ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

新疆北部可可托海地区伟晶岩脉LA–ICP–MS锆石U–Pb年龄、地球化学、Lu–Hf同位素特征及其地质意义

蔺新望, 王星, 张亚峰, 赵端昌, 赵江林, 刘坤

蔺新望, 王星, 张亚峰, 等. 新疆北部可可托海地区伟晶岩脉LA–ICP–MS锆石U–Pb年龄、地球化学、Lu–Hf同位素特征及其地质意义[J]. 西北地质, 2023, 56(4): 75-90. DOI: 10.12401/j.nwg.2023007
引用本文: 蔺新望, 王星, 张亚峰, 等. 新疆北部可可托海地区伟晶岩脉LA–ICP–MS锆石U–Pb年龄、地球化学、Lu–Hf同位素特征及其地质意义[J]. 西北地质, 2023, 56(4): 75-90. DOI: 10.12401/j.nwg.2023007
LIN Xinwang, WANG Xing, ZHANG Yafeng, et al. LA–ICP–MS Zircon U–Pb Isotopic Age, Geochemistry, Lu–Hf Isotopic Characteristics and Geological Significance of Pegmatite Vein, in Koktokay Area, Northern Xinjiang[J]. Northwestern Geology, 2023, 56(4): 75-90. DOI: 10.12401/j.nwg.2023007
Citation: LIN Xinwang, WANG Xing, ZHANG Yafeng, et al. LA–ICP–MS Zircon U–Pb Isotopic Age, Geochemistry, Lu–Hf Isotopic Characteristics and Geological Significance of Pegmatite Vein, in Koktokay Area, Northern Xinjiang[J]. Northwestern Geology, 2023, 56(4): 75-90. DOI: 10.12401/j.nwg.2023007

新疆北部可可托海地区伟晶岩脉LA–ICP–MS锆石U–Pb年龄、地球化学、Lu–Hf同位素特征及其地质意义

基金项目: 陕西省公益性地质调查项目“陕西省南秦岭成矿带佛坪隆起南缘茅坪地区基础地质调查”(202102),新疆地勘基金中心项目“新疆富蕴县阿拉一带1∶5万L45E003023等五幅区域地质调查”(A16-1-LQ01),中国地质调查局项目“阿尔泰成矿带喀纳斯和东准地区地质矿产调查”(DD20160006)联合资助。
详细信息
    作者简介:

    蔺新望(1972–),男,高级工程师,长期从事区域地质调查研究工作。E–mail:starcug@126.com

  • 中图分类号: P597.3

LA–ICP–MS Zircon U–Pb Isotopic Age, Geochemistry, Lu–Hf Isotopic Characteristics and Geological Significance of Pegmatite Vein, in Koktokay Area, Northern Xinjiang

  • 摘要:

    为了全面研究阿拉尔岩体与可可托海地区伟晶岩脉群在成因上的关系,笔者系统分析阿拉尔岩体西部阿热散一带含绿柱石伟晶岩脉中锆石U–Pb同位素年龄、地球化学、Hf同位素特征。结果显示:伟晶岩脉锆石206Pb/238U加权平均年龄为(203.9±2.2)Ma,地球化学特征表现为高Si、低Ti、富Al、富碱,富集大离子亲石元素Rb、Th、U和稀土元素La、Ce、Nd、Sm,亏损Ba、Nb、Ta、Zr、Hf、Sr、P、Ti,属于典型的低Ba、Sr岩石,锆石同位素176Hf/177Hf值为0.282714~0.282749,εHf(t)值为+2.56~+3.65,tDMC模式年龄为852~912 Ma,与阿拉尔岩体具有形成时代的一致性,地球化学特征的相关性,176Hf/177Hf值与εHf(t)值的相似性,表明两者具有密切的成因关系。结合区域资料认为,中生代稀有金属矿化伟晶岩脉与阿拉尔岩体所代表的岩浆活动可能均起源于前寒武纪变质砂岩及变质泥岩等地壳物质部分熔融,并发生了显著地结晶分异作用。

    Abstract:

    In order to comprehensively study the genetic relationship between Aral Rock Mass and the Pegmatite Vein group in Koktokay area, this work systematically analyzed the Zircon U–Pb isotopic age, geochemistry and Hf isotopic characteristics of the Be bearing pegmatite vein in the Ahersan area of the western Aral Rock Mass. The results show that the Zircon 206Pb/238U weighted average age of the pegmatite vein is (203.9 ± 2.2) Ma. Its geochemical characteristics are high silicon, low titanium, rich aluminum, rich alkali, rich in large ion lithophile elements Rb, Th, U and rare earth elements La, Ce, Nd, Sm, and depleted in Ba, Nb, Ta, Zr, Hf, Sr, P, Ti. It belongs to typical low Ba, Sr rocks. The zircon isotope 176Hf/177Hf values range from 0.282714 to 0.282749, The range of εHf(t) value is +2.56~+3.65, the age of tDMC model is 852~912 Ma. the similarity of Zircon U–Pb isotopic age, the correlation of geochemical characteristics, the similarity of 176Hf/177Hf and εHf(t) values, indicates that they have a close genetic relationship. Based on the regional data, it is believed that the magmatic activities represented by the Mesozoic rare metal mineralized pegmatite vein and Aral Rock Mass are may originate from the partial melting of crustal materials such as Precambrian metasandstone and metamorphic mudstone, and significant crystallization differentiation occurred.

  • 阿尔泰造山带位于中亚造山带的西南部,呈北西–南东向横跨中、俄、哈、蒙四国疆域,是中亚造山带的重要组成部分(Sengör et al.,1993Xiao et al.,2004)。在古亚洲洋扩张、洋壳俯冲、大洋闭合、大陆碰撞/俯冲、山脉形成和垮塌等构造演化过程中,阿尔泰造山带伴随有不同程度的岩浆活动,形成了大量的岩浆岩和与岩浆活动有关的矿产资源,并以伟晶岩型稀有金属矿产闻名于世,与之相关的岩浆作用,一直是阿尔泰造山带研究的焦点(王登红等,20012003邹天人等,2006朱永峰,2007任宝琴等,2011刘锋等,20122014周起凤等,2013彭素霞等,2015张亚峰等,20152017王星等,201620192022蔺新望等,2017201920202021)。中国阿尔泰造山带内分布着数以万条的伟晶岩脉,这些伟晶岩脉主要分布于38个伟晶岩田内,蕴藏着丰富的后碰撞–后造山花岗伟晶岩型稀有金属锂铍铌钽矿、白云母、长石和宝玉石等矿产资源(王登红等,2003邹天人等,2006计文化等,2022张照伟等,2022孔会磊等,2023)。世界著名的典型伟晶岩型稀有金属矿床–可可托海3号伟晶岩矿床,因产出巨晶矿物、清晰的矿物结构分带及稀有金属顺序矿化等特征,被国内外矿业界和地学界广泛关注(Windley et al.,2002Xiao et al.,2004Wang et al.,2006)。近年来,有学者研究认为,阿尔泰造山带伟晶岩型稀有金属矿产主要形成于印支期,稀有金属的成矿作用与同期岩浆–热液活动关系密切(朱永峰,2007任宝琴等,2011蔺新望等,2017)。

    新疆北部可可托海地区出露的阿拉尔岩体,位于可可托海3号矿坑以北15 km处,与伟晶岩脉独特的、密切的时空伴生关系,使其成为重要的研究载体。前人运用不同的测试方法获得其年龄为210~248.8 Ma之间,并认为举世闻名的可可托海3号伟晶岩脉与阿拉尔岩体存在成因上的联系(Zhu et al.,2006邹天人等,2006Wang et al.,20072008Lü et al.,2012刘锋等,2012张亚峰等,2015);但也有学者认为两者之间并无相关性,阿拉尔岩体即不是或者不可能是3号脉的母岩,而且两者的源区也有所不同,二者并不存在演化关系(陈剑锋等,2011刘文政,2014张辉等,2014)。鉴于前人对阿拉尔岩体与周围伟晶岩脉及其相关矿化的是否存在成因关系一直存在争议,且对伟晶岩脉的研究主要集中在形成时代上,岩浆成因以及源区研究相对较少,很难给出全面解释,故笔者以阿拉尔花岗岩体西部的含绿柱石伟晶岩脉群为研究对象,详细研究伟晶岩脉的地质特征、LA–ICP–MS锆石U–Pb年龄、岩石地球化学和Lu–Hf同位素,并结合区域地质资料探讨含矿伟晶岩脉与阿拉尔岩体的关系,以期为可可托海地区伟晶岩型稀有金属矿产成矿规律研究提供有力支撑。

    阿尔泰造山带位于横跨中–俄–哈–蒙4国疆域,北邻西萨彦岭岛弧带,南以额尔齐斯断裂与准噶尔地块相接,是中亚造山带的重要组成部分(图1a)。阿尔泰造山带呈北西–南东向展布,全长约为2 000 km,中国阿尔泰位于中亚造山带的西南缘,境内的部分约为500 km,大地构造位置属西伯利亚板块南部大陆边缘增生区,属古亚洲洋域的北带(何国琦等,1990Windley et al.,2002)。以红山嘴–诺尔特断裂和阿巴宫–库尔提断裂为界,可将阿尔泰造山带由北向南依次划分为:北阿尔泰、中阿尔泰和南阿尔泰3个构造带(图1b) (Xiao et al.,2004Li et al.,2003)。北阿尔泰构造带主要由震旦系—寒武系、上泥盆统—下石炭统火山-沉积岩组成;中阿尔泰构造带主要由震旦系—下古生界深变质岩系和奥陶纪—侏罗纪侵入岩组成,花岗岩在该区最为发育;南阿尔泰构造带主要由元古宇片麻岩和泥盆纪火山–沉积岩系组成。阿拉尔岩体及其西部的含绿柱石伟晶岩脉分布区,位于红山嘴断裂的南侧,属中阿尔泰构造带的组成部分。

