03900.000756111524642791387%
    1448.60300.471286.350.230.05360.00230.28850.01350.03900.00063549824742571195%
    1576.30570.411647.070.350.04930.00170.26390.00870.03880.0004161802463238796%
    1642.59324.98793.870.410.05720.00330.30630.01670.03890.000550213224632711390%
    17318.24441.11838.710.530.05710.00230.30630.01220.03890.0004494612463271990%
    18595.32645.401419.720.450.05180.00170.27700.00930.03870.0005280712453248798%
    19534.47474.48804.990.590.05070.00220.27110.01170.03880.00042331022453244999%
    20654.52502.77556.830.900.04870.00230.26210.01220.03890.000420011124632361096%
    21398.32230.52498.490.460.05080.00190.27230.00990.03880.0005232872453245899%
    22583.59299.31654.190.460.04980.00190.26730.01010.03890.00051831172463241897%
    23801.29347.04603.130.580.04960.00200.26590.01040.03870.00041761272452239897%
    24796.78264.83402.380.660.05890.00360.31740.02020.03860.000556113324432801686%
    259185.75156.34167.380.930.89160.019728.11350.56960.22710.001913201034232011%
    261238.64991.841269.060.780.07040.00250.38080.01470.03890.00059397324633281171%
    27222.43229.62634.080.360.05140.00260.27520.01310.03880.000425711524532471099%
    28321.80449.121212.880.370.05380.00200.28920.01080.03880.0005365882463258895%
    2974.12146.14388.290.380.05800.00780.31050.03730.03960.000653249425042752990%
    30439.00791.841040.540.760.16720.00531.15170.04610.04940.000925295431167782214%
      注:–表示无数据。
    下载: 导出CSV

    表  2   战红山流纹斑岩主量元素(%)和微量元素(10−6)分析结果

    Table  2   Major (%) and trace element (10−6) compositions for the Zhanhongshan rhyolite porphyry

    样品SiO2Al2O3Fe2O3FeOMgOCaONa2OK2OMnOTiO2P2O5LOILiBeScVCrCoNiCu
    ZHS-175.1713.541.260.360.420.934.432.670.040.070.041.325.371.998.515.302.920.591.022.49
    ZHS-275.5912.891.250.360.411.034.043.210.040.080.041.313.821.966.454.231.980.700.953.40
    ZHS-376.2412.671.260.410.430.954.252.670.050.080.041.264.501.856.624.002.440.620.832.67
    ZHS-474.5013.591.330.360.510.844.363.240.040.080.041.335.161.969.424.174.470.591.792.39
    ZHS-575.3113.411.140.360.451.014.462.530.040.080.041.433.701.958.754.701.720.820.632.47
    样品ZnGaRbSrZrNbMoInCsBaHfTaWTlPbBiThUYLa
    ZHS-122.113.871.566.910513.70.740.032.158803.981.180.950.6510.20.259.832.2016.319.7
    ZHS-222.113.287.879.411113.40.710.031.658934.141.131.340.7013.40.1512.42.7622.820.8
    ZHS-321.312.975.050.011013.30.750.032.339524.051.111.310.6113.20.176.832.0616.113.8
    ZHS-420.113.675.947.411213.80.660.031.909294.121.140.910.679.860.246.762.0016.416.2
    ZHS-517.913.669.359.896.413.00.750.021.987093.651.141.130.538.330.159.112.1717.420.4
    样品CePrNdSmEuGdTbDyHoErTmYbLuMg#A/CNKδEu(La/Yb)N(Gd/Yb)NNb/TaTzr
    ZHS-134.03.9313.42.730.772.590.472.650.551.890.271.960.3243.71.140.876.791.0711.57762
    ZHS-222.24.4415.33.350.843.060.613.670.792.630.412.880.4643.61.070.794.850.8611.89762
    ZHS-316.72.799.802.130.732.060.412.560.541.880.282.020.3344.31.091.054.590.8212.05763
    ZHS-419.63.1710.82.340.762.280.442.600.571.830.281.970.3347.31.110.995.550.9312.10764
    ZHS-529.24.0413.72.770.702.610.482.730.591.850.282.010.3347.61.130.796.831.0511.45754
     注:Mg# = 100×[Mg2+(Mg2++Fe2+)]; δEu=EuN/(SmN×GdN1/2;Tzr(℃)=12 900/[LnDz+0.85M+2.95]-273.15, M=(2Ca+K+Na)/(Si×Al)(Watson et al.,1983)。
    下载: 导出CSV

