ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义

张梓尧, 张义虎, 徐磊, 王怀涛

张梓尧,张义虎,徐磊,等. 西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义[J]. 西北地质,2024,57(5):232−247. doi: 10.12401/j.nwg.2023013
引用本文: 张梓尧,张义虎,徐磊,等. 西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义[J]. 西北地质,2024,57(5):232−247. doi: 10.12401/j.nwg.2023013
ZHANG Ziyao,ZHANG Yihu,XU Lei,et al. Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling[J]. Northwestern Geology,2024,57(5):232−247. doi: 10.12401/j.nwg.2023013
Citation: ZHANG Ziyao,ZHANG Yihu,XU Lei,et al. Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling[J]. Northwestern Geology,2024,57(5):232−247. doi: 10.12401/j.nwg.2023013

西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义

基金项目: 甘肃省级基础地质调查项目“甘肃省肃北县大一明镇–白头山地区1:5万区域地质矿产调查”(甘资字〔2023〕37号)和中国地质调查局项目“东天山昌吉–双沟山地区区域地质调查”(DD20190065)联合资助。
详细信息
    作者简介:

    张梓尧(1990−),女,讲师,研究方向为矿物学、岩石学与矿床学和科技类文献研究与翻译。E−mail:samanthas@qq.com

    通讯作者:

    徐磊(1986−),男,高级工程师,主要从事区域地质调查和矿产勘探研究工作。E−mail:397315452@qq.com

  • 中图分类号: P588.121;P597.3

Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling

  • 摘要:

    西秦岭造山带位于秦岭–大别造山带西段,其印支期花岗岩研究对认识中央造山带的构造演化具有十分重要的意义。笔者选择西秦岭宕昌–舟曲地区的燕麦层与憨班花岗岩体进行了岩相学、LA-ICP-MS锆石U-Pb年代学、地球化学的研究。结果表明,燕麦层的二长闪长岩、憨班的花岗闪长岩,具有高Al2O3、MgO,Mg#<45,富钠贫钾的特征,主体为亚碱性–碱性系列,准铝质–弱过铝质I型花岗岩,轻稀土高度富集,弱Eu负异常,富集Th、K、U等LILE;HFSE中强烈亏损Nb、Ta、P和Ti元素。锆石U-Pb同位素测年结果显示燕麦层与憨班岩体分别形成于(219.4±1.5)Ma和(222.1±1.9)Ma,其侵位时间为晚三叠世中期。综合地质、地球化学和年代学特征,研究区花岗岩体为后碰撞环境,可能形成于增厚地壳下部岩石圈地幔拆沉、软流圈上涌加热下地壳部分熔融的环境下。

    Abstract:

    The west Qinling orogenic belt is located in the west of Qinling-Dabie orogenic belt. The study of granites is of great significance for understanding the tectonic evolution of the central orogenic belt. In this paper, Petrography, LA-ICP-MS zircon U-Pb chronology and geochemistry of the Yanmaiceng and Hanban granitoids in the Tanchang-Zhouqu area of the Western Qinling Mountains were studied. The results show that the Yanmaiceng monzodiorite and HanBan granodiorite are characterized by high Al2O3, MgO, Mg# < 45, rich in Na and poor in K. The main –granites are subalkaline–alkaline series, quasi-aluminous~weakly peraluminous I-type granites, which are highly enriched in LREE, weak negative Eu anomaly, and enriched in LILE such as Th, K, U. The elements of Nb, Ta, P and Ti in HFSE were strongly depleted. Zircon U-Pb isotopic dating shows that the Yanmaiceng and Hanban granitoid were formed at (219.4±1.5) Ma and (222.1±1.9) Ma, respectively, and emplaced in the middle of Late Triassic. According to the geological, geochemical and chronological characteristics, the granites in the study area are in a post-collision environment, which may have been formed in the crust thickening, and the lower lithospheric mantle detachment occurred, resulting in the upwelling and thickening of the asthenosphere and the partial melting of the lower crust.

  • 隐爆角砾岩型金矿是重要的金矿类型之一,国内外相继发现了一大批与隐爆角砾岩有关的代表性金矿床,如美国的朗德山金矿、克里普−克里克金矿、澳大利亚的基兹顿金多金属矿床和奥林匹克坝银−金−铀−铜矿床等超大型矿床以及中国的河南祁雨沟金矿、新疆阿希金矿、山东归来庄和七宝山金矿等中−大型矿床(罗镇宽等,1999宋保昌等,2002梁俊红等,2011),引起了广大地质学者的广泛关注,取得了许多重要的研究成果(李胜荣,1995唐菊兴,1995艾霞,2002卿敏等,2002郭纯智等,2007李弦,2012李志国等,2012尹利君等,2013毛光武等,2016高轲等,2017)。

    老鸦巢金矿床是湖南省有色地质勘查局二一七队在1987~1990年探明的一个以矿体规模大、矿化集中、伴生组分多为特点的中型金矿床,属于著名的水口山铅锌金银矿田的重要组成部分。矿床成因类型独特,既不同于区内康家湾热液交代充填型金矿床,又不同于仙人岩浅成低温热液型金矿床及龙王山、新塘、老虎岩、大园岭等含砾黑色黏土型金矿(全铁军等,2006)。许多学者从不同角度对该矿床进行了一系列的研究(巩小栋等,2011黄金川等,2013曹琼等,2014黄金川等,2015蒋梦同等,2017郭闯,2021a2021b),研究内容主要集中于成岩成矿年代学,C–O同位素特征,矿床地质特征,隐爆角砾岩地质特征,找矿标志及矿物学特征等方面,鲜有人对其矿床成因进行研究。笔者在充分搜集近些年最新勘查资料基础上,结合野外调研成果,总结矿床地质特征,分析成矿过程,厘定矿床成因。以期能够丰富该地区金矿床的成矿理论,为老鸦巢及邻区今后找矿提供帮助。

    矿床位于南岭成矿构造带中段北缘,衡阳断陷盆地南缘,株洲–衡阳北东向断裂、郴州–邵阳NW向转换断层和羊角塘–五峰仙东西向断裂的交汇部位(图1)(李能强等,1996)。

    图  1  水口山矿田区域构造地质图
    1.白垩系—古近系;2.泥盆系—三叠系;3.震旦系—志留系;4.元古代基底;5.加里东花岗岩;6.印支期花岗岩;7.燕山期花岗岩;8.花岗闪长岩;9.玄武岩;10.新元古代—震旦系大洋型岩石圈俯冲带;11.转换断层;12.壳断层;13.B型俯冲带;14.背斜轴
    Figure  1.  Regional tectonic geological map of Shuikoushan ore field

    区域出露地层主要为泥盆系上统至白垩系下统。古生界主要为一套海相碳酸盐建造和海陆交互相碎屑岩建造;中生界为一套海相碳酸盐建造及陆相碎屑岩建造;新生界为泥、砂、卵石、黏土及砾石层。其中,二叠系当冲组是本区金矿的主要赋矿或容矿层位。

    区域主要经历了加里东运动、印支运动及燕山运动3个构造阶段;印支运动在泥盆系—三叠系形成一系列大小不一的褶皱和与褶皱相应配套的断裂,燕山运动则使上述褶皱进一步倒转并形成规模较大的叠瓦式双层结构推覆断层(李能强等,1996);断层和褶皱是本区主要的构造形态。

    区域内共有大小岩体72个,总面积为4.55 km2,分为花岗闪长岩浅成侵入系列和英安质潜火山岩、火山岩超浅成喷发系列;前者与区内铁铜铅锌矿床成矿有关,后者与区内铅锌金银矿床成矿相关(李能强等,1996)。

