ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义

吴树宽, 陈国超, 李积清, 陈孝珍, 李瑞保, 魏均启

吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92-108. DOI: 10.12401/j.nwg.2022043
引用本文: 吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92-108. DOI: 10.12401/j.nwg.2022043
WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92-108. DOI: 10.12401/j.nwg.2022043
Citation: WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92-108. DOI: 10.12401/j.nwg.2022043

东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义

基金项目: 青海省省级财政资金地质勘查项目(2017042034jc015),中国地质调查局项目(12120114079701),自然资源部成矿作用与资源评价重点实验室开放基金项目(ZS006),长安大学西部矿产资源与地质工程教育部重点实验室开发基金项目(300102261505),河南省科技攻关河南省重点研发与推广专项(212102310030),资源与生态环境地质湖北省重点实验室开放基金项目(KJ2022-35)和南阳理工学院交叉科学研究项目联合资助成果。
详细信息
    作者简介:

    吴树宽(1986−),男,硕士,高级工程师,构造地质学专业,主要从事区域矿产调查研究。E−mail:wushukuan@126.com

    通讯作者:

    陈国超(1979−),男,博士,副教授,构造地质学专业,主要从事造山带构造岩浆作用研究。E−mail: chaoschen@126.com

  • 中图分类号: P59; P584

Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun

  • 摘要:

    东昆仑三叠纪花岗质岩石的研究主要集中于具I型花岗岩特征的大型花岗岩基,而对少量出露的过铝质花岗岩研究较少。东昆仑造山带东段沟里地区战红山花岗斑岩LA−ICP−MS锆石U−Pb同位素定年结果显示,战红山流纹斑岩的结晶年龄为(245±1)Ma。战红山流纹斑岩具有高Si(SiO2=74.50%~75.59%)、富Na(Na2O=4.04%~4.06%),高Na2O/K2O值(1.26~1.76)和铝饱和指数(A/CNK=1.07~1.14),呈弱过铝质−过铝质中钾−高钾钙碱性系列。岩石稀土含量较低,轻、重稀土元素分馏明显,Eu具轻微的负异常和正异常(δEu=0.80~1.06);富集Ba、Rb、Th、K、U等大离子亲石元素,亏损Nb、Ta、Nd、P、Ti等高场强元素,εHf(t)同位素主体呈富集特征(εHf(t)=-4.7~+0.9)。战红山过铝质流纹斑岩具I型花岗岩特征,为早期俯冲洋壳经过幔源岩浆的底侵和外来流体的加入部分熔融的结果。战红山流纹斑岩具弧岩浆岩地球化学特征,结合东昆仑造山带东段岩浆岩分布以及沉积地层特征显示,早三叠世东昆仑地区处于古特提斯洋的俯冲阶段。

    Abstract:

    The study of Triassic granitic rocks in East Kunlun mainly focuses on the large granite batholith with the characteristics of I−type granite, while the study of a small amount of peraluminous granite is less. The LA−ICP−MS zircon U−Pb dating of The Zhanhongshan rhyolite porphyry shows that the crystallization age of the Zhanhongshan rhyolite porphyry is 245±1 Ma. The Zhanhongshan rhyolite porphyry is characterized by high silica (SiO2=74.50%~75.59%), rich Na (Na2O=4.04%~4.06%), high Na2O/K2O ratio (1.26~1.76), and aluminum saturation index (A/CNK=1.07~1.14), which indicate weak peraluminous medium potassium and high potassium calc−alkaline series. The rocks is characterized by low REE content with obvious fractionation of LREE and HREE, slight negative and positive Eu anomalies (δEu=0.80~1.06), also enrichment of LILE and depletion of HFSE. They have enriched Hf isotopic compositions with εHf (t) isotope values of −4.7~+0.9. It is concluded that the peraluminous Zhanhongshan rhyolite porphyry has the characteristics of I−type granite, which is the result of the underplating of the subducted oceanic crust through mantle−derived magma and partial melting with the addition of foreign fluid, and has arc magmatic geochemical characteristics. Combined with the previous data, the study shows that the East Kunlun area was in the subduction stage of the Paleo−Tethys ocean in the Early Triassic.

  • 以苏里格气田为代表的鄂尔多斯盆地致密砂岩气的开发目前正处于快速发展阶段。目前,中国已有多位学者对研究区致密砂岩储层进行了深入的研究(白慧等,20152020董会等,2016田清华等,2022)。苏里格气田位于鄂尔多斯盆地伊陕斜坡的西北部,苏59井区位于苏里格气田的西部。而河道砂体是常规油气勘探开发的主要研究对象。对于这类砂岩储层的评价通常以单一岩性为主,岩相组合分析较少。岩相组合指的是沉积序列的垂向构成,包括岩石的岩性、成分、结构、构造、亚相(微相)等,例如,可以按照粒度特征分为向上变粗、向上变细和复合3种类型 (邱隆伟等,2012胡一然,2015张荣,2016孟德伟等,2016张洪洁,2020)。岩相组合分析能够反映一段沉积期内的沉积水动力条件、沉积原始物质组成,甚至后期成岩改造的程度(雷开强,2003陈俊亮等,2004陈克勇,2006白涛,2008张延庆,2008张广权等,2011李晓慧,2020)。不同的岩相组合具有特殊的测井曲线形态,分布在特定的沉积微相中,具有“易识别、可预测”的典型特征。然而,前人已经开展过单一岩相类型及其储层物性特征等方面研究(覃伟,2011叶爽清,2015印森林等,2016张荣,2016魏修平等,2019林建力等,2019Zhang et al.,2020),但岩相组合对储层物性的影响尚不明确。

    鄂尔多斯盆地苏里格气田上古生界石盒子组和山西组具有良好的开发前景。苏里格气田石盒子组和山西组沉积在海陆过渡沉积环境,广泛发育三角洲分流河道和水下分流河道砂体,以中–粗粒的岩屑砂岩以及岩屑石英砂岩为主。笔者拟通过岩心观察分析、薄片鉴定、图像分析对苏里格气田石盒子组和山西组开展岩石学特征研究,划分岩相类型和岩相组合,并从岩性、粒度、压实强度、溶蚀程度等特征进行分析,明确岩相组合对砂岩储层物性的控制作用。

    苏里格气田是中国陆上发现的最大的天然气田,位于长庆靖边气田西北侧的苏里格庙地区(图1a)。区域构造属于鄂尔多斯盆地陕北斜坡北部中带(图1),行政区属内蒙古自治区鄂尔多斯市的乌审旗和鄂托克旗所辖,勘探范围西起内蒙古鄂托克前旗、北抵鄂托克后旗的敖包加汗,勘探面积约20000 km(汪正江等,2002王光强,2010)。

    图  1  研究区位置及地层综合柱状图
    a.区域构造位置图; b.SU59-13-51B井地层综合柱状图
    Figure  1.  Comprehensive histogram of the location and stratigraphy of the study area