    表  3   战红山流纹斑岩锆石原位Hf同位素组成

    Table  3   In–situ Hf isotopic compositions of zircon for the Zhanhongshan rhyolite porphyry

    样品176Hf/177Hf176Yb/177Hf176Lu/177Hf'εHf(tTDMT2DM
    BQSCN-2-010.2826540.0000210.050.000.0017500.0000030.98641211
    BQSCN-2-020.2825930.0000220.040.000.0015230.000005−1.29461345
    BQSCN-2-030.2825420.0000190.060.000.0020580.000019−3.010331462
    BQSCN-2-040.2826140.0000200.060.000.0019690.000007−0.59281304
    BQSCN-2-050.2826210.0000190.070.000.0022330.000009−0.39231289
    BQSCN-2-060.2825990.0000210.040.000.0013440.000009−1.09331331
    BQSCN-2-070.2826020.0000240.070.000.0023970.000007−1.09551333
    BQSCN-2-080.2825670.0000200.110.000.0032830.000044−2.410321422
    BQSCN-2-090.2825500.0000180.060.000.0020110.000018−2.810211446
    BQSCN-2-100.2825250.0000200.050.000.0017110.000016−3.610481498
    BQSCN-2-110.2826160.0000200.070.000.0021570.000010−0.59291301
    BQSCN-2-120.2825230.0000190.040.000.0014310.000004−3.710431501
    BQSCN-2-130.2825630.0000210.060.000.0018940.000010−2.39991416
    BQSCN-2-140.2824950.0000200.070.000.0022390.000006−4.811071570
    BQSCN-2-150.2825810.0000200.070.000.0022380.000010−1.79821379
    下载: 导出CSV
  • 陈国超, 裴先治, 李瑞保, 等. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地质学报, 2013, 87(2): 178–196 doi: 10.3969/j.issn.0001-5717.2013.02.004

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Zircon U-Pb Geochronology Geochemical Characteristics and Geological Sinificance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun[J]. Acta Geologica Sinica, 2013, 87(2): 178–196. doi: 10.3969/j.issn.0001-5717.2013.02.004

    陈国超, 裴先治, 李瑞保, 等. 东昆仑古特提斯后碰撞阶段伸展作用: 来自晚三叠世岩浆岩的证据[J]. 地学前缘, 2019, 26(4): 191–208

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Lithospheric extersion of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt: insights from Late Triassic plutons[J]. Earth Science Frontiers, 2019, 26(4): 191–208.

    陈国超, 裴先治, 李瑞保, 等. 东昆仑造山带东段晚古生代—早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 2020, 27(4): 33–48

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Late Palaeozoic-Early Mesozoic tectonic-magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt[J]. Earth Science Frontiers, 2020, 27(4): 33–48.

    陈能松, 孙敏, 王勤燕, 等. 东昆仑造山带昆中带的独居石电子探针化学年龄: 多期构造变质事件记录[J]. 科学通报, 2007, 52(11): 1297–1306 doi: 10.3321/j.issn:0023-074X.2007.11.014

    CHEN Nengsong, SUN Min, WANG Qinyan, et al. EMP chemical ages of monazites from Central Zone of the eastern Kunlun Orogen: Records of multi-tectonometamorphic events[J]. Chinese Science Bulletin, 2007, 52(11): 1297–1306. doi: 10.3321/j.issn:0023-074X.2007.11.014

    陈有炘, 裴先治, 李瑞保, 等. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J]. 现代地质, 2011, 25(3): 510–521 doi: 10.3969/j.issn.1000-8527.2011.03.013

    CHEN Youxin, PEI Xianzhi, LI Ruibao, et al. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Bel[J]. Geoscience, 2011, 25(3): 510–521. doi: 10.3969/j.issn.1000-8527.2011.03.013

    邓红宾, 何龙, 姚波, 等. 东昆仑造山带低山头二长花岗岩形成时代及岩石地球化学特征[J]. 西北地质, 2018, 51(4): 60–69 doi: 10.3969/j.issn.1009-6248.2018.04.008

    DENG Hongbin, HE Long, YAO Bo, et al. Formation Age and Geochemical Characteristics of Dishantou Monzonitic Granite in Estern Kunlun Orogenic Belt[J]. Northwestern Geology, 2018, 51(4): 60–69. doi: 10.3969/j.issn.1009-6248.2018.04.008