    图  1  阿尔泰造山带构造位置图(a)(据何国琦等,1990)和构造分区图(b)(据Windley et al.,2002
    Figure  1.  (a) Tectonic position and (b) division maps of Altay orogenic belt

    阿拉尔花岗岩体西侧发现的伟晶脉体(图2),主要产于苏普特岩群和泥盆纪侵入体中,规模普遍较大,形态较复杂,多呈简单脉状、弯曲脉状、网脉状、不规则脉状、条带状等(图3a图3f)。其中,发育于苏普特岩群中的伟晶岩脉,与围岩侵入关系清楚,或顺中深变质岩的片麻理发育(图3a图3b),或与地层产状斜交(图3c),围岩蚀变清楚;分布于侵入岩中的伟晶岩脉,多沿岩体中节理、裂隙贯入(图3d图3e),受局部拉张作用形成的张性节理控制,脉体边界不平整(图3f);尤其是侵入阿拉尔岩体中的伟晶岩脉,与岩体之间的界线较为模糊,具有渐变过渡的特征(图3g),指示两者形成时代相近。

    图  2  阿拉尔地区地质简图
    1.红山嘴组;2.苏普特岩群;3.三叠纪黑云母花岗岩;4.三叠纪二云母二长花岗岩;5.三叠纪斑状二云母正长花岗岩;6.石炭纪黑云母花岗岩;7.石炭纪二云母花岗岩;8.泥盆纪石英闪长斑岩;9.泥盆纪花岗闪长岩;10.泥盆纪花岗斑岩;11.泥盆纪英云闪长岩;12.泥盆纪辉长岩;13.奥陶纪花岗闪长岩;14.伟晶岩脉;15.伟晶岩脉群;16.地质界线;17.脉动界线;18.断层界线;19.年龄样采样位置;20.地球化学样采样位置
    Figure  2.  Simplified geological map of the Aral area
    图  3  伟晶岩脉野外宏观照片
    a. 顺地层片麻理发育的伟晶岩脉;b. 顺地层片理发育的伟晶岩脉;c. 斜切地层片理发育的伟晶岩脉;d. 沿岩体裂隙发育的伟晶岩脉;e. 沿岩体节理发育的伟晶岩脉;f. 伟晶岩脉与围岩之间的侵入接触关系;g. 伟晶岩脉与围岩之间的渐变过渡关系;h. 伟晶岩脉中发育的绿柱石等矿物
    Figure  3.  Outcrop photographs of the pegmatite vein

    该地区发育的含绿柱石伟晶岩脉,走向一般为300°~340°,其次为270°~290°,以北东倾为主,部分南倾,倾角为40°~65°。脉体一般长为50~200 m,部分长为300~400 m;一般宽约为0.5~5 m,少数宽为5~8 m,小范围内常成群出露。伟晶岩中可见白云母带、细粒伟晶岩带、文象–准文象带、细粒钠长石带、块体石英带,同一条伟晶岩脉中往往只出现其中二到三种结构带。稀有金属矿化以铍矿化为主,主要呈条带状富集,分布在石英–白云母带、细粒钠长石带中,其他零星分散产于中粗粒结构、石英核接触处和星散矿化的含铍石英脉中,少部分呈矿条状或巢状矿产于含铍花岗岩中,以含绿柱石等矿物为特征(图3h)。基岩露头中,可见六方柱状绿柱石呈杂乱分布,颜色以浅蓝色、草绿色为主,中等透明度,少部分可达水蓝等宝石级别,绿柱石,柱径为0.3~5 cm,柱长为0.5~8 cm。

    伟晶岩脉:灰白色,伟晶结构,脉状构造、块状构造。岩石主要由石英、钾长石、斜长石(钠长石)、白云母、绿柱石,及石榴子石、电气石等矿物组成,矿物颗粒大小差异较大,岩石具脉状构造。石英颗粒紧密镶嵌,变形拉长,边缘呈锯齿状镶嵌,颗粒具碎裂,表面裂纹分布;石英脉裂隙间充填钠长石细脉,钠长石表面干净,发育聚片双晶和卡钠复合双晶;钠长石为热液交代变质分异作用形成,脉状分布;白云母不均匀分布,局部见解理缝中铁质析出(图4)。

    图  4  伟晶岩脉显微岩相照片
    Figure  4.  Thin section microphotographs of the pegmatite vein

    本次在阿拉尔花岗岩体西部的阿热散一带,采集了含绿柱石伟晶岩脉测年样品,进行LA–ICP–MS锆石U–Pb同位素定年,样品编号为DP01-4-3,采集地理坐标为:N 47°31′53″、E 89°35′30″(图2)。

    采集样品约15 kg,在核工业二〇三研究所采用常规方法进行粉碎,并用浮选和电磁选方法进行分选,然后在西北大学大陆动力学国家重点实验室双目镜下挑选出晶形和透明度较好的锆石颗粒,将它们粘贴在环氧树脂表面,待环氧树脂充分固化后,再对其进行抛光至锆石内部暴露。在西北大学大陆动力学国家重点实验室进行反射光、透射光和阴极发光显微照相,锆石的CL图像分析在装有英国Gatan公司生产的Mono CL3+阴极发光装置系统的电子显微扫描电镜上完成。通过对反射光、透射光和阴极发光图像分析,选择吸收程度均匀和形态明显不同的区域进行分析。锆石微量元素分析在西北大学大陆动力学国家重点实验室的LA-ICP-MS仪器上用标准测定程序进行。分析仪器为美国Agilent公司生产的Agilent7500a型四极杆质谱仪和德国Microlas公司生产的Geolas200M型激光剥蚀系统,激光器为193 nm 深紫外ArF准分子激光器,激光波长为193 nm,束斑为30 μm,频率为8 Hz,能量为70 mJ,采样方式为单点剥蚀,每个分析点的气体背景采集时间为30 s,信号采集时间为40 s;用美国国家标准人工合成硅酸盐玻璃标准参考物质NIST SRM 610 进行仪器最佳化调试,数据采集选用质量峰采点的跳峰方式,每完成6个待测样品测定,插入测标样一次。锆石年龄计算采用标准锆石91500作为外标,元素含量采用美国国家标准物质局人工合成硅酸盐玻璃NIST SRM 610作为外标,29Si作为内标元素进行校正。数据采集处理采用GLITTER(Version4.0,Mcquaire University),并采用Andersen软件对测试数据进行普通铅校正,年龄计算及谐和图绘制采用ISOPLOT(3.0版)软件(Ludwig,2001)完成。详细的实验原理和流程及仪器参见Yuan等(2004)

    本次挑选的锆石颗粒相对均一,粒径约为100 um,自形四方双锥或四方柱状,长宽比近似1:1。阴极发光图像显示:大部分锆石阴极发光较弱,内部环带退化显著,局部发育有裂隙,呈斑杂结构,表明锆石发生了一定程度的蜕晶化;边部不同程度的保留有蜕化前的韵律环带,有些锆石可见明显的岩浆振荡环带,显示典型岩浆锆石的特征(图5)(吴元保等,2004)。高的U、Th含量造成了锆石内部显著的蜕晶化和不同程度的重结晶作用,Th含量为62.57×10−6~1711.35×10−6,平均值为220.17×10−6;U含量为2417.34×10−6~54382.46×10−6,平均值为10925.76×10−6,Th/U值为0.01~0.09,平均值为0.02。

    图  5  伟晶岩脉锆石阴极发光图像及年龄值
    Figure  5.  Representative zircon cathodoluminescence (CL) images and U–Pb ages of the pegmatite vein

    本次对含绿柱石伟晶岩脉(DP01-4-3)进行LA–ICP–MS锆石U–Pb同位素年龄测试。所测24个测点中14、15号测点的谐和度较低,分别为75%和64%,故不参与年龄计算;19号测点所获得的年龄值,与其余21个测点年龄值存在较大差异,可能代表了早期的岩浆结晶作用;剩下的21个测点206Pb/238U年龄值较为集中(表1),且206Pb/238U和207Pb/235U比较和谐,其206Pb/238U加权平均年龄为(203.9±2.2)Ma(图6),时代为晚三叠世晚期。测试样品锆石阴极发光图像(图5)显示其为岩浆成因,所测年龄值代表了岩浆的结晶年龄,即该期伟晶岩脉的形成时间为晚三叠世晚期,属印支晚期岩浆活动的产物。

    表  1  含绿柱石伟晶岩脉(DP01-4-3)锆石LA–ICP–MS U–Th–Pb同位素分析结果表
    Table  1.  Analysis result of LA–ICP–MS zircon U–Th–Pb of the beryl bearing pegmatite vein (DP01-4-3)