    苏里格气田上古生界自下而上发育石炭系本溪组、二叠系山西组、下石盒子组、上石盒子组和石千峰组,总厚度700 m左右。中二叠世下石盒子组初期伴随区域构造活动继续加剧,北部物源区持续抬升,丰富的物源碎屑导致河流沉积体系快速向南推移,致使冲积平原向南增大,湖泊相区缩小。该期岩相古地理面貌特征与山西期有一定的继承性,也发生了较大的变化,以多河道的辫状河与曲流河交替发育为主要特征,多心滩、边滩沉积,河道相互叠置,砂体厚度较山西组有较大增加。在山西组,早期的时候,发生强烈的构造活动,北部物源区迅速上升(汪正江等,2002陈昭佑等,2010谭晨曦,2010),使研究区在该时期形成大面积的砂体发育区。受古气候影响,山西组沉积期沼泽普遍发育,发育多套煤层。早二叠世山西期沉积在海陆过渡的三角洲环境,山西组下部发育三角洲前缘相,上部发育三角洲平原相(袁芳政,2008陈洪德,2011张广权,2011)。石盒子组和山西组三角洲平原相发育分流河道、分流间湾、天然堤、决口扇、泛滥洼地和泥炭沼泽微相;三角洲前缘发育水下分流河道、水下分流间湾和河口坝微相(王少鹏,2006郑婷,2015)。依据沉积旋回,研究区石盒子组由上而下分为盒8-3至盒8-4两个小层,盒8段上段以暗紫红色、紫红色泥岩、粉砂岩、泥岩为主,夹薄~中厚层状棕红色、浅棕红色细砂岩、中砂岩;中段以暗紫色、暗紫红色、深灰色、灰绿色泥岩为主夹浅灰色细砂岩;下段为中厚~厚层状浅灰色、灰白色细砂岩、中砂岩、含砾粗砂岩为主、薄层深灰色泥岩、粉砂质泥岩;底部为厚层状灰白色小砾岩;而山西组由下而上分为山1和山2段,并可进一步细分为S1-1至S2-2五个小层(图1)。山1段岩性为砾质砂岩、含砾粗砂岩、粗砂岩、中砂岩、细砂岩、泥岩和煤层,且煤层在山1段最为发育;山2段岩性与山1段基本一致,但煤层厚度较薄(罗东明等,2008万旸璐,2016)。

    通过苏里格气田西部的SU59-4-13、SU59-13-51B的岩心观察和薄片分析,石盒子组盒8和山西组12主要发育石英砂岩和岩屑石英砂岩,含少量岩屑砂岩。通过镜下对100余个薄片鉴定结果进行统计,储集层碎屑主要成分为石英,碎屑颗粒中石英含量为69%~88%,石英颗粒平均含量为80.3%;储集层碎屑次要为变质岩岩屑,变质砂岩含量较少,长石含量极低,胶结物以硅质胶结和铁方解石胶结为主,杂基以云母和高岭石为主,少见绿泥石(图2图3)。

    图  2  苏59井区石盒子组和山西组岩石中主要岩屑类型
    a、b岩屑石英砂岩SU59-4-13井 2 695.07 m S1-2;c、d 岩屑砂岩 SU59-13-51B井2 695.07 m S1-2
    Figure  2.  Major rock chip types in rocks of the Shibox Formation and Shanxi Formation in the Su59 well area
    图  3  苏59井区山西组岩石中主要岩屑类型
    a. 变质岩岩屑 变质石英岩SU59-4-13井 2660.33 m S2-1;b. 沉积岩岩屑 粉砂岩 SU59-4-13井 2600.76 m S1-2;c. 沉积岩岩屑 鲕粒灰岩SU59-4-13井 2660.33 m S2-1;d. 沉积岩岩屑 泥板岩 SU59-4-13井 2597.27 m S1-2; e. 变质岩岩屑 SU59-13-51B井 2621.82 m S1-1;f .变质岩岩屑SU59-13-51B井 2551.12 m S2-2
    Figure  3.  Main rock chip types in the rocks of Shanxi Formation in Su59 well area

    苏里格气田西区储集层物性总体表现为低孔隙度、低渗透率的特征。根据岩心物性资料统计,孔隙 度范围 4%~12%,平均为 7.24%;渗透率范围0.01×10−3~10×10−3 μm2 ,平均为 0.52×10−3 μm2 ;孔隙度与渗透 率之间具有明显的正相关关系,表明渗透率的变化主 要受控于孔隙度的发育程度(张春英等,1995)。其中渗透率大于0.5×10−3 μm2的砂岩可视为良好的储层,渗透率小于0.5×10−3 μm2的砂岩物性较差(赵靖舟,2012王少飞,2013)。

    石盒子组和山西组三角洲平原分流河道以及辫状河心滩微相砂岩的粒度普遍较粗,根据取心段岩心描述与统计的结果,中粒以上的砂岩占总砂岩厚度90%以上,平均厚度在2~5 m之间。根据粒度分析结果,山西组砂岩的粒度中值Φ为−1.08~3.98,平均为0.64,粒度较粗;标准偏差为0.28~1.05,分选好至中等;偏度普遍大于0,具有明显的正偏态。砂岩结构普遍具有颗粒支撑特征,局部含泥中砂岩具有杂基支撑结构。颗粒支撑砂岩的碎屑颗粒之间普遍呈线接触,仅部分样品可见点接触特征,指示了较强的压实作用。

    研究区三角洲平原分流河道和心滩微相砂岩的沉积构造特征明显,主要发育粒序层理、纹层层理、槽状交错层理、板状交错层理、和平行层理。根据研究区沉积构造和岩石粒度差异,可将盒8段主要划分为5类岩相(图4表1)。

    图  4  山西组不同粒度砂岩类型
    a.含砾粗砂岩相,发育交错层理,3 528.2 m,苏59井;b.灰黑色泥岩相,见碳质纹层,3 608.4 m,苏59-13-51B井;c.沙纹层理泥质粉砂岩相,可见明显的沙纹层理构造,3 532.6 m,苏59井;d.含砾粗砂岩相,3 531.05 m,苏59-13-51B井;e.细-中砂岩相,断面可见碳质,3 548.74 m,苏59-13-51B井
    Figure  4.  Types of sandstones with different grain sizes in the Shanxi Formation
    表  1  鄂尔多斯气田研究区主要岩相类型
    Table  1.  Main lithological types in the Ordos gas field study area
    粒度分级沉积构造岩相类型
    (含砾)粗砂岩板状交错层理板状交错层理粗砂岩
    中砂岩块状层理块状层理中砂岩
    平行层理平行层理中砂岩
    小型交错层理小型交错层理中砂岩
    细-中砂岩平行层理平行层理细-中砂岩
    细砂岩平行层理平行层理细砂岩
    粉砂岩小型交错层理小型交错层理细砂岩
    下载: 导出CSV 
    | 显示表格

    层理类型和粒度是沉积水动力条件的直接反映(刘忠群,2008李成等,2015),岩相类型能够反映一段时期内的水动力条件,而岩相组合能够反映河道沉积期内的水动力条件的变化特征。本研究根据纵向上岩石粒度变化,将岩相组合分为向上变细的正韵律组合和向上变粗的反韵律组合以及先变细再变粗的复合韵律组合(图5)。复合韵律组合为由多个正/反韵律相互叠置构成,表现为上部与下部粗-中砂岩与煤层互层,中部夹杂含泥中砂岩的复合韵律特征;复合韵律组合指示了河道水动力条件较强但不稳定,组合中部发育的含泥中砂岩具有密度流的特点。正韵律组合具有下粗上细的结构,下部发育中-粗砂岩,中部发育中砂岩、上部发育粉-细砂岩,具有河道沉积充填的典型特征;反韵律组合砂体垂向粒度变化表现为下细上粗的渐变,上部发育粗-中砂岩,下部发育粉-细砂岩,具有河口坝沉积充填的特征。

    图  5  研究区发育的岩相组合类型
    Figure  5.  The lithofacies assemblies of Formation in the study area

    根据对研究区对两口井取心井的分析,石盒子组砂体垂向上主要以正韵律、反韵律和符合韵律为主而山西组砂体垂向上主要以正韵律和复合韵律为主,粒度向上逐渐变细的正韵律最常见。通过对取心段的统计,3类岩相组合所发育的岩相类型存在较大差异(图6)。岩相组合和岩相组合II的岩相类型中粒度整体较粗,粗砂岩/中-粗砂岩所占比例较高,且以块状层理为主。岩相组合III的岩相类型的粒度偏细。

    图  6  研究区不同岩相组合所发育的单一岩相类型
    Figure  6.  The lithofacies type in the different lithofacies assemblies of Study area

    苏59井区山西组为海相–陆相沉积体系。在砂体垂向相主要以正韵律和复合韵律为主,从整体来看表现为粒度向上变细的正韵律。且正韵律往往在砂体下部分布于高孔渗的物性值,向上逐步过渡减小;复合韵律在单砂体内部渗透率变化规律并不显著,垂向表现出高低渗透率交替出现。