    邓文兵, 裴先治, 刘成军, 等. 东昆仑东段香日德地区察汗陶勒盖正长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2016, 35(5): 687–699 doi: 10.3969/j.issn.1671-2552.2016.05.006

    DENG Wenbin, PEI Xianzhi, LIU Chengjun, et al. LA-ICP-MS zircon U-Pb dating of the Chahantaolegai syenogranites in Xiangride area of East Kunlun and its geological significance[J]. Geological Bulletin of China, 2016, 35(5): 687–699. doi: 10.3969/j.issn.1671-2552.2016.05.006

    付彦文, 薛万文, 王涛, 等. 青海东昆南构造带战红山地区中酸性火山岩的发现及其地质特征[J]. 矿物岩石, 2019, 39(4): 78–85 doi: 10.19719/j.cnki.1001-6872.2019.04.09

    FU Yanwen, XUE Wanwen, WANG Tao, et al. Discovery and geological characteristics of Intermediate acid volcanic rocks in the Zhanhongshan area, East Kunnan tectonic belt, Qinghai[J]. Journal Mineralogy Petrology, 2019, 39(4): 78–85. doi: 10.19719/j.cnki.1001-6872.2019.04.09

    郭安林, 张国伟, 孙延贵, 等. 阿尼玛卿蛇绿岩带OIB和MORB 的地球化学及空间分布特征: 玛积雪山古洋脊热点构造证据[J]. 中国科学(D辑), 2007, 36(7): 618–629.

    GUO Anlin, ZHANG Guowei, SUN Yangui, et al. Geochemistry and spatial distribution of OIB and MORB in A'nyemaqen ophiolite zone: Evidence of Majixueshan ancient ridgecentered hotspot[J]. Science in China(Series D), 2007, 50(2): 197–208.

    何凡, 宋述光. 东昆仑金水口地区格林威尔期超高温麻粒岩[J]. 岩石学报, 2020, 36(4): 1030–1040 doi: 10.18654/2095-8927/004

    HE Fan and SONG Shuguang. The Grenvillian⁃aged UHT granulite in Jinshuikou region, East Kunlun Orogenic Belt[J]. Acta Petrologica Sinica, 2020, 36(4): 1030–1040. doi: 10.18654/2095-8927/004

    李积清, 张鑫利, 王涛, 等. 东昆仑战红山地区花岗斑岩LA-ICP-MS锆石U-Pb测年及岩石地球化学特征[J]. 西北地质, 2021, 54(1): 30–40

    LI Jiqing, ZHANG Xinli, WANG Tao, et al. Zircon U-Pb Dating and Geochemical Characteristics of Granite Porphyry in Zhanhongshan Area, East Kunlun[J]. Northwestern Geology, 2021, 54(1): 30–40.

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244–254

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun[J]. Earth Science Frontiers, 2012, 19(5): 244–254.

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复[J]. 地质通报, 2015, 34(12): 2302–2314 doi: 10.3969/j.issn.1671-2552.2015.12.016

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. The depositional sequence and prototype basin for Lower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains[J]. Geological Bulletin of China, 2015, 34(12): 2302–2314. doi: 10.3969/j.issn.1671-2552.2015.12.016

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段古特提斯洋俯冲作用—乌妥花岗岩体锆石U-Pb年代学和地球化学证据[J]. 岩石学报, 2018, 34(11): 3399–3421.

    LI Ruibao, PEI Xianzhi, PEI Lei, et al. The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: Response to the northward subduction of the Paleo-Tethys Ocean[J]. Gondwana Research, 2018, 62, 212–226.

    罗照华, 柯珊, 曹永清, 等. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 2002, 21(6): 292–297 doi: 10.3969/j.issn.1671-2552.2002.06.003

    LUO Zhaohua, KE Shan, CAO Yongqing, et al. Indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 2002, 21(6): 292–297. doi: 10.3969/j.issn.1671-2552.2002.06.003

    马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555–3568

    MA Changqian, XIONG Fuhao, YIN Shuo, et al. Intensity and cyclicity of orogenic magmatism: An example form a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2015, 31(12): 3555–3568.

    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403–414 doi: 10.3969/j.issn.1006-7493.2007.03.010

    MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 13(3): 403–414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    裴先治, 胡楠, 刘成军, 等. 东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析[J]. 地质论评, 2015, 61(2): 307–323

    PEI Xianzhi, HU Nan, LIU Chengjun, et al. Detrital Composition, Geochemical Characteristics and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region[J]. Geological Review, 2015, 61(2): 307–323.

