ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

神南矿区直罗组含水层对矿井涌水贡献量预测分析

黄金廷, 宁博涵, 孙魁, 李宗泽, 王嘉玮, 宋歌

黄金廷, 宁博涵, 孙魁, 等. 神南矿区直罗组含水层对矿井涌水贡献量预测分析[J]. 西北地质, 2023, 56(6): 176-185. DOI: 10.12401/j.nwg.2023005
引用本文: 黄金廷, 宁博涵, 孙魁, 等. 神南矿区直罗组含水层对矿井涌水贡献量预测分析[J]. 西北地质, 2023, 56(6): 176-185. DOI: 10.12401/j.nwg.2023005
HUANG Jinting, NING Bohan, SUN Kui, et al. Contribution of Groundwater in Zhiluo Aquifer to Mine Water in Shennan Mining Area: Numerical Simulation[J]. Northwestern Geology, 2023, 56(6): 176-185. DOI: 10.12401/j.nwg.2023005
Citation: HUANG Jinting, NING Bohan, SUN Kui, et al. Contribution of Groundwater in Zhiluo Aquifer to Mine Water in Shennan Mining Area: Numerical Simulation[J]. Northwestern Geology, 2023, 56(6): 176-185. DOI: 10.12401/j.nwg.2023005

神南矿区直罗组含水层对矿井涌水贡献量预测分析

基金项目: 国家自然科学基金“鄂尔多斯盆地风沙滩区土壤—地下水蒸散发机理研究”(41672250)、“旱区土壤–地下水蒸发与积盐互馈机制研究”(42177076),陕西省自然科学基金项目“气候变化对黄河流域(陕西段)生态系统影响与风险应对研究”(2021ZDLSF05-09)及陕西省自然科学基础研究计划—陕煤联合基金重点资助项目“古河道含水层地下水与煤层开采互馈机制研究”(2019JLZ-03)联合资助。
详细信息
    作者简介:

    黄金廷(1979−),男,教授,博/硕士生导师,主要从事水资源可持续开发利用领域的研究工作。E–mail:hjinting@xust.edu.cn

  • 中图分类号: P641;TD742

Contribution of Groundwater in Zhiluo Aquifer to Mine Water in Shennan Mining Area: Numerical Simulation

  • 摘要:

    查明矿井涌水的来源及构成比例,对煤矿安全生产具有重要意义。基于神南矿区水文地质、典型煤矿矿井涌水量、煤矿开采裂采比等数据,建立了综合考虑延安组(J2y)、直罗组(J2z)、安定组(J2a)、新近系保德组(N2b)、第四系中更新统离石组(Qpl)、上更新统萨拉乌苏组(Qps)、马兰组(Qpm)、全新统冲积层(Qhal)和风积沙(Qheol)多个含(隔)水层的地下水流数值模拟模型,实现了第四系和直罗组含水层地下水流场的仿真模拟。结果显示,神南矿区煤矿开采直接影响直罗组含水层。柠条塔煤矿矿井涌水量为117743.52 m3/d(4905.98 m3/h),其中直罗组含水层贡献94.82%,2-2煤上覆延安组砂岩贡献2.79%。

    Abstract:

    Illustration water sources and ratio from different aquifers has significant means to mining water management. In this paper, based on the hydrogeological data, mining water and ratio of the height of the fractured zone to the mining height of typical mine area in Shennan mining area, a numerical simulation model was set up. Totally, 7 layers including aquifer and aquiclude are contained in the model. And it predicted the groundwater flow field of Quaternary and Zhiluo aquifer groundwater in Jurassic system very well via the model calibration. Furthermore, simulation results shows that mining action affects Zhiluo aquifer groundwater directly. For example, Zhiluo aquifer groundwater contributes nearly 94.82 percentage when mining water quantity reaches 117743.52 m3/d in Ningtiaota mining area.

  • 图  1   研究区边界示意图

    Figure  1.   Map showing the model boundary

    图  2   降水入渗补给系数分区图

    Figure  2.   Distribution of recharge coefficient

    图  3   观测孔水位计算值与实测值拟合图

    Figure  3.   Comparison between calculated and observed groundwater level in observation wells

    图  4   潜水流场(a) 与直罗组流场末时刻拟合图(b)

    Figure  4.   Observation and simulation groundwater flow field of (a) phreatic aquifer and (b) confined aquifer

    图  5   实测与计算矿井涌水量对比图

    a. 柠条塔南翼煤矿2-2煤开采工作面;b. 柠条塔北翼煤矿2-2煤开采工作面;c. 红柳林煤矿4-2煤开采工作面;d. 张家峁煤矿2-2煤开采工作面

    Figure  5.   Observed and calculated mining water

    图  6   预测期直罗组含水层地下水流场图

    Figure  6.   Groundwater contour lines of Zhiluo aquifer groundwater

    图  7   矿井涌水量预测结果图

    Figure  7.   Results of predicted mine water inflow in three mines

    表  1   包气带岩性、入渗系数及入渗补给强度表

    Table  1   Lithologic character of unsaturated zone, recharge coefficient and recharge intensity

