ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义

    孔会磊, 任广利, 李文渊, 李侃, 赵晓健, 张江伟, 李伟

    孔会磊, 任广利, 李文渊, 等. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义[J]. 西北地质, 2023, 56(2): 61-79. DOI: 10.12401/j.nwg.2023004
    引用本文: 孔会磊, 任广利, 李文渊, 等. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义[J]. 西北地质, 2023, 56(2): 61-79. DOI: 10.12401/j.nwg.2023004
    KONG Huilei, REN Guangli, LI Wenyuan, et al. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China[J]. Northwestern Geology, 2023, 56(2): 61-79. DOI: 10.12401/j.nwg.2023004
    Citation: KONG Huilei, REN Guangli, LI Wenyuan, et al. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China[J]. Northwestern Geology, 2023, 56(2): 61-79. DOI: 10.12401/j.nwg.2023004

    西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义

    基金项目: 国家自然科学基金重大研究计划集成项目“西昆仑–松潘甘孜伟晶岩型锂等大型稀有金属成矿带成矿规律与找矿潜力研究”(92262302),第二次青藏高原综合科学考察研究专题“昆仑–阿尔金–柴北缘成矿带战略储备综合评估”(2019QZKK0806),国家重点研发计划课题“西部锂、铍等战略性金属矿产资源成矿规律与预测评价”(2019YFC0605201)和中国地质调查局项目“西昆仑–阿尔金成矿带铁锰稀有金属矿产地质调查”(DD20230285)联合资助。
    详细信息
      作者简介:

      孔会磊(1985−),男,博士生,高级工程师,从事区域成矿及成矿规律研究。E−mail:konghuilei2008@126.com

      通讯作者:

      李文渊(1962−),男,博士,研究员,从事岩浆作用矿床及区域成矿研究。E−mail: xalwenyuan@126.com

    • 中图分类号: P618.71;P612

    Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China

    • 摘要:

      西昆仑地区是中国重要的伟晶岩型锂铍成矿带,近年来在大红柳滩一带取得重大找矿突破,已形成大型矿产资源基地。笔者对西昆仑大红柳滩东锂辉石花岗伟晶岩进行了详细的岩相学、年代学和地球化学研究,能够为本区伟晶岩型锂矿成矿作用研究提供新的依据。利用LA−ICP−MS锆石U−Pb定年,获得大红柳滩东含锂辉石钠长花岗伟晶岩及含锂辉石电气石花岗伟晶岩年龄分别为(205.2±1.4)Ma和(205.0±2.6)Ma,形成时代为晚三叠世。岩石地球化学研究表明,大红柳滩东含锂辉石花岗伟晶岩以高Si、富Al、富Na、钙碱质,高分异,低K、Fe、Mg、Ca和Ti为特征,属强过铝质花岗伟晶岩。岩石明显富集Rb、U、Nb、Ta、Pb、P、Hf等元素,亏损Ba、Th、La、Ce、Pr、Sr、Nd、Sm、Ti等元素;稀土总量较低,∑REE值为0.56×10−6~3.34×10−6,具有弱−中等的负铕异常,δEu值为0.30~0.89。大红柳滩东伟晶岩均具有低且负的εHf(t)值(–4.6~0)和古老的二阶段Hf模式年龄TDM2(1497~1208 Ma),反映其源岩为古老地壳物质的部分熔融。结合西昆仑地区已有年代学资料和区域地质构造演化特征,认为大红柳滩一带伟晶岩矿床形成于南昆仑地体与甜水海地体后碰撞背景下。

      Abstract:

      West Kunlun is an important pegmatite−type Li−Be metallogenic belt in China. In recent years, a great breakthrough in prospecting has been made in Dahongliutan area, and a large mineral resource base has been formed. In this paper, detailed researches on petrography, geochronology and geochemistry of the spodumene granite pegmatites in Dahongliutandong, West Kunlun, can provide a new basis for the study of pegmatite−type lithium mineralization in this area. By using LA−ICP−MS zircon U−Pb dating, the ages of spodumene−bearing albite pegmatite and spodumene−bearing tourmaline granite pegmatite in the Dahongliutandong are 205.2±1.4Ma and 205.0±2.6Ma, respectively, in the Late Triassic. Geochemical study shows that spodumene−bearing granite pegmatites in the Dahongliutandong is characterized by high Si, rich Al, Na, calc−alkali, high differentiation and low K, Fe, Mg, Ca and Ti, and belongs to strongly peraluminous granite pegmatite. The pegmatites are obviously rich in elements such as Rb, U, Nb, Ta, Pb, P, Hf, but depleting in elements such as Ba, Th, La, Ce, Pr, Sr, Nd, Sm and Ti. The total amount of rare earth is low, with ∑REE of 0.56×10−6~3.34×10−6, weak−medium negative Eu anomaly and δEu of 0.30~0.89. The pegmatites in the Dahongliutandong have low and negative εHf(t) values (–4.6~0) and the old two−stage Hf model age TDM2 (1497~1208 Ma), which indicates that their source rocks are from partial melting of ancient crustal materials. Based on the chronological data and the evolution characteristics of regional geological structure in West Kunlun, it is considered that pegmatite deposits in Dahongliutan area were formed in the background of post-collision between South Kunlun terrane and Tianshuihai terrane.