    含量Th/U同位素比值年龄(Ma)谐和
    Pb*ThU207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th
    (10−6比值比值比值年龄年龄年龄年龄
    1147.5881.005177.080.020.048030.001340.211990.006050.031860.000550.009330.00089102671955202318818 96%
    2230.80134.088150.140.020.047780.001330.205330.005340.031080.000460.010360.000918767190419732081896%
    3281.72162.169703.230.020.050090.001660.223620.007240.032470.000690.016190.0012819878205620643252599%
    41607.211711.3554382.460.030.052490.004270.213520.007030.031560.001020.007720.0004430618719762006155998%
    5180.82109.456092.360.020.052370.001530.239880.009400.033070.000950.020870.0014530267218821064172996%
    6401.66329.5414053.460.020.050970.001650.226310.009410.031850.000680.015190.0013623981207820243052797%
    7508.57271.9616891.520.020.055840.001570.249980.012090.032340.001250.048050.00316456582271020589496190%
    8180.6362.576148.720.010.048370.001260.222700.008670.033140.000810.011530.0010611761204721052322197%
    9181.2878.136152.340.010.049050.001500.222880.007670.033100.000790.011900.0011715072204621052392397%
    10164.12112.775558.500.020.049050.001770.216160.008300.032190.001120.024270.0017515083199720474853597%
    11312.28127.7210286.260.010.046130.001310.208490.007340.032720.000720.010590.00094400−322192620842131992%
    12202.0985.536761.020.010.049140.001530.225500.008440.033360.000850.019070.0012115477206721253822497%
    13210.77136.646979.740.020.048620.001270.219350.005820.033050.000800.012480.0009312856201521052511995%
    14177.49228.275389.960.040.066800.003480.311750.024460.033900.002040.038230.00520831108276192151375810175%
    15105.18224.502417.340.090.078670.003430.452120.022230.042050.001320.048780.004311165863791626689638364%
    16142.4877.864704.980.020.052420.005160.231930.022870.032260.001610.019570.0042230223121219205103928496%
    17338.51178.5511435.530.020.049140.001530.215850.010200.031800.000970.013480.0009415477198920262711998%
    18207.78129.636852.780.020.046920.002010.210380.011420.032700.001300.014130.0011256911941020782842293%
    19780.17343.2421577.300.020.047670.001410.250850.008080.038330.000850.012340.000828370227724252481693%
    20589.57291.5020100.950.010.049960.001180.214270.006050.031260.000640.010380.0007719528197519842091599%
    21290.04130.879612.800.010.049510.001630.219280.008870.032300.001010.016870.0020717278201720563384198%
    22268.29101.808934.030.010.048490.001730.213080.009630.031960.000990.010720.0012812485196820362152696%
    23192.6370.956418.380.010.051010.001610.224460.008520.032090.000910.008970.0010324377206720461812199%
    24251.08103.948437.390.010.049020.001570.214600.008520.031910.000950.009870.0009615074197720361991997%
     注:Pb*=0.241×206Pb+0.221×207Pb+0.524×208Pb。
    下载: 导出CSV 
    | 显示表格
    图  6  伟晶岩脉锆石U–Pb年龄谐和图(a)和加权平均图(b)
    Figure  6.  (a) LA–ICP–MS zircon U–Pb concordia diagrams and (b) weighted average diagrams of the pegmatite vein

    地球化学数据检测分析由核工业二〇三研究所分析测试中心完成。FeO采用容量法分析,依据标准GB/T14506.14-2010;其余主量元素、TFe2O3和微量元素中P、Ba、V、Cr、Rb、Sr、Zr、Sc均采用XRF法分析,使用仪器为荷兰帕纳科公司制造的AxiosX射线光谱仪,依据标准GB/T14506.28-2010;所有稀土元素及微量元素中Co、Ni、Nb、Hf、Ta、Th、U采用ICP-MS法分析,使用仪器为Thermo Fisher Scientific公司制造的XSERIES2型ICP-MS,依据标准GB/T14506.30-2010;Fe2O3*值通过计算得出,计算公式为Fe2O3*=TFe2O3-FeO×1.1113。岩石主量、稀土、微量元素化学成分及特征值见表2

    表  2  含绿柱石伟晶岩脉(DP01-4-3)主量元素(%)、稀土元素(10−6)和微量元素(10−6)分析结果表
    Table  2.  Major element (%), REE (10−6) and trace element (10−6) dataes of the beryl bearing pegmatite vein (DP01-4-3)
    元素TC03/H3TC03/H10TC03-1/H3TC03-2/H3TC05/H4TC05-1/H2TC05-1/H6
    SiO273.7775.0779.1177.4575.5776.7673.01
    TiO20.020.020.020.020.020.020.02
    Al2O314.613.8211.6512.2213.3912.9514.91
    T Fe2O31.570.740.81.030.430.861.03
    FeO0.790.340.370.420.190.340.49
    Fe2O3*0.70.360.390.560.220.480.49
    MnO0.590.030.160.040.030.110.09
    MgO0.20.20.20.20.20.20.2
    CaO0.60.40.360.10.10.440.59
    Na2O6.544.664.422.682.715.987.88
    K2O1.484.72.775.617.532.282.29
    P2O50.10.160.110.080.10.170.16
    LOI0.580.370.460.520.090.390.18
    Total99.97100.13100.0299.9100.15100.12100.31
    A/CNK1.091.031.071.151.050.990.9
    A/NK1.181.081.131.171.061.050.97
    Mg#20.0534.8733.1327.7847.9631.5427.78
    SI2.061.952.452.111.842.151.76
    La2.82.823.50.890.61.061.44
    下载: 导出CSV 
    | 显示表格
    续表2
    元素TC03/H3TC03/H10TC03-1/H3TC03-2/H3TC05/H4TC05-1/H2TC05-1/H6
    Ce5.165.136.641.31.262.452.94
    Pr0.60.630.760.190.120.260.31
    Nd2.142.22.510.720.430.921.19
    Sm0.470.560.640.180.0820.30.33
    Eu0.0590.0610.0530.0610.0740.0640.12
    Gd0.440.490.420.150.0750.30.32
    Tb0.130.120.0960.0270.0150.0860.068
    Dy10.620.490.130.0740.410.35
    Ho0.250.110.0980.0260.0130.0710.055
    Er0.850.280.320.0770.0390.160.13
    Tm0.20.0510.0690.0110.0050.0250.018
    Yb1.720.350.550.0710.030.140.13
    Lu0.270.0480.0870.0120.0050.0190.018
    Y9.454.263.680.920.482.852.04
    Ti119.9119.9119.9119.9119.9119.9119.9
    K12286.23901722995.146571.362510.218927.419010.4
    P436698480349436742698
    Sr15.619.11115.721.121.221.8
    Ba30.3361813718743.691.1
    Cr6.184.373.674.634.727.45.32
    Co0.760.540.490.650.440.810.73
    Ni2.892.331.72.131.912.053.29
    Ga27.220.220.526.217.522.420.7
    Th3.662.611.640.490.30.821.42
    U1.841.013.121.590.194.043.66
    Zr83.839.62828.125.436.927.7
    Hf6.381.561.771.611.141.552.45
    Ge4.32.923.283.433.24.274.09
    B14.411.728.714.94.758.3322.5
    Sn1.81.911.72.230.481.550.76
    F757463636519266826412
    Li78.363.973.977.224.1100.945.8
    Be104.5107.1149.1342.8131.2193125
    Nb34.714.62331.88.527.415.9
    Cs18.240.824.6120.467.846.733.6
    Ta7.732.752.786.941.432.721.56
    W3.881.912.122.710.892.570.85
    Sc3.35.41.42.53.91.53.1
    Rb253.2478.2353.4604.4749.3378317.6
     注:Fe2O3*值通过实测得TFe2O3和FeO含量计算得出,计算公式为Fe2O3*=TFe2O3-FeO×1.1113。
    下载: 导出CSV 
    | 显示表格

    岩石中SiO2含量为73.01%~79.11%,平均值为75.82%;TiO2含量≤0.2%,Al2O3含量为11.65%~14.91%,平均值为13.36%,Na2O含量为2.68%~7.88%,平均值为4.98%,K2O含量为1.48%~7.53%,平均值为3.81%。岩石具有高Si、低Ti、富Al、富碱的特征。在K2O–SiO2图解(图7)中,样品主要落入中钾钙碱性、高钾钙碱性系列。样品A/CNK值为0.95~1.24,平均值为1.08,介于准铝质和过铝质之间,在A/CNK–A/NK图解中(图8),样品集中投影在偏铝质–过铝质岩石系列过渡区域。镁值(Mg#)在22.05~47.96,平均值为31.87,固结指数(SI)值为1.76~2.45,平均值为2.05,反映出岩浆结晶分异程度较高的特征。

    图  7  SiO2–K2O图(据Peccerillo et al.,1976
    Figure  7.  SiO2–K2O diagram
    图  8  A/CNK–A/NK图(据Rickwood,1989
    Figure  8.  A/CNK–A/NK diagram

    稀土总量较低,∑REE值为2.82×10−6~16.23×10−6,均值为9.45×10−6,(La/Yb)N值为1.10~13.51,均值为6.49,(La/Sm)N值为2.22~4.61,(Gd/Yb)N值为0.21~2.03,表明轻稀土元素富集和轻、重稀土元素分馏明显。稀土元素球粒陨石标准化配分曲线图(图9),显示轻稀土元素富集规律一致,重稀土元素分布特征各异。岩石样品δEu值变化较大,为0.31~2.88,可能与斜长石的分离结晶作用导致的局部富集有关。

    图  9  球粒陨石标准稀土配分图(标准化值据Taylor et al.,1985
    Figure  9.  Chondrite–normalized REE patterns

    微量元素含量及微量元素原始地幔标准化蛛网图(图10)表明,岩体富集大离子亲石元素Cs、Rb、U和高场强元素Nb、Ta、Zr、Hf,亏损Ba、Th、Sr、Ti,具有低Ba、Sr的特征,表明其可能是壳源物质低程度部分熔融的产物。Nb、Ta、Zr、Hf的富集可能与稀有元素在后期岩浆中的富集有关,Ba、Sr、Ti的亏损可能与斜长石、钛铁矿的分离结晶作用有关。

    图  10  原始地幔标准化蛛网图(标准化值据Sun et al.,1989
    Figure  10.  Primitive mantle–normalized trace element spidergrams

    为了更好地分析研究该含矿伟晶岩脉的成因与源区特征,笔者对Be矿化伟晶岩脉进行锆石Hf同位素测试。锆石176Hf/177Hf值为0.282714~0.282749,εHft)值为+2.56~+3.65,tDMC模式年龄为852~912 Ma(表3)。阿拉尔岩体中似斑状黑云母正长花岗岩176Hf/177Hf值为0.282675~0.282763,εHft)值为+1.03~+4.37,tDMC模式年龄为827~993 Ma;斑状正长花岗岩176Hf/177Hf值为0.282642~0.282800,εHft)值为−0.02~+5.73,tDMC模式年龄为759~1 052 Ma。两者具有基本一致的Hf同位素特征及模式年龄数据。