    矿区出露地层比较简单,主要为二叠系栖霞组(P1q)、当冲组(P1d)和斗岭组(P2dl)(图2)。栖霞组岩性主要为浅灰色、灰白色厚层灰岩,深灰色含燧石灰岩和碳质灰岩,是矿区金矿体的次要赋存层位。当冲组上段为中厚层状含锰硅质岩、硅质岩夹页岩;下段为泥灰岩、硅质泥灰岩夹碳质页岩,与花岗闪长岩体接触处,构造破碎厉害,蚀变强烈,是金矿体的主要赋存部位。斗岭组主要为碳质页岩、泥质粉砂岩和粉砂质泥岩,夹长石石英砂岩及石英砂岩。矿区主要地层岩石化学成分分析结果表明当冲组岩石富含SiO2表1)。

    图  2  老鸦巢金矿区Ⅺ中段地质平面图
    1.二叠系上统斗岭组;2.二叠系下统当冲组上段;3.二叠系下统当冲组下段;4.二叠系下统栖霞组;5.花岗闪长岩;6.隐爆角砾岩;7.震碎角砾岩;8.接触破碎角砾岩;9.破碎角砾状大理岩;10.矽卡岩;11.断层破碎角砾岩;12.实测/推测地质界线;13.逆断层及编号;14.推测断层及编号;15.勘探线及编号;16.黄铁矿体;17.金矿体及编号;18.铅锌矿体;19.铅锌黄铁矿体
    Figure  2.  Geological plan of the middle Ⅺ section of Laoyachao gold deposit
    表  1  老鸦巢矿区主要地层岩石化学成分表
    Table  1.  The chemical composition of the main strata in Laoyachao deposit
    段别岩性岩石化学成分(%)
    SiO2Al2O3Fe2O3CaOMgO
    栖霞组 灰岩 1.76 0.40 0.20 54.44 微量
    含燧石灰岩 8.91 2.17 0.38 48.96 微量
    碳质灰岩 5.99 0.78 0.45 50.48 0.11
    当冲组 泥灰岩 32.94 7.24 4.19 20.83 5.48
    硅质泥灰岩 43.16 7.60 10.80 17.04 6.32
    硅质岩 77.88 8.03 0.87 1.32 0.97
    含锰硅质岩 55.32 6.96 5.71 1.03 2.30
    下载: 导出CSV 
    | 显示表格

    矿区构造活动强烈,褶皱和断裂均比较发育,主要为老鸦巢倒转背斜和F1、F2断裂。老鸦巢倒转背斜长约为4 km,轴向NS,轴面向W,向E倒转,东西两翼分别被F1和F2断裂切割,被破坏分割成“岩块”。花岗闪长岩体沿背斜轴部和F1断层侵入,在岩体接触带的北边形成老鸦巢金矿床。F1断裂长约为4 km,走向NNE,往北偏向NNW,倾向西,倾角陡缓不一,北段为60°~70°,南段为20°~40°;南端被花岗闪长岩体侵蚀,多期次的岩浆侵入和断裂活动使得F1断裂北段上盘的大理岩破碎成为角砾状大理岩,下盘的当冲组硅质泥灰岩、硅质岩形成隐爆角砾岩和震碎角砾岩,是成矿的良好场所。F2断裂长约为4 km,走向NNE~NNW,倾向E,倾角为20°~45°,老鸦巢倒转背斜平卧于断层上盘,中段被花岗闪长岩侵蚀,深部切过F1断裂(图3)。

    图  3  老鸦巢金矿区472线地质剖面图
    1.二叠系上统斗岭组;2.二叠系下统当冲组上段;3.二叠系下统当冲组下段;4.二叠系下统栖霞组;5.花岗闪长岩;6.隐爆角砾岩;7.震碎角砾岩;8.接触破碎角砾岩;9.破碎角砾状大理岩;10.矽卡岩;11.断层破碎角砾岩;12.实测/推测地质界线;13.金矿体及编号
    Figure  3.  Geological profile of 472 line of Laoyachao gold deposit

    矿区岩浆岩为花岗闪长岩,面积为1.8 km2,形态及产状受背斜和F1、F2断裂控制(图3)。岩石矿物成分主要为中性斜长石、钾长石和石英;属贫Si、铝过饱和、富Fe、K,偏碱性花岗闪长岩。微量元素Pb、Zn、Cu等含量较高,K/Rb值为288,Co/Ni值为1.33~2.27。黑云母K–Ar法测定年龄为143 Ma(银剑钊等,1993),锆石U−Pb定年为(156.0±1.0)~(163±2) Ma(马丽艳等,2006左昌虎等,2014),属燕山中期产物。岩浆来源于上地幔及下地壳的过渡带,属壳幔混源“Ⅰ”型磁铁矿系列(李能强等,1996)。

    隐爆角砾岩系指岩浆隐蔽爆破作用形成的成因上相互联系而各具特色的一套碎屑岩组合(卿敏,2002)。隐爆角砾岩主要以岩筒形式产出,少量呈脉状产出;其产出多受构造控制,筒状体多产在2条或多条断裂构造的交叉部位,而脉状体多受控于一条断裂(王照波,2001)。隐爆角砾岩产于矿区中部,受控于F1断裂,并沿F1断裂呈脉状分布,围岩为栖霞组浅灰色、灰白色厚层灰岩以及当冲组下段泥灰岩、硅质泥灰岩夹碳质页岩。

    隐爆角砾岩主要分布于F1断裂中,少量分布于当冲组硅质泥灰岩与栖霞组灰岩接触面附近,或单独呈脉状、不规则状和透镜体状插入其他角砾岩中和围岩裂隙发育处。形态复杂,呈透镜状、岩墙状、囊状、脉状、不规则状等;走向约为330°,倾向约为240°;倾角上陡下缓,Ⅺ中段以上50°~70°,Ⅺ中段以下约25°。Ⅶ~Ⅻ中段控制长度为300~690 m,厚度不稳定,最厚为80 m,最薄只有几米,延伸大于500 m。

    隐爆角砾岩成分比较复杂,角砾成分主要为花岗闪长岩、硅质泥灰岩、泥灰岩、大理岩、矽卡岩、角岩、方解石、石英及方铅矿、闪锌矿、黄铁矿等,常见大角砾包裹小角砾(图4a图4b)。角砾大小不等,砾径以1 cm和1~5 cm为主,其中小于1 cm者占51.9%,1~5 cm者占39.1%,5~10 cm者占5.7%,大于10 cm者占3.3%。胶结物为肉色的花岗闪长岩脉、黄铁矿、石英、碳酸盐及岩屑。角砾形态极为复杂,呈次圆状、椭圆状、棱角状、正方体、不规则状、糜棱状。具有角砾状和眼球状构造。岩体边缘受自变质作用影响,具钾化,见有长石与石英共结而形成的文象结构(图4c)。

    图  4  老鸦巢矿区隐爆角砾岩宏观和微观特征图
    a、b. 隐爆角砾岩的成分特征;c. 文象结构;d. 隐爆角砾岩;Hf. 角岩;Sk. 矽卡岩;Py. 黄铁矿;Chl. 绿泥石;Ls. 灰岩;γδ. 花岗闪长岩
    Figure  4.  Macroscopic and microscopic characteristics of cryptoexplosion breccia in Laoyachao mining area

    矿区金矿体主要赋存在隐爆角砾岩中,少量赋存在震碎角砾岩及接触破碎角砾岩中(图2图5)。现已控制大小金矿体15个,以Ⅳ号矿体为主,占75.6%,次为Ⅰ、Ⅱ、Ⅲ、Ⅴ号矿体,占19.4%(表2)。控制金矿化带长为200~690 m,宽为100~470 m,延深大于500 m。矿体形态极为复杂,呈似层状、透镜状、扁豆状、不规则状、蛇形弯曲状、长条弯曲状、月牙状等;矿体具分枝、复合、收缩、膨胀现象。