    • 图  1   西昆仑造山带地质简图及锂铍矿床分布图(据王核等,2021Yan et al.,2022

      Figure  1.   Simplified geological map and distribution of Li−Be deposits of the Western Kunlun orogenic belt

      图  2   大红柳滩一带锂矿床分布图(据李侃等,2019修改)

      1.阿克沙依锂矿点;2.阿克塔斯锂矿;3.卡拉喀锂矿;4.509道班西锂矿;5. 505锂矿;6. 507锂矿;7.俘虏沟南1号锂矿;8.俘虏沟南2号锂矿;9.大红柳滩东锂矿;10.黄草湖锂硼矿;11.苦水湖锂硼矿;12.阿克萨依湖锂硼矿

      Figure  2.   Distribution map of pegmatite−type lithium deposits in Dahongliutan area

      图  3   大红柳滩东锂矿区地质简图

      1.第四系;2.二叠系黄羊岭群中组;3.二叠系黄羊岭群下组;4.古元古界康西瓦岩群B岩组二岩段;5.锂辉石伟晶岩脉;6.含电气石不含矿伟晶岩脉;7.长英质伟晶岩脉;8.石英脉;9.正断层;10.性质不明断层;11.采样位置

      Figure  3.   Simplified geological map of the Dahongliutandong lithium deposit

      图  4   大红柳滩东锂矿典型野外及显微镜下照片

      a、b. 花岗伟晶岩与变质砂岩侵入接触;c. 锂辉石钠长花岗伟晶岩脉;d. 锂辉石定向性明显;e. 花岗伟晶岩脉与围岩之间的断层破碎带;f.花岗伟晶岩脉中硅化发育;g. 含锂辉石钠长花岗伟晶岩标本;h、i. 含锂辉石钠长花岗伟晶岩正交偏光照片;j. 含锂辉石电气石花岗伟晶岩标本;h、i. 含锂辉石电气石花岗伟晶岩正交偏光照片;Q.石英;Ab.钠长石;Mus.白云母;Tur.电气石;Spd.锂辉石;Lhp.磷锰锂矿

      Figure  4.   Typical field photos and microphotograghs of the Dahongliutandong lithium deposit

      图  5   大红柳滩东锂辉石花岗伟晶岩锆石阴极发光照片

      实线圈代表锆石LA−ICP−MS U−Pb年龄分析点位置;虚线圈代表锆石Hf同位素分析点位置;圈内数字代表U−Pb分析点号;分析点附近数字代表206Pb/238U表面年龄及εHft)值

      Figure  5.   CL images of zircons from Dahongliutandong spodumene pegmatites

      图  6   大红柳滩东锂辉石花岗伟晶岩锆石U−Pb 年龄谐和图(a、c)和加权平均年龄(b、d)

      Figure  6.   (a, c) Zircon U−Pb concordia diagram, and (b, d) weighted mean ages diagram from Dahongliutandong spodumene pegmatites

      图  7   大红柳滩东锂辉石花岗伟晶岩的(K2O+Na2O)−SiO2(a)(据Middlemost,1994)及A/CNK−A/NK图解(b)(Mania et al.,1989

      Figure  7.   (a) K2O−SiO2, and (b) A/CNK−A/NK plots for the Dahongliutandong spodumene pegmatites

      图  8   大红柳滩东锂辉石花岗伟晶岩的微量元素原始地幔标准化蛛网图(a)及稀土元素球粒陨石标准化配分曲线图(b)(标准化数值据Sun et al.,1989

      Figure  8.   (a) Primitive mantle−normalized trace element patterns, and (b) chondrite−normalized REE patterns for the Dahongliutandong spodumene pegmatites

      表  1   大红柳滩东锂辉石花岗伟晶岩LA−ICP−MS锆石U−Pb测年结果

      Table  1   LA−ICP−MS zircon U−Pb data for Dahongliutandong spodumene pegmatites

      样品编号含量(10−6Th/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
      Pb*ThU比值比值比值年龄(Ma)年龄(Ma)年龄(Ma)
      HXUPb01(含锂辉石钠长花岗伟晶岩)
      12390.92755.968709.30.0400.04930.00060.22180.00220.03270.0003164.226.8203.41.8207.11.7
      298.9126.82900.40.0440.05190.00110.22750.00460.03190.0003279.948.9208.13.8202.12.0
      3586.151.016707.80.0030.05270.00060.23860.00210.03290.0003317.024.2217.21.7208.41.7
      5192.26.25682.30.0010.05210.00060.22770.00210.03170.0003289.925.2208.31.7201.51.6
      72655.5192.576296.60.0030.04890.00060.22080.00220.03280.0003144.027.4202.51.8207.91.7
      1070.7166.51983.70.0840.05270.00090.24000.00370.03310.0003314.838.4218.43.1209.91.9
      1157.34.21705.40.0020.05170.00070.22490.00250.03160.0003272.528.8206.02.0200.51.7
      1277.17.92201.70.0040.05100.00060.23110.00240.03290.0003240.927.7211.12.0208.81.7
      15103.57.42998.20.0020.05440.00090.23920.00370.03200.0003386.237.4217.83.0202.81.8
      1645.813.41318.20.0100.05130.00070.22980.00270.03250.0003254.630.9210.12.3206.41.7
      17629.660.618112.30.0030.05010.00060.22530.00240.03260.0003200.928.3206.32.0207.01.7
      18263.326.97326.30.0040.05430.00060.24940.00240.03340.0003382.825.3226.11.9211.61.7
      194399.21254.7127321.80.0100.05060.00050.22550.00200.03240.0003223.024.3206.51.6205.31.7
      20115.321.73340.80.0060.05520.00070.24320.00240.03200.0003419.725.9221.02.0203.01.7
      21120.055.93460.90.0160.05170.00090.23050.00380.03240.0003271.041.1210.63.2205.51.9
      22464.491.613671.90.0070.05120.00060.22450.00220.03180.0003249.626.1205.61.8202.11.7
      24128.08.03732.40.0020.05390.00070.23690.00240.03190.0003365.927.0215.92.0202.61.7
      251440.0291.942465.60.0070.05280.00060.23050.00200.03170.0003321.323.9210.61.7201.11.6
      26168.216.64838.90.0030.05220.00060.23420.00220.03260.0003291.825.4213.61.8206.91.7
      27164.418.74741.40.0040.05200.00110.23150.00440.03240.0003283.946.7211.53.7205.32.0
      28272.216.57818.80.0020.05450.00060.24300.00220.03240.0003392.424.1220.91.8205.31.7
      3071.911.62101.60.0050.05130.00070.22700.00260.03210.0003254.229.7207.82.1203.91.7
      HXUPb02(含锂辉石电气石花岗伟晶岩)
      2180.027.35228.30.0050.05440.00060.24030.00240.03200.0003387.525.5218.61.9203.21.7
      3244.63.27122.30.0000.05180.00060.22980.00230.03220.0003276.226.8210.01.9204.11.7
      4103.93.23129.50.0010.05250.00060.22470.00220.03110.0003305.725.6205.81.8197.21.6
      5358.752.710329.30.0050.05370.00090.23690.00350.03200.0003356.236.6215.82.9203.11.8
      81544.6125.644470.60.0030.04820.00050.21740.00200.03270.0003108.425.6199.71.7207.51.7
      10130.132.63805.50.0090.04950.00060.21900.00220.03210.0003173.327.3201.11.9203.51.7
      11367.457.610581.20.0050.05360.00060.23800.00220.03220.0003353.724.9216.71.8204.31.7
      1274.93.52115.00.0020.05340.00070.24290.00280.03300.0003347.129.1220.82.3209.11.8
      1383.14.42339.30.0020.05380.00070.24480.00280.03300.0003363.529.5222.32.3209.11.8
      14126.01191.03668.30.3250.05460.00140.23410.00550.03110.0003394.154.8213.64.5197.52.1
      18138.2295.63892.20.0760.04800.00120.21690.00490.03280.000398.656.7199.34.1207.82.2
      1961.55.21697.10.0030.05040.00060.23620.00260.03400.0003214.728.6215.32.1215.31.8
      20199.326.05839.10.0040.05500.00070.23890.00250.03150.0003413.326.7217.52.1199.81.7
      211250.6128.434010.70.0040.05560.00060.25870.00230.03380.0003434.823.4233.61.8214.11.7
      22173.614.55015.00.0030.05560.00070.24510.00270.03190.0003437.927.9222.62.2202.71.7
      23222.88.96163.00.0010.05510.00080.25220.00330.03320.0003416.132.0228.42.7210.51.8
      24176.322.95071.30.0050.05010.00130.22220.00520.03210.0004201.356.7203.74.3203.92.2
      29221.113.26537.80.0020.05260.00060.22740.00210.03130.0003312.124.6208.01.7198.91.6
      下载: 导出CSV