    裴先治, 李瑞保, 李佐臣, 等. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学, 2018, 43(12): 4498–4520

    PEI Xianzhi, LI Ruibao, LI Zuochen, et al. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen[J]. Earth Science, 2018, 43(12): 4498–4520.

    钱兵, 高永宝, 李侃, 等. 新疆东昆仑于沟子地区与铁-稀有多金属成矿有关的碱性花岗岩地球化学、年代学及Hf同位素研究[J]. 岩石学报, 2015, 31(9): 2508–2520

    QIAN Bing, GAO Yongbao, LI Kan, et al. Zircon- U-Pb-Hf isotopes and whole rock geochemistry constraints on the petrogenesis of iron-rare metal mineralization related alkaline granite intrusive rock in Yugouzi area, eastern Kunlun, Xinjiang[J]. Acta Petrologica Sinca, 2015, 31(9): 2508–2520.

    王珂, 王连训, 马昌前, 等. 东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义[J]. 地球科学, 2020, 45(2): 400–418

    WANG Ke, WANG Lianxun, MA Changqian, et al. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun[J]. Earth Science, 2020, 45(2): 400–418.

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007a, 23(2): 185–220 doi: 10.3969/j.issn.1000-0569.2007.02.001

    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007a, 23(2): 185–220. doi: 10.3969/j.issn.1000-0569.2007.02.001

    吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007b, 23(6): 1217–1238 doi: 10.3969/j.issn.1000-0569.2007.06.001

    WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the petrogenesis of granite[J]. Acta Petrologica Sinica, 2007b, 23(6): 1217–1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745–765

    WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 2017, 47(7): 745–765.

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589–604.

    WU Yuanbao and ZHENG Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589–1604.

    殷鸿福, 张克信. 东昆仑造山带的一些特点[J]. 地球科学, 1997, 22(4): 339–342 doi: 10.3321/j.issn:1000-2383.1997.04.001

    YIN Hongfu and ZHANG Kexin. Characteristics of the Eastern Kunlun Orogenic belt[J]. Earth Science, 1997, 22(4): 339–342. doi: 10.3321/j.issn:1000-2383.1997.04.001

    于淼, 丰成友, 何书跃, 等. 祁漫塔格造山带——青藏高原北部地壳演化窥探[J]. 地质学报, 2017, 91(4): 703–723 doi: 10.3969/j.issn.0001-5717.2017.04.001

    YU Miao, FENG Chengyou, HE Shuyue, et al. The Qiman Tagh Orogen as A Window to the Crustal Evolution of the Northern Tibetan Plateau[J]. Acta Geologica Sinica, 2017, 91(4): 703–723. doi: 10.3969/j.issn.0001-5717.2017.04.001

    余能, 金巍, 葛文春, 等. 东昆仑金水口过铝花岗岩的地球化学研究[J]. 世界地质, 2005, 24(2): 123–128 doi: 10.3969/j.issn.1004-5589.2005.02.004

    YU Neng, JIN Wei, GE Wenchun, et al. Geochemical study on peraluminous granite from Jinshuikou in East Kunlun[J]. Global Geology, 2005, 24(2): 123–128. doi: 10.3969/j.issn.1004-5589.2005.02.004

    袁洪林, 吴福元, 高山, 等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003, 48(14): 1511–1520 doi: 10.3321/j.issn:0023-074X.2003.14.008

    YUAN Honglin, WU Fuyuan, GAO Shan, et al. U-Pb age determination of zircon from Cenozoic intrusions in northeast China and analysis of rare earth elements[J]. Chinese Science Bulletin, 2003, 48(14): 1511–1520. doi: 10.3321/j.issn:0023-074X.2003.14.008

    张新远, 李五福, 欧阳光文, 等. 东昆仑东段青海战红山地区早三叠世火山岩的发现及其地质意义[J]. 地质通报, 2020, 39(5): 631–641 doi: 10.12097/j.issn.1671-2552.2020.05.004

    ZHANG Xinyuan, LI Wufu, OUYANG Guangwen, et al. The discovery of Early Triassic volcanic rocks in Zhanhongshan area of Qinghai Province in the eastern section of East Kunlun Mountain and its geological significance[J]. Geological Bulletin of China, 2020, 39(5): 631–641. doi: 10.12097/j.issn.1671-2552.2020.05.004