    表  3  阿拉尔岩体西部含绿柱石伟晶岩脉(DP01-4-3)锆石Hf同位素结果表
    Table  3.  Zircon Hf isotope results of the beryl bearing pegmatite vein (DP01-4-3)
    点号年龄(Ma)1s176Yb/177Hf2SE176Lu/177Hf2SE176Hf/177Hf2SEεHf(0)εHftTDM1TDM2fLu/Hf
    DP01-4-3205.994.320.000.000.0000890.0000000.2827230.000006−1.731.052.781.05732897−1.00
    DP01-4-4200.316.400.000.000.0000930.0000010.2827320.000006−1.411.052.981.06719883−1.00
    DP01-4-5209.765.940.000.000.0000660.0000000.2827290.000007−1.531.053.071.06723886−1.00
    DP01-4-6202.154.240.010.000.0002240.0000030.2827190.000007−1.871.052.541.06740907−0.99
    DP01-4-9210.205.050.000.000.0001170.0000050.2827210.000007−1.811.052.791.06735901−1.00
    DP01-4-10209.944.920.000.000.0000300.0000000.2827140.000007−2.041.052.561.06743912−1.00
    DP01-4-11204.267.020.000.000.0000380.0000000.2827300.000006−1.501.052.981.06722886−1.00
    DP01-4-13211.525.320.000.000.0000670.0000000.2827160.000006−1.991.052.651.06741909−1.00
    DP01-4-17204.6810.070.000.000.0000930.0000000.2827390.000006−1.171.053.311.07710869−1.00
    DP01-4-18201.836.070.000.000.0000580.0000010.2827220.000005−1.761.042.661.05732900−1.00
    DP01-4-21198.404.000.000.000.0000480.0000010.2827330.000007−1.381.052.971.06717882−1.00
    DP01-4-22204.936.330.010.000.0001880.0000060.2827490.000006−0.831.053.651.06698852−0.99
    DP01-4-24202.796.170.000.000.0000640.0000010.2827390.000007−1.161.053.291.06709869−1.00
    DP01-4-25203.615.660.000.000.0000830.0000000.2827180.000009−1.901.072.561.08738907−1.00
    DP01-4-26202.505.930.010.000.0004690.0000040.2827340.000010−1.331.093.051.09723881−0.99
     注:该表中的点号与表1中的点号对应。
    下载: 导出CSV 
    | 显示表格

    伟晶岩脉锆石U–Pb年龄与其他同位素定年体系获得的年龄值相结合,能够限定伟晶岩形成时代和演化时限。以阿尔泰地区研究程度最高的可可托海3号矿脉为例,获得不同相带的锆石U–Pb年龄、白云母及全岩Rb–Sr年龄、辉钼矿Re–Os年龄分别为212~220 Ma、(218.4±5.8)Ma、(209.9±1.3)Ma(Zhu et al.,2006Wang et al.,2007陈剑锋,2011刘文政等,2014),表明各相带的形成时间为209~220 Ma,演化时限约为10 Myr。Lü等(2012)获得3号伟晶岩脉中锆石εHft)值为+1.25~+2.39间,TDM值为1 102~1 174 Ma,阿拉尔花岗岩体中锆石εHf(t)值为+1~+4,TDM值为1 007~1 196 Ma。这与本次获得的晚三叠世Be矿化伟晶岩脉及其成矿母岩,即阿拉尔复式岩体Hf同位素特征基本一致,指示中生代岩浆活动产生的岩体及矿体起源于相同的源区,均为前寒武纪微陆块的壳源物质部分熔融的产物。

    中国阿尔泰造山带内分布有数以万条的伟晶岩脉,蕴藏丰富的稀有金属、白云母、长石和宝玉石矿床,其形成时代与成矿作用一直是前人研究的焦点问题。王登红等(2000)研究证实阿尔泰地区伟晶岩具有多样性,既有变质成因伟晶岩脉,也有岩浆结晶分异伟晶岩脉;既可以形成于加里东期,也可以形成于华力西期,还可以形成于燕山期。根据阿尔泰西部的也拉曼大型含绿柱石白云母矿床(426±13)Ma、阿尔泰中部的那森恰大型含绿柱石白云母矿床(477±4)Ma及阿尔泰东部的青河拜兴白云母伟晶岩脉(436±5)Ma中获得了可靠的加里东期成矿的同位素资料,从根本上打破了阿尔泰地区伟晶岩型矿床只形成于华力西期的传统看法(王登红等,2001)。近年来,随着高精度LA–ICP–MS锆石U–Pb同位素定年方法的广泛应用,区域上已积累了大量的伟晶岩脉锆石U–Pb同位素年龄资料。任宝琴等(2011)通过对阿尔泰造山带19 条伟晶岩脉进行锆石U–Pb 年代学研究,认为阿尔泰伟晶岩可划分为4 个主要形成时期:加里东期(约476 Ma)、华力西晚期(约260~280 Ma)、印支期(205~250Ma)、燕山期(180~200 Ma)。杨富全等(2018)则将伟晶岩脉的形成时代划分为奥陶纪—早志留世(476~436 Ma)、晚泥盆世(~370 Ma)、二叠纪(296~258 Ma)和三叠纪—侏罗纪(250~151 Ma),并认为三叠纪—侏罗纪为主要成矿期。最新研究表明,三叠纪时期是新疆阿尔泰地区稀有金属成矿的重要时期,已识别出的三叠纪稀有金属矿床(秦克章等,2013张辉等,20142019Che et al.,2015王春龙等,2015杨富全等,2018),包括可可托海、阿斯喀尔特等超大型、大型矿床,构成阿尔泰一条重要的三叠纪成矿带(杨富全等,2020)。笔者在新疆北部可可托海地区阿拉尔花岗岩体西部阿热散一带获得一组精度较高的含绿柱石伟晶岩脉LA–ICP–MS锆石U–Pb年龄数据,其206Pb/238U加权平均年龄为(203.9±2.2)Ma,时代为晚三叠世晚期。该年龄值代表了岩浆的结晶年龄,指示该Be矿化伟晶岩脉的形成时间为晚三叠世晚期,属印支晚期岩浆活动的产物,证实三叠纪是阿尔泰地区重要的稀有金属成矿期。

    前人研究表明,阿尔泰地区在中生代早期进入后造山板内演化阶段(Yakubchuk,2004Glorie et al.,2012),区内缺失沉积地层,只发育少量板内岩浆侵入活动,加厚地壳熔融形成的过铝质花岗岩与相关稀有金属伟晶岩存在一定的成因关系。三叠纪作为阿尔泰造山带稀有金属矿主要成矿期,花岗伟晶岩型稀有矿产主要分布于中阿尔泰和南阿尔泰,成矿元素组合既有简单的Be 矿和Li 矿,也有复杂的Be–Nb–Mo 矿、Be–Nb–Ta 矿、Li–Be–Nb–Ta 矿和Li–Be–Nb–Ta–Rb–Cs–Hf 矿。在俄罗斯山区阿尔泰南部与中、哈、蒙等国接壤的地区已发现十多个早中生代花岗岩体都与稀有金属矿有关,典型矿床如卡尔古特Mo–W–稀有金属矿床,与成矿有关的淡色花岗岩、花岗斑岩脉年龄为218~228 Ma,Ⅰ阶段成矿年龄为218~220 Ma;Ⅱ阶段成矿与花岗斑岩和细粒花岗岩(213~215 Ma)有关,形成网脉状Cu–Mo–W 云英岩型矿化,年龄为213~214 Ma;Ⅲ阶段Mo–W–Bi–Be矿化与岩脉有关,其时代为200~204 Ma(Berzina et al.,2003Annikova et al.,2006)。Dobretsov等(1995)Potseluev等(2006)研究认为俄罗斯阿尔泰三叠纪花岗岩类和与西伯利亚超级地幔柱有关的幔源含矿岩浆活动的时限基本一致,三叠纪花岗岩类及伟晶岩脉是地幔柱岩浆活动演化最后阶段的产物。王登红等(2001)杨富全等(2018)研究证实中国阿尔泰地区多数稀有金属伟晶岩的围岩为花岗岩类,但含矿伟晶岩和赋矿花岗岩年代学揭示出稀有金属伟晶岩成矿与赋矿花岗岩之间的成因联系比较复杂。近年的研究已经证实,在中国阿尔泰山确实存在着中生代花岗岩及相关的稀有金属矿床(韩宝福,2008)。王春龙等(2015)研究表明阿斯喀尔特Be–Nb–Mo 矿床赋存于白云母钠长花岗岩中,发育稀有金属伟晶岩型和花岗岩型Be 矿化,后者产于白云母钠长花岗岩株顶部。获得的辉钼矿成矿年龄(215~229 Ma)与伟晶岩(218~221 Ma)和白云母钠长花岗(219~231 Ma)在误差范围内一致,从而认为白云母钠长花岗岩是稀有金属伟晶岩的成矿母岩,Be–Nb–Mo 矿的形成与白云母钠长花岗岩的演化有关。大喀拉苏Be–Nb–Ta矿床的成矿年龄为232~273 Ma,与赋矿黑云母花岗岩形成时间一致,两者也存在显著的成因联系。但关于三叠纪形成的可可托海稀有金属矿床与时空关系密切的阿拉尔花岗岩是否存在成因联系,目前还存在很大争议:有学者研究认为阿拉尔岩体中黑云母花岗岩、二云母花岗岩、黑云二长花岗岩和黑云钾长花岗岩年龄为210~233 Ma,与可可托海稀有金属成矿时间较一致(180~220 Ma),两者之间存在时间、空间上的密切关系,即可可托海稀有金属矿的形成与阿拉尔花岗岩体代表的岩浆活动有关(Zhu et al.,2006邹天人等,2006Wang et al.,2007刘锋等,2012刘文政等,2015张亚峰等,2015);也有学者认为阿拉尔花岗岩不属于稀有金属花岗岩,不可能是形成稀有金属伟晶岩脉的母岩,与可可托海稀有金属矿的形成没有直接关系(陈剑锋等,2018刘宏,2013刘文政,2014张辉等,2014)。