    图  5  老鸦巢金矿区473线地质剖面图
    1.二叠系上统斗岭组;2.二叠系下统当冲组上段;3.二叠系下统当冲组下段;4.二叠系下统栖霞组;5.花岗闪长岩;6.隐爆角砾岩;7.震碎角砾岩;8.接触破碎角砾岩;9.矽卡岩;10.实测/推测地质界线;11.断层及编号;12.铅锌黄铁矿体;13.金矿体及编号
    Figure  5.  Geological section of 473 line in Laoyachao gold deposit
    表  2  老鸦巢矿区主要金矿体特征
    Table  2.  The main characteristics of gold orebody in Laoyachao deposit
    矿体编号矿体规模产状(°)形态平均品位
    (10−6
    厚度变化
    系数(%)
    品位变化
    系数(%)
    控制
    长度(m)
    控制
    延深(m)
    平均
    厚度(m)
    65~1853462.61210~260∠30~50似层状、透镜状4.9274.07220.87
    30~1102133.07240~250∠25~30透镜状、似层状4.4587.8570.41
    40~1703714.12210~150∠35~45似层状、透镜状5.5675.7692.08
    135~5654077.50220~240∠25~50透镜状、不规则状5.6194.70101.93
    35341.50255∠35透镜状8.81
    下载: 导出CSV 
    | 显示表格

    (1)矿石类型。根据矿物的共生组合、矿石结构和构造特征,金矿石可分为角砾岩型金矿石和破碎蚀变岩型金矿石。

    (2)结构构造。矿石主要为压碎结构、交代残余结构、包含结构、半自形–他形晶粒状结构、充填结构。矿石构造以块状构造、角砾状构造、条带状构造、网脉状构造及浸染状构造为主。

    (3)矿物组成。根据岩矿鉴定分析结果,主要金属矿物为自然金(4×10−6~5×10−6)、黄铁矿(28%~30%)、闪锌矿(0.8%~1.5%)、黄铜矿(0.3%)、方铅矿(0.1%);主要非金属矿物为方解石(19%~21%)、石英(18%~21%)、石榴子石(2%~7.6%)、透辉石(2%~5%)等。

    (4)金矿物及分布特征。经反光显微镜及电子探针分析,老鸦巢金矿区中以自然金为主,次为硫化物金、酸溶性金及石英包裹体金;前者占80.5%,后三者合计占19.5%。自然金主要分布在脉石矿物石英、方解石以及胶结物中;或金属矿物黄铁矿、磁铁矿、闪锌矿、方铅矿中;或这些金属矿物与脉石矿物的接触面和裂隙空洞中(表3)。

    表  3  老鸦巢矿区自然金的赋存状态表
    Table  3.  The occurrence state of natural gold in Laoyachao deposit
    矿物名称方铅矿闪锌矿黄铁矿磁铁矿石英方解石脉石空洞、裂隙中脉石与各金属
    矿物接触面上
    含金量(%)0.021.847.003.4030.164.6527.4210.5814.93
    占比(%)0.383.055.344.5844.666.4915.271.9118.32
    下载: 导出CSV 
    | 显示表格

    矿区内围岩蚀变强烈,蚀变类型主要为矽卡岩化、角岩化、硅化、碳酸盐化、大理岩化、赤铁矿化、绿泥石化及绢云母化。其中硅化、绿泥石化、碳酸盐化、绢云母化与金成矿关系比较密切。

    研究表明,矿床自然金的成色与矿床类型、成矿深度、成矿时代、温度及成矿流体的性质密切相关(刘星,1991王冰生,1994梁俊红等,2000)。区域岩浆热源热液矿床金成色为632‰~992‰,平均为693‰~962‰,一般大于800‰;内生中深或深成金矿床的平均成色为886‰,浅成金矿床的平均成色为647‰;浅部低温矿床为500‰~700‰;中深中温带内矿床一般为750‰~900‰,850‰~870‰最常见,深成高温带内大于800,新生代之前的金矿床Au/Ag值一般大于1(梁俊红等,2000)。

    老鸦巢矿区自然金的成色最高为932.9‰,最低为868.6‰,平均为892.6‰;Au/Ag值均大于1,平均为8.81(表4)。按照上述研究规律,该矿床形成于新生代之前,中温深成环境,类型为区域岩浆热源热液矿床;金矿物质主要来源深部,不是来源于围岩。

    表  4  老鸦巢矿区自然金电子探针分析结果表
    Table  4.  Results of natural gold electron probe analysis in Laoyachao deposit
    样号载体矿物分析项目及结果(%)成色(‰)Au/Ag
    AuAg
    10057 方解石与黄铁矿接触界面 90.246 9.071 908.6 9.45
    10045 黄铁矿 92.965 6.781 932.9 13.71
    10045 磁铁矿 87.346 11.921 879.9 7.33
    10045 磁铁矿与石英接触界面上 86.545 13.090 868.6 6.61
    11168 脉石中 86.695 12.505 873.9 6.93
    平均 88.759 10.674 892.6 8.81
     注:数据来源于曹琼等,2014
    下载: 导出CSV 
    | 显示表格

    矿区Ⅶ~XIII中段花岗闪长岩体、构造角砾岩、近矿围岩含Au情况(表5),区域及水口山矿田二叠系各地层岩石Au含量(表6)。

    表  5  老鸦巢矿区Ⅶ~XIII中段各类岩石含Au品位表
    Table  5.  Gold grade table of all kinds of rocks in the middle section Ⅶ~XIII of Laoyachao deposit
    岩石
    名称
    花岗
    闪长岩
    隐爆
    角砾岩
    接触
    破碎角砾岩
    震碎
    角砾岩
    角砾
    状大理岩
    断层
    角砾岩
    硅质
    泥灰岩
    砂页岩
    样品个数118229283517473496729818
    Au平均品位(10−60.433.501.581.080.580.500.420.29
     注:数据来源于曹琼等(2014)
    下载: 导出CSV 
    | 显示表格
    表  6  区域及水口山矿田二叠系各地层岩石Au元素含量表
    Table  6.  Table of Au content in strata of Permian in Shuikoushan ore field
    区域二叠系Au含量(10−9矿田二叠系岩石Au含量(10−94号花岗闪长岩体Au含量(10−9
    P2c1.914碎屑岩2.2276.4
    P2dl1.457泥质岩3.23
    P1d3.320硅质岩2.77
    P1q0.999碳酸盐岩1.83
    地壳Au含量4×10−9
    下载: 导出CSV 
    | 显示表格

    老鸦巢矿区Ⅶ~XIII中段各类岩石Au品位最高的是隐爆角砾岩,可达3.50×10−6;其次为接触破碎角砾岩和震碎角砾岩,最低的为硅质泥灰岩和砂页岩,仅为0.42×10−6和0.29×10−6,为隐爆角砾岩的1/8和1/12,显示隐爆角砾岩与金矿的密切关系(表5)。区域和矿田二叠系Au含量差别不大(表6),基本接近或略低于克拉克值,没有明显的富集;但矿区Ⅶ~XIII中段近矿围岩和花岗闪长岩金元素出现了明显的富集作用,是原地层含量的近百倍,是原花岗闪长岩体的5.6倍。

    上述微量元素地球化学特征表明,矿区二叠系和花岗闪长岩体金元素含量比较低,并不具备提供矿源的基础条件;成矿物质的来源可能与后期热液活动有关。

    (1)S同位素特征

    矿石矿物黄铜矿、黄铁矿、方铅矿、闪锌矿25件S同位素测定结果显示,矿区S32/S34值为21.994~22.252,平均为22.177,δ34SCDT值为−1.5‰~10.298‰,但大部分为−1.5‰~3.5‰,呈塔式分布,接近陨石硫(李能强等,1996)。

