ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

螺髻山北麓地下水化学特征与水质评价

吴君毅, 刘洪, 欧阳渊, 李樋, 张景华, 张腾蛟, 黄勇, 段声义

吴君毅, 刘洪, 欧阳渊, 等. 螺髻山北麓地下水化学特征与水质评价[J]. 西北地质, 2023, 56(5): 151-164. DOI: 10.12401/j.nwg.2023003
引用本文: 吴君毅, 刘洪, 欧阳渊, 等. 螺髻山北麓地下水化学特征与水质评价[J]. 西北地质, 2023, 56(5): 151-164. DOI: 10.12401/j.nwg.2023003
WU Junyi, LIU Hong, OUYANG Yuan, et al. Hydrochemical Characteristics and Water Quality Assessment of Groundwater in Northern Foothill of Luoji Mountains[J]. Northwestern Geology, 2023, 56(5): 151-164. DOI: 10.12401/j.nwg.2023003
Citation: WU Junyi, LIU Hong, OUYANG Yuan, et al. Hydrochemical Characteristics and Water Quality Assessment of Groundwater in Northern Foothill of Luoji Mountains[J]. Northwestern Geology, 2023, 56(5): 151-164. DOI: 10.12401/j.nwg.2023003

螺髻山北麓地下水化学特征与水质评价

基金项目: 中国地质调查项目“长江流域重点区生态地质调查”(GC20230706),“三峡库区生态地质调查与综合评价(DD20221776),大凉山区生态地质调查”(DD20190542),“西南地区自然资源动态监测与风险评估”(GC20230814),宁夏自治区地质调查项目“宁夏生态地质调查示范(南部水源涵养区)”(NXCZ20220201),广东省地质勘查与城市地质专项“广东南岭国家公园生态保护区生态地质调查”(2022-21)联合资助。
详细信息
    作者简介:

    吴君毅(1998−),男,硕士研究生,主要从事生态地质学研究。E−mail:GunEWu@outlook.com

    通讯作者:

    欧阳渊(1982−),男,博士,高级工程师,硕士生导师,主要从事遥感地质、生态地质研究。E−mail:oyangyuan@mail.cgs.gov.cn

  • 中图分类号: P641.6

Hydrochemical Characteristics and Water Quality Assessment of Groundwater in Northern Foothill of Luoji Mountains

  • 摘要:

    为研究川西大凉山区螺髻山北麓地下水化学特征、演化机制以及评价地下水质现状,笔者系统采集研究区不同地段的15组地下水样品为研究对象。利用Gibbs图解法、离子比例系数法和基于RMSprop算法的BP神经网络评价法,探讨该地区地下水化学特征演化机制,评价地下水质现状,支持服务帮助当地合理开发和安全利用水资源。结果表明研究区水化学类型以Mg2+·Ca2+−HCO3为主,其水化学离子的形成主要以岩土风化溶滤作用为主,由硅酸盐矿物与碳酸盐矿物共同控制,硅酸盐矿物控制更显著。结合地质背景,认为硅酸盐矿物主要来自火山碎屑岩类、花岗岩类、砂岩类和泥质岩类等岩石。利用BP神经网络对5000组地下水样本学习训练,对研究区样本进行评价,模型训练图像表明BP神经网络能很好拟合地下水样本训练集并且对测试集进行客观准确的判断。研究区地下水评价结果显示:Ⅰ类水质点占13.3%,Ⅱ类水质点占40%,Ⅲ类水质点占46.6%,整体水质较好,建议Ⅲ类水质地区普格县特尔果乡甲甲沟村、普格县特补乡白庙子需要加强地下水污染源调查以及水质保护。

    Abstract:

    To investigate the hydrochemical characteristics, evolution, and assessment of water quality in the northern foot of the Luoyang Mountains in the western Sichuan Daliang Mountains, 15 sets of local groundwater chemistry samples from different sections of the study area were collected as research objects. Analysis and study of hydrochemical characteristics and evolution in this area use Gibbs’ diagram and ion proportion coefficient method. Furthermore, assessing groundwater quality BP neural network classification method with RMSprop algorithm, supporting services to help local communities develop and use water resources wisely and safely. The results show that the water chemistry of the study area is dominated by Mg2+·Ca2+−HCO3. The hydrochemical evolution of groundwater in this area are mainly derived from rock weathering-dissolution. It is controlled by rocks of silicate and carbonate, with silicate playing a more significant role. Considering the geological background of this area, silicate mainly comes from volcanic, clastic, granitic, sandstone and mud stone. The BP neural network was used to train 5000 groups of groundwater samples, and the samples in the study area were evaluated. The training image of the model showed that the BP neural network could well fit the training set of groundwater samples and accurately judge the test set. The result of groundwater quality in this area indicates that Class I water quality points accounted for 13.3%, Class II water quality points accounted for 40%, Class III water quality points accounted for 46.6%. Its overall water quality is good, and the Class III water quality area needs to strengthen groundwater pollution source investigation as well as water quality protection.