    杨富全等(2018)利用辉钼矿Re–Os 年龄和LA–ICP–MS铌钽矿U–Pb 年龄测定,限定可可托海稀有金属矿床形成于209~218 Ma,本次调查研究证实阿拉尔岩体中粗粒似斑状黑云母正长花岗岩、中细粒二云母正长花岗岩与其西部发育的Be矿化伟晶岩脉LA–ICP–MS锆石U–Pb同位素年龄分别为(217.3±3.8)Ma和(216.5±6.3)Ma、(203.9±2.2)Ma,认为阿拉尔岩体与伟晶岩脉以及Be矿化的形成时间在误差范围内一致。阿拉尔岩体与伟晶岩脉主量元素均表现为高Si、低Ti、富Al、富碱的特征,A/CNK值均介于准铝质、过铝质之间;微量元素富集大离子亲石元素Rb、Th、U和稀土元素La、Ce、Nd、Sm,亏损Ba、Nb、Ta、Zr、Hf、Sr、P、Ti,属于典型的低Ba、Sr岩石,表明两者均为壳源物质低程度部分熔融的产物,两者在成因上具有明显的相关性。Be矿化伟晶岩锆石同位素176Hf/177Hf值为0.282714~0.282749,εHft)值为+2.56~+3.65,tDMC模式年龄为852~912 Ma。这与阿拉尔岩体中粗粒似斑状黑云母正长花岗岩、中细粒二云母正长花岗岩,在误差范围内,具有十分相似的特征(另文发表)。因此,笔者认为伟晶岩脉以及Be矿化的形成与阿拉尔岩体代表的晚三叠纪晚期岩浆活动具有成因上的密切联系。

    Lü等(2012)获得3号伟晶岩脉中锆石εHft)值为+1.25~+2.39,tDMC=1102~1174 Ma,阿拉尔花岗岩中锆石εHf(t)值为+1~+4,tDMC= 1 007~1 196 Ma,与本次获得的有关中生代Be矿化伟晶岩脉Hf同位素特征基本一致。邹天人等(1986)通过Sr、Pb同位素研究,认为3号伟晶岩脉物质来源为壳源物质的重熔,且具有明显的分异特征。王春龙等(2015)通过MC–ICP MS获得阿斯喀尔特矿区白云母钠长花岗岩、Be矿化白云母钠长花岗岩及伟晶岩锆石εHft)值和tDMC模式年龄十分相近,分别为−0.72~+1.33、−0.36~+1.99、−0.45~+0.38和1 169~1 298 Ma、1 130~1 279 Ma、1 229~1 282 Ma,与3号矿脉的Hf同位素特征相近。因此,阿尔泰造山带发育的中生代稀有金属伟晶岩脉可能与阿拉尔岩体具有类似的源区。

    邹天人等(2006)研究了3号矿脉和阿斯喀尔特伟晶岩脉的氧、锶同位素组成,伟晶岩高的δ18O表明,这些伟晶岩脉皆为高度分异的岩浆在不同深度地质环境中结晶结晶形成,而较高的87Sr/86Sr初始值则表明中生代伟晶岩脉主要为壳源物质重熔岩浆分异形成。阿尔泰造山带发育的中生代伟晶岩脉与相关的花岗岩,可能起源于前寒武纪变质砂岩及变质泥岩等地壳物质部分熔融,并发生了显著地结晶分异作用,岩浆活动具有明显的继承性。

    (1)新疆北部可可托海地区阿拉尔花岗岩体西部发育的Be矿化伟晶岩脉,LA–ICP–MS锆石206Pb/238U加权平均年龄为(203.9±2.2)Ma,代表了岩浆的结晶年龄,指示该Be矿化伟晶岩脉的形成时间为晚三叠世晚期,属印支晚期岩浆活动的产物,证实三叠纪是阿尔泰地区重要稀有金属成矿期。

    (2)可可托海地区Be矿化伟晶岩脉与阿拉尔岩体具有LA–ICP–MS锆石U–Pb年龄、铌钽矿U–Pb年龄和辉钼矿Re–Os 年龄的一致性,地球化学特征的相关性,锆石同位素176Hf/177Hf值与εHft)值的相似性,表明两者具有密切的成因关系。中生代稀有金属伟晶岩脉与阿拉尔岩体所代表的岩浆活动可能均起源于前寒武纪变质砂岩及变质泥岩等地壳物质部分熔融,并发生了显著地结晶分异作用。

    致谢:评审专家对文稿提出了建设性的修改意见,在此表示衷心的感谢!

  • 图  1   阿尔泰造山带构造位置图(a)(据何国琦等,1990)和构造分区图(b)(据Windley et al.,2002

    Figure  1.   (a) Tectonic position and (b) division maps of Altay orogenic belt

    图  2   阿拉尔地区地质简图

    1.红山嘴组;2.苏普特岩群;3.三叠纪黑云母花岗岩;4.三叠纪二云母二长花岗岩;5.三叠纪斑状二云母正长花岗岩;6.石炭纪黑云母花岗岩;7.石炭纪二云母花岗岩;8.泥盆纪石英闪长斑岩;9.泥盆纪花岗闪长岩;10.泥盆纪花岗斑岩;11.泥盆纪英云闪长岩;12.泥盆纪辉长岩;13.奥陶纪花岗闪长岩;14.伟晶岩脉;15.伟晶岩脉群;16.地质界线;17.脉动界线;18.断层界线;19.年龄样采样位置;20.地球化学样采样位置

    Figure  2.   Simplified geological map of the Aral area

    图  3   伟晶岩脉野外宏观照片

    a. 顺地层片麻理发育的伟晶岩脉;b. 顺地层片理发育的伟晶岩脉;c. 斜切地层片理发育的伟晶岩脉;d. 沿岩体裂隙发育的伟晶岩脉;e. 沿岩体节理发育的伟晶岩脉;f. 伟晶岩脉与围岩之间的侵入接触关系;g. 伟晶岩脉与围岩之间的渐变过渡关系;h. 伟晶岩脉中发育的绿柱石等矿物

    Figure  3.   Outcrop photographs of the pegmatite vein

    图  4   伟晶岩脉显微岩相照片

    Figure  4.   Thin section microphotographs of the pegmatite vein

    图  5   伟晶岩脉锆石阴极发光图像及年龄值

    Figure  5.   Representative zircon cathodoluminescence (CL) images and U–Pb ages of the pegmatite vein

    图  6   伟晶岩脉锆石U–Pb年龄谐和图(a)和加权平均图(b)

    Figure  6.   (a) LA–ICP–MS zircon U–Pb concordia diagrams and (b) weighted average diagrams of the pegmatite vein

    图  7   SiO2–K2O图(据Peccerillo et al.,1976

    Figure  7.   SiO2–K2O diagram

    图  8   A/CNK–A/NK图(据Rickwood,1989

    Figure  8.   A/CNK–A/NK diagram

    图  9   球粒陨石标准稀土配分图(标准化值据Taylor et al.,1985

    Figure  9.   Chondrite–normalized REE patterns

    图  10   原始地幔标准化蛛网图(标准化值据Sun et al.,1989

    Figure  10.   Primitive mantle–normalized trace element spidergrams

    表  1   含绿柱石伟晶岩脉(DP01-4-3)锆石LA–ICP–MS U–Th–Pb同位素分析结果表

    Table  1   Analysis result of LA–ICP–MS zircon U–Th–Pb of the beryl bearing pegmatite vein (DP01-4-3)


    含量Th/U同位素比值年龄(Ma)谐和
    Pb*ThU207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th
    (10−6比值比值比值年龄年龄年龄年龄
    1147.5881.005177.080.020.048030.001340.211990.006050.031860.000550.009330.00089102671955202318818 96%
    2230.80134.088150.140.020.047780.001330.205330.005340.031080.000460.010360.000918767190419732081896%
    3281.72162.169703.230.020.050090.001660.223620.007240.032470.000690.016190.0012819878205620643252599%
    41607.211711.3554382.460.030.052490.004270.213520.007030.031560.001020.007720.0004430618719762006155998%
    5180.82109.456092.360.020.052370.001530.239880.009400.033070.000950.020870.0014530267218821064172996%
    6401.66329.5414053.460.020.050970.001650.226310.009410.031850.000680.015190.0013623981207820243052797%
    7508.57271.9616891.520.020.055840.001570.249980.012090.032340.001250.048050.00316456582271020589496190%
    8180.6362.576148.720.010.048370.001260.222700.008670.033140.000810.011530.0010611761204721052322197%
    9181.2878.136152.340.010.049050.001500.222880.007670.033100.000790.011900.0011715072204621052392397%
    10164.12112.775558.500.020.049050.001770.216160.008300.032190.001120.024270.0017515083199720474853597%
    11312.28127.7210286.260.010.046130.001310.208490.007340.032720.000720.010590.00094400−322192620842131992%
    12202.0985.536761.020.010.049140.001530.225500.008440.033360.000850.019070.0012115477206721253822497%
    13210.77136.646979.740.020.048620.001270.219350.005820.033050.000800.012480.0009312856201521052511995%
    14177.49228.275389.960.040.066800.003480.311750.024460.033900.002040.038230.00520831108276192151375810175%
    15105.18224.502417.340.090.078670.003430.452120.022230.042050.001320.048780.004311165863791626689638364%
    16142.4877.864704.980.020.052420.005160.231930.022870.032260.001610.019570.0042230223121219205103928496%
    17338.51178.5511435.530.020.049140.001530.215850.010200.031800.000970.013480.0009415477198920262711998%
    18207.78129.636852.780.020.046920.002010.210380.011420.032700.001300.014130.0011256911941020782842293%
    19780.17343.2421577.300.020.047670.001410.250850.008080.038330.000850.012340.000828370227724252481693%
    20589.57291.5020100.950.010.049960.001180.214270.006050.031260.000640.010380.0007719528197519842091599%
    21290.04130.879612.800.010.049510.001630.219280.008870.032300.001010.016870.0020717278201720563384198%
    22268.29101.808934.030.010.048490.001730.213080.009630.031960.000990.010720.0012812485196820362152696%
    23192.6370.956418.380.010.051010.001610.224460.008520.032090.000910.008970.0010324377206720461812199%
    24251.08103.948437.390.010.049020.001570.214600.008520.031910.000950.009870.0009615074197720361991997%
     注:Pb*=0.241×206Pb+0.221×207Pb+0.524×208Pb。
    下载: 导出CSV