    张照伟, 钱兵, 王亚磊, 等. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示[J]. 西北地质, 2020, 53(3): 153–168 doi: 10.19751/j.cnki.61-1149/p.2020.03.013

    ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Understanding of the Metallogenic Ore-Bearing Mechanism and Its Indication of Prospecting Direction in Xiarihamu Magmatic Ni-Co Sulfide Deposit, East Kunlun Orogenic Belt [J]. Northwestern China, 2020, 53(3): 153–168. doi: 10.19751/j.cnki.61-1149/p.2020.03.013

    赵旭, 付乐兵, 魏俊浩, 等. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约[J]. 地球科学, 2018, 43(2): 354–370

    ZHAO Xu, FU Lebing, WEI Junhao, et al. Geochemical Characteristics of Annage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean[J]. Earth Science, 2018, 43(2): 354–370.

    Altherr F F, Holl A, Hegner E, et al. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany)[J]. Lithos, 2000, 50: 51–73.

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59–79.

    Annen C, Blundy J D and Sparks R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology, 2006, 47(3): 505–539. doi: 10.1093/petrology/egi084

    Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts[J]. Lithos, 2005, 80: 155–177. doi: 10.1016/j.lithos.2004.05.010

    Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97: 1–29. doi: 10.1016/j.lithos.2006.12.007

    Boynton W V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P, ed. Rare earth element geochemistry[J]. Amsterdam Elsevier, 1984: 63–114.

    Cashman K V, Sparks R S J and Blundy J D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes[J]. Science, 2017, 355(6331): eaag3055. doi: 10.1126/science.aag3055

    Castillo P R. An overview of adakites petrogenesis[J]. Chinese Science Bulletin, 2006, 51: 257–268. doi: 10.1007/s11434-006-0257-7

    Castro A. Tonalite-granodiorite suites as cotectic systems: A review of experimental studies with applications to granitoid petrogenesis[J]. Earth-Science Reviews, 2013, 124: 68–95. doi: 10.1016/j.earscirev.2013.05.006

    Castro A. A non-basaltic experimental cotectic array for calc-alkaline batholiths[J]. Lithos, 2021, 382–383: 105929.

    Chapman J B, Runyon S E, Shields J E, et al. The North American Cordilleran Anatectic Belt[J]. Earth-Science Reviews, 2021, 215: 103576. doi: 10.1016/j.earscirev.2021.103576

    Chappell B W, White A J R and Wyborn D. The importance of residual source material (restite) in granite petrogenesis[J]. Journal of Petrology, 1987, 28(6): 11–38.

    Chappell B W and White A J R. I-and S-type granites in the Lachland Fold Belt[J]. Mineralogy Magazine Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 1–26. doi: 10.1017/S0263593300007720

    Chappell B W and White A J. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 2001, 48(4): 489–499. doi: 10.1046/j.1440-0952.2001.00882.x

    Chappell B W, Bryant C J and Wyborn D. Peraluminous I-type granites[J]. Lithos, 2012, 153: 142–153. doi: 10.1016/j.lithos.2012.07.008

    Chauvel C, Lewin E, Carpentier M, et al. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array[J]. Nature Geoscience, 2008, 1: 64–67. doi: 10.1038/ngeo.2007.51

    Chen J J, Wei J H, Fu L B, et al. Multiple sources of the Early Mesozoic Gouli batholith. Eastern Kunlun Orogenic Belt. , northern Tibetan Plateau: Linking continental crustal growth with oceanic subduction[J]. Lithos, 2017, 292–293: 161–178.

    Clemens J D and Stevens G. The enigmatic sources of I-type granites: The peritectic connexion[J]. Lithos, 2011, 126: 174–181. doi: 10.1016/j.lithos.2011.07.004

    Clemens J D, Stevens G. What controls chemical variation in granitic magmas?[J]. Lithos, 2012, 134–135: 317–329.

    Clemens J D, Stevens G and Bryan S E. Conditions during the formation of granitic magmas by crustal melting–hot or cold; drenched, damp or dry?[J]. Earth-Science Reviews, 2020, 200: 102982. doi: 10.1016/j.earscirev.2019.102982

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to south–eastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80: 189–200. doi: 10.1007/BF00374895

    Collins W J, Huang H Q and Jiang X Y. Water-fluxed crustal melting produces Cordilleran batholiths[J]. Geology, 2016, 44, G37398.1.