    通过对取心井76个柱塞样品孔渗数据分析,相比石盒子组山西组含砾粗砂岩、粗砂岩、中-粗砂岩的物性相对较好,孔隙度普遍大于4%,渗透率大于0.5×10−3 μm2。含泥中砂岩和中砂岩物性较差,排除微裂缝的样品,渗透率普遍低于0.5×10−3 μm2。山西组主要岩相类型的孔渗差异明显。据前人研究,苏里格气田低渗透致密砂岩储层可分为 4 种类型:①渗透率大于 1×10−3 µm2的砂岩储层。②渗透率介于 0.5×10−3 µm2~ 1×10−3 µm2的砂岩储层。③ 渗透率在0.1×10−3 µm2~0.5×10−3 µm2之间的砂岩储层。④渗透率小于 0.1×10−3 µm2砂岩储层。其中渗透率大于 0.5×10−3 µm2的砂岩储层可视为良好储层,渗透率小于0.5×10−3µm2的砂岩储层物性较差,在勘探开发过程中通常只将前两种砂岩储层作为开发对象(赵靖舟,2012王少飞,2013)。

    通过对平均孔隙度和平均渗透率的统计,物性最好的岩相为粒序层理含砾中砂岩、块状含砾粗砂岩、板状交错层理粗砂岩和块状粗砂岩,平均孔隙度大于8%,平均渗透率大于1×10−3 μm2图7图8)。根据对不同岩相组合中这4类相对高孔渗岩相发育程度的统计,在复合韵律组合I和正韵律组合II中相对高孔渗岩相更加发育,且组合II中最发育(图9)。由此可见,岩相组合之间存在物性差异主要与所发育的岩相类型有关。

    图  7  苏59井区组孔隙度与渗透率相关图
    Figure  7.  Porosity versus permeability correlation plot for the Su 59 well formation
    图  8  苏59井区不同岩相类型的平均孔隙度和渗透率
    Figure  8.  The average porosity and permeability of different lithofacies from the Study area
    图  9  苏59井区不同岩相组合中相对高孔渗岩相类型厚度百分比
    Figure  9.  Comparison of development frequency of relatively high porosity and permeability facies types in different lithofacies assemblages of Study area

    研究区山西组砂岩段岩石组合Ⅰ杂基含量较低且黏土以伊利石为主,石英含量高,胶结物含量较少;Ⅱ类岩石组合杂基含量较高,压实程度相对较高,高岭石含量较高,石英含量较低,溶蚀程度较强;Ⅲ类岩石组合,杂基含量高,压实程度高,高岭石含量低,溶蚀程度低(图10)。

    图  10  研究区山西组地区杂基含量直方图
    Figure  10.  Histogram of heterogeneous group content in Group area of Su59 well area

    由于不同岩相组合形成的沉积水动力条件不同,会导致岩石组成的不同,对储层物性产生明显影响。通过XRD全岩分析表明,研究区砂岩的碎屑颗粒都以石英为主,其次为岩屑,几乎未见长石。岩屑组分包括沉积岩岩屑、变质岩岩屑、火山岩岩屑、云母以及少量燧石,且以沉积岩岩屑为主。通过对研究区体薄片进行统计分析可知,在岩相组合Ⅰ和II中石英含量高于组合III,但岩屑含量低于组合III,而在岩石组合Ⅲ中石英含量相对较低而岩屑含量较高,特别是沉积岩岩屑分布较多(图11)。不同类型的岩屑的抗压实能力差异较大,沉积岩岩屑中碳酸盐岩岩屑抗压实能力最强,其次为粉砂岩岩屑,泥岩岩屑最易于压实。

    图  11  研究区不同岩相组合的砂岩岩石组成特征
    Figure  11.  Petrographic composition of sandstones developed in different lithofacies assemblages of the Study area

    通过对杂基含量与物性关系的分析,表明研究区山西组颗粒支撑的砂岩中杂基的含量与孔隙度和渗透率均存在明显的正相关性(图12)。通过对不同岩相组合中所发育砂岩的杂基含量的统计对比,发现组合III中的杂基含量明显高于组合I和组合II,是造成岩相组合III物性相对较差的主要原因。

    图  12  研究区砂岩中的杂基含量及其对储层物性的影响
    a.杂基含量与孔隙度相关性图;b.不同岩相组合中所发育的砂岩的平均杂基含量对比图
    Figure  12.  The matrix content of sandstone in the Study area and its influence on reservoir physical properties

    根据对研究区山西组成岩作用类型的分析,溶蚀作用的结果导致了砂岩中次生孔隙的形成。压实作用和溶蚀作用对储层的发育具有明显影响。压实作用的强度与颗粒粒径、塑性颗粒含量、埋藏深度等因素有关。压实相对较弱的砂岩能够保留较多连通性好的原生孔隙,形成相对高渗的储层。反之,在胶结作用较弱的砂岩中,原生孔较发育指示所经历的压实作用相对较弱。通过统计3类岩相组合的原生孔发育程度,岩相组合I和岩相组合II中的原生孔所占比例明显高于组合III(图13图14),表明在较高的石英含量和相对较少的沉积岩岩屑的岩石组成背景下岩相组合I和II砂岩所经历的岩石作用程度相对于组合III低。

    图  13  研究区储集空间类型
    a.粒内溶孔 SU59-4-13井2 668.9 m S2-1;b.粒内溶孔 SU59-4-13 井2 705.01 m S1-3;c.铸模孔SU59-4-13井2 702.7 m S1-3
    Figure  13.  Types of reservoir space in the study area
    图  14  山西组不同岩相组合的砂岩中原生孔和溶蚀孔发育程度对比图
    a.不同岩相组合的原生孔发育程度对比;b.不同岩相组合的溶蚀孔发育程度对比
    Figure  14.  Comparison of the degree of development of primary and dissolution pores in sandstones of different lithological assemblages of the Shanxi Formation

    研究区山西组颗粒支撑结构的砂岩中溶蚀作用普遍发育,但发育程度差异较大,局部甚至可见强烈溶蚀形成的矿物铸模孔。通过对研究区砂岩铸体薄片和扫描电镜观察,山西组砂岩溶孔大部分为岩屑溶蚀后形成,部分为长石溶蚀后形成,并在溶孔中残留较多蠕虫状自生高岭石(图15)。溶蚀作用的程度与压实程度密切相关,在压实相对较弱的砂岩中后期有机酸易于流动循环,促使溶蚀作用的进行。不同岩相组合的次生溶蚀孔隙的发育程度存在明显差异。岩相组合I和组合II溶蚀孔较为发育,并且在岩相组合II砂岩中发育一定铸模孔(图4图9)。这种溶蚀差异是由岩相组合的原始物质组成而产生的,由岩相组合I和组合II的较高的石英含量和较低的沉积岩岩屑含量导致在压实过程中仍然能够保留一定数量的原生孔,从而使溶蚀作用较强。

    图  15  研究区砂岩溶蚀孔发育特征
    a.粒内溶孔和残余粒间孔,SU59-13-51B井,H83;b.铸模孔,SU59-4-13B井,S1-2;c.岩屑溶蚀孔,SU59-4-13B井,S2-1;d.长石溶蚀孔被自生高岭石充填,SU59-13-51B井,S2-1
    Figure  15.  Characteristics of dissolved pores in sandstones of the Study area

    (1)苏里格气田盒8段岩屑石英砂岩和岩屑砂岩为主;山西组主要以石英砂岩和岩屑石英砂岩为主,分选程度中等至好,颗粒间以线接触为主。根据岩石粒度和沉积构造,研究区主要岩相类型可划分为5种。根据岩性的韵律变化特征,可将岩相组合划分为3种类型,分别为复合韵律组合、正韵律组合和反韵律组合,其中反韵律组合砂岩粒度偏细。

    (2)研究区不同岩相的物性差异明显,相对高孔渗岩相为粒序层理砾质砂岩、块状含砾粗砂岩、板状交错层理粗砂岩和块状粗砂岩,平均孔隙度大于8%,平均渗透率大于1×10−3 μm2。复合韵律和正韵律岩相组合中相对高孔渗岩相所占比例较高,是两类有利的岩相组合。