  • 图  1   研究区水文地质图

    γT3. 晚三叠世花岗岩类;Zk. 震旦系开建桥组; Zl. 震旦系列古六组;Zg. 震旦系观音崖组;Zd. 震旦系灯影组;Є1l. 下寒武统龙王庙组;Є2x. 中寒武统西王庙组;Є3e. 上寒武统二道水组;T3bg. 上三叠统白果湾组;J1y. 下侏罗统益门组;J2x. 中侏罗统新村组;J2n. 中侏罗统牛滚凼组;J3g. 晚侏罗统官沟组;K1f. 下白垩统飞天山组;K2x. 中白垩统小坝组;N2Qpx. 中新统—更新统昔格达组;Qapl. 全新统冲洪积物

    Figure  1.   Hydrogeological map of the study area

    图  2   模型函数关系图

    Figure  2.   Model function relationship diagram

    图  3   研究区地下水水化学Piper图

    Figure  3.   Piper diagram of hydrochemical of groundwater in the study area

    图  4   研究区地下水Gibbs图

    Figure  4.   Gibbs diagram of underground water in the study area

    图  5   地下水离子比值图

    Figure  5.   Rates of the selected ions of groundwater

    图  6   研究区水化学离子与矿物风化作用关系图

    Figure  6.   Correlation of hydrochemical ions and mineral weathering

    图  7   BP神经网络结构图

    Inputs. 输入层;Hidden1. 第一隐层;Hidden2. 第二隐层;Outputs:输出层;x1-18. 输入18个水质指标;Sigmoid. 激活函数;w1-3. 不同层的权重;b1-3. 不同层的偏置;Ⅰ-Ⅴ. 5种水质输出;Loss. 损失函数;Targets. 标签;Forward propagation. 正向传播;Backforward propagation. 反向传播

    Figure  7.   Neural network structure diagram

    图  8   训练效果图

    Figure  8.   Training effects

    表  1   水样品概况统计表

    Table  1   General situation of water samples

    点号类型水体状况位置采集时间(日 时)
    01-SY井水淡水西昌市黄水乡新塘沟村大庆沟8.24 9:38
    02-SY井水淡水西昌市黄水乡新塘沟村大庆沟8.24 10:39
    03-SY井水淡水西昌市黄水乡洼垴村七组8.24 11:35
    04-SY井水淡水德昌县阿月乡光辉村罗家坪子8.24 12:33
    05-SY井水淡水德昌县阿月乡光辉村西番箐8.24 13:15
    06-SY井水淡水西昌市黄水乡观音岩8.24 14:45
    07-SY井水淡水西昌市黄水乡书夫村二组8.24 15:15
    08-SY井水淡水西昌市中坝乡小浸沟8.25 9:20
    09-SY井水淡水西昌市黄联关镇哈土村四组8.25 10:25
    10-SY井水淡水西昌市西溪乡长板桥村8.25 12:00
    11-SY井水淡水西昌市安哈镇摆摆顶村8.25 13:21
    12-SY井水淡水西昌市安哈镇摆摆顶村8.25 13:44
    13-SY井水淡水普格县五道菁乡黄草坪村五组8.25 14:41
    14-SY井水淡水普格县特尔果乡甲甲沟村8.25 15:24
    15-SY井水淡水普格县特补乡白庙子8.25 16:35
    下载: 导出CSV

    表  2   地下水化学指标统计表(N=15)