    研究认为,在特定情况条件下,成矿流体总硫同位素组成可近似由硫化物的测值平均数代替(杨勇等,2010)。笔者以总硫作为研究对象,所选的样品全部取自铅锌黄铁矿型金矿石,矿石矿物类型比较单一,δ34SCDT值分布范围狭窄,符合上述条件。全硫同位素组成的范围介于−2.0‰~6.5‰的矿床为岩浆硫来源,而总硫δ34SCDT值为5.0‰~15.0‰的硫源应为局部围岩混合硫(过渡硫)(戚长谋等,1994徐文忻,1995);矿区介于岩浆硫与围岩混合硫之间,但主要分布于岩浆硫范围内,表明成矿物质主要来源于岩浆。

    (2)O同位素特征

    矿区成矿流体O同位素组成δ18O值为+4.93‰~+5.58‰(李能强,1996),与岩浆水(δ18O值为+5.5‰~+10‰)和水口山矿田岩浆水(δ18O值为+7.45‰~+9.34‰)非常接近,而与南岭地区中生代大气降水的δ18O值(−8‰)(张理刚,1985)差别非常大,表明矿区成矿热液组成中,岩浆水所占比例较大。

    (3)Pb同位素特征

    在老鸦巢矿区坑道取5件样品测定其Pb同位素组成(表7)。结果表明:206Pb/204Pb值为18.10~18.63,变化不超过2.9%;207Pb/204Pb值为15.32~15.85,变化不超过3.5%;208Pb/ 204Pb值为38.745~39.35,变化不超过1.6%,说明Pb同位素组成还是比较稳定的,基本上属于正常铅。

    表  7  老鸦巢矿区Pb同位素组成及参数表
    Table  7.  Isotopic composition and parameters of lead in Laoyachao mining area
    序号206Pb/204Pb207Pb/204Pb208Pb/204PbμTh/UΔαΔβΔγ
    118.49315.78238.7459.813.8591.1730.6948.43
    218.1015.3239.118.954.1445.48−0.7645.27
    318.6315.8539.359.934.0497.9335.0564.08
    418.3615.5039.219.274.0763.6511.1449.79
    518.3415.6438.879.553.9677.2321.1149.08
    下载: 导出CSV 
    | 显示表格

    利用Geokit软件计算Pb同位素的相关参数(表7)(路远发,2004)。Th/U值为3.85~4.14,平均值为4.01,变化范围较窄,显示出稳定Pb同位素特征;数值介于原始地幔平均值(3.95)和下地壳平均值(6.0)之间,表明矿物应属下地壳或幔源。矿石μ 值为8.95~9.93,平均值为9.50,小于9.58,介于地壳(μC=9.81)与原始地幔(μ0=7.80)之间(吴开兴等,2002),指示矿石铅来源于上地幔或下地壳。研究表明,高放射壳源铅μ 值大于9.58,低放射性深源铅μ值小于9.58(沈能平等,2008),显示该区Pb同位素具有深源铅特征。Pb同位素组成图解中(图6),有关样品分布于造山带和下地壳铅演化线之间,认为属下地壳铅和造山带铅的混合产物。

    图  6  Pb同位素组成图
    A.地幔;B.造山带;C.上地壳;D.下地壳
    Figure  6.  Lead isotope compositions

    用Δβ 和Δγ分析成因示踪,可以准确定位成矿物质源于何种地质体,探讨矿石铅的物质来源,提供更丰富的地质过程与物质来源信息(朱炳泉等,1998赖健清等,2015)。Pb同位素成因Δβ–Δγ分类图(图7)显示投影点比较分散,有3个为上地壳铅,1个为中深变质作用铅,1个为造山带铅,显示为混合铅。Pb同位素构造环境判别图解(图8)显示,数据点落在下地壳和造山带范围内,集中于下地壳范围。由此可见,该区矿石铅的同位素组成以下地壳铅为主、混合了少量幔源铅,形成环境为造山带附近。

    图  7  Pb同位素Δβ–Δγ 分类图
    1.地幔铅;2.上地壳铅;3.上地壳与地幔混合的俯冲带铅(a.岩浆作用, b.沉积作用);4.化学沉积型铅;5.海底热水作用铅;6.中深变质作用铅;7.深变质下地壳铅;8.造山带铅;9.古老页岩上地壳铅;10.退变质铅
    Figure  7.  Lead isotope Δβ–Δγ classification figure
    图  8  Pb同位素构造环境判别图
    LC.下地壳;UC.上地壳;OIV.洋岛火山岩;OR.造山带;A~D分别为各区域中样品相对集中区
    Figure  8.  Environmental identification of lead isotopes

    据爆裂法测温结果(李能强等,1996):黄铁矿为120~360 ℃,铅锌为205~315 ℃,方解石为275~308 ℃,石英为138~360 ℃。成矿温度差异较大,具较明显的中低温热液及多阶段成矿特征。

    矿区矿物包裹体分析结果显示(表8),包裹体温度最高为390 ℃,最低为138 ℃,主要为中-低温;盐度最高为46.41%,最低为4.83%,平均值为28.2%,属于中–低盐度;压力变化比较大,最低为8 atm,最高为433 atm,压力变小时,温度迅速下降,显示成矿过程中压力、温度降低显著,具隐爆特征,是能力迅速释放的结果。以上特征与隐爆角砾岩型金矿床相符合(毛光武等,2016)。

    表  8  老鸦巢矿区矿物包裹体测试分析结果表
    Table  8.  Table of mineral inclusion test analysis results in Laoyachao mining area
    样品种类压力
    (atm)
    温度
    (℃)
    盐度
    (%)
    花岗闪长岩中的灰白石英43339046.41
    矽卡岩化中的石榴子石32037516.20
    硫化矿石中灰白石英(J125836045.39
    硫化矿石中透明石英(J281384.83
    下载: 导出CSV 
    | 显示表格

    黄铁矿和闪锌矿是矿区金的重要载体,研究黄铁矿和闪锌矿中标型元素的特征对厘定矿床成因具有十分重要的意义(杨前进等,1999裴玉华等,2006付治国等,2009彭丽娜等,2009李志国等,2012杜亚龙等,2017高永伟等,2019)。老鸦巢矿区黄铁矿、闪锌矿标型元素特征(表9)。

    表  9  老鸦巢矿区单矿物标型元素与矿床成因关系表
    Table  9.  The relationship between single mineral type element and deposit genesis in Laoyachao mining area
    矿物名称元素对数值判别成因标准
    内生外生
    黄铁矿 Co/Ni 1.72 >1 <1
    S/Se 15000 <20000 >20000
    Pb/Ni 25.8
    Tl/Se 0.05
    矿物名称 元素对 数值 判别成因标准
    高温 中温 低温
    闪锌矿 TFe(%) 3.3 10~20 3~10 1~3
    In(10−6) 66 150~520 11~240 0~30
    Cd(%) 0.28 0.20 0.6 1.5
    Ga(10−6) 24 1.3~14 1.1~32 18~200
    Ga/In 0.364 0.001~0.50 0.01~5 1~100
    下载: 导出CSV 
    | 显示表格

    矿区黄铁矿Co/Ni值为1.72,S/Se值为15000,Pb/Ni值为25.8,Tl/Se值为0.05,显示内生矿床的特征;闪锌矿TFe含量为3.3%,In含量为66×10−6,Cd含量为0.28%,Ga含量为24×10−6,Ga/In值为0.364,显示中–低温矿床的特征(表9);综合可知老鸦巢金矿床应属中–低温内生矿床。

    (1)地层特征:矿区金矿体主要产于栖霞组灰岩和当冲组硅质岩、硅质泥灰岩形成的隐爆角砾岩中,微量元素分析结果显示栖霞组和当冲组地层Au含量并不高,不具备提供物源的基础条件。但栖霞组和当冲组中的灰岩、硅质岩及硅质泥灰岩岩性脆,在动力作用条件下极易破碎形成大规模破碎带,利于矿液的运输和沉淀。另外,当冲组中含有大量的SiO2,对金元素的活化迁移、沉淀富集具有促进作用(樊文苓等,1993,1994,1995闫升好,1998)。因此,地层对金矿的控制主要体现在有利的岩性。