    (3)原始物质组成导致了不同岩相组合的物性差异。复合韵律和正韵律岩相组合相对于反韵律组合的石英含量较高,沉积岩岩屑含量较低,杂基含量较低,导致在压实过程中保留了一定原生孔,并且形成较多的溶蚀孔隙,使其孔隙度和渗透率相对较高。

  • 图  1   东昆仑造山带构造位置图(a)和战红山地区地质简图(b)

    1.第四系;2.早三叠世火山岩;3.三叠系;4.石炭系;5.下—中泥盆统契盖苏组;6.寒武纪长石山蛇绿构造混杂岩;7.古元古界金水口岩群;8.中三叠世正长花岗岩; 9.早三叠世花岗闪长岩; 10.中奥陶世花岗岩;11.变砂岩岩块;12.橄榄岩岩块;13.玄武岩岩块;14.糜棱岩;15.流纹斑岩脉;16.地质界线;17.角度不整合界线;18.断层界线;19.同位素样品采样点

    Figure  1.   (a) Tectonic location map of East Kunlun orogenic belt and (b) sketch geological map of the Zhanhongshan area

    图  2   战红山流纹斑岩野外露头(a)和镜下显微照片(b)

    Q.石英;Pl.斜长石;Bi.黑云母

    Figure  2.   (a) Outcrop photos and (b) photomicrographsof the typical textures for the Zhanhongshan rhyolite porphyry

    图  3   战红山流纹斑岩锆石阴极发光图(CL)、LA−ICP−MS锆石U−Pb年龄与锆石Hf分析结果(蓝色数值)(a)、LA−ICP−MS锆石U−Pb年龄谐和图与锆石206Pb/238U加权平均年龄图(b)

    Figure  3.   (a) Cathodoluminescence photos (CL) of zircons with marked U−Pb ages and Hf isotopic compositions, and (b) LA−ICP−MS zircon U−Pb concordant age diagram and 206Pb/238U weighted mean ages of zirconsfor the Zhanhongshan rhyolite porphyry

    图  4   战红山流纹斑岩A/CNK–A/NK图解(a)(据Maniar et al.,1989)、SiO2–ASI图解(b)(据Frost et al.,2001)、SiO2–K2O图解(c)(据Rollinson,1993)和SiO2–ALK分类命名图解(d)(据Wilson,1989

    战红山早三叠世火山岩数据源自付彦文等(2019)张新远等(2020);战红山花岗斑岩数据源自李积清等(2021);早三叠世花岗岩数据源自Xia等(20152017)Chen等(2017)Shao等(2017)李瑞保等(2018)Song等(2019)王珂等(2020)Guo 等(2020)Li 等(2020b)

    Figure  4.   (a) A/CNK–A/NK diagrams, (b) SiO2–ASI diagrams, (c) SiO2–K2O diagrams, and (d) SiO2–ALK classifying–naming diagrams for the Zhanhongshan rhyolite porphyry

    图  5   战红山流纹斑岩Harker图解

    Figure  5.   Harker diagrams for the Zhanhongshan rhyolite porphyry

    图  6   战红山流纹斑岩球粒陨石标准化稀土元素配分图(a)(标准化值据Boynton,1984)和原始地幔标准化蛛网图(b)(标准化值据Sun et al.,1989

    上地壳、下地壳和全地壳数据源自Rudnick等(2003)

    Figure  6.   (a) Chondrite–normalized REE distribution patterns, and (b) primitive mantle–normalized trace element spider diagramsfor the Zhanhongshan rhyolite porphyry

    图  7   战红山流纹斑岩Rb–Th图解(a)和(Zr+Nb+Ce+Y)–FeOT/MgO图解(b)(据Whalen et al., 1987

    FG. M+I+S 型高分异花岗岩;OGT. M+I+S 型未分异花岗岩

    Figure  7.   (a) Diagrams of Rb–Th and (b) (Zr+Nb+Ce+Y)–FeOT/MgOfor the Zhanhongshan rhyolite porphyry

    图  8   战红山流纹斑岩锆石εHf(t)–U–Pb年龄图

    白沙河岩组片岩数据据Shao等(2017);早三叠世花岗岩数据同图4,早三叠世镁铁质岩数据据Xiong等(20132014)赵旭等(2018);图中N–MORB、OIB和金水口S–type花岗岩εHf(t)值根据公式εHf(t)=1.59×εNd(t)+1.28(Chauvel et al.,2008Li et al.,2020a);N–MORB的εNd(t)和OIB的εNd(t)数据据郭安林等(2007),金水口S–type花岗岩εNd(t)数据据余能等(2005)

    Figure  8.   Diagrams of zircons εHf(t)–U–Pb ages for the Zhanhongshan rhyolite porphyry

    图  9   战红山流纹斑岩SiO2–Mg#图解

    地幔熔体据Stern等(1996);地壳熔体(变杂砂岩、变泥质岩、变安山岩、变玄武岩)据Altherr等(2000);在1.0~4.0 GPa 压力下变玄武岩或榴辉岩实验熔体据Rapp(1995a);在0.8~1.6 GPa压力和1 000~1 050 ℃下地壳熔体据Rapp等(1995b)

    Figure  9.   Diagrams of SiO2–Mg# for the Zhanhongshan rhyolite porphyry

    图  10   战红山流纹斑岩SiO2–(Dy/Yb)N图(a)、SiO2–Eu/Eu*图(b)、Sr–Ba图(c)和Eu/Eu*–Sr图(d)

    Figure  10.   (a) Diagrams of whole–rock trace–element SiO2–(Dy/Yb)N, (b) SiO2–Eu/Eu*, (c) Sr–Ba, and(d) Eu/Eu*–Sr for the Zhanhongshan rhyolite porphyry

    图  11   战红山流纹斑岩Y–Sr/Y图(a)和YbN–(La/Yb)N图(b)(底图据Castillo et al.,2006

    Figure  11.   (a) Diagrams of Sr/Y–Y and (b) (La/Yb)N–YbN for the Zhanhongshan rhyolite porphyry

    表  1   战红山流纹斑岩LA−ICP−MS锆石U−Pb同位素分析结果

    Table  1   LA−ICP−MS zircon U−Pb isotopic data for the Zhanhongshan rhyolite porphyry

    测点含量(106Th/U同位素比值年龄(Ma)谐和度
    PbThU207Pb/206Pb1b206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U
    178.34542.901907.850.280.04910.00170.26380.00930.03890.0005154792463238796%
    237.07383.19549.670.700.05350.00280.28570.01430.03880.000535011724532551196%
    354.07388.641207.200.320.05240.00230.28200.01200.03910.000530210224732521098%
    443.32284.07973.250.290.05250.00230.28110.01250.03870.000530612824532511097%
    580.34613.891766.080.350.04910.00200.26260.01030.03880.0004154932452237896%
    626.34204.87601.440.340.05370.00270.28770.01480.03870.000536711824532571295%
    775.59638.771396.560.460.05150.00200.27440.00970.03890.0005265892463246899%
    8149.431223.273122.620.390.05280.00180.28120.00940.03870.0005317762453252797%
    994.39663.102305.140.290.05050.00180.27090.00990.03890.0004217832463243899%
    1033.10226.67795.310.290.04570.00250.24240.01250.03880.0005 24532201089%
    1176.66640.531510.440.420.05300.00180.28240.00880.03870.0004328782452253796%
    1277.67528.411679.160.310.05510.00160.29530.00910.03880.0005417652463263793%
    1320.49157.49473.730.330.05880.00310.31670.01660.03900.000756111524642791387%
    1448.60300.471286.350.230.05360.00230.28850.01350.03900.00063549824742571195%
    1576.30570.411647.070.350.04930.00170.26390.00870.03880.0004161802463238796%
    1642.59324.98793.870.410.05720.00330.30630.01670.03890.000550213224632711390%
    17318.24441.11838.710.530.05710.00230.30630.01220.03890.0004494612463271990%
    18595.32645.401419.720.450.05180.00170.27700.00930.03870.0005280712453248798%
    19534.47474.48804.990.590.05070.00220.27110.01170.03880.00042331022453244999%
    20654.52502.77556.830.900.04870.00230.26210.01220.03890.000420011124632361096%
    21398.32230.52498.490.460.05080.00190.27230.00990.03880.0005232872453245899%
    22583.59299.31654.190.460.04980.00190.26730.01010.03890.00051831172463241897%
    23801.29347.04603.130.580.04960.00200.26590.01040.03870.00041761272452239897%
    24796.78264.83402.380.660.05890.00360.31740.02020.03860.000556113324432801686%
    259185.75156.34167.380.930.89160.019728.11350.56960.22710.001913201034232011%
    261238.64991.841269.060.780.07040.00250.38080.01470.03890.00059397324633281171%
    27222.43229.62634.080.360.05140.00260.27520.01310.03880.000425711524532471099%
    28321.80449.121212.880.370.05380.00200.28920.01080.03880.0005365882463258895%
    2974.12146.14388.290.380.05800.00780.31050.03730.03960.000653249425042752990%
    30439.00791.841040.540.760.16720.00531.15170.04610.04940.000925295431167782214%
      注:–表示无数据。
    下载: 导出CSV