      表  2   大红柳滩东锂辉石花岗伟晶岩主量元素(%)、稀土和微量元素(10–6)分析结果

      Table  2   Results of major elements (%), REE and trace elements (10–6) of Dahongliutandong spodumene pegmatites

      样品号HX-H3HX-H4HX-H5HX-H8HX-H10HX-H13HX-H14HX-H15HX-H16HX-H17
      岩性含锂辉石钠长花岗伟晶岩含锂辉石电气石花岗伟晶岩
      SiO272.6072.3276.0077.5877.2975.2578.2676.9779.6874.75
      TiO20.010.020.010.010.010.010.010.010.010.01
      Al2O318.2418.1016.2615.2115.4517.0414.6415.0113.3417.33
      Fe2O30.050.100.070.240.290.070.010.010.100.01
      FeO0.150.120.100.150.100.100.200.100.100.20
      MnO0.050.060.050.120.120.070.070.050.100.06
      MgO0.060.070.050.030.030.030.020.020.040.02
      CaO0.150.160.140.280.260.280.250.230.300.22
      Na2O5.515.464.762.452.704.624.374.604.104.78
      K2O0.941.831.130.730.960.270.291.750.320.47
      P2O50.200.120.140.350.370.230.220.240.270.23
      LOI0.771.160.730.680.760.390.310.470.440.20
      Total98.7499.5299.4297.8298.3498.3598.6499.4598.7898.27
      A/CNK1.761.611.752.852.602.031.841.521.751.98
      Sc4.924.153.142.562.144.373.692.483.124.40
      Ga28.2030.7026.0023.6025.1022.0018.7016.8017.6020.70
      W0.580.500.440.640.670.510.390.580.380.51
      Bi0.400.360.300.561.620.120.320.550.150.15
      V2.042.351.310.690.340.450.230.130.280.75
      Li6520.003280.004780.0010700.009600.009650.007500.004570.006420.009080.00
      Be126.0040.1034.60136.00126.00234.00225.00238.00265.0024.00
      B11.3014.4012.2012.0012.007.727.4211.108.339.19
      Rb403.00843.00476.00216.00305.0080.3068.50399.0081.10107.00
      Cs31.9032.7022.4013.3013.3010.2010.5018.3018.604.10
      Ba12.4015.908.787.583.295.723.815.924.332.82
      Th0.320.650.670.290.250.140.100.100.190.09
      U11.4012.9011.804.328.567.623.904.558.422.74
      Ta113.0097.7074.7043.0029.7037.2020.6021.0032.0018.20
      Nb99.2064.7058.4093.2059.9082.2056.8085.0085.8046.60
      Pb7.087.566.216.976.679.019.0616.9011.408.42
      Sr19.3016.7018.0031.8026.8029.0032.0042.3041.1019.40
      Zr29.7025.2028.2021.206.979.365.863.2228.904.33
      Hf4.283.593.832.330.960.950.550.323.010.80
      Cu10.7012.408.061.591.371.771.521.421.251.85
      Zn23.4025.8027.8074.1069.9025.3040.2080.2072.0087.10
      Sn>200>200108.00193.00160.00178.0034.5038.50>20041.00
      Y0.760.620.690.600.270.320.300.320.460.12
      下载: 导出CSV
      续表2
      样品号HX-H3HX-H4HX-H5HX-H8HX-H10HX-H13HX-H14HX-H15HX-H16HX-H17
      岩性含锂辉石钠长花岗伟晶岩含锂辉石电气石花岗伟晶岩
      La0.540.700.500.280.200.190.160.220.120.14
      Ce0.991.320.890.530.350.330.280.370.190.20
      Pr0.130.140.100.060.040.040.030.050.020.02
      Nd0.480.520.360.200.120.140.120.150.080.07
      Sm0.130.170.170.070.050.060.040.050.060.03
      Eu0.030.030.020.010.010.010.010.020.010.01
      Gd0.170.160.180.090.060.070.050.060.070.03
      Tb0.030.030.030.020.010.010.010.010.010.00
      Dy0.150.140.150.090.060.070.060.060.080.03
      Ho0.030.020.020.020.010.010.010.010.010.01
      Er0.070.050.060.040.030.030.030.030.030.01
      Tm0.010.010.010.010.000.000.000.000.000.00
      Yb0.050.040.040.040.020.020.030.030.020.01
      Lu0.0080.0070.0080.0060.0040.0040.0040.0040.0040.002
      ΣREE2.813.342.541.450.960.980.841.060.710.56
      LREE/HREE4.496.254.063.914.013.533.224.172.005.35
      LaN/YbN7.3111.418.155.745.985.684.416.313.748.37
      δEu0.530.500.300.470.450.560.660.780.400.89
      δCe0.921.030.981.010.980.960.960.910.870.88
      LaN/SmN2.682.661.902.582.392.232.522.631.383.01
      GdN/YbN2.653.013.382.031.902.271.692.122.451.72
      下载: 导出CSV