    (2)构造特征:金矿体赋存于构造破碎带中,沿F1断裂分布,F1断裂是矿区主要的导矿构造;矿体的形态、规模与破碎带的形态、规模关系密切,矿体富集地段往往是破碎带变形或膨胀的部位。例如,Ⅳ号金矿体在Ⅸ中段上陡下缓的拐弯部位,矿体厚度变薄、规模变小;而Ⅸ中段的上下中段,矿体规模变大。研究表明,弯曲膨胀部位应力释放,易形成低压扩容空间,有利于含矿气液沉淀(关键等,2004安国堡,2005)。

    (3)岩浆岩特征:矿体主要赋存在老鸦巢倒转背斜轴部花岗闪长岩体北东端隐爆角砾岩中,矿体形态、矿石矿物类型、结构构造以及围岩蚀变均显示了热液矿床的特征。S、O同位素地球化学特征显示矿床成矿物质主要来源于岩浆热液;Pb同位素地球化学特征显示成矿物质为壳幔混合型,与矿区花岗闪长岩的物质来源相同;矿石矿物的标型元素特征显示矿床类型为中低温内生矿床。以往对老鸦巢矿床的研究表明矿床成矿年龄(157.8±1.4)Ma和花岗闪长岩的侵位年龄(158.8±1.8 )Ma也相当吻合(黄金川等,2015)。以上均说明成岩和成矿具有密切的时空联系,岩浆活动不但为成矿提供了热源,而且还提供了物质来源。

    (1)引爆机制:矿区花岗闪长岩体是多期次、多旋回的浅成至次火山岩侵入体,岩体在燕山中期开始侵位于石炭系至白垩系一套海陆交互相及陆相的碳酸盐岩和碳质砂、页岩岩系;在接近地表时,受到地表内裂隙水而迅速冷却,同时在壳层破碎岩石周围凝固构成了一个封闭的“屏蔽层”。“屏蔽层”层下的岩浆仍不断在活动,结晶分异作用形成的富含挥发分的汽、液及存在于其内的地下水,不断煮沸气化,致使系统内压急剧增加。由于多期次多旋回岩浆侵入期后的残余气、液浆的聚集,能量相对集中,这些富含碱质、挥发成分气、液浆过饱和的同时,且有过热特点,并从高能位向低能位的围岩介质移动时,物理化学条件的改变,物质状态突变而引起能量迅速释放,大量热能迅速变为机械能,使上部及旁侧围岩产生破碎角岩化,角岩又重新破碎。上升侵位越高,与围岩的压力及温度梯度也越大,整个气化蒸馏作用也就越强烈,形成的角砾化范围越广。

    (2)矿床形成过程:矿区含金角砾岩的成因极为复杂,是岩浆岩、地层及多期次构造叠加作用的结果。由于岩浆活动和构造运动,在环绕岩体和破碎带的栖霞组和当冲组地层中首先形成接触破碎角砾岩、构造角砾岩及极少量岩溶角砾岩,而后岩浆结晶分异作用形成的残余气、液浆沿断层上涌并且在上述角砾岩裂隙进行隐蔽爆破,形成了目前所见到的隐爆角砾岩,并且隐蔽爆破作用在附近围岩也形成了一定厚度的震碎带及震碎角砾岩。角砾岩形成之后,多期次的含金矿液沿角砾裂隙进行反复的充填、交代形成金矿体。

    老鸦巢金矿体赋存于4号花岗闪长岩体北东端接触破碎带、隐爆角砾岩中。矿体严格受构造、地层及岩浆岩控制。矿石矿物黄铁矿、方铅矿、闪锌矿和黄铜矿以及与成矿期相近的硅化、绿泥石化、碳酸盐化及绢云母化等,均是中–低温热液矿床常见的矿物和围岩蚀变。矿体呈透镜体状、不规则状、似层状等;矿石具交代残余结构、压碎结构和角砾状结构、脉状构造及浸染状构造,都具较明显的热液交代和多期次构造复合、叠加、动力变质特征。

    矿区中含金黄铁矿和闪锌矿的标型元素含量及其比值显示内生、中–低温矿床的特征。矿床微量元素研究显示,金矿床的形成在物质来源上与地层没有必然的关系。

    矿床的S同位素特征显示矿区主要为岩浆硫,表明成矿物质主要来源于岩浆;Pb同位素特征显示铅具壳幔型及混合源特征;O同位素特征显示成矿流体主要为岩浆热液。

    矿床成矿温压及盐度研究显示成矿流体温度差异较大,具有中–低温、中–低盐度以及压力迅速释放、温度急剧下降的隐爆特点,符合隐爆角砾岩型金矿的显著特征。矿床自然金的成色研究显示该矿床形成于新生代之前的中温深成环境,其类型为区域岩浆热源热液矿床。

    综合上述特征,该矿床成矿方式是岩浆期后的残余气液隐爆、热液交代、叠加改造型的中低温热液复成因矿床,属于隐爆–中低温热液复成因金矿床,即隐爆角砾岩型金矿床。

    (1)矿区金矿体主要赋存在隐爆角砾岩中,金矿石可分为角砾岩型金矿石和破碎蚀变岩型金矿石;矿床围岩蚀变强烈,其中硅化、绿泥石化、碳酸盐化和绢云母化与成矿关系比较密切。

    (2)矿区二叠系和花岗闪长岩体Au含量均比较低,并不具备提供矿源的基础条件,成矿物质的来源可能与后期热液活动有关。

    (3)矿床S同位素特征显示其主要为岩浆硫,Pb同位素显示其具壳幔型及混合源特征,O同位素显示成矿流体主要为岩浆热液;成矿温压、盐度及矿物标型元素特征显示矿床属中低温内生矿床。矿床属隐爆–中低温热液复成因金矿床,即隐爆角砾岩型金矿床。

  • 图  1   西秦岭造山带构造划分图及研究区地质图

    a.西秦岭构造简图据冯益民等(2002)修改;b.西秦岭印支期岩浆岩分布图据冯益民等(2002)修改;c.茹树沟和燕麦层花岗岩岩地质简图;d.憨班花岗岩地质简图

    Figure  1.   General tectonic map of West Qinling area and geological map of study area

    图  2   燕麦层与憨班花岗岩照片

    a.花岗闪长岩野外照片;b.中粗粒似斑状花岗闪长岩标本;c.燕麦层二长闪长岩正交偏光片;d.憨班中细粒花岗闪长岩正交偏光片

    Figure  2.   Field photo and microscopic features of the Yanmaiceng and Hanban granite

    图  3   憨班与燕麦层花岗岩锆石CL图像

    Figure  3.   Cathodoluminescence images of selected zircon grains from the Hanban and Yanmaiceng granite

    图  4   憨班(a)与燕麦层(b)锆石U-Pb年龄谐和图

    Figure  4.   (a) Concordia diagram showing LA-ICP-MS zircon U-Pb dating for the Hanban and (b) Yanmaiceng granite

    图  5   宕昌花岗岩分类图解(部分数据引自刘明强,2012

    a.全碱-硅图解;b.K2O-SiO2图解;c.A/NK-A/NCK图解,虚线是I型与S型花岗岩的分界;d.K2O-Na2O图解

    Figure  5.   TAS, K2O-SiO2, A/NK-A/CNK and K2O-Na2O diagrams of Tanchang granite

    图  6   微量元素原始地幔标准化蛛网图(a)与稀土元素球粒陨石表转化分布型式图(b)

    大陆地壳成分数据源自Rudnick等(2003); 夏河埃达克岩数据源自邱庆伦等(2008)韦萍等(2013)徐学义等(2014);温泉埃达克岩数据源自Zhang等(2007)Zhu等(2013)徐学义等(2014);标准化值源自Sun等(1989)

    Figure  6.   (a) Primitive mantle-normalized spider diagrams and (b) chondrite-normalized REE distribution patterns