    表  2   战红山流纹斑岩主量元素(%)和微量元素(10−6)分析结果

    Table  2   Major (%) and trace element (10−6) compositions for the Zhanhongshan rhyolite porphyry

    样品SiO2Al2O3Fe2O3FeOMgOCaONa2OK2OMnOTiO2P2O5LOILiBeScVCrCoNiCu
    ZHS-175.1713.541.260.360.420.934.432.670.040.070.041.325.371.998.515.302.920.591.022.49
    ZHS-275.5912.891.250.360.411.034.043.210.040.080.041.313.821.966.454.231.980.700.953.40
    ZHS-376.2412.671.260.410.430.954.252.670.050.080.041.264.501.856.624.002.440.620.832.67
    ZHS-474.5013.591.330.360.510.844.363.240.040.080.041.335.161.969.424.174.470.591.792.39
    ZHS-575.3113.411.140.360.451.014.462.530.040.080.041.433.701.958.754.701.720.820.632.47
    样品ZnGaRbSrZrNbMoInCsBaHfTaWTlPbBiThUYLa
    ZHS-122.113.871.566.910513.70.740.032.158803.981.180.950.6510.20.259.832.2016.319.7
    ZHS-222.113.287.879.411113.40.710.031.658934.141.131.340.7013.40.1512.42.7622.820.8
    ZHS-321.312.975.050.011013.30.750.032.339524.051.111.310.6113.20.176.832.0616.113.8
    ZHS-420.113.675.947.411213.80.660.031.909294.121.140.910.679.860.246.762.0016.416.2
    ZHS-517.913.669.359.896.413.00.750.021.987093.651.141.130.538.330.159.112.1717.420.4
    样品CePrNdSmEuGdTbDyHoErTmYbLuMg#A/CNKδEu(La/Yb)N(Gd/Yb)NNb/TaTzr
    ZHS-134.03.9313.42.730.772.590.472.650.551.890.271.960.3243.71.140.876.791.0711.57762
    ZHS-222.24.4415.33.350.843.060.613.670.792.630.412.880.4643.61.070.794.850.8611.89762
    ZHS-316.72.799.802.130.732.060.412.560.541.880.282.020.3344.31.091.054.590.8212.05763
    ZHS-419.63.1710.82.340.762.280.442.600.571.830.281.970.3347.31.110.995.550.9312.10764
    ZHS-529.24.0413.72.770.702.610.482.730.591.850.282.010.3347.61.130.796.831.0511.45754
     注:Mg# = 100×[Mg2+(Mg2++Fe2+)]; δEu=EuN/(SmN×GdN1/2;Tzr(℃)=12 900/[LnDz+0.85M+2.95]-273.15, M=(2Ca+K+Na)/(Si×Al)(Watson et al.,1983)。
    下载: 导出CSV

    表  3   战红山流纹斑岩锆石原位Hf同位素组成

    Table  3   In–situ Hf isotopic compositions of zircon for the Zhanhongshan rhyolite porphyry

    样品176Hf/177Hf176Yb/177Hf176Lu/177Hf'εHf(tTDMT2DM
    BQSCN-2-010.2826540.0000210.050.000.0017500.0000030.98641211
    BQSCN-2-020.2825930.0000220.040.000.0015230.000005−1.29461345
    BQSCN-2-030.2825420.0000190.060.000.0020580.000019−3.010331462
    BQSCN-2-040.2826140.0000200.060.000.0019690.000007−0.59281304
    BQSCN-2-050.2826210.0000190.070.000.0022330.000009−0.39231289
    BQSCN-2-060.2825990.0000210.040.000.0013440.000009−1.09331331
    BQSCN-2-070.2826020.0000240.070.000.0023970.000007−1.09551333
    BQSCN-2-080.2825670.0000200.110.000.0032830.000044−2.410321422
    BQSCN-2-090.2825500.0000180.060.000.0020110.000018−2.810211446
    BQSCN-2-100.2825250.0000200.050.000.0017110.000016−3.610481498
    BQSCN-2-110.2826160.0000200.070.000.0021570.000010−0.59291301
    BQSCN-2-120.2825230.0000190.040.000.0014310.000004−3.710431501
    BQSCN-2-130.2825630.0000210.060.000.0018940.000010−2.39991416
    BQSCN-2-140.2824950.0000200.070.000.0022390.000006−4.811071570
    BQSCN-2-150.2825810.0000200.070.000.0022380.000010−1.79821379
    下载: 导出CSV
  • 陈国超, 裴先治, 李瑞保, 等. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地质学报, 2013, 87(2): 178–196 doi: 10.3969/j.issn.0001-5717.2013.02.004

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Zircon U-Pb Geochronology Geochemical Characteristics and Geological Sinificance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun[J]. Acta Geologica Sinica, 2013, 87(2): 178–196. doi: 10.3969/j.issn.0001-5717.2013.02.004

    陈国超, 裴先治, 李瑞保, 等. 东昆仑古特提斯后碰撞阶段伸展作用: 来自晚三叠世岩浆岩的证据[J]. 地学前缘, 2019, 26(4): 191–208

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Lithospheric extersion of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt: insights from Late Triassic plutons[J]. Earth Science Frontiers, 2019, 26(4): 191–208.

    陈国超, 裴先治, 李瑞保, 等. 东昆仑造山带东段晚古生代—早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 2020, 27(4): 33–48

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Late Palaeozoic-Early Mesozoic tectonic-magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt[J]. Earth Science Frontiers, 2020, 27(4): 33–48.

    陈能松, 孙敏, 王勤燕, 等. 东昆仑造山带昆中带的独居石电子探针化学年龄: 多期构造变质事件记录[J]. 科学通报, 2007, 52(11): 1297–1306 doi: 10.3321/j.issn:0023-074X.2007.11.014

    CHEN Nengsong, SUN Min, WANG Qinyan, et al. EMP chemical ages of monazites from Central Zone of the eastern Kunlun Orogen: Records of multi-tectonometamorphic events[J]. Chinese Science Bulletin, 2007, 52(11): 1297–1306. doi: 10.3321/j.issn:0023-074X.2007.11.014

    陈有炘, 裴先治, 李瑞保, 等. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J]. 现代地质, 2011, 25(3): 510–521 doi: 10.3969/j.issn.1000-8527.2011.03.013

    CHEN Youxin, PEI Xianzhi, LI Ruibao, et al. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Bel[J]. Geoscience, 2011, 25(3): 510–521. doi: 10.3969/j.issn.1000-8527.2011.03.013

    邓红宾, 何龙, 姚波, 等. 东昆仑造山带低山头二长花岗岩形成时代及岩石地球化学特征[J]. 西北地质, 2018, 51(4): 60–69 doi: 10.3969/j.issn.1009-6248.2018.04.008