      表  3   大红柳滩东锂辉石花岗伟晶岩锆石Lu−Hf同位素组成

      Table  3   Zircon Lu−Hf isotopic compositions of Dahongliutandong spodumene pegmatites

      测点号t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf176Hf/177Hf)iεHftTDM1(Ma)TDM2(Ma)fLu/Hf
      HXUPb01(含锂辉石钠长花岗伟晶岩)
      1207.10.0016320.0000320.2826260.0000100.282626−0.60.48201247−1.00
      2202.10.0040440.0000800.2826290.0000120.282629−0.60.48161243−1.00
      3208.40.0019640.0000390.2826200.0000100.282620−0.80.38281260−1.00
      7207.90.0039160.0000640.2825480.0000120.282548−3.40.49241422−1.00
      10209.90.0028920.0000600.2826130.0000080.282613−1.00.38381275−1.00
      11200.50.0000920.0000030.2825980.0000060.282598−1.80.28561314−1.00
      12208.80.0030620.0000610.2826090.0000100.282609−1.20.38431284−1.00
      15202.80.0011880.0000250.2826260.0000090.282626−0.70.38201250−1.00
      16206.40.0020450.0000430.2826070.0000100.282607−1.30.48451290−1.00
      17207.00.0004840.0000100.2826430.0000130.2826430.00.57961208−1.00
      18211.60.0020140.0000400.2826320.0000130.282632−0.30.48121230−1.00
      19205.30.0012060.0000210.2826270.0000120.282627−0.60.48191247−1.00
      20203.00.0087710.0001850.2826200.0000140.282619−1.00.58311266−0.99
      21205.50.0063520.0001240.2825860.0000140.282586−2.10.58751339−1.00
      24202.60.0004810.0000090.2825670.0000100.282567−2.80.38971382−1.00
      25201.10.0129670.0002370.2826180.0000180.282618−1.00.68341270−0.99
      26206.90.0017700.0000340.2826340.0000100.282634−0.30.48091229−1.00
      27205.30.0013620.0000240.2826220.0000090.282622−0.80.38241256−1.00
      28205.30.0007820.0000130.2826320.0000120.282632−0.40.48111235−1.00
      HXUPb02(含锂辉石电气石花岗伟晶岩)
      2203.20.0009540.0000220.2826310.0000100.282631−0.50.48121237−1.00
      3204.10.0018930.0000190.2825160.0000130.282516−4.60.59661496−1.00
      4197.20.0244720.0008190.2826320.0000130.282629−0.70.58281247−0.98
      5203.10.0045870.0000890.2825890.0000110.282589−2.00.48701333−1.00
      8207.50.0005700.0000250.2826290.0000170.282629−0.50.68151239−1.00
      10203.50.0047610.0001380.2825630.0000120.282563−2.90.49051391−1.00
      12209.10.0033490.0000960.2825840.0000140.282584−2.10.58771340−1.00
      13209.10.0073750.0001950.2825840.0000140.282584−2.10.58791340−0.99
      14197.50.0368800.0008020.2825620.0000190.282559−3.20.79221403−0.98
      20199.80.0052630.0000610.2825170.0000150.282517−4.60.59651497−1.00
      21214.10.0097150.0002440.2826170.0000210.282616−0.80.78361265−0.99
      22202.70.0097100.0002930.2826190.0000140.282618−1.00.58341268−0.99
        注:1. εHft) = 10000 × {[(176Hf/177Hf)S – (176Lu/177Hf)S × (eλt – 1)] / [(176Hf/177Hf)CHUR,0– (176Lu/177Hf) CHUR × (eλt – 1)] – 1};    2. TDM1 = 1/λ × ln{1 + [(176Hf/177Hf)S – (176Hf/177Hf) DM]/ [(176Lu/177Hf)S – (176Lu/177Hf)DM]};    3. TDM2 = TDM – (TDMt) × [(fccfs)/(fccfDM)]. fLu/Hf = (176Lu/177Hf)S /(176Lu/177Hf) CHUR – 1;    4. λ = 1.867 × 10−11/a;(176Lu/177Hf)S 和(176Hf/177Hf)S 为样品测量值;(176Lu/177Hf) CHUR = 0.0332; (176Hf/177Hf)CHUR,0 = 0.282772; (176Lu/177Hf)DM = 0.0384;(176Hf/177Hf) DM = 0.28325;(176Lu/177Hf)平均地壳 = 0.015; fcc = [(176Lu/177Hf)平均地壳/(176Lu/177Hf) CHUR] – 1; fs = fLu/Hf; fDM = [(176Lu/177Hf)DM /(176Lu/177Hf) CHUR] – 1; t 为锆石结晶年龄。
      下载: 导出CSV
    • 白洪阳, 王核, 闫庆贺, 等. 新疆西昆仑雪凤岭锂矿床铌钽铁矿、锡石年龄及其地质意义[J]. 岩石学报, 2022, 38(7): 2139-2152 doi: 10.18654/1000-0569/2022.07.19

      BAI Hongyang, WANG He, YAN Qinghe, et al. Columbite-tantalite and cassiterite ages of Xuefengling lithium deposit in West Kunlun, Xinjiang and their geological significance[J]. Acta Petrologica Sinica, 2022, 38(7): 2139-2152. doi: 10.18654/1000-0569/2022.07.19

      陈海云, 孙妍, 包平, 等. 西昆仑上其木干岩体岩石成因及地质意义——地球化学及U-Pb年代学证据[J]. 岩石矿物学杂志, 2014, 33(4): 657-670 doi: 10.3969/j.issn.1000-6524.2014.04.005