    表  2   含绿柱石伟晶岩脉(DP01-4-3)主量元素(%)、稀土元素(10−6)和微量元素(10−6)分析结果表

    Table  2   Major element (%), REE (10−6) and trace element (10−6) dataes of the beryl bearing pegmatite vein (DP01-4-3)

    元素TC03/H3TC03/H10TC03-1/H3TC03-2/H3TC05/H4TC05-1/H2TC05-1/H6
    SiO273.7775.0779.1177.4575.5776.7673.01
    TiO20.020.020.020.020.020.020.02
    Al2O314.613.8211.6512.2213.3912.9514.91
    T Fe2O31.570.740.81.030.430.861.03
    FeO0.790.340.370.420.190.340.49
    Fe2O3*0.70.360.390.560.220.480.49
    MnO0.590.030.160.040.030.110.09
    MgO0.20.20.20.20.20.20.2
    CaO0.60.40.360.10.10.440.59
    Na2O6.544.664.422.682.715.987.88
    K2O1.484.72.775.617.532.282.29
    P2O50.10.160.110.080.10.170.16
    LOI0.580.370.460.520.090.390.18
    Total99.97100.13100.0299.9100.15100.12100.31
    A/CNK1.091.031.071.151.050.990.9
    A/NK1.181.081.131.171.061.050.97
    Mg#20.0534.8733.1327.7847.9631.5427.78
    SI2.061.952.452.111.842.151.76
    La2.82.823.50.890.61.061.44
    下载: 导出CSV
    续表2
    元素TC03/H3TC03/H10TC03-1/H3TC03-2/H3TC05/H4TC05-1/H2TC05-1/H6
    Ce5.165.136.641.31.262.452.94
    Pr0.60.630.760.190.120.260.31
    Nd2.142.22.510.720.430.921.19
    Sm0.470.560.640.180.0820.30.33
    Eu0.0590.0610.0530.0610.0740.0640.12
    Gd0.440.490.420.150.0750.30.32
    Tb0.130.120.0960.0270.0150.0860.068
    Dy10.620.490.130.0740.410.35
    Ho0.250.110.0980.0260.0130.0710.055
    Er0.850.280.320.0770.0390.160.13
    Tm0.20.0510.0690.0110.0050.0250.018
    Yb1.720.350.550.0710.030.140.13
    Lu0.270.0480.0870.0120.0050.0190.018
    Y9.454.263.680.920.482.852.04
    Ti119.9119.9119.9119.9119.9119.9119.9
    K12286.23901722995.146571.362510.218927.419010.4
    P436698480349436742698
    Sr15.619.11115.721.121.221.8
    Ba30.3361813718743.691.1
    Cr6.184.373.674.634.727.45.32
    Co0.760.540.490.650.440.810.73
    Ni2.892.331.72.131.912.053.29
    Ga27.220.220.526.217.522.420.7
    Th3.662.611.640.490.30.821.42
    U1.841.013.121.590.194.043.66
    Zr83.839.62828.125.436.927.7
    Hf6.381.561.771.611.141.552.45
    Ge4.32.923.283.433.24.274.09
    B14.411.728.714.94.758.3322.5
    Sn1.81.911.72.230.481.550.76
    F757463636519266826412
    Li78.363.973.977.224.1100.945.8
    Be104.5107.1149.1342.8131.2193125
    Nb34.714.62331.88.527.415.9
    Cs18.240.824.6120.467.846.733.6
    Ta7.732.752.786.941.432.721.56
    W3.881.912.122.710.892.570.85
    Sc3.35.41.42.53.91.53.1
    Rb253.2478.2353.4604.4749.3378317.6
     注:Fe2O3*值通过实测得TFe2O3和FeO含量计算得出,计算公式为Fe2O3*=TFe2O3-FeO×1.1113。
    下载: 导出CSV

    表  3   阿拉尔岩体西部含绿柱石伟晶岩脉(DP01-4-3)锆石Hf同位素结果表

    Table  3   Zircon Hf isotope results of the beryl bearing pegmatite vein (DP01-4-3)

    点号年龄(Ma)1s176Yb/177Hf2SE176Lu/177Hf2SE176Hf/177Hf2SEεHf(0)εHftTDM1TDM2fLu/Hf
    DP01-4-3205.994.320.000.000.0000890.0000000.2827230.000006−1.731.052.781.05732897−1.00
    DP01-4-4200.316.400.000.000.0000930.0000010.2827320.000006−1.411.052.981.06719883−1.00
    DP01-4-5209.765.940.000.000.0000660.0000000.2827290.000007−1.531.053.071.06723886−1.00
    DP01-4-6202.154.240.010.000.0002240.0000030.2827190.000007−1.871.052.541.06740907−0.99
    DP01-4-9210.205.050.000.000.0001170.0000050.2827210.000007−1.811.052.791.06735901−1.00
    DP01-4-10209.944.920.000.000.0000300.0000000.2827140.000007−2.041.052.561.06743912−1.00
    DP01-4-11204.267.020.000.000.0000380.0000000.2827300.000006−1.501.052.981.06722886−1.00
    DP01-4-13211.525.320.000.000.0000670.0000000.2827160.000006−1.991.052.651.06741909−1.00
    DP01-4-17204.6810.070.000.000.0000930.0000000.2827390.000006−1.171.053.311.07710869−1.00
    DP01-4-18201.836.070.000.000.0000580.0000010.2827220.000005−1.761.042.661.05732900−1.00
    DP01-4-21198.404.000.000.000.0000480.0000010.2827330.000007−1.381.052.971.06717882−1.00
    DP01-4-22204.936.330.010.000.0001880.0000060.2827490.000006−0.831.053.651.06698852−0.99
    DP01-4-24202.796.170.000.000.0000640.0000010.2827390.000007−1.161.053.291.06709869−1.00
    DP01-4-25203.615.660.000.000.0000830.0000000.2827180.000009−1.901.072.561.08738907−1.00
    DP01-4-26202.505.930.010.000.0004690.0000040.2827340.000010−1.331.093.051.09723881−0.99
     注:该表中的点号与表1中的点号对应。
    下载: 导出CSV
  • 陈剑锋. 阿尔泰3号脉缓倾斜部分的形成和演化[D]. 贵阳: 中国科学院地球化学研究所, 2011, 1-86

    CHEN Jianfeng. Geochemistry of the plate part in Altai No. 3 pegmatite and its formation and evolution (Dissertation for the Degree of Master of Philosophy)[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences. 2011, 1–86.

    陈剑锋, 张辉, 张锦煦, 等. 新疆可可托海3号伟晶岩脉锆石U-Pb 定年、Hf 同位素特征及地质意义[J]. 中国有色金属学报, 2018, 28(9): 1832-1844

    CHEN Jianfeng, ZHANG Hui, ZHANG Jinxu, et al. Geochronology and Hf isotope of zircon for Koktokay No. 3 granitic pegmatite in Xinjiang and its geological implications[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1832-1844 (in Chinese with English abstract).

    韩宝福. 中俄阿尔泰山中生代花岗岩与稀有金属矿床的初步对比分析[J]. 岩石学报, 2008, 24(4): 655-660.

    HAN Baofu. A preliminary comparison of Mesozoic granitoids and rare metal deposits in Chinese and Russian Altai Mountains[J]. Acta Petrologica Sinica, 2008, 24(4): 655-660.

    何国琦, 韩宝福, 岳永君, 等. 中国阿尔泰造山带的构造分区和地壳演化[M]. 北京: 地质出版社, 1990: 14−25

    HE Guoqi, HAN Baofu, YUE Yongjun, et al. Tectonic division and crustal evolution of Altay orogenic belt in China[M]. Beijing: Geological Publishing House, 1990: 14−25.

    计文化, 王永和, 杨博, 等. 西北地区地质、资源、环境与社会经济概貌[J]. 西北地质, 2022, 55(3): 15-27 doi: 10.19751/j.cnki.61-1149/p.2022.03.002

    JI Wenhua, WANG Yonghe, YANG Bo, et al. Overview of Geology, Resources, Environment and Social Economy in Northwest China[J]. Northwestern Geology, 2022, 55(3): 15-27 (in Chinese with English abstract). doi: 10.19751/j.cnki.61-1149/p.2022.03.002

    孔会磊, 李文渊, 任广利, 等. 伟晶岩型锂矿床研究现状及其在中国西部的找矿前景[J]. 西北地质, 2023, 56(1): 11−30.