    包气带岩性类型入渗系数降水入渗强度(mm/year)
    风积沙0.23108.4
    萨拉乌苏组沙0.1570.7
    黄土0.1047.2
    基岩0.014.7
    下载: 导出CSV

    表  3   煤矿导水裂隙带高度实测值表

    Table  3   Measured height of fracture at two mines

    井田工作面主采煤层钻孔号采厚(m)实测导高(m)实测裂采比
    张家峁N152035−2孔85.60165.1129.48
    N152035−2孔95.60165.9029.63
    柠条塔N11122−2孔44.80149.2831.10
    N11142−2孔64.80145.2330.26
    下载: 导出CSV

    表  4   规划工作面导高预测表

    Table  4   Predicted height of fracture in planning working face

    井田平均采厚(m)发育高度(m)导高顶界埋深(m)导高顶界到达层位
    4−25−24−25−24−25−24−25−2
    柠条塔2.654.4371.55119.61167.84185.96直罗组直罗组
    张家峁3.516.1094.77164.791.6587.90第四系第四系
    红柳林3.34.9389.1133.11119.56141.72安定组直罗组
    下载: 导出CSV

    表  5   预测期水均衡表

    Table  5   Water balance in the predicted period

    项 目均衡项均衡量(m3/d)占比
    补给项河流补给3.06×1044.48%
    侧向补给4.79×1030.70%
    降水入渗补给6.47×10594.82%
    总补给量6.82×105100.00%
    排泄项河流排泄3.09×10434.92%
    矿井涌水2.1×1032.37%
    河沟排泄2.82×10431.86%
    蒸散发排泄2.73×10430.85%
    总排泄量3.09×105100.00%
    均衡差 5.94×105 
    下载: 导出CSV

    表  6   柠条塔井田水均衡统计表

    Table  6   Water balance of Ningtiaota coal Mine

    流入项侧向流入量 (m3/d)8758.7975.67%
    下层流入量 (m3/d)2815.7824.33%
    合计 (m3/d)11574.57
    流出项侧向流出量 (m3/d)120404.3895.18%
    流出下层量 (m3/d)6097.924.82%
    合计 (m3/d)126502.30
    均衡差侧向流差值 (m3/d)−111645.6094.82%
    垂向流差值 (m3/d)−3282.142.79%
    合计 (m3/d)−117743.52
    下载: 导出CSV
  • 曹虎麒. 陕北典型煤矿开采引起含水层破坏机理物理模拟试验研究[D]. 西安: 长安大学, 2015

    CAO Huqi. Study on failure mechanism physical experiment ofaquifers in northern Shaanxi typical mine [D]. Xi’an: Chang’an University, 2015.

    陈佩. 煤矿采空区不同部位岩层裂隙率与其渗透性关系的实验研究[D]. 太原: 太原理工大学, 2016.

    CHEN Pei. Experimental study on the relationship between fracture rate and permeability of rock strata in different parts of coal mine goaf [D]. Taiyuan: Taiyuan University of Technology, 2016.

    杜臻, 张茂省, 冯立, 等. 鄂尔多斯盆地煤炭采动的生态系统响应机制研究现状与展望[J]. 西北地质, 2023, 56(3): 78−88.

    DU Zhen, ZHANG Maosheng, FENG Li, et al. Research Status and Prospect of Ecosystem Response Mechanism to Coal Mining in Ordos Basin[J]. Northwestern Geology, 2023, 56(3): 78−88.

    冯更辰, 郝俊杰, 谭俊, 等. VISUAL MODFLOW模型在白涧铁矿区矿井涌水量预测中的应用[J]. 中国岩溶, 2011, (3): 271-277

    Feng Gengchen, Hao Junjie, Tan Jun, et al. Application of VISUAL MODFLOW model in prediction of mine water inflow in Baijian iron mine area [J]. China Karst, 2011, ( 3 ) : 271-277

    冯立, 张鹏飞, 张茂省, 等. 新时期榆林煤矿区生态保护修复与综合治理策略及路径探索[J]. 西北地质, 2023, 56(3): 19−29.

    FENG Li, ZHANG Pengfei, ZHANG Maosheng, et al. Strategies and Practical Paths for Ecological Restoration and Comprehensive Management in Yulin Coal Mining Area in the New Era[J]. Northwestern Geology, 2023, 56(3): 19-29.