      CHEN Haiyun, SUN Yan, BAO Ping, et al. Petrogenesis and geological significance of Shangqimugan plutons in Western Kunlun: Evidence from geochemistry and U-Pb chronology[J]. Acta Petrologica et Mineralogica, 2014, 33(4): 657-670. doi: 10.3969/j.issn.1000-6524.2014.04.005

      陈衍景, 薛莅治, 王孝磊, 等. 世界伟晶岩型锂矿床地质研究进展[J]. 地质学报, 2021, 95(10): 2971-2995 doi: 10.3969/j.issn.0001-5717.2021.10.004

      CHEN Yanjing, XUE Lizhi, WANG Xiaolei, et al. Progress in geological study of pegmatite-type lithium deposits in the world[J]. Acta Geologica Sinica, 2021, 95(10): 2971-2995. doi: 10.3969/j.issn.0001-5717.2021.10.004

      丁坤, 梁婷, 周义, 等. 西昆仑大红柳滩黑云母二长花岗岩岩石成因: 来自锆石U-Pb年龄及Li-Hf同位素的证据[J]. 西北地质, 2020, 53(1): 24-34

      DING Kun, LIANG Ting, ZHOU Yi, et al. Petrogenesis of the Dahongliutan biotite monzogranite in western Kunlun orogen: Evidence from zircon U-Pb age and Li-Hf isotope[J]. Northwestern Geology, 2020, 53(1): 24-34.

      蒋少涌, 王春龙, 张璐, 等. 伟晶岩型锂矿中矿物原位微区元素和同位素示踪与定年研究进展[J]. 地质学报, 2021, 95(10): 3017-3038 doi: 10.3969/j.issn.0001-5717.2021.10.006

      JIANG Shaoyong, WANG Chunlong, ZHANG Lu, et al. In situ trace element tracing and isotopic dating of pegmatite type lithium deposits: an overview[J]. Acta Geologica Sinica, 2021, 95(10): 3017-3038. doi: 10.3969/j.issn.0001-5717.2021.10.006

      康磊, 校培喜, 高晓峰, 等. 西昆仑慕士塔格岩体的LA-ICP-MS锆石U-Pb定年: 对古特提斯碰撞时限的制约[J]. 地质论评, 2012, 58(4): 763-774 doi: 10.3969/j.issn.0371-5736.2012.04.017

      KANG Lei, XIAO Peixi, GAO Xiaofeng, et al. LA-ICP-MS U-Pb dating of the zircon from Muztagata pluton in Western Kunlun Orogenic Belt: Constraints on the time of Paleotethys’ collision[J]. Geological Review, 2012, 58(4): 763-774. doi: 10.3969/j.issn.0371-5736.2012.04.017

      李杭, 洪涛, 杨智全, 等. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究—以阿尔金中段吐格曼北锂铍矿床为例[J]. 岩石学报, 2020, 36(9): 2869-2892 doi: 10.18654/1000-0569/2020.09.16

      LI Hang, HONG Tao, YANG Zhiquan, et al. Comparative studying on zircon, cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatites: A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh[J]. Acta Petrologica Sinica, 2020, 36(9): 2869-2892. doi: 10.18654/1000-0569/2020.09.16

      李建康, 李鹏, 严清高, 等. 中国花岗伟晶岩的研究历程及发展态势[J]. 地质学报, 2021, 95(10): 2996-3016 doi: 10.3969/j.issn.0001-5717.2021.10.005

      LI Jiankang, LI Peng, YAN Qinggao, et al. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 2021, 95(10): 2996-3016. doi: 10.3969/j.issn.0001-5717.2021.10.005

      李建康, 王登红, 张德会, 等. 川西典型伟晶岩型矿床的形成机制及大陆动力学背景[M]. 北京: 原子能出版社, 2007, 72 – 122

      LI Jiankang, WANG Denghong, ZHANG Dehui, et al. Mineralization Mechanism and Continental Geodynamic of Pegmatite Type Deposits in Western Sichuan, China[M]. Beijing: Atomic Energy Press, 2007, 72 – 122.

      李侃, 高永宝, 滕家欣, 等. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 2019, 52(4): 206-221 doi: 10.3969/j.issn.1009-6248.2019.04.016

      LI Kan, GAO Yongbao, TENG Jiaxin, et al. Metallogenic geological characteristics, mineralization age and resource potential of the granite-pegmatite-type rare metal deposits in Dahongliutan area, Hetian County, Xinjiang[J]. Northwestern Geology, 2019, 52(4): 206-221. doi: 10.3969/j.issn.1009-6248.2019.04.016

      李善平, 潘彤, 王秉璋, 等. 柴达木盆地北缘锲墨格山含绿柱石花岗伟晶岩特征及构造意义[J]. 大地构造与成矿学, 2021, 45(3): 608-619 doi: 10.16539/j.ddgzyckx.2021.03.009

      LI Shanping, PAN Tong, WANG Bingzhang, et al. Characteristics and tectonic significance of beryl-bearing pegmatites in Qiemoge Mountain, northern margin of Qaidam Basin[J]. Geotectonica et Metallogenia, 2021, 45(3): 608-619. doi: 10.16539/j.ddgzyckx.2021.03.009

      李文渊, 张照伟, 高永宝, 等. 昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究[J]. 中国地质, 2022, 49(5): 1385-1407 doi: 10.12029/gc20220503

      LI Wenyuan, ZHANG Zhaowei, GAO Yongbao, et al. Tectonic transformation of the Kunlun Paleo-Tethyan orogenic belt and related mineralization of critical mineral resources of nickel, cobalt, manganese and lithium[J]. Geology in China, 2022, 49(5): 1385-1407. doi: 10.12029/gc20220503

      李永, 王威, 杜晓飞, 等. 西昆仑509道班西锂铍稀有金属矿白云母40Ar/39Ar定年及对区域成矿的限定[J]. 中国地质, 2022, 49(6): 2031-2033

      LI Yong, WANG Wei, DU Xiaofei, et al. 40Ar/39Ar dating of muscovite of the west 509 Daoban Li-Be rare metal deposit in the West Kunlun orogenic belt and its limitation to regional mineralization[J]. Geology in China, 2022, 49(6): 2031-2033.