    KONG Huilei, LI Wenyuan, REN Guangli, et al. Research Status of Pegmatite-hosted Li Deposits and Their Exploration Prospect in West China[J]. Northwestern Geology, 2023, 56(1): 11-30

    蔺新望, 王星, 赵江林, 等. 新疆富蕴县北部金格岩体斜长花岗岩LA-ICP-MS 锆石 U-Pb同位素年龄及其地质意义[J]. 地质通报, 2019, 38(11), 1813-1824.

    LIN Xinwang, WANG Xing, ZHAO Jianglin, et al. LA-ICP-MS zircon U-Pb age of the Jinge lagiogranite in northern Fuyun of Xinjiang and its geological implications[J]. Geological Bulletin of China, 2019, 38(11): 1813-1824 (in Chinese with English abstract).

    蔺新望, 王星, 陈光庭, 等. 新疆北部阿尔泰山东段泥盆纪岩浆活动及侵位方式的探讨[J]. 现代地质, 2020, 34(3), 514-531 doi: 10.19657/j.geoscience.1000-8527.2020.03.016

    LIN Xinwang, WANG Xing, CHEN Guangting, et al. Magmatic Activity and Emplacement in Eastern Altay[J]. Northern Xinjiang Geoscience, 2020, 34(3), 514-531 (in Chinese with English abstract). doi: 10.19657/j.geoscience.1000-8527.2020.03.016

    蔺新望, 张亚峰, 王星, 等. 新疆阿尔泰友谊峰地区木孜他乌岩体锆石U-Pb年龄及其地质意义[J]. 西北地质, 2017, 50(3), 83-91.

    LIN Xinwang, ZHANG Yafeng, WANG Xing, et al. Zircon U-Pb Dating of the Muzitawu Plutons from the Fraendship Peak Region in Altay, Xinjiang and its Geological Significance[J]. Northwestern Geology, 2017, 50( 3): 83-91 (in Chinese with English abstract).

    蔺新望, 张亚峰, 陈国超, 等. 阿尔泰造山带南缘岩浆混合作用: 阿克布拉克岩体岩石学、地球化学和年代学证据[J]. 地球科学, 2021: 1−26.https://kns.cnki.net/kcms/detail/42.1874.P.20211214.1625.006.html.

    LIN Xinwang, ZHANG Yafeng, CHEN Guochao, et al. LA-ICP-MS U-Pb Geochronology, Geochemistry and Petrography of Akebulake Plutons in Southern Altay Orogenic Belt: An Example for Magma Mixing[J]. Earth Science, 2021:1−26.https://kns.cnki.net/kcms/detail/42.1874.P.20211214.1625.006.html

    刘锋, 曹峰, 张志欣, 等. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究[J]. 岩石学报, 2014, 30(1) : 1- 15.

    LIU Feng, CAO Feng, ZHANG Zhixin, et al. Chronology and geochemistry of the granite near the Keketuohai No. 3 pegmatite in Xinjiang[J]. Acta Petrologica Sinica, 2014, 30(1) : 1-15 (in Chinese with English abstract).

    刘锋, 张志欣, 李强, 等. 新疆可可托海3号伟晶岩脉成岩时代的限定: 来自辉钼矿Re-Os定年的证据[J]. 矿床地质, 2012, 31(5) : 1111 -1118.

    LIU Feng, ZHANG Zhixin, LI Qiang, et al. New age constraints on Koktokay pegmatite No. 3 Vein, Altay Mountains, Xinjiang: Evidence from molybdnite Re-Os dating[J]. Mineral Deposits, 2012, 31(5) : 1111-1118 (in Chinese with English abstract).

    刘宏. 新疆阿尔泰阿拉尔花岗岩与可可托海3号伟晶岩脉成因关系地球化学研究[D]. 昆明: 昆明理工大学, 2013: 1-62.

    LIU Hong. Geochemical characteristics of Aral granite and the evolutionary relationship between it and Keketuohai No. 3 pegmatite vein, Altay Xinjiang [D]. Kunming: Kunming University of Science and Technology, 2013 :1-62(in Chinese with English abstract).

    刘文政. 新疆阿斯喀尔特花岗岩-伟晶岩地球化学演化及其Be-Mo成矿作用[D]. 北京: 中国科学院大学,2014, 8−48.

    LIU Wenzheng. The geochemical evolution of the Asikaerte granite-pegmatite system and its implication for themetallogenesis of Be and Mo, Xinjiang, China[D]. Beijing: University of Chinese Academy of Sciences, 2014: 1−86.

    刘文政, 张辉, 唐虹峰, 等. 新疆阿斯喀尔特铍钼矿床中辉钼矿Re-Os定年及成因意义[J]. 地球化学, 2015, 44(2): 145-154 doi: 10.19700/j.0379-1726.2015.02.004

    LIU Wenzheng, ZHANG Hui, TANG Hongfeng, et al. Molybdenite Re-Os dating of the Asikaerte Be-Mo eposit in Xinjiang, China and its genetic implications[J]. Geochimica, 2015, 44(2): 145-154 (in Chinese with English abstract). doi: 10.19700/j.0379-1726.2015.02.004

    彭素霞, 程建新, 丁建刚, 等. 阿尔泰阿拉尔岩体周缘花岗岩序列与伟晶岩成因关系探讨[J]. 西北地质, 2015, 48(3) : 202 -213.

    PENG Suxia, CHENG Jianxin, DING Jiangang, et al. Relationship between the Sequences of Granite around Alai Granite and Pegmatite Causes, Altay, Xinjiang[J]. Northwestern Geology, 2015, 48(3) : 202 -213 (in Chinese with English abstract).

    秦克章, 申茂德, 唐冬梅, 等. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代[J]. 新疆地质, 2013, 31(增1): 1-7

    QIN Kezhang, SHEN Maode, TANG Dongmei, et al. Types, intrusive and mineralization ages of pegmatite rare-element deposits in Chinese Altay[J]. Xinjiang Geology, 2013, 31( Sup. 1): 1-7 (in Chinese with English abstract

    任宝琴, 张辉, 唐勇, 等. 阿尔泰造山带伟晶岩年代学及其地质意义[J]. 矿物学报, 2011, 31 (3) : 587 - 596.

    REN Baoqin, ZHANG Hui, TANG Yong, et al. LA-ICPMS U-Pb zircon geochronology of the Altai pegmatites and its geological significance[J]. Acta Mineralogica Sinica, 2011, 31 ( 3 ) : 587-596 (in Chinese with English abstract)

    王春龙, 秦克章, 唐冬梅, 等. 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学锆石Hf同位素研究及其地质意义. 岩石学报, 2015, 31(8): 2337-2352

    WANG Chunlong, QIM Kezhang, TANG Dongmei, et al. Geochronology and Hf isotope of zircon for the Arskartor Be-Nb-Mo deposit in Altay and its geological implications[J]. Acta Petrologica Sinica, 2015, 31(8): 2337-2352 (in Chinese with English abstract).

    王登红, 陈毓川, 徐志刚. 阿尔泰加里东期变质成因伟晶岩型白云母矿床的成矿年代证据及其意义[J]. 地质学报, 2001, 75(3): 419−425 doi: 10.3321/j.issn:0001-5717.2001.03.016

    WANG Denghong, CHEN Yuchuan, XU Zhigang. Chronological Study of Caledonian MetamorPhic Pegmatite Museovite Deposits in the Altay Mountains, Northwestern China, and its Significance[J]. Acta Geologicasinica, 2001, 75(3): 419−425 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2001.03.016

    王登红, 陈毓川, 徐志刚. 新疆阿尔泰印支期伟晶岩的成矿年代学研究[J]. 矿物岩石地球化学通报, 2003, 22(1) : 14- 17.

    WANG Denghong, CHEN Yuchuan, XU Zhigang. 40Ar /39 Ar isotope dating on muscovites from Indosinian rare metal deposits in Central Altay, northwestern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22( 1) : 14-17 ( in Chinese with English abstract).

    王登红, 陈毓川, 邹天人, 等. 新疆阿尔泰阿祖拜稀有金属一宝石矿床的成矿时代—燕山期稀有金属成矿的新证据[J]. 地质论评, 2000, 46 ( 3): 307 -311.

    WANG Denghong, CHEN Yuchuan, ZOU Tianren, et al. 40Ar /39 Ar dating for the Azubai rare metal-gem deposit in Altay, Xinjiang: New evidence for Yanshanian mineralization of rare metals[J]. Geological Review, 2000, 46( 3) : 307-311 (in Chinese with English abstract)

    王星, 蔺新望, 赵端昌, 等. 阿尔泰北部喀纳斯群碎屑岩锆石U-Pb同位素年龄及其意义[J]. 西北地质, 2016, 49(3) : 13 -27.

    WANG Xing, LIN Xinwang, ZHAO Duanchang, et al. Detrital Zircon Age of the Kanas Group in the North of Altay and Its Geological Significance[J]. Northwestern Geology, 2016, 49(3) : 13-27 (in Chinese with English abstract).

    王星, 蔺新望, 张亚峰, 等. 新疆北部阿尔泰山西段乞格拉塔乌岩体LA-ICP-MS锆石U-Pb同位素年龄及其地质意义[J]. 地质论评, 2019, 65(2) : 370-385.

    WANG Xing, LIN Xinwang, ZHANG Yafeng, et al. LA-ICP-MS Zircon U-Pb Dating and Its Geological Implications of Intrusion from Qigelatawu Rocks in Western Altay , the Northern of Xinjiang[J]. Geological Review, 2019, 65(2) : 370 -385 (in Chinese with English abstract).