    DENG Hongbin, HE Long, YAO Bo, et al. Formation Age and Geochemical Characteristics of Dishantou Monzonitic Granite in Estern Kunlun Orogenic Belt[J]. Northwestern Geology, 2018, 51(4): 60–69. doi: 10.3969/j.issn.1009-6248.2018.04.008

    邓文兵, 裴先治, 刘成军, 等. 东昆仑东段香日德地区察汗陶勒盖正长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2016, 35(5): 687–699 doi: 10.3969/j.issn.1671-2552.2016.05.006

    DENG Wenbin, PEI Xianzhi, LIU Chengjun, et al. LA-ICP-MS zircon U-Pb dating of the Chahantaolegai syenogranites in Xiangride area of East Kunlun and its geological significance[J]. Geological Bulletin of China, 2016, 35(5): 687–699. doi: 10.3969/j.issn.1671-2552.2016.05.006

    付彦文, 薛万文, 王涛, 等. 青海东昆南构造带战红山地区中酸性火山岩的发现及其地质特征[J]. 矿物岩石, 2019, 39(4): 78–85 doi: 10.19719/j.cnki.1001-6872.2019.04.09

    FU Yanwen, XUE Wanwen, WANG Tao, et al. Discovery and geological characteristics of Intermediate acid volcanic rocks in the Zhanhongshan area, East Kunnan tectonic belt, Qinghai[J]. Journal Mineralogy Petrology, 2019, 39(4): 78–85. doi: 10.19719/j.cnki.1001-6872.2019.04.09

    郭安林, 张国伟, 孙延贵, 等. 阿尼玛卿蛇绿岩带OIB和MORB 的地球化学及空间分布特征: 玛积雪山古洋脊热点构造证据[J]. 中国科学(D辑), 2007, 36(7): 618–629.

    GUO Anlin, ZHANG Guowei, SUN Yangui, et al. Geochemistry and spatial distribution of OIB and MORB in A'nyemaqen ophiolite zone: Evidence of Majixueshan ancient ridgecentered hotspot[J]. Science in China(Series D), 2007, 50(2): 197–208.

    何凡, 宋述光. 东昆仑金水口地区格林威尔期超高温麻粒岩[J]. 岩石学报, 2020, 36(4): 1030–1040 doi: 10.18654/2095-8927/004

    HE Fan and SONG Shuguang. The Grenvillian⁃aged UHT granulite in Jinshuikou region, East Kunlun Orogenic Belt[J]. Acta Petrologica Sinica, 2020, 36(4): 1030–1040. doi: 10.18654/2095-8927/004

    李积清, 张鑫利, 王涛, 等. 东昆仑战红山地区花岗斑岩LA-ICP-MS锆石U-Pb测年及岩石地球化学特征[J]. 西北地质, 2021, 54(1): 30–40

    LI Jiqing, ZHANG Xinli, WANG Tao, et al. Zircon U-Pb Dating and Geochemical Characteristics of Granite Porphyry in Zhanhongshan Area, East Kunlun[J]. Northwestern Geology, 2021, 54(1): 30–40.

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244–254

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun[J]. Earth Science Frontiers, 2012, 19(5): 244–254.

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复[J]. 地质通报, 2015, 34(12): 2302–2314 doi: 10.3969/j.issn.1671-2552.2015.12.016

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. The depositional sequence and prototype basin for Lower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains[J]. Geological Bulletin of China, 2015, 34(12): 2302–2314. doi: 10.3969/j.issn.1671-2552.2015.12.016

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段古特提斯洋俯冲作用—乌妥花岗岩体锆石U-Pb年代学和地球化学证据[J]. 岩石学报, 2018, 34(11): 3399–3421.

    LI Ruibao, PEI Xianzhi, PEI Lei, et al. The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: Response to the northward subduction of the Paleo-Tethys Ocean[J]. Gondwana Research, 2018, 62, 212–226.

    罗照华, 柯珊, 曹永清, 等. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 2002, 21(6): 292–297 doi: 10.3969/j.issn.1671-2552.2002.06.003

    LUO Zhaohua, KE Shan, CAO Yongqing, et al. Indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 2002, 21(6): 292–297. doi: 10.3969/j.issn.1671-2552.2002.06.003

    马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555–3568

    MA Changqian, XIONG Fuhao, YIN Shuo, et al. Intensity and cyclicity of orogenic magmatism: An example form a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2015, 31(12): 3555–3568.

    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403–414 doi: 10.3969/j.issn.1006-7493.2007.03.010

    MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 13(3): 403–414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    裴先治, 胡楠, 刘成军, 等. 东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析[J]. 地质论评, 2015, 61(2): 307–323

    PEI Xianzhi, HU Nan, LIU Chengjun, et al. Detrital Composition, Geochemical Characteristics and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region[J]. Geological Review, 2015, 61(2): 307–323.

    裴先治, 李瑞保, 李佐臣, 等. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学, 2018, 43(12): 4498–4520

    PEI Xianzhi, LI Ruibao, LI Zuochen, et al. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen[J]. Earth Science, 2018, 43(12): 4498–4520.

    钱兵, 高永宝, 李侃, 等. 新疆东昆仑于沟子地区与铁-稀有多金属成矿有关的碱性花岗岩地球化学、年代学及Hf同位素研究[J]. 岩石学报, 2015, 31(9): 2508–2520

    QIAN Bing, GAO Yongbao, LI Kan, et al. Zircon- U-Pb-Hf isotopes and whole rock geochemistry constraints on the petrogenesis of iron-rare metal mineralization related alkaline granite intrusive rock in Yugouzi area, eastern Kunlun, Xinjiang[J]. Acta Petrologica Sinca, 2015, 31(9): 2508–2520.

    王珂, 王连训, 马昌前, 等. 东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义[J]. 地球科学, 2020, 45(2): 400–418

    WANG Ke, WANG Lianxun, MA Changqian, et al. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun[J]. Earth Science, 2020, 45(2): 400–418.

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007a, 23(2): 185–220 doi: 10.3969/j.issn.1000-0569.2007.02.001

    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007a, 23(2): 185–220. doi: 10.3969/j.issn.1000-0569.2007.02.001

    吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007b, 23(6): 1217–1238 doi: 10.3969/j.issn.1000-0569.2007.06.001

    WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the petrogenesis of granite[J]. Acta Petrologica Sinica, 2007b, 23(6): 1217–1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745–765

    WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 2017, 47(7): 745–765.

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589–604.

    WU Yuanbao and ZHENG Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589–1604.

    殷鸿福, 张克信. 东昆仑造山带的一些特点[J]. 地球科学, 1997, 22(4): 339–342 doi: 10.3321/j.issn:1000-2383.1997.04.001

    YIN Hongfu and ZHANG Kexin. Characteristics of the Eastern Kunlun Orogenic belt[J]. Earth Science, 1997, 22(4): 339–342. doi: 10.3321/j.issn:1000-2383.1997.04.001

    于淼, 丰成友, 何书跃, 等. 祁漫塔格造山带——青藏高原北部地壳演化窥探[J]. 地质学报, 2017, 91(4): 703–723 doi: 10.3969/j.issn.0001-5717.2017.04.001

    YU Miao, FENG Chengyou, HE Shuyue, et al. The Qiman Tagh Orogen as A Window to the Crustal Evolution of the Northern Tibetan Plateau[J]. Acta Geologica Sinica, 2017, 91(4): 703–723. doi: 10.3969/j.issn.0001-5717.2017.04.001

    余能, 金巍, 葛文春, 等. 东昆仑金水口过铝花岗岩的地球化学研究[J]. 世界地质, 2005, 24(2): 123–128 doi: 10.3969/j.issn.1004-5589.2005.02.004

    YU Neng, JIN Wei, GE Wenchun, et al. Geochemical study on peraluminous granite from Jinshuikou in East Kunlun[J]. Global Geology, 2005, 24(2): 123–128. doi: 10.3969/j.issn.1004-5589.2005.02.004