      梁婷, 滕家欣, 王登红, 等. 新疆大红柳滩锂铍稀有金属矿床[M]. 北京: 地质出版社, 2021, 1 – 262

      LIANG Ting, TENG Jiaxin, WANG Denghong, et al. Li-Be Rare Metal Deposit in Dahongliutan, Xinjiang[M]. Beijing: Geological Publishing House, 2021, 1 – 262.

      鲁浩, 刘欢, 胡峰, 等. 西昆仑造山带东段中生代碰撞造山事件的记录: 来自新疆温泉-胜利达坂一带三叠纪侵入岩年代学、地球化学的证据[J/OL]. 现代地质. https://doi.org/10.19657/j.geoscience.1000-8527.2022. 022

      LU Hao, LIU Huan, HU Feng, et al. Records of Mesozoic collision orogenic events on the eastern part of the West Kunlun Orogenic Belt: Evidence from the chronology and geochemistry of Triassic intrusive rocks in Wenquan-Shenglidaban area, Xinjiang [J/OL]. Geoscience. https://doi.org/10.19657/j.geoscience.1000-8527.2022. 022

      乔耿彪, 张汉德, 伍跃中, 等. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报, 2015, 89(7): 1180-1194 doi: 10.3969/j.issn.0001-5717.2015.07.003

      QIAO Gengbiao, ZHANG Hande, WU Yuezhong, et al. Petrogenesis of the Dahongliutan monzogranite in Western Kunlun: constraints from SHRIMP zircon U-Pb geochronology and geochemical characteristics[J]. Acta Geologica Sinica, 2015, 89(7): 1180-1194. doi: 10.3969/j.issn.0001-5717.2015.07.003

      秦克章, 赵俊兴, 何畅通, 等. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 2021, 37(11): 3277-3286 doi: 10.18654/1000-0569/2021.11.02

      QIN Kezhang, ZHAO Junxing, HE Changtong, et al. Discovery of the Qiongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 2021, 37(11): 3277-3286. doi: 10.18654/1000-0569/2021.11.02

      唐俊林, 柯强, 徐兴旺, 等. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用[J]. 岩石学报, 2022, 38(3): 655-675 doi: 10.18654/1000-0569/2022.03.05

      TANG Junlin, KE Qiang, XU Xingwang, et al. Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area, West Kunlun[J]. Acta Petrologica Sinica, 2022, 38(3): 655-675. doi: 10.18654/1000-0569/2022.03.05

      滕家欣, 高永宝, 贺永康, 等. 西昆仑锰锂铅锌铁区域成矿规律与资源潜力[M]. 北京: 地质出版社, 2021, 1 – 420

      TENG Jiaxin, GAO Yongbao, HE Yongkang, et al. Metallogenic Regularity and Resource Potential of Manganese, Lithium, Lead, Zinc and Iron in West Kunlun[M]. Beijing: Geological Publishing House, 2021, 1 – 420.

      涂其军, 韩琼, 李平, 等. 西昆仑大红柳滩一带锂辉石矿基本特征和勘查新进展[J]. 地质学报, 2019, 93(11): 2862-2873 doi: 10.3969/j.issn.0001-5717.2019.11.011

      TU Qijun, HAN Qiong, LI Ping, et al. Basic characteristics and exploitation progress of the spodumene ore deposit in the Dahongliutan area, West Kunlun[J]. Acta Geologica Sinica, 2019, 93(11): 2862-2873. doi: 10.3969/j.issn.0001-5717.2019.11.011

      王秉璋, 韩杰, 谢祥镭, 等. 青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li-Be成矿意义[J]. 大地构造与成矿学, 2020, 44(1): 69-79 doi: 10.16539/j.ddgzyckx.2019.02.016

      WANG Bingzhang, HAN Jie, XIE Xianglei, et al. Discovery of the indosinian (Beryl-bearing) spodumene pegmatitic dike swarm in the Chakabeishan area in the northeastern margin of the Tibetan plateau: implications for Li-Be mineralization[J]. Geotectonica et Metallogenia, 2020, 44(1): 69-79. doi: 10.16539/j.ddgzyckx.2019.02.016

      王核, 李沛, 马华东, 等. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2017, 41(6): 1053-1062 doi: 10.16539/j.ddgzyckx.2017.06.005

      WANG He, LI Pei, MA Huadong, et al. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication[J]. Geotectonica et Metallogenia, 2017, 41(6): 1053-1062. doi: 10.16539/j.ddgzyckx.2017.06.005

      王核, 徐义刚, 闫庆贺, 等. 新疆白龙山伟晶岩型锂矿床研究进展[J]. 地质学报, 2021, 95(10): 3085-3098 doi: 10.3969/j.issn.0001-5717.2021.10.010

      WANG He, XU Yigang, YAN Qinghe, et al. Research progress on Bailongshan pegmatite type lithium deposit, Xinjiang[J]. Acta Geologica Sinica, 2021, 95(10): 3085-3098. doi: 10.3969/j.issn.0001-5717.2021.10.010

      王威, 杜晓飞, 刘伟, 等. 西昆仑509道班西锂铍稀有金属矿地质特征与成矿时代探讨[J]. 岩石学报, 2022, 38(7): 1967-1980 doi: 10.18654/1000-0569/2022.07.10

      WANG Wei, DU Xiaofei, LIU Wei, et al. Geological characteristic and discussion on metallogenic age of the West 509-Daoban Li-Be rare metal deposit in the West Kunlun Orogenic Belt[J]. Acta Petrologica Sinica, 2022, 38(7): 1967-1980. doi: 10.18654/1000-0569/2022.07.10

      魏小鹏, 王核, 胡军, 等. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J]. 地球化学, 2017, 46(1): 66-80 doi: 10.3969/j.issn.0379-1726.2017.01.006

      WEI Xiaopeng, WANG He, HU Jun, et al. Geochemistry and geochronology of the Dahongliutan two-mica granite pluton in western Kunlun orogen: Geotectonic implications[J]. Geochimica, 2017, 46(1): 66-80. doi: 10.3969/j.issn.0379-1726.2017.01.006