    冯书顺, 王国瑞, 马自强, 等. 基于Visual Modflow的矿井涌水量预测模拟研究[J]. 煤炭技术, 2016, (2): 239-242

    Feng Shushun, Wang Guorui, Ma Ziqiang, et al. Research on simulation of mine water inflow forecast based on Visual Modflow [J]. Coal technology, 2016, (2) : 239-242

    韩朝辉, 王郅睿, 田辉, 等. 汉中盆地地下水水化学特征及其成因研究[J]. 西北地质, 2023, 56(4): 263−273.

    HAN Chaohui, WANG Zhirui, TIAN Hui, et al. Hydrochemical Characteristics and Genesis of Groundwater in the Hanzhong Basin[J]. Northwestern Geology, 2023, 56(4): 263−273.

    全国煤化工信息站. 国务院办公厅发布《能源发展战略行动计划(2014-2020年)》[J]. 煤化工, 2014, (6): 71-71.
    郭贤才. 陕西省煤炭资源简况[J]. 西北地质, 1990(03): 61-63

    Guo Xiancai. Coal Resources in Shaanxi Province [J]. Northwest Geology, 1990 ( 03 ): 61-63.

    侯恩科, 夏玉成, 樊怀仁, 等. 矿井陷落柱的成因分析及其预测[J]. 西北地质, 1994(02): 18-22

    Hou Enke, Xia Yucheng, Fan Huairen, et al. Cause analysis and prediction of mine collapse column [J]. Northwest Geology, 1994 ( 02 ): 18-22.

    “能源领域咨询研究”综合组. 中国煤炭清洁高效可持续开发利用战略研究[J]. 中国工程科学, 2015, 17(9): 1-5

    The Comprehensive Research Group for Energy Consulting and Research. Strategic research on clean, efficient and sustainable and utilization of coal in China [J]. China Engineering Science, 2015, 17 ( 9 ): 1-5.

    申涛, 马雄德, 戴国锋. 浅埋煤层开采的矿井水来源判别[J]. 中国煤炭地质, 2011, 23(10): 35-38

    Shen Tao, Ma Xiongde, Dai Guofeng. Source discrimination of mine water from shallow buried coal seam mining [J]. China Coal Geology, 2011, 23 ( 10 ): 35-38.

    唐涛. 我国区域能源协调发展战略中重大能源生产基地建设研究[D]. 成都: 四川省社会科学院, 2011

    TANG Tao. Research on the construction of major energy production bases in China 's regional energy coordinated development strategy [D]. Chengdu: Sichuan Academy of Social Sciences, 2011.

    杨彦利, 李娟. 基于MODFLOW对陶二煤矿矿井涌水量预测研究[J]. 西部探矿工程, 2018, 30(02): 139-141+146

    Yang Yanli, Li Juan. Prediction of Mine Water Inflow in Taoer Coal Mine Based on MODFLOW [J]. Western Exploration Engineering, 2018, Vol. 30 ( 2 ) : 139-141+146

    杨志. 陕北榆神矿区生态地质环境特征及煤炭开采影响机理研究[D]. 徐州: 中国矿业大学, 2019.

    YANG Zhi. Study on the characteristics eco-geological environment and mining effect mechanism in Yushen coal mine district of northern Shaanxi [D]. Xuzhou: China University of Mining and Technology, 2019.

    伊茂森. 神东矿区浅埋深煤层关键层理论及其应用研究[D]. 徐州: 中国矿业大学, 2008.

    YI Maosen. Study and application of key strata theory in shallow seam of Shendong mining area [D]. Xuzhou: China University of Mining and Technology, 2008.

    张保建. 基于Visual Modflow的台格庙勘查区矿井涌水量预测[J]. 煤炭科学技术, 2015, 43(S1): 146-149+172

    Zhang Baojian. Mine water inflow forecast based on Visual Modflow in Taigemiao exploration area [J]. Coal Science and Technology, 2015, 43(S1): 146-149+172

    Xie Y, Qi J, Zhang R, et al. Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry[J]. Energies, 2022, 15(12): 4466. doi: 10.3390/en15124466

    Liu S, Dai S, Zhang W, et al. Impacts of underground coal mining on phreatic water level variation in arid and semiarid mining areas: a case study from the Yushenfu mining area, China[J]. Environmental earth sciences, 2022(9): 81.

    Xu S, Zhang Y, Shi H, et al. Impacts of Aquitard Properties on an Overlying Unconsolidated Aquifer in a Mining Area of the Loess Plateau: Case Study of the Changcun Colliery, Shanxi[J]. Mine Water and the Environment, 2020, 39(1): 121-134. doi: 10.1007/s10230-019-00649-7

图(7)  /  表(5)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  26
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 修回日期:  2023-03-06
  • 录用日期:  2023-03-08
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-12-19

目录

    /

    返回文章
    返回