    图  7   宕昌花岗岩哈克图解

    Figure  7.   Harker diagram of the Tanchang granite

    图  8   Sr/Y-Y图解(a)、 (La/Yb)N-YbN图解(b)、Sr-Yb图解(c)(张旗等,2012)与(Dy/Yb)N-(La/Yb)N图解(d) (标准化数值据源自Sun等,1989

    Figure  8.   (a) Sr/Y-Y, (b)(La/Yb)N-YbN, (c) Sr-Yb and (d) (Dy/Yb)N-(La/Yb)N discriminant diagram

    图  9   宕昌花岗岩岩石Nb-Y判别图解(a)与Ta-Yb判别图解(b)(Pearce et al.,1984

    VAG.火山弧花岗岩;Syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;虚线是产于异常洋脊ORG的边界线

    Figure  9.   (a) Nb-Y diagram and (b) Ta-Yb diagram of the Tanchang granite

    图  10   西秦岭220~215 Ma所处的转换拉伸构造复原图

    Figure  10.   Transitional extensional tectonic restoration map of West Qinling at 220-215 Ma

    表  2   花岗岩的主量 (%)、稀土和微量元素(10−6)

    Table  2   Major (%) and trace elements (10−6) data for the granite in Tanchang

    元素YMC1YMC2HB1HB2HB3HB4RSG1RSG2RSG3
    SiO253.9654.9070.9872.9973.2067.7858.9460.4862.92
    Al2O318.5917.714.1914.4114.7515.5015.8415.6515.40
    Fe2O31.542.961.320.280.200.611.511.360.63
    FeO6.405.141.851.670.782.025.124.504.93
    CaO6.766.381.741.231.512.565.003.823.11
    MgO3.353.480.800.250.251.103.342.842.27
    K2O3.493.754.064.574.264.794.504.724.79
    Na2O3.193.123.993.973.924.132.883.283.13
    TiO20.8630.9100.3360.1290.1200.4300.7960.6910.591
    P2O50.4090.3360.1310.0380.0530.2000.2930.2360.188
    MnO0.1190.1240.0570.0270.0210.0590.1140.1030.089
    LOI0.240.250.070.060.200.200.791.481.09
    Cr36.0040.5062.708.712.9725.9087.8049.0035.80
    Ni14.8014.9011.502.5722.1022.0012.2016.2010.20
    Co26.1027.005.541.223.455.1316.7017.0015.30
    Li35.931.8166.068.995.670.539.531.841.0
    Rb23.737.5193.0288.0191.0180.069.141.831.0
    Cs4.433.9624.101.8419.8010.7010.206.178.95
    Sr794779292198224912557472333
    Ba868751724768846139085311821045
    V154.0186.041.027.25.346.0110.0122.0110.0
    Sc9.8910.602.290.922.174.658.248.506.83
    Nb18.415.127.648.710.419.326.420.420.9
    Ta1.120.852.361.071.351.311.711.461.67
    Zr208.0264.0302.01270.084.9282.0350.0251.0215.0
    Hf5.116.028.3828.102.716.438.606.465.91
    Be2.442.2410.308.637.086.913.713.043.04
    U5.153.624.5629.603.5010.409.266.778.43
    Th14.6012.8017.7049.908.6326.3328.1021.1020.80
    La54.348.657.617.617.180.876.257.349.0
    Ce103.091.4106.033.232.6152.0142.0106.088.0
    Pr11.2010.2010.803.623.7516.9014.0010.808.95
    Nd47.6043.9043.5015.0013.2059.1055.2043.1035.50
    Sm8.287.847.323.182.9810.009.147.236.08
    Eu2.172.001.580.690.732.381.861.571.44
    Gd6.626.275.732.542.367.387.606.055.07
    Tb0.860.840.680.330.300.910.980.780.67
    Dy4.254.222.971.431.464.325.003.943.37
    Ho0.790.780.500.210.240.760.960.740.64
    Er2.102.101.290.520.551.912.662.041.75
    Tm0.300.300.180.070.070.250.400.300.27
    Yb1.781.791.030.360.431.702.401.821.57
    Lu0.270.280.160.060.060.250.370.290.25
    Y18.5018.3012.205.446.9621.6023.5018.2015.40
    ΣREE262.02238.82251.5484.2582.79352.60342.27260.16217.96
    LREE226.55203.94226.8073.2970.36313.56298.40226.00188.97
    ΣY35.4734.8824.7410.9612.4339.0443.8734.1628.99
    (La/Yb)N20.1417.9436.7132.1428.5334.0920.9520.7920.6
    δEu0.880.850.730.730.810.810.670.710.78
    δCe0.940.920.950.930.950.960.960.950.93
     注:样品HB3和HB4数据引自刘明强,2012
    下载: 导出CSV

    表  1   宕昌花岗岩的LA-ICP-MS锆石U-Pb同位素分析结果

    Table  1   LA-ICP-MS zircon U-Pb analytic for granite in Tanchang

    分析号207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th
    YMC010.052500.001280.247960.006090.034210.000460.011440.00057307.254.31224.94.95216.92.89229.911.45
    YMC020.054070.001320.253280.006250.033930.000460.010820.00052373.754.04229.25.06215.12.88217.610.40
    YMC030.054320.000870.261640.004460.034890.000440.013560.00049384.235.39236.03.59221.12.72272.39.730
    YMC040.051140.000920.242340.004560.034320.000440.010420.00037247.340.87220.33.73217.52.72209.67.330
    YMC050.051050.000800.240770.004060.034150.000430.011210.00040243.235.85219.03.32216.52.66225.47.950
    YMC060.053670.001420.253670.006730.034280.000480.009990.00048357.258.62229.65.45217.32.99200.99.670
    YMC070.052490.001110.248310.005360.034310.000450.009440.00049306.647.17225.24.36217.52.83190.09.830
    YMC080.051190.000790.241430.004030.034210.000430.010910.00040249.635.28219.63.30216.82.67219.48.020
    YMC090.053130.000900.256560.004590.035030.000440.009860.00049334.237.78231.93.71221.92.77198.39.800
    YMC100.049260.001150.232700.005500.034260.000460.010220.00037160.353.57212.44.53217.22.86205.47.490
    YMC110.052080.000780.251460.004070.035020.000440.011270.00033288.833.88227.83.30221.92.72226.46.500
    YMC120.051170.000880.245000.004450.034730.000440.010690.00047248.339.30222.53.63220.12.76215.09.470
    YMC130.050590.000810.243470.004160.034910.000440.010570.00041222.336.66221.33.39221.22.73212.58.270
    YMC140.049670.000980.239910.004860.035040.000460.010520.00035179.545.20218.33.98222.02.84211.66.940
    YMC150.049990.000860.233750.004210.033920.000430.010780.00041194.339.54213.33.47215.02.69216.88.280
    YMC160.049760.001040.242880.005240.035360.000460.011020.00061183.648.18220.84.28224.02.87221.512.13
    YMC170.051580.000840.252160.004380.035460.000450.010990.00034266.637.12228.33.55224.72.79220.96.760
    YMC180.051630.001100.250900.005420.035250.000470.011040.00045269.048.02227.34.40223.32.91222.09.060
    HB010.053050.001890.257530.009060.035230.000540.011780.00074331.078.97232.77.31223.23.36236.714.74
    HB020.051560.000900.252140.004610.035490.000450.013670.00063266.039.57228.33.74224.82.80274.412.66
    HB030.070920.001130.356380.006000.036470.000460.022570.00091955.132.40309.54.49230.92.88451.118.00
    HB040.109410.001442.558720.037010.169720.002130.071670.001951789.623.741288.910.56101111.72139936.70
    HB050.050210.001190.248880.005990.035970.000480.014140.00062204.954.29225.74.87227.83.00283.812.31
    HB060.048560.000880.236080.004460.035290.000450.012840.00063126.442.18215.23.67223.62.80257.812.50
    HB070.050650.000810.247800.004220.035500.000440.013060.00040225.136.59224.83.43224.92.76262.27.900
    HB080.074710.001350.540700.010130.052520.000690.019540.001111060.736.06438.96.67330.04.20391.221.97
    HB090.051450.000800.254470.004220.035890.000450.012160.00042260.935.23230.23.42227.32.78244.38.290
    HB100.050570.000730.245860.003870.035280.000440.010970.00020221.133.19223.23.15223.52.71220.54.000
    HB110.051140.000700.240330.003620.034100.000420.010410.00037247.131.20218.72.96216.12.60209.47.410
    HB120.052460.000850.249710.004270.034530.000430.011370.00033305.736.25226.33.47218.82.69228.66.510
    HB130.050770.000830.244630.004240.034960.000440.009860.00031230.337.34222.23.46221.52.73198.26.220
    HB140.052690.000710.253010.003780.034830.000430.010940.00027315.530.47229.03.06220.72.66219.95.330
    HB150.115350.001360.592370.007950.037250.000450.022150.000401885.421.13472.45.07235.82.83442.77.840
    HB160.052580.000760.257210.004040.035480.000440.011760.00029310.732.50232.43.26224.72.73236.35.840
    HB170.052490.000810.249830.004150.034520.000430.011170.00029306.834.89226.43.37218.82.68224.65.720
    HB180.052370.000630.250430.003430.034680.000420.010390.00016301.527.08226.92.78219.82.61208.93.170
    HB190.051220.000710.244190.003730.034570.000420.011330.00033250.731.68221.83.04219.12.64227.76.540
    下载: 导出CSV
  • 邓晋福, 刘厚祥, 赵海玲, 等. 燕辽地区燕山期火成岩与造山模型[J]. 现代地质, 1996, 10(02): 137-148