    Table  2   Index of groundwater chemistry

    指标最大值(μg/L)最小值(μg/L)平均值(μg/L)标准差指标最大值(μg/L)最小值(μg/L)平均值(μg/L)标准差
    pH值8.086.657.680.35 TDS230.406.7085.9167.35
    $ {\text{Na}}^{\text{+}} $6.570.253.961.98As2.581.772.130.27
    $ {\text{NH}}_{\text{4}}^{\text{+}} $0.240.050.100.06Sb0.270.100.110.04
    $ {\text{Al}}^{\text{3+}} $0.190.010.070.06Hg0.190.030.060.04
    $ {\text{Fe}}^{\text{3+}} $0.100.030.040.02Cr5.850.101.921.91
    $ {\text{F}}^{{-}} $0.300.010.100.10Co0.740.020.240.22
    $ {\text{Cl}}^{{-}} $4.260.861.520.90Cu0.590.070.190.19
    $ {\text{SO}}_{\text{4}}^{\text{2-}} $17.200.677.365.24Pb10.260.080.762.63
    $ {\text{NO}}_{\text{3}}^{{-}} $10.190.022.393.15Zn1.840.430.850.34
    $ {\text{K}}^{\text{+}} $1.300.660.920.17Mn6.330.111.911.95
    $ {\text{Ca}}^{\text{2+}} $64.530.5919.3119.14Ni9.540.052.663.02
    $ {\text{Mg}}^{\text{2+}} $26.550.126.576.77Mo3.250.050.731.02
    $ {\text{HCO}}_{\text{3}}^{{-}} $268.4012.0092.9281.41总硬度221.001.9075.2771.14
    下载: 导出CSV

    表  3   研究区水质综合排名表

    Table  3   Comprehensive ranking of water quality in the study area

    排名点号类型
    1 5-SY Ⅰ类
    2 12-SY Ⅰ类
    3 2-SY Ⅱ类
    4 4-SY Ⅱ类
    5 6-SY Ⅱ类
    6 10-SY Ⅱ类
    7 11-SY Ⅱ类
    8 13-SY Ⅱ类
    9 1-SY Ⅲ类
    10 3-SY Ⅲ类
    11 7-SY Ⅲ类
    12 8-SY Ⅲ类
    13 9-SY Ⅲ类
    14 14-SY Ⅲ类
    15 15-SY Ⅲ类
    下载: 导出CSV
  • 陈能汪, 余镒琦, 陈纪新, 等. 人工神经网络模型在水质预警中的应用研究进展[J]. 环境科学学报, 2021, 41(12): 4771-4782 doi: 10.13671/j.hjkxxb.2021.0343

    CHEN Nengwang, YU Yiqi, CHEN Jixin, et al. Artificial neural network models for water quality early warning: A review[J]. Acta Scientiae Circumstantiae, 2021, 41(12): 4771-4782. doi: 10.13671/j.hjkxxb.2021.0343

    崔永华, 左其亭. 基于Hopfield网络的水质综合评价及matlab实现[J]. 水资源保护, 2007, 23(3): 14-16, 32.

    CUI Yonghua, ZUO Qiting. Comprehensive assessment of water quality based on Hopfield network and realization with matlab[J]. Water Resources Protection, 2007, 23(3): 14-16.

    党学亚, 张俊, 常亮, 等. 西北地区水文地质调查与水资源安全[J]. 西北地质, 2022, 55(3): 81−95.

    DANG Xueya, ZHANG Jun, CHANG Liang, et al. Hydrogeological Survey and Water Resources Security in Northwest China[J]. Northwestern Geology, 2022, 55(3): 81-95.

    邓大鹏, 刘刚, 李学德, 等. 基于神经网络简单集成的湖库富营养化综合评价模型[J]. 生态学报, 2007, 27(3): 725-731 doi: 10.3321/j.issn:1000-0933.2007.02.037

    DENG Dapeng, LIU Gang, LI Xuede, et al. A model based on simple ensemble of neural networks for comprehensive eutrophication assessment of lake and reservoir[J]. Acta Ecologica Sinica, 2007, 27(3): 725-731. doi: 10.3321/j.issn:1000-0933.2007.02.037

    杜金龙. 潞安矿区中部煤矿充水水源水化学特征及水源识别意义[J]. 西北地质, 2022, 223(01): 208-215

    DU Jinlong. Hydrochemical characteristics of water filling source in Central Lu’an Mining Area and water source identification significance[J]. Northwestern Geology, 2022, 223(01): 208-215.

    冯嘉兴, 蒙琪, 王茜. 黑河干流中游地区近40年来地下水环境变化特征及其成因[J]. 西北地质, 2023, 56(4): 243−253.

    FENG Jiaxing, MENG Qi, WANG Xi. Characteristics and Causes of Groundwater Environment Changes in the Middle Reaches of the Mainstream of the Heihe River in Recent 40 Years[J]. Northwestern Geology, 2023, 56(4): 243−253.