    袁洪林, 吴福元, 高山, 等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003, 48(14): 1511–1520 doi: 10.3321/j.issn:0023-074X.2003.14.008

    YUAN Honglin, WU Fuyuan, GAO Shan, et al. U-Pb age determination of zircon from Cenozoic intrusions in northeast China and analysis of rare earth elements[J]. Chinese Science Bulletin, 2003, 48(14): 1511–1520. doi: 10.3321/j.issn:0023-074X.2003.14.008

    张新远, 李五福, 欧阳光文, 等. 东昆仑东段青海战红山地区早三叠世火山岩的发现及其地质意义[J]. 地质通报, 2020, 39(5): 631–641 doi: 10.12097/j.issn.1671-2552.2020.05.004

    ZHANG Xinyuan, LI Wufu, OUYANG Guangwen, et al. The discovery of Early Triassic volcanic rocks in Zhanhongshan area of Qinghai Province in the eastern section of East Kunlun Mountain and its geological significance[J]. Geological Bulletin of China, 2020, 39(5): 631–641. doi: 10.12097/j.issn.1671-2552.2020.05.004

    张照伟, 钱兵, 王亚磊, 等. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示[J]. 西北地质, 2020, 53(3): 153–168 doi: 10.19751/j.cnki.61-1149/p.2020.03.013

    ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Understanding of the Metallogenic Ore-Bearing Mechanism and Its Indication of Prospecting Direction in Xiarihamu Magmatic Ni-Co Sulfide Deposit, East Kunlun Orogenic Belt [J]. Northwestern China, 2020, 53(3): 153–168. doi: 10.19751/j.cnki.61-1149/p.2020.03.013

    赵旭, 付乐兵, 魏俊浩, 等. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约[J]. 地球科学, 2018, 43(2): 354–370

    ZHAO Xu, FU Lebing, WEI Junhao, et al. Geochemical Characteristics of Annage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean[J]. Earth Science, 2018, 43(2): 354–370.

    Altherr F F, Holl A, Hegner E, et al. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany)[J]. Lithos, 2000, 50: 51–73.

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59–79.

    Annen C, Blundy J D and Sparks R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology, 2006, 47(3): 505–539. doi: 10.1093/petrology/egi084

    Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts[J]. Lithos, 2005, 80: 155–177. doi: 10.1016/j.lithos.2004.05.010

    Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97: 1–29. doi: 10.1016/j.lithos.2006.12.007

    Boynton W V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P, ed. Rare earth element geochemistry[J]. Amsterdam Elsevier, 1984: 63–114.

    Cashman K V, Sparks R S J and Blundy J D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes[J]. Science, 2017, 355(6331): eaag3055. doi: 10.1126/science.aag3055

    Castillo P R. An overview of adakites petrogenesis[J]. Chinese Science Bulletin, 2006, 51: 257–268. doi: 10.1007/s11434-006-0257-7

    Castro A. Tonalite-granodiorite suites as cotectic systems: A review of experimental studies with applications to granitoid petrogenesis[J]. Earth-Science Reviews, 2013, 124: 68–95. doi: 10.1016/j.earscirev.2013.05.006

    Castro A. A non-basaltic experimental cotectic array for calc-alkaline batholiths[J]. Lithos, 2021, 382–383: 105929.

    Chapman J B, Runyon S E, Shields J E, et al. The North American Cordilleran Anatectic Belt[J]. Earth-Science Reviews, 2021, 215: 103576. doi: 10.1016/j.earscirev.2021.103576

    Chappell B W, White A J R and Wyborn D. The importance of residual source material (restite) in granite petrogenesis[J]. Journal of Petrology, 1987, 28(6): 11–38.

    Chappell B W and White A J R. I-and S-type granites in the Lachland Fold Belt[J]. Mineralogy Magazine Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 1–26. doi: 10.1017/S0263593300007720

    Chappell B W and White A J. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 2001, 48(4): 489–499. doi: 10.1046/j.1440-0952.2001.00882.x

    Chappell B W, Bryant C J and Wyborn D. Peraluminous I-type granites[J]. Lithos, 2012, 153: 142–153. doi: 10.1016/j.lithos.2012.07.008

    Chauvel C, Lewin E, Carpentier M, et al. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array[J]. Nature Geoscience, 2008, 1: 64–67. doi: 10.1038/ngeo.2007.51

    Chen J J, Wei J H, Fu L B, et al. Multiple sources of the Early Mesozoic Gouli batholith. Eastern Kunlun Orogenic Belt. , northern Tibetan Plateau: Linking continental crustal growth with oceanic subduction[J]. Lithos, 2017, 292–293: 161–178.

    Clemens J D and Stevens G. The enigmatic sources of I-type granites: The peritectic connexion[J]. Lithos, 2011, 126: 174–181. doi: 10.1016/j.lithos.2011.07.004

    Clemens J D, Stevens G. What controls chemical variation in granitic magmas?[J]. Lithos, 2012, 134–135: 317–329.

    Clemens J D, Stevens G and Bryan S E. Conditions during the formation of granitic magmas by crustal melting–hot or cold; drenched, damp or dry?[J]. Earth-Science Reviews, 2020, 200: 102982. doi: 10.1016/j.earscirev.2019.102982

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to south–eastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80: 189–200. doi: 10.1007/BF00374895

    Collins W J, Huang H Q and Jiang X Y. Water-fluxed crustal melting produces Cordilleran batholiths[J]. Geology, 2016, 44, G37398.1.

    Collins W J, Murphy J B, Johnson T E, et al. Critical role of water in the formation of continental crust[J]. Nature Geoscience, 2020, 13, 331–338. doi: 10.1038/s41561-020-0573-6

    Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469–500. doi: 10.2113/0530469

    Dong Y P, He D F, Sun S S, et al. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186: 231–261. doi: 10.1016/j.earscirev.2017.12.006

    Frost C D, Bell J M, Frost B R, et al. Crustal growth by magmatic underplating: isotopic evidence from the northern Sherman batholith[J]. Geology, 2001, 29: 515–518.

    Gao P, Zheng Y F, Zhao Z F. Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis[J]. Lithos, 2016, 266: 133–157.

    Guo X Z, Jia Q Z, Lv X B, et al. The Permian Sn metallogenic event and its geodynamic setting in East Kunlun, NW China: Evidence from zircon and cassiterite geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Xiaowolong skarn Sn deposit[J]. Ore Geology Reviews, 2020, 118: 103370. doi: 10.1016/j.oregeorev.2020.103370

    Huang H, Niu Y L, Nowell G, et al. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology, 2014, 370: 1–18. doi: 10.1016/j.chemgeo.2014.01.010

    Hawkesworth C J and Kemp A I S. Evolution of the continental crust[J]. Nature, 2006, 443: 811–817. doi: 10.1038/nature05191

    Jackson M D, Blundy J and Sparks R S J. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust[J]. Nature, 2018, 564: 405–409. doi: 10.1038/s41586-018-0746-2

    Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon [J]. Science, 2007, 315: 980–983.

    Lee C T A and Bachmann O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics[J]. Earth and Planetary Science Letters, 2014, 393: 266–274. doi: 10.1016/j.jpgl.2014.02.044

    Lee C T A and Morton D M. High silica granites: terminal porosity and crystal settling in shallow magma chambers[J]. Earth and Planetary Science Letters, 2015, 409: 23–31. doi: 10.1016/j.jpgl.2014.10.040

    Li R B, Pei X Z, Li Z C, et al. Late Silurian to Early Devonian volcanics in the East Kunlun orogen, northern Tibetan Plateau: Record of postcollisional magmatism related to the evolution of the Proto-Tethys Ocean[J]. Journal of Geodynamics, 2020a, 140: 101780. doi: 10.1016/j.jog.2020.101780

    Li Y J, Wei J H, Santosh M, et al. Anisian granodiorites and mafic microgranular enclaves in the eastern Kunlun Orogen, NW China: Insights into closure of the eastern Paleo–Tethys[J]. Geological Journal, 2020b, 55(9): 1–21.