    DENG Jinfu, LIU Houxiang, ZHAO Hailing et al. Yanshanian igneous rocks and orogeny model in Yanshan-Liaoning area[J]. Geoscience, 1996, 10(02): 137-148.

    冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带结构造山过程及动力学[M]. 西安: 西安地图出版社, 2002, 1−263
    冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质, 2003, 36(01): 1-10 doi: 10.3969/j.issn.1009-6248.2003.01.001

    FENG Yimin, CAO Xuanduo, ZHANG Erpeng, et al. Tectonic evolution framework and nature of the West Qinling Orogenic Belt[J]. Northwestern Geology, 2003, 36(01): 1-10. doi: 10.3969/j.issn.1009-6248.2003.01.001

    冯小明, 李注苍, 齐建宏. 西秦岭德乌鲁岩体成因及地质意义——来自岩石地球化学的证据[J]. 岩石矿物学杂志, 2021, 40(02): 347-362 doi: 10.3969/j.issn.1000-6524.2021.02.012

    FENG Xiaoming, LI Zhucang, QI Jianhong. The origin and geological significance of the Dewulu pluton in West Qinling: Evidence from petrogeochemistry[J]. Acta Petrologica ET Mineralogica, 2021, 40(02): 347-362. doi: 10.3969/j.issn.1000-6524.2021.02.012

    黄雄飞, 莫宣学, 喻学惠, 等. 西秦岭宕昌地区晚三叠世酸性火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2013, 29(11): 3968-3980

    HUANG Xiongfei, MO Xuanxue, YU Xuehui, et al. Zircon U-Pb chronology, geochemistry of the Late Triassic acid volcanic rocks in Tanchang area, West Qinling and their geological signicance[J]. Acta Petrologica Sinica, 2013, 29(11): 3968-3980.

    李永军, 李注苍, 丁仨平, 等. 西秦岭温泉花岗岩体岩石学特征及岩浆混合标志[J]. 地球科学与环境学报, 2004, 23(03): 7-12 doi: 10.3969/j.issn.1672-6561.2004.03.002

    LI Yongjun, LI Zhucang, DING Sanping, et al. Petrology fetures and magma mingling marks of the Wenquan granite from western Qinling[J]. Journal of Earth Sciences and Environment, 2004, 23(03): 7-12. doi: 10.3969/j.issn.1672-6561.2004.03.002

    金维浚, 张旗, 何登发, 等. 西秦岭埃达克岩的SHRIMP定年及其构造意义[J]. 岩石学报, 2005, 21(03): 959-966 doi: 10.3321/j.issn:1000-0569.2005.03.033

    JIN Weijun, ZHANG Qi, HE Dengfa, et al. SHRIMP dating of adakites in western Qinling and their implications[J]. Acta Petrologica Sinica, 2005, 21(03): 959-966. doi: 10.3321/j.issn:1000-0569.2005.03.033

    李曙光, 孙卫东, 张国伟, 等. 南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学——古生代洋盆及其闭合时代的证据[J]. 中国科学(D辑: 地球科学), 1996, 26(03): 223-230

    LI Shuguang, SUN Weidong, ZHANG Guowei, et al. Chronology and geochemistry of metamorphic rocks from Heigouxia vally in the Mian-Lue tectonic zone, South Qinling evidence for a Paleozoic ocean basin and its close time[J]. Science in China(Series D), 1996, 26(03): 223-230.

    柳小明, 高山, 袁洪林, 等. 193nmLA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析[J]. 岩石学报, 2002, 18(03): 408-418 doi: 10.3969/j.issn.1000-0569.2002.03.017

    LIU Xiaoming, GAO Shan, YUAN Honglin, et al. Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS[J]. Acta Petrologica Sinica, 2002, 18(03): 408-418. doi: 10.3969/j.issn.1000-0569.2002.03.017

    刘明强. 甘肃西秦岭舟曲憨班花岗岩体的单颗粒锆石U-Pb年龄及地质意义[J]. 地质科学, 2012, 47(03): 899-907 doi: 10.3969/j.issn.0563-5020.2012.03.023

    LIU Mingqiang. Single-grain zircon U-Pb ages and geological significance of the Hanban granite from Zhouqu(Gansu)in[J]. Earth Science, 2012, 47(03): 899-907. doi: 10.3969/j.issn.0563-5020.2012.03.023

    穆可斌, 裴先治, 李瑞保, 等. 南秦岭白龙江群中花岗岩脉群年代学、地球化学特征及地质意义[J]. 西北地质, 2019, 52(03): 111-135 doi: 10.19751/j.cnki.61-1149/p.2019.03.010

    MU Kebin, PEI Xianzhi, LI Ruibao, et al. Geochronology, geochemistry and geological significance of the granite veins in the Bailongjiang Group, South Qinling[J]. Northwestern Geology, 2019, 52(03): 111-135. doi: 10.19751/j.cnki.61-1149/p.2019.03.010

    裴先治, 张国伟, 赖绍聪, 等. 西秦岭南缘勉略构造带主要地质特征[J]. 地质通报, 2002, 21(8-9): 486-494

    PEI Xianzhi, ZHANG Guowei, LAI Shaocong, et al. Main geological feature of the Mianlue tectonic belt on the southern maigin of the West Qinling[J]. Geological Bulletin of China, 2002, 21(8-9): 486-494

    邱庆伦, 龚全胜, 卢书伟, 等. 甘肃夏河地区印支期埃达克岩的厘定及其意义[J]. 甘肃地质, 2008, 17(03): 6-12

    QIU Qinglun, GUN Quansheng, LU Shuwei, et al. Geochemical characteristics and geological significance of adakitic granitoids in Xiahe county of Gansu Province[J]. Gansu Geology, 2008, 17(03): 6-12.

    王晓霞, 王涛, 张成立. 秦岭造山带花岗质岩浆作用与造山带演化[J]. 中国科学: 地球科学, 2015, 45(08): 1109-1125

    WANG Xiaoxia, WANG Tao, ZHANG Chengli. Granitic magmatism and orogenic belt evolution in Qinling Orogenic Belt[J]. Science China: Earth Sciences, 2015, 45(08): 1109-1125.