    高旭波, 向绚丽, 侯保俊, 等. 水化学—稳定同位素技术在岩溶水文地质研究中的应用[J]. 中国岩溶, 2020, 39(05): 629-636

    GAO Xubo, XIANG Xunli, HOU Baojun, et al. Application of hydrochemistry coupled with stable isotopes in the study of karst water hydrogeology[J]. Carsologica Sinica, 2020, 39(05): 629-636.

    李海涛, 王博睿. 基于粒子群算法优化的BP神经网络在海水水质评价中的应用[J]. 海洋科学, 2020a, 44(06): 31-36 doi: 10.11759/hykx20191116002

    LI Haitao, WANG Borui. Application of BP neural network based on particle swarm optimization in seawater quality assessment[J]. Marine Sciences, 2020a, 44(6): 31-36. doi: 10.11759/hykx20191116002

    李海涛, 邵泽东. 基于头脑风暴优化算法与BP 神经网络的海水水质评价模型研究[J]. 应用海洋学学报, 2020b, 39(1): 57-62

    LI Haitao, SHAO Zedong. Research on seawater quality evaluation model based on brain storm opti mization algorithm and BP neural network[J]. Journal of Applied Oceanography, 2020b, 39(1): 57-62.

    李连香, 许迪, 程先军, 等. 基于分层构权主成分分析的皖北地下水水质评价研究[J]. 水资源, 2015, 37(1): 61-67

    LI Lianxiang, XU Di, CHENG Xianjun, et al. Groundwater quality assessment in Northern Anhui based on multi-layer weighted principal component analysis[J]. Resources Science, 2015, 37(1): 61-67.

    刘洪, 黄瀚霄, 欧阳渊, 等. 基于地质建造的土壤地质调查及应用前景分析—以大凉山区西昌市为例[J]. 沉积与特提斯地质, 2020, 40(1): 91-105

    LIU Hong, HUAN Hanxiao, OYANG Yuan, et al. Soil's geologic investigation in Daliangshan, Xichang, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 91-105.

    刘永林, 雒昆利. 云南昭通喀斯特区天然水水化学性质及地质成因[J]. 长江科学院院报, 2016, 33(10): 28-35

    LIU Yonglin, LUO Kunli. Hydro-geochemistry and Geological Genesis of Natural Water in Karst Region in Zhaotong City, Yunnan Province [J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(10): 28-35.

    孟晶晶. 普格县则木河流域地下水水质安全性研究[D]. 成都: 成都理工大学, 2018, 1−102

    MENG Jingjing. Study on groundwater quality safety in the zemu river basin in pug county[D]. Chengdu: Chengdu University of Technology, 2018, 1−102.

    时雯雯, 周金龙, 曾妍妍, 等. 新疆乌昌石城市群地下水多重水质评价[J]. 干旱区资源与环境, 2021, 35(02): 109-116

    SHI Wenwen, ZHOU Jinlong, ZENG Yanyan, et al. Multiple groundwater quality evaluation of Urumqi-Changji-Shihezi city ag-glomeration in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2021, 35(2): 109-116.

    孙厚云, 毛启贵, 卫晓锋, 等. 哈密盆地地下水系统水化学特征及形成演化[J]. 中国地质, 2018, 45(6): 1128-1141

    SUN Houyun, MAO Qigui, WEI Xiaofeng, et al. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin [J]. Geology in China, 2018, 45(6): 1128-1141.

    王慧玮, 郭小娇, 张千千, 等. 滹沱河流域地下水水化学特征演化及成因分析[J]. 环境化学, 2021, 40(12): 3838-3845 doi: 10.7524/j.issn.0254-6108.2020080301

    WANG Huiwei, GUO Xiaojiao, ZHANG Qianqian, et al. Evolution of groundwater hydro-chemical characteristics and origin analysis in Hutuo River Basin[J]Environmental Chemistry, 2021, 40(12): 3838-3845. doi: 10.7524/j.issn.0254-6108.2020080301

    徐康耀, 葛考, 赵建强, 等. 基于DPA-BP神经网络的地下水质综合评价[J]. 节水灌溉, 2015, 2015(9): 66-69

    XU Kanyao, GE Kao, ZHAO Jianqiang, et al. Comprehensive evaluation of groundwater quality based on DPA-BP neural network[J]. Water Saving Irrigation, 2015, 2015(9): 66-69.