    Collins W J, Murphy J B, Johnson T E, et al. Critical role of water in the formation of continental crust[J]. Nature Geoscience, 2020, 13, 331–338. doi: 10.1038/s41561-020-0573-6

    Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469–500. doi: 10.2113/0530469

    Dong Y P, He D F, Sun S S, et al. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186: 231–261. doi: 10.1016/j.earscirev.2017.12.006

    Frost C D, Bell J M, Frost B R, et al. Crustal growth by magmatic underplating: isotopic evidence from the northern Sherman batholith[J]. Geology, 2001, 29: 515–518.

    Gao P, Zheng Y F, Zhao Z F. Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis[J]. Lithos, 2016, 266: 133–157.

    Guo X Z, Jia Q Z, Lv X B, et al. The Permian Sn metallogenic event and its geodynamic setting in East Kunlun, NW China: Evidence from zircon and cassiterite geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Xiaowolong skarn Sn deposit[J]. Ore Geology Reviews, 2020, 118: 103370. doi: 10.1016/j.oregeorev.2020.103370

    Huang H, Niu Y L, Nowell G, et al. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology, 2014, 370: 1–18. doi: 10.1016/j.chemgeo.2014.01.010

    Hawkesworth C J and Kemp A I S. Evolution of the continental crust[J]. Nature, 2006, 443: 811–817. doi: 10.1038/nature05191

    Jackson M D, Blundy J and Sparks R S J. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust[J]. Nature, 2018, 564: 405–409. doi: 10.1038/s41586-018-0746-2

    Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon [J]. Science, 2007, 315: 980–983.

    Lee C T A and Bachmann O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics[J]. Earth and Planetary Science Letters, 2014, 393: 266–274. doi: 10.1016/j.jpgl.2014.02.044

    Lee C T A and Morton D M. High silica granites: terminal porosity and crystal settling in shallow magma chambers[J]. Earth and Planetary Science Letters, 2015, 409: 23–31. doi: 10.1016/j.jpgl.2014.10.040

    Li R B, Pei X Z, Li Z C, et al. Late Silurian to Early Devonian volcanics in the East Kunlun orogen, northern Tibetan Plateau: Record of postcollisional magmatism related to the evolution of the Proto-Tethys Ocean[J]. Journal of Geodynamics, 2020a, 140: 101780. doi: 10.1016/j.jog.2020.101780

    Li Y J, Wei J H, Santosh M, et al. Anisian granodiorites and mafic microgranular enclaves in the eastern Kunlun Orogen, NW China: Insights into closure of the eastern Paleo–Tethys[J]. Geological Journal, 2020b, 55(9): 1–21.

    Li Z C, Pei X Z, Bons P D, et al. Petrogenesis and tectonic setting of the early-middle triassic subduction-related granite in the eastern segment of East Kunlun: evidences from petrology, geochemistry, and zircon U-Pb-Hf isotopes [J]. International Geology Review, 2022, 22(5): 698-721.

    Ludwig K R. Isoplot 3.0: A Geochronological toolkit for Microsoft Excel[J]. Berkeley: Berkeley Geochronology Center, 2003, 1–70.

    Maniar P D and Piccoli P M . Tectonic discrimination in of granitoids[J]. Geological Society of America Bulletin, 1989, 1: 635–643.

    Patiño Douce A E and Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4): 689–710. doi: 10.1093/petroj/39.4.689

    Patiño Douce A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of the granitic magmas[J]. Geological Society London Special Publications, 1999, 168(1): 55–75. doi: 10.1144/GSL.SP.1999.168.01.05

    Petford N and Atherton M. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491–1521. doi: 10.1093/petrology/37.6.1491

    Rapp R P. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability[J]. Journal of Geophysical Research: Solid Earth, 1995a, 100(B8): 15601–15610. doi: 10.1029/95JB00913

    Rapp R P and Watson E B. Dehydration melting of metabasalt an 8–32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995b, 36(4): 891–31. doi: 10.1093/petrology/36.4.891

    Rollinson H R. Using geochemical data: evaluation, presentation, interpretation[M]. Longman Group UK Ltd, New York, 1993: 1–352.

    Rudnick R L, Gao S. Composition of the continental crust[M]. In: Treatise on Geochemistry. volume 3. Elsevier, 2003: 1–64.

    Shao F L, Niu Y L, Liu Y, et al. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implicationsa[J]. Lithos, 2017, 282: 33–44.