      吴福元, 李献华, 郑永飞, 等. Lu−Hf 同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220 doi: 10.3969/j.issn.1000-0569.2007.02.001

      WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu−Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. doi: 10.3969/j.issn.1000-0569.2007.02.001

      吴福元, 王汝成, 刘小驰, 等. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报, 2021, 37(11): 3261-3276 doi: 10.18654/1000-0569/2021.11.01

      WU Fuyuan, WANG Rucheng, LIU Xiaochi, et al. New breakthroughs in the studies of Himalayan rare-metal mineralization[J]. Acta Petrologica Sinica, 2021, 37(11): 3261-3276. doi: 10.18654/1000-0569/2021.11.01

      徐兴旺, 李杭, 石福品, 等. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测[J]. 岩石学报, 2019, 35(11): 3303-3316 doi: 10.18654/1000-0569/2019.11.03

      XU Xingwang, LI Hang, SHI Fupin, et al. Metallogenic characteristics and prospecting of granitic pegmatite-type rare metal deposits in the Tugeman area, middle part of Altyn Tagh[J]. Acta Petrologica Sinica, 2019, 35(11): 3303-3316. doi: 10.18654/1000-0569/2019.11.03

      许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6): 1091-1106 doi: 10.3969/j.issn.0001-5717.2018.06.001

      XU Zhiqin, WANG Rucheng, ZHAO Zhongbao, et al. On the Structural Backgrounds of the Large-scale "Hard-rock Type" Lithium Ore Belts in China[J]. Acta Geologica Sinica, 2018, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001

      许志琴, 朱文斌, 郑碧海, 等. 新能源锂矿战略与大陆动力学研究——纪念南京大学地球科学与工程学院100周年华诞[J]. 地质学报, 2021, 95(10): 2937-2954 doi: 10.3969/j.issn.0001-5717.2021.10.002

      XU Zhiqin, ZHU Wenbin, ZHENG Bihai, et al. New energy strategy for lithium resource and the continental dynamics research—celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University[J]. Acta Geologica Sinica, 2021, 95(10): 2937-2954. doi: 10.3969/j.issn.0001-5717.2021.10.002

      张辉, 吕正航, 唐勇. LCT型伟晶岩及其锂矿床成因概述[J]. 地质学报, 2021, 95(10): 2955-2970 doi: 10.3969/j.issn.0001-5717.2021.10.003

      ZHANG Hui, LV Zhenghang, TANG Yong. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geologica Sinica, 2021, 95(10): 2955-2970. doi: 10.3969/j.issn.0001-5717.2021.10.003

      张宇, 唐名鹰, 何玉良, 等. 新疆西昆仑独尖山地区二云母二长花岗岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征[J/OL]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20201019.1317.002.html

      ZHANG Yu, TANG Mingying, HE Yuliang, et al. Geochemistry, zircon U-Pb age and Hf isotopic characteristics of two-mica monzonites in Dujianshan area of Western Kunlun, Xinjiang[J/OL]. Geology in China. https://kns.cnki.net/kcms/detail/11.1167.P.20201019.1317.002.html

      赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 2021, 37(11): 3325-3347 doi: 10.18654/1000-0569/2021.11.06

      ZHAO Junxing, HE Changtong, QIN Kezhang, et al. Geochronology, source features and the characteristics of the fractional crystallization in pegmatite at the Qiongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 2021, 37(11): 3325-3347. doi: 10.18654/1000-0569/2021.11.06

      赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 1997, 113 – 138

      ZHAO Zhenhua. Principle of Trace Element Geochemistry[M]. Beijing: Science Press, 1997, 113 – 138.

      邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006, 1 – 284

      ZOU Tianren, LI Qingchang. Rare and Rare Earth Metallic Deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006, 1 – 284.

      Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1−2): 243 – 258.

      Černý P, Ercit T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43: 2005-2026. doi: 10.2113/gscanmin.43.6.2005

      Černý P, London D, Novak M. Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8: 257-261. doi: 10.2113/gselements.8.4.257

      Černý P. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research[J]. Applied Geochemistry, 1992, 7: 393-416. doi: 10.1016/0883-2927(92)90002-K

      Chu N C, Taylor R N, Chavagnac V. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 2002, 17, 1567-1574. doi: 10.1039/b206707b

      DeBievre P, Taylor P D P. Table of the isotopic compositions of the elements[J]. International Journal of Mass Spectrometry Ion Processes, 1993, 123, 149-166. doi: 10.1016/0168-1176(93)87009-H

      Ding K, Liang T, Yang X Q, et al. Geochronology, petrogenesis and tectonic significance of Dahongliutan pluton in Western Kunlun orogenic belt, NW China[J]. Journal of Central South University, 2019, 26: 3420-3435. doi: 10.1007/s11771-019-4264-7

      Dittrich T, Seifert T, Schulz B, et al. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia: Geology and Metallogeny of Pollucite Mineralisations[M]. Switzerland: Springer, 2019, 1-125.

      Fei G C, Menuge J F, Chen C S, et al. Evolution of pegmatite ore-forming fluid: The Lijiagou spodumene pegmatites in the Songpan-Garze Fold Belt, southwestern Sichuan province, China[J]. Ore Geology Reviews, 2021, 139: 104441. doi: 10.1016/j.oregeorev.2021.104441

      Fei G C, Menuge J F, Li Y Q, et al. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 364-365: 105555. doi: 10.1016/j.lithos.2020.105555

      Gao Y B, Bagas L, Li K, et al. Newly discovered Triassic lithium deposits in the Dahongliutan area, Northwest China: A case study for the detection of lithium-bearing pegmatite deposits in rugged terrains using remote-sensing data and images[J]. Frontiers in Earth Science, 2020, 8: 591966. doi: 10.3389/feart.2020.591966

      Gao Y B, Zhao X M, Bagas L, et al. Newly discovered Ordovician Li-Be deposits at Tugeman in the Altyn-Tagh Orogen, NW China[J]. Ore Geology Reviews, 2021, 139: 104515. doi: 10.1016/j.oregeorev.2021.104515

      Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica Et Cosmochimica Acta, 2000, 64: 133-147. doi: 10.1016/S0016-7037(99)00343-9

      Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8

      Jiang Y H, Jia R Y, Liu Z, et al. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys[J]. Lithos, 2013, 156-159: 13-30. doi: 10.1016/j.lithos.2012.10.004

      Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48: 55-69. doi: 10.1016/j.oregeorev.2012.05.006

      Linnen R L, Lichtervelde M V, Cerny P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280. doi: 10.2113/gselements.8.4.275

      London D, Evensen J M. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 445-486. doi: 10.2138/rmg.2002.50.11

      London D. Granitic pegmatites: an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80: 281-303. doi: 10.1016/j.lithos.2004.02.009

      London D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383. doi: 10.1016/j.oregeorev.2018.04.020

      London D. The magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase equilibrium experiments[J]. American Mineralogist, 1986, 71: 376-395.