    徐学良. 人工神经网络的发展及现状[J]. 微电子学, 2017, 47(02): 239-242 doi: 10.13911/j.cnki.1004-3365.2017.02.022

    XU Xueliang. The development and status of artificial neural network[J]. Microelectronics, 2017, 47(02): 239-242. doi: 10.13911/j.cnki.1004-3365.2017.02.022

    颜建, 潘志富, 谭璟, 等. 基于萤火虫算法的BP神经网络的水质评价[J]. 南水北调与水利科技, 2020, 18(4): 104-110 doi: 10.13476/j.cnki.nsbdqk.2020.0077

    YAN Jian, PAN Zhifu, TAN Jing, et al. Assessment of water quality by firefly algorithm based on BP neural network model[J]. South-to-North Water Transfers and Water, 2020, 18(14): 104-110. doi: 10.13476/j.cnki.nsbdqk.2020.0077

    杨帆, 杨学之, 蒋清明, 等. 螺髻山核心区及周边水文地质特征研究[J]. 地下水, 2018, 40(05): 12-14 doi: 10.3969/j.issn.1004-1184.2018.05.004

    YANG Fan, Yang Xuezhi, Jiang Qingming, et al. Analysis on the hydrogeologic characteristics of Luoji Mountain core and perimeter areas[J]. Underground Water, 2018, 40(5): 12-14. doi: 10.3969/j.issn.1004-1184.2018.05.004

    翟大兴, 杨忠芳, 柳青青, 等. 鄱阳湖流域岩石化学风化特征及CO2消耗量估算[J]. 地学前缘, 2011, 18(92): 173-185

    ZHAI Daxing, Yang Zhongfang, LIU Qingqing, et al. Rock chemical weathering characteristics and CO2 consumption estimation in Poyang Lake Basin [J]. Earth Science Frontiers, 2011, 18(92): 173-185.

    杨芬, 高柏, 葛勤, 等. 信江流域地下水水化学特征及形成机制[J]. 科学技术与工程, 2021, 21(09): 3505-3512 doi: 10.3969/j.issn.1671-1815.2021.09.010

    YANG Fen, GAO Bai, GE Qin, et al. Hydro-chemical characteristics and formation mechanism of groundwater in Xinjiang River basin[J]. Science Technology and Engineering, 2021, 21(9): 3505-3512. doi: 10.3969/j.issn.1671-1815.2021.09.010

    袁瑞强, 钟钰翔, 龙西亭. 洞庭湖上游平原浅层地下水水质综合评价[J]. 水资源保护, 2021, 37(6): 121-127 doi: 10.3880/j.issn.1004-6933.2021.06.018

    YUAN Ruiqiang, ZHONG Yuxiang, LONG Xiting, et al. Comprehensive evaluation of shallow groundwater quality in upper plain of Dongting Lake [J]. Water Resources Protection, 2021, 37(6): 121-127. doi: 10.3880/j.issn.1004-6933.2021.06.018

    曾庆铭, 顾小凡, 杨炳超, 等. 青海省德令哈盆地第四系地下水质量评价[J]. 西北地质, 2021, 54(2): 239−247.

    ZENG Qingming, GU Xiaofan, YANG Bingchao, et al. The Quaternary Groundwater Quality Evaluation of Delingha Basin in Qinghai Province[J]. Northwestern Geology, 2021, 54(2): 239-247.

    张腾蛟, 刘洪, 欧阳渊, 等. 中高山区土壤成土母质理化特征及主控因素初探—以西昌市为例[J]. 沉积与特提斯地质, 2020, 40(1): 106-114

    ZHANG Tengjiao, LIU Hong, OYANG Yuan, et al. A preliminary discussion on the physical and chemical characteristics and main controlling factors of soil and parent material in the middle and high mountain area—Take Xichang as an example[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 106-114.

    张俊, 尹立河, 顾小凡, 等. 同位素水化学指示的新疆孔雀河流域地下水与地表水关系[J]. 西北地质, 2021, 219(01): 185-195 doi: 10.19751/j.cnki.61-1149/p.2021.01.016

    ZHANG Jun, YIN Lihe, GU Xiaofan, et al. Study on the relationship between groundwater and surface water in Xinjiang Kongque River Basin using isotopes and hydrochemistry method[J]. Northwestern Geology, 2021, 219(01): 185-195. doi: 10.19751/j.cnki.61-1149/p.2021.01.016

    张志君, 陈伏龙, 龙爱华, 等. 基于模糊集对分析法的新疆水资源安全评价[J]. 水资源保护, 2020, 36(02): 53-58 doi: 10.3880/j.issn.1004-6933.2020.02.009