    Stern C R and Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 1996, 123: 263–281. doi: 10.1007/s004100050155

    Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2005, 148: 635–661. doi: 10.1007/s00410-004-0632-9

    Song K, Ding Q F, Zhang Q, et al. Zircon U–Pb geochronology, Hf isotopes, and whole‐rock geochemistry of Hongshuihe Early to Middle Triassic quartz diorites and granites in the Eastern Kunlun Orogen, NW China: Implication for petrogenesis and geodynamics[J]. Geological Journal, 2019, 55(2): 1–22.

    Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. In: Sunders AD, Norry MJ, Magmatism in the Ocean Basins, Geological Society Special Publication, 1989: 313–345.

    Thompson A B. Fluid-absent metamorphism[J]. Journal of the Geological Society, 1983, 140: 533–547. doi: 10.1144/gsjgs.140.4.0533

    Villaros A, Stevens G and Buick I S. Tracking S-type granite from source to emplacement: clues from garnet in the Cape Granite Suite[J]. Lithos, 2009, 112: 217–235. doi: 10.1016/j.lithos.2009.02.011

    Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters,1983,64:295-304.

    Whalen J B, Currie K L and Chappell B W. A-type granites: Geochemical characteristics discrimination and petrogeneisis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407–419. doi: 10.1007/BF00402202

    Wilson M. Igneous Petrogenesis[M]. London: Springer, 1989: 295–323.

    Xia R, Deng J, Qing M, et al. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys[J]. Lithos, 2015, 234–235: 47–70.

    Xia R, Deng J, Qing M, et al. Petrogenesis of ca 240 Ma intermediate and felsic intrusions in the Nan’getan: Implications for crust–mantle interaction and geodynamic process of the East Kunlun Orogen[J]. Ore Geology Reviews, 2017, 90: 1099–1119. doi: 10.1016/j.oregeorev.2017.04.002

    Xin W, Sun F Y, Zhang Y T, et al. Mafic-intermediate igneous rocks in the East Kunlun Orogenic Belt. , northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic[J]. Lithos, 2019, 346–347: 105159.

    Xion F H, Ma C Q, Jiang H G, et al. Petrogenetic and tectonic significance of Permian calcalkaline lamprophyres, East Kunlun orogenic belt, Northern Qinghai-Tibet Plateau[J]. International Geology Review, 2013, 55(14): 1817–81834. doi: 10.1080/00206814.2013.804683

    Xiong F H, Ma C Q, Zhang J Y, et al. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 2014, 171(6): 847–863. doi: 10.1144/jgs2013-038

    Xiong F H, Ma C Q, Chen B, et al. Intermediate-mafic dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A window into paleo-arc magma feeding system[J]. Lithos, 2019: 340–341: 152–165.

    Yu M, Dick M, Feng C Y, Li B, et al. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 2020, 191(2): 104168.

    Zhao X, Wei J H, Fu L B, et al. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen[J]. Lithos, 2020, 360–361: 105446.

    Zheng Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10: 1223–1254. doi: 10.1016/j.gsf.2019.02.003

    Zhou H Z, Zhang D H, Wei J H, et al. Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling[J]. Gondwana Research, 2020, 84: 52–70. doi: 10.1016/j.gr.2020.02.012

  • 期刊类型引用(3)

    1. 李林,曾磊,董英,张戈,朱立峰. 基于三维地质模型的西咸新区地下空间开发适宜性评价. 地质与勘探. 2024(01): 197-206 . 百度学术
    2. 韩博,夏雨波,王国明,高伊航,郭旭,张曦,刘宏伟,苗晋杰,白耀楠,李状. 雄安新区起步区地下空间资源开发利用地质适宜性及资源量评价. 华北地质. 2024(03): 74-87 . 百度学术
    3. 程靖清,李炎桂,姚华舟,钱静,张洪岩,王明龙,蔡建斯,张婉秋,杜子纯. 基于三维地质模型的地下空间地质环境条件适宜性评价——以深圳湾超级总部基地片区为例. 华中师范大学学报(自然科学版). 2024(05): 551-560 . 百度学术

    其他类型引用(0)

图(11)  /  表(3)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  35
  • PDF下载量:  54
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-10-14
  • 修回日期:  2022-06-06
  • 网络出版日期:  2023-01-15
  • 刊出日期:  2023-04-19

目录

/

返回文章
返回