    王 星, 蔺新望, 张亚峰, 等. 新疆北部友谊峰一带喀纳斯群碎屑锆石U-Pb年龄分布特征及对阿尔泰造山带构造演化的启示[J]. 地质通报, 2022, 41(9): 1574-1588 doi: 10.12097/j.issn.1671-2552.2022.09.007

    WANG Xing, LIN Xinwang, ZHANG Yafeng, et al. Detrital Zircon U-Pb Age Distribution Characteristics of the Kanas Group from the Friendship Peak Region in Northern Xinjiang and Its Implications for the Tectonic Evolution of the Altay Orogenic Blet[J]. Geological Bulletin of China, 2022, 41(9): 1574-1588( in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2022.09.007

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589−1604 doi: 10.3321/j.issn:0023-074X.2004.16.002

    WU Yuanbao, ZHENG Yongfei. A review on the minerageny and its restriction for zircon U-Pb age [J]. Science Bulletion, 2004, 49(16): 1589-1604 (in Chinese). doi: 10.3321/j.issn:0023-074X.2004.16.002

    杨富全, 张志欣, 刘国仁, 等. 新疆中亚造山带三叠纪矿床地质特征、时空分布及找矿方向[J]. 矿床地质, 2020, 39(2): 197–214 doi: 10.16111/j.0258-7106.2020.02.001

    YANG Fuquan, ZHANG Zhixing, LIU Guoren, et al. A review of geological characteristics and time-space distribution as well as prospecting direction of Triassic deposits in Central Asian Orogenic Belt, Xinjiang[J]. Mineral Deposits, 2020, 39(2): 197–214 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2020.02.001

    杨富全, 张忠利, 王 蕊, 等. 新疆阿尔泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 2018, 42 (6): 1010 - 1026.

    YANG Fuquan, ZHANG Zhongli, WANG Rui, et al. Rare metal deposits in the Altay, Xinjiang: Geological characteristics and metallogenesis[J]. Geotectonica et Metallogenia, 2018, 42(6): 1010-1026 (in Chinese with English abstract).

    张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814

    ZHANG Hui, LÜ ZhengHang and TANG Yong Metallogeny and prospecting model as well as prospecting direction of pegma⁃tite-type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 2019, 38(4): 792-814 (in Chinese with English abstract).

    张辉, 唐勇, 吕正航, 等. 新疆阿尔泰成矿带哈龙-青河一带稀有金属成矿规律及找矿靶区预测研究[R]. 新疆有色金属工业集团, 2014: 1−154.

    ZHANG Hui, TANG Yong, LÜ Zhenghang, et al. Study on rare metal metallogenic regularity and prospecting target area prediction in Halong-Qinghe of the Altay metallogenic belt, Xinjiang[R]. Scientific research report of the Xinjiang Nonferrous Group, 1-154(in Chinese).

    张亚峰, 蔺新望, 郭岐明, 等. 阿尔泰南缘可可托海地区阿拉尔花岗岩体LA ICP MS锆石U-Pb定年、岩石地球化学特征及其源区意义[J]. 地质学报, 2015, 89(2): 339-354

    ZHANG Yafeng, LIN Xinwang, GUO Qiming, et al. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Aral Granitic Plutons in Koktokay Area in the Southern Altay Margin and Their Source Significance[J]. Acta Geologica Sinica, 2015, 89(2): 339-354 (in Chinese with English abstract).

    张亚峰, 蔺新望, 赵玉梅, 等. 新疆北部青河县阿斯喀尔特铍矿区花岗质岩石年代学及地球化学特征[J]. 矿床地质, 2017, 36(03): 643-658 doi: 10.16111/j.0258-7106.2017.03.007

    ZHANG Yafeng, LIN Xinwang, ZHAO Yumei, et al. Geochronology and geochemistry of granitoids of Ascalt beryllium deposit in Qinghe County, northern Xinjiang[J]. Mineral Deposits, 2017, 36(03): 643-658 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2017.03.007

    张照伟, 谭文娟, 王小红, 等. 西北地质调查与战略性矿产找矿勘查[J]. 西北地质, 2022, 55(3): 44-63 doi: 10.19751/j.cnki.61-1149/p.2022.03.004

    ZHANG Zhaowei, TAN Wenjuan, WANG Xiaohong, et al. Geological Survey and Prospecting of Strategic Minerals in Northwest China[J]. Northwestern Geology, 2022, 55(3): 44-63 (in Chinese with English abstract). doi: 10.19751/j.cnki.61-1149/p.2022.03.004

    周起凤, 秦克章, 唐冬梅, 等. 阿尔泰可可托海3 号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报, 2013, 29(9) : 3004- 3022.

    ZHOU Qengqi, QIN Kezhang, TANG Dongmei, et al. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare-element deposit, Altai[J]. Acta Petrologica Sinica, 2013, 29( 9) : 3004-3022 (in Chinese with English abstract).

    邹天人, 张相宸, 贾富义, 等. 论阿尔泰3号伟晶岩脉的成因[J]. 矿床地质, 1986 , 5(4): 35 -47.

    ZOU Tianren, ZHANG Xiangchen , JIA Fuyi, et al. The origin of No . 3 pegmatite in Altayshan , Xinjiang[J]. Mineral Deposits , 1986 , 5(4): 35-47 (in Chinese with English abstract).

    邹天人, 李庆昌. 中国新疆稀有金属及稀土金属矿床[M]. 北京: 地质出版社, 2006: 1−264.

    ZOU Tianren , LI Qingchang. Rare-elements and REE Deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006: 1−264.

    朱永峰. 新疆的印支运动与成矿[J]. 地质通报, 2007, 26(5): 510 - 519.

    ZHU Yongfeng. Indosin movement and metallogeny in Xinjiang, China [J]. Geol Bulletin China, 2007, 26(5): 510-519 (in Chinese with English abstract).

    Annikova I Yu, Vladimirov A G, Vystavnoi S A, et al. U-Pb, 39Ar/40Ar data and Sm-Nd, Pb-Pb isotopic study of Kalguty Molybdenum-tungsten ore-magmatic system, Southern Altai[J]. Petrology, 2006, 14(1): 81-97. doi: 10.1134/S0869591106010073

    Berzina A N , Stein H J , Zimmerman A, et al. Re-Os ages for molybdenite from porphyry Cu-Mo and greisen Mo-W deposits of southern Siberia (Russia) preserve metallogenic record[C]. Biennial SGA meeting, Institute of Geology, Novosibirsk, Russia, 2003: 231−234.

    Che X D, Wu F Y, Wang R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989. doi: 10.1016/j.oregeorev.2014.07.008

    Dobretsov N L, Berzin N A and Buslov M. Opening and tectonic evolution of the Paleo-Asian Ocean[J]. International Geology Review, 1995, 37: 335-360. doi: 10.1080/00206819509465407

    Glorie S, De Grave J, Buslov MM, et al. Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multi-method thermochronometry[J]. Tectonophysics, 2012, 544-545: 75-92 doi: 10.1016/j.tecto.2012.03.035

    Li J Y, Xiao W J, Wang K Z, et al. Neoproterozoic−Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjian, N W China[J]. In: Mao J W, Goldfarb, Seltman, et al. Tectonic Evolution and Metallogeny of the Chinese Altay and Tinanshan[M]. London: CER CAM/NHM, 2003: 31−74.

    Lü Z H, Zhang H, Tang Y, et al. Petrogenesis and magmatic–hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: Evidence from zircon U-Pb and Hf isotopes[J]. Lithos, 2012, 154(1): 374-391.

    Ludwig K R. Users Manual for Isoplot/Ex rex 2.49 A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center: Special Publication, 2001, No. 1a2001: 1-55.

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63−81. doi: 10.1007/BF00384745

    Potseluev A A, Babkin D I, Kotegov V I. The Kalguty complex deposit, the Gorny Altai: mineralogical and geochemical characteristics and fluid regime of ore formation[J]. Geologiya Rudnykh Mestorozhdenii, 2006, 48(5) : 439-459.

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides for major and minor element[J]. Lithos, 1989, 22: 246-263.

    Sengör A M C, Natal’in B A and Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(22): 299-307.

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publication, 1989, 42 : 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Taylor S R, Mclenann S M. The continental crust: Its composition and evolution [M]. Blackwell: Oxford Press, 1985: 1-312.

    Wang T, Hong D W, Jahn B M, et al. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic intrusions from the Altai Mountains, Northwest China: implications for the tectonic evolution of an accret ionary Orogen[J]. Journal of Geology, 2006, 114 : 735 -751. doi: 10.1086/507617

    Wang T, Tong Y, Jahn B M, et al. SHRIMP U-Pb zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite[J]. Ore Geology Reviews, 2007, 32: 325-336. doi: 10.1016/j.oregeorev.2006.10.001

    Wang T, Jahn B M, Kovachet V P, et al. Mesozoic anorogenic granitic magmatism in the Altai Paleozoic accretionary orogen, NW China, and its Implications for crustal architecture and growth[C]. In: Abstract SE53~ A010, AOGS 5th Annual General Meeting, Busan, Korea,2008.

    Windley B F, Krner A, Guo J H, et al. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution[J]. The Journal of Geology, 2002, 110 : 719-737. doi: 10.1086/342866

    Xiao W J, Windley B F, Badarch G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. Journal of the Geological Society, 2004, 161: 339-342. doi: 10.1144/0016-764903-165

    Yakubchuk A. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model[J]. Journal of Asian Earth Sciences, 2004, 23( 5) : 761-779 doi: 10.1016/j.jseaes.2004.01.006

    Yuan H L, Gao S, Liu X M, et al. Accurate U-−Pb age and trace element determinations of zircon by laser ablation-−inductively coupled plasma-−mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    Zhu Y F, Zeng Y S, Gu L B. Geochemistry of the rare metalbearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, Northwest China[J]. Journal of Asian Earth Sciences, 2006, 27: 61-77. doi: 10.1016/j.jseaes.2005.01.007

图(10)  /  表(4)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  32
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-10-26
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-08-19

目录

/

返回文章
返回