    Li Z C, Pei X Z, Bons P D, et al. Petrogenesis and tectonic setting of the early-middle triassic subduction-related granite in the eastern segment of East Kunlun: evidences from petrology, geochemistry, and zircon U-Pb-Hf isotopes [J]. International Geology Review, 2022, 22(5): 698-721.

    Ludwig K R. Isoplot 3.0: A Geochronological toolkit for Microsoft Excel[J]. Berkeley: Berkeley Geochronology Center, 2003, 1–70.

    Maniar P D and Piccoli P M . Tectonic discrimination in of granitoids[J]. Geological Society of America Bulletin, 1989, 1: 635–643.

    Patiño Douce A E and Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4): 689–710. doi: 10.1093/petroj/39.4.689

    Patiño Douce A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of the granitic magmas[J]. Geological Society London Special Publications, 1999, 168(1): 55–75. doi: 10.1144/GSL.SP.1999.168.01.05

    Petford N and Atherton M. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491–1521. doi: 10.1093/petrology/37.6.1491

    Rapp R P. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability[J]. Journal of Geophysical Research: Solid Earth, 1995a, 100(B8): 15601–15610. doi: 10.1029/95JB00913

    Rapp R P and Watson E B. Dehydration melting of metabasalt an 8–32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995b, 36(4): 891–31. doi: 10.1093/petrology/36.4.891

    Rollinson H R. Using geochemical data: evaluation, presentation, interpretation[M]. Longman Group UK Ltd, New York, 1993: 1–352.

    Rudnick R L, Gao S. Composition of the continental crust[M]. In: Treatise on Geochemistry. volume 3. Elsevier, 2003: 1–64.

    Shao F L, Niu Y L, Liu Y, et al. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implicationsa[J]. Lithos, 2017, 282: 33–44.

    Stern C R and Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 1996, 123: 263–281. doi: 10.1007/s004100050155

    Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2005, 148: 635–661. doi: 10.1007/s00410-004-0632-9

    Song K, Ding Q F, Zhang Q, et al. Zircon U–Pb geochronology, Hf isotopes, and whole‐rock geochemistry of Hongshuihe Early to Middle Triassic quartz diorites and granites in the Eastern Kunlun Orogen, NW China: Implication for petrogenesis and geodynamics[J]. Geological Journal, 2019, 55(2): 1–22.

    Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. In: Sunders AD, Norry MJ, Magmatism in the Ocean Basins, Geological Society Special Publication, 1989: 313–345.

    Thompson A B. Fluid-absent metamorphism[J]. Journal of the Geological Society, 1983, 140: 533–547. doi: 10.1144/gsjgs.140.4.0533

    Villaros A, Stevens G and Buick I S. Tracking S-type granite from source to emplacement: clues from garnet in the Cape Granite Suite[J]. Lithos, 2009, 112: 217–235. doi: 10.1016/j.lithos.2009.02.011

    Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters,1983,64:295-304.

    Whalen J B, Currie K L and Chappell B W. A-type granites: Geochemical characteristics discrimination and petrogeneisis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407–419. doi: 10.1007/BF00402202

    Wilson M. Igneous Petrogenesis[M]. London: Springer, 1989: 295–323.

    Xia R, Deng J, Qing M, et al. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys[J]. Lithos, 2015, 234–235: 47–70.

    Xia R, Deng J, Qing M, et al. Petrogenesis of ca 240 Ma intermediate and felsic intrusions in the Nan’getan: Implications for crust–mantle interaction and geodynamic process of the East Kunlun Orogen[J]. Ore Geology Reviews, 2017, 90: 1099–1119. doi: 10.1016/j.oregeorev.2017.04.002

    Xin W, Sun F Y, Zhang Y T, et al. Mafic-intermediate igneous rocks in the East Kunlun Orogenic Belt. , northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic[J]. Lithos, 2019, 346–347: 105159.

    Xion F H, Ma C Q, Jiang H G, et al. Petrogenetic and tectonic significance of Permian calcalkaline lamprophyres, East Kunlun orogenic belt, Northern Qinghai-Tibet Plateau[J]. International Geology Review, 2013, 55(14): 1817–81834. doi: 10.1080/00206814.2013.804683

    Xiong F H, Ma C Q, Zhang J Y, et al. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 2014, 171(6): 847–863. doi: 10.1144/jgs2013-038

    Xiong F H, Ma C Q, Chen B, et al. Intermediate-mafic dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A window into paleo-arc magma feeding system[J]. Lithos, 2019: 340–341: 152–165.

    Yu M, Dick M, Feng C Y, Li B, et al. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 2020, 191(2): 104168.

    Zhao X, Wei J H, Fu L B, et al. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen[J]. Lithos, 2020, 360–361: 105446.

    Zheng Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10: 1223–1254. doi: 10.1016/j.gsf.2019.02.003

    Zhou H Z, Zhang D H, Wei J H, et al. Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling[J]. Gondwana Research, 2020, 84: 52–70. doi: 10.1016/j.gr.2020.02.012

  • 期刊类型引用(12)

    1. 张元,王红岩,李育,杨剑,胡杨,李永恒,李彩霞,任涛. 西秦岭夏河-合作地区断裂构造分形结构特征及成矿预测. 矿床地质. 2024(02): 359-372 . 百度学术
    2. 张柯凡,郭娜,李伟,姚艺欣. 基于红外光谱技术的赣南铜岭下铜多金属矿床蚀变及矿化特征研究. 矿床地质. 2024(02): 339-358 . 百度学术
    3. 李康宁,汤庆艳,栾晓刚,王玉玺,邓小华,杨宗枫. 西秦岭三叠纪大河坝组砂岩构造背景与物质来源. 西北地质. 2024(03): 113-127+301 . 本站查看
    4. 陆茂欣,向连格,王红,马彦云,汪栋刚,李通. 宁夏区域成矿规律概论. 西北地质. 2024(04): 229-239 . 本站查看
    5. 姜寒冰,杨合群,赵国斌,王永和,温志亮,谭文娟,李宗会,辜平阳,李健强,郭培虹,董增产,任华宁. 西秦岭成矿带古生界控矿特征及有关成矿作用. 西北地质. 2024(04): 218-228 . 本站查看
    6. 王立峰,薛志强,王振强,王鹏飞,张苏坤,孙保花,王社全,杨智超,张鹏. 小秦岭金矿田杨砦峪–樊岔矿段黄铁矿LA-ICP-MS微量元素特征及其指示意义. 西北地质. 2024(05): 74-87 . 本站查看
    7. 王洁明,董苏庆,雷群英. 陕西金矿成矿规律与找矿靶区圈定. 西北地质. 2023(05): 308-321 . 本站查看
    8. 王瑞廷,秦西社,李青锋,成欢,任朝辉,冀月飞. 西秦岭凤太铅锌矿集区成矿特征、找矿预测及勘查方法技术组合. 西北地质. 2023(05): 85-97 . 本站查看
    9. 葛战林,顾雪祥,章永梅,郑艳荣,刘明,郝迪,王元伟. 南秦岭柞水-山阳矿集区金盆梁金矿床载金硫化物矿物学特征及成矿指示. 西北地质. 2023(05): 278-293 . 本站查看
    10. 俞胜,贾轩,姚皓骞,徐磊,赵斌斌,贾新勇. 西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究. 西北地质. 2023(05): 245-261 . 本站查看
    11. 刘永胜,罗先熔,曹佰迪,刘秀娟,刘攀峰,梁鸣,郭家欣,杨青松,石佳磊. 甘肃省礼县三峪地区土壤地球化学特征及找矿预测. 西北地质. 2023(06): 340-351 . 本站查看
    12. 杨永. 甘肃天水喂儿沟金矿地质特征及找矿标志. 世界有色金属. 2023(23): 52-54 . 百度学术

    其他类型引用(0)

图(11)  /  表(3)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  35
  • PDF下载量:  54
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-10-14
  • 修回日期:  2022-06-06
  • 网络出版日期:  2023-01-15
  • 刊出日期:  2023-04-19

目录

/

返回文章
返回