    ZHANG Zhijun, CHEN Fulong, LONG Aihua, et al. Xinjiang water resources security evaluation based on fuzzy set pair analysis[J]. Water Resources Protection, 2020, 36(2): 53-58. doi: 10.3880/j.issn.1004-6933.2020.02.009

    周及, 关卫省, 付林涛. 基于多元统计的西安市河流水质评价及污染源解析[J]. 水资源保护, 2020, 36(02): 79-84 doi: 10.3880/j.issn.1004-6933.2020.02.013

    ZHOU Ji, GUAN Weisheng, FU Lintao. Water quality assessment and pollution source analysis of Xi'an river based on multivariate statistics[J]. Water Resources Protection, 2020, 36(2): 79-84. doi: 10.3880/j.issn.1004-6933.2020.02.013

    Abbas M, Shen S L, Lyu H M. Evaluation of the hydrochemistry of groundwater at Jhelum Basin, Punjab, Pakistan[J]. Environmental Earth Sciences, 2021, 80(8).

    ABHIJIT M, ALAN E F. Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India[J]. Applied Geochemistry, 2008, 23(4): 863-894. doi: 10.1016/j.apgeochem.2007.07.011

    ADIMALLA N. Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: an approach of water quality index (WQI) and health risk assessment (HRA)[J]. Environmental Geochemistry and Health, 2020, 42(6): 1725-1752. doi: 10.1007/s10653-019-00374-8

    MENGXIONG C. Characteristics of inland quaternary basins in northwest china with reference to their hydrological significance[J]. Engineering Geology, 1994, 37(1): 61-65. doi: 10.1016/0013-7952(94)90082-5

    GIBBS J R. Mechanisms controlling world water chemistry[J]. SCIENCE IN CHINA(SERIES E), 1970, 170 (3962): 1088-1090.

    KUMAR P G D, VISWANATH N C, CYRUS S, et al. Mixing data for multivariate statistical study of groundwater quality[J]. Environmental Monitoring and Assessment, 2020, 192(8): 506. doi: 10.1007/s10661-020-08465-1

    LI Chengchen, GAO Xubo, WANG Yanxin, et al. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China[J]. Science of the Total Environment, 2015, 508: 155-165. doi: 10.1016/j.scitotenv.2014.11.045

    Li Jiarui, Chen Qian, Wang Ting, et al. Hydrochemistry and nutrients determined the distribution of greenhouse gases in saline groundwater[J]. Environmental Pollution, 2021, 286(1).

    Nemerow L N. Environmental engineering: environmental health and safety for municipal infrastructure, land use and planning, and industry[M]. New York: John Wiley & Sons, 2009, 480.

    Wali S U, Alias N, Harun S B, et al. Reevaluating the hydrochemistry of groundwater in basement complex aquifers of Kaduna Basin, NW Nigeria using multivariate statistical analysis[J]. Environmental Earth Sciences, 2021, 80(5): 1−25.

    ZHANG B, SONG X F, ZHANG Y H, et al. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China[J]. Water research, 2012, 46(8): 2737-2748. doi: 10.1016/j.watres.2012.02.033

  • 期刊类型引用(5)

    1. 李状,周训,方斌,沈晔,徐艳秋,陈柄桦,拓明明,隋丽嫒. 安徽省大别山区温泉水化学特征与演化机制分析. 地质通报. 2025(01): 158-172 . 百度学术
    2. 刘海,黄健敏,宋阳,赵国红,王旭东,魏伟. 太湖县花凉亭水库流域地下水水化学特征及水质评价. 环境科学. 2025(02): 809-820 . 百度学术
    3. 陈陆望,武明辉,侯晓伟,胡永胜,张苗,蔡欣悦,殷晓曦,施小平. 帷幕墙影响下侏罗系砾岩含水层地下水化学时空演化规律. 煤田地质与勘探. 2025(01): 174-183 . 百度学术
    4. 赵少攀,杨森,张东兴,常成,闫佳喆,刘念,麻倩倩,张茜. 基于水化学和D、~(18)O同位素的豫西某矿山地下水水源识别. 西北地质. 2025(02): 313-322 . 本站查看
    5. 刘芳. 区域地下水污染因子定量识别研究——以辽西地区为例. 水利科学与寒区工程. 2024(03): 111-113 . 百度学术

    其他类型引用(3)

图(8)  /  表(3)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  30
  • PDF下载量:  110
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-07-03
  • 修回日期:  2023-02-08
  • 录用日期:  2023-02-08
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-10-19

目录

    /

    返回文章
    返回