      Ludwig K R. Users Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 25-32.

      Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101: 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

      Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224.

      Pan T, Ding Q F, Zhou X, et al. Columbite-tantalite group mineral U-Pb geochronology of Chaqiabeishan Li-rich granitic pegmatites in the Quanji Massif, NW China: Implications for the genesis and emplacement ages of pegmatites[J]. Frontiers in Earth Science, 2021, 8: 606951. doi: 10.3389/feart.2020.606951

      Simmons W B, Webber K L. Pegmatite genesis: State of the art[J]. European Journal of Mineralogy, 2008, 20(4): 421-438. doi: 10.1127/0935-1221/2008/0020-1833

      Soderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219: 311-324. doi: 10.1016/S0012-821X(04)00012-3

      Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and process[C]//Saunders A D, Norry M J(eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 1989, 42: 313-345.

      Wang H, Gao H, Zhang X Y, et al. Geology and geochronology of the super-large Bailongshan Li–Rb–(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, 2020, 360-361: 105449. doi: 10.1016/j.lithos.2020.105449

      Xu Z Q, Fu X F, Wang R C, et al. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet[J]. Lithos, 2020, 354-355: 105281. doi: 10.1016/j.lithos.2019.105281

      Yan Q G, Li J K, Li X J, et al. Source of the Zhawulong granitic pegmatite-type lithium deposit in the Songpan-Ganzê orogenic belt, Western Sichuan, China: Constrants from Sr-Nd-Hf isotopes and petrochemistry[J]. Lithos, 2020, 378-379: 105828. doi: 10.1016/j.lithos.2020.105828

      Yan Q H, Qiu Z W, Wang H, et al. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews, 2018, 100: 561-573. doi: 10.1016/j.oregeorev.2016.11.010

      Yan Q H, Wang H, Chi G X, et al. Recognition of a 600-km-long Late Triassic rare-metal (Li–Rb–Be–Nb–Ta) pegmatite belt in the Western Kunlun orogenic belt[J]. Economic Geology, 2022, 117(1): 213-236. doi: 10.5382/econgeo.4858

      Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247, 100-118. doi: 10.1016/j.chemgeo.2007.10.003

      Zhang Q C, Liu Y, Wu Z H, et al. Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example: Petrogenesis and tectonic implications for the evolution of the Kangxiwa Palaeo-Tethys[J]. International Geology Review, 2019, 61(2): 175-194. doi: 10.1080/00206814.2017.1419444

      Zhou J S, Wang Q, Xu Y G, et al. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites[J]. Chemical Geology, 2021, 584: 120484. doi: 10.1016/j.chemgeo.2021.120484

    • 期刊类型引用(8)

      1. 洪涛,胡明曦,唐俊林,蒋泽立,张璋,高俊,徐兴旺. 新疆西昆仑大红柳滩花岗伟晶岩型锂矿叠加改造成矿特征:来自矿石构造、3D成像技术与年代学的约束. 岩石学报. 2024(02): 553-570 . 百度学术
      2. 夏永旗,庹明洁,李诺,祁冬梅,加纳提古丽·吾斯曼,王慧慧,邰宗尧,李婷. 西昆仑大红柳滩花岗岩中黑云母地球化学特征及地质意义. 地质科学. 2024(02): 404-419 . 百度学术
      3. 夏永旗,庹明洁,李诺,祁冬梅,加纳提古丽·吾斯曼,王慧慧,王文波,李婷,邰宗尧. 云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示. 地球科学. 2024(03): 922-938 . 百度学术
      4. 王核,王堃宇,高昊,魏小鹏,龙雨兵,黄亮,张晓宇,张嵩,蔡铭泽,沈明宏. 西昆仑-喀喇昆仑造山带锂矿成矿特征与成矿规律初探. 地质学报. 2024(05): 1421-1439 . 百度学术
      5. 何治亮,杨鑫,高键,云露,曹自成,李慧莉,杨佳奇. 特提斯洋与古亚洲洋协同演化控制下的塔里木台盆区油气富集效应. 石油与天然气地质. 2024(03): 637-657 . 百度学术
      6. 李鑫,代鸿章,王登红,刘善宝,范小东,梁志,高原,文佳豪,朱海洋. 四川阿坝可尔因锂矿田成矿规律与成矿预测. 岩石学报. 2024(09): 2819-2840 . 百度学术
      7. 高景刚,梁婷,王登红,凤永刚,李永,谭细绢,岑炬标,何蕾. 新疆和田大红柳滩矿田稀有金属矿床的成矿机制. 岩石学报. 2024(09): 2753-2768 . 百度学术
      8. 李文渊,高永宝,张照伟,任广利,张志炳,孔会磊,王亚磊. 镁铁—超镁铁质岩与花岗岩-伟晶岩“小岩体成大矿”对比——以昆仑成矿带夏日哈木和大红柳滩超大型矿床为例. 地球科学与环境学报. 2023(05): 1036-1048 . 百度学术

      其他类型引用(0)

    图(8)  /  表(4)
    计量
    • 文章访问数:  179
    • HTML全文浏览量:  27
    • PDF下载量:  89
    • 被引次数: 8
    出版历程
    • 收稿日期:  2022-10-25
    • 修回日期:  2023-02-06
    • 录用日期:  2023-02-08
    • 网络出版日期:  2023-02-13
    • 刊出日期:  2023-04-19

    目录

      /

      返回文章
      返回