    韦萍, 莫宣学, 喻学惠, 等. 西秦岭夏河花岗岩的地球化学、年代学及地质意义[J]. 岩石学报, 2013, 29(11): 3981-3992

    WEI Ping, MO Xuanxue, YU Xuehui et al. Geochemistry, chronology and geological significance of the granitoids in Xiahe, West Qinling[J]. Acta Petrologica Sinica, 2013, 29(11): 3981-3992.

    肖庆辉, 邓晋福, 马大铨, 等. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002, 1– 294.
    徐多勋, 杨拴海, 李瑞保, 等. 西秦岭西段塔洞花岗闪长岩体年代学、地球化学特征及其地质意义[J]. 地球科学与环境学报, 2015, 37(03): 22-33 doi: 10.3969/j.issn.1672-6561.2015.03.005

    XU Duoxun, YANG Shuanhai, LI Ruibao, et al. Geochronological, geochemical characteristics and geological significance of Tadong granodiorite pluton in the west section of West Qinling[J]. Journal of Earth Sciences and Evironment, 2015, 37(03): 22-33. doi: 10.3969/j.issn.1672-6561.2015.03.005

    徐学义, 陈隽璐, 高婷, 等. 西秦岭北缘花岗质岩浆作用及构造演化[J]. 岩石学报, 2014, 30(02): 371-389

    XU Xueyi, CHEN Juanlu, GAO Ting, et al. Granitoid magmatism and tectonic evolution in northern edge of the Western Qinling terrane, NW China[J]. Acta Petrologica Sinica, 2014, 30(02): 371-389.

    张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(03): 304-316 doi: 10.3969/j.issn.1006-7493.2008.03.003

    ZHANG Chenli, WANG Tao, WANG Xiaoxia, et al. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling Orogenic Belt[J]. Geological Journal of China Universities, 2008, 14(03): 304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003

    张国伟, 董云鹏, 赖绍聪, 等. 秦岭-大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学(D辑: 地球科学), 2003, 33(12): 1121-1135

    ZHANG Guowei, DONG Yunpeng, LAI Shaocun, et al. Mianlue Orogenic and Suture in the southern margin of Qinling-Dabie Orogenic Belt[J]. Science in China(Series D), 2003, 33(12): 1121-1135.

    张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001, 1–806
    张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭—松潘大陆构造结[J]. 地学前缘, 2004, 11(03): 23-32 doi: 10.3321/j.issn:1005-2321.2004.03.004

    ZHANG Guowei, GUO Anlin, YAO Anping. Western Qinling-Songpan continental tectonic node in China’s continental tectonics[J]. Earth Science Frontiers, 2004, 11(03): 23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004

    张宏飞, 靳兰兰, 张利, 等. 西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J]. 中国科学(D辑: 地球科学), 2005, (10): 10-22

    ZHANG Hongfei, JIN Lanlan, ZHANG Li et al. Geochemistry of granitoids and limitation of Pb-Sr-Nd isotope composition on basement properties and tectonic properties in the Western Qinling Mountains[J]. Science in China(Series D), 2005, (10): 10-22.

    张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(09): 2249-2269 doi: 10.3321/j.issn:1000-0569.2006.09.001

    ZHANG Qi, WANG Yan, LI Chengdong, et al. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 2006, 22(09): 2249-2269. doi: 10.3321/j.issn:1000-0569.2006.09.001

    张旗, 殷先明, 殷勇, 等. 西秦岭与埃达克岩和喜马拉雅型花岗岩有关的金铜成矿及找矿问题[J]. 岩石学报, 2009, 25(12): 3103-3122

    ZHANG Qi, YIN Xianming, YIN Yong, et al. Issues on metallogenesis and prospecting of gold and copper deposits related to adakite and Himalayan type granite in west Qinling[J]. Acta Petrologica Sinica, 2009, 25(12): 3103-3122.

    张旗, 李承东. 花岗岩: 地球动力学意义[M]. 北京: 海洋出版社, 2012, 1–268.
    郑永飞, 龚冰, 赵子福, 等. 大别-苏鲁造山带超高压变质岩原岩性质: 锆石氧同位素和U-Pb年龄证据[J]. 科学通报, 2003, 48(2): 110-119

    ZHENG Yongfei, GONG Bing, ZHAO Zifu,et al. Protolith properties of ultrahigh pressure metamorphic rocks in the Dabie-Sulu orogenic belt: evidence from zircon oxygen isotopes and U-Pb age[J]. Chinese Science Bulletin, 2003, 48(2): 110-119.

    Andersen T. Correction of common lead in U–Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X

    Beard J S, Lofgern G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365

    Cao Xiaofeng, LvXinbiao, Yao Shuzhen, et al. LA–ICP–MS U–Pb zircon geochronology, geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling, China[J]. Ore Geology Reviews, 2011, 43(1): 120-131. doi: 10.1016/j.oregeorev.2010.03.004

    Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1-2): 1-26. doi: 10.1017/S0263593300007720

    David K, Schiano P, Alleger C J. Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes[J]. Earth and Planetary Science Letters, 2000, 178(3-4): 285-301. doi: 10.1016/S0012-821X(00)00088-1

    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    Dong Yunpeng, Zhang Guowei, Neubaue R F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Science, 2011, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002

    Dong Yunpeng, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009

    Dong Yunoeng, SUN Shengsi, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131-194. doi: 10.1016/j.gr.2021.03.006

    DONG Yunpeng, ZHANG Xiaoning, LIU Xiaomin, et al. Propagation tectonics and multiple accretionary processes of the Qinling Orogen[J]. Journal of Asian Earth Sciences, 2015, 104: 84-98.

    Douce A E P, Mccarthy T C. Melting of crustal rocks during continental collision and subduction. Hacher B R, Liu J G. When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks [M]. Springer, Dordrecht, 1998: 27-55.

    Jiang Yaohui, Jin Guodong, Liao Shiyong, et al. Geochemical and Sr–Nd–Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent–continent collision[J]. Lithos, 2010, 117(1-4): 183-197. doi: 10.1016/j.lithos.2010.02.014

    Johannes W, Holtz F. Petrogenesis and experimental petrology of granitic rocks[M]. Springer, Science & Business Media, 2012.

    Jochum K P, Pfander J, Snow J E, et al. Nb/Ta in mantle and crust[J]. Eos Transactions American Geophysical Union, 1997, 78, 804.

    Kroner A, Zhang Guowei, Sun Y. Granulites in the Tongbai area, Qinling belt, China: geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia[J]. Tectonics, 1993, 12(1): 245-255. doi: 10.1029/92TC01788

    Li Nuo, Chen Yanjing, Santosh M, et al. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: implication for termination of the northernmost paleo-Tethys[J]. Gondwana Research, 2015, 27(1): 244-257. doi: 10.1016/j.gr.2013.09.017

    Li Xiaowei, Mo Xuanxue, Huang Xiongfei, et al. U–Pb zircon geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling: Petrogenesis and geodynamic implications[J]. Journal of Asian Earth Sciences, 2015, 97: 38-50. doi: 10.1016/j.jseaes.2014.10.017

    Luo Biji, Zhang Hongfei, Xu Wangchun, et al. The Middle Triassic Meiwu Batholith, West Qinling, Central China: implications for the evolution of compositional diversity in a composite Batholith[J]. Journal of Petrology, 2015, 56(6): 1139-1172. doi: 10.1093/petrology/egv032

    Mattauer M, Matte P, Malavieille J, et al. Tectonics of the Qinling belt: build-up and evolution of eastern Asia[J]. Nature, 1985, 317(6037): 496-500. doi: 10.1038/317496a0

    Meng Qingren, Zhang Guowei. Timing of collision of the North and South China blocks: controversy and reconciliation[J]. Geology, 1999, 27(2): 123-126. doi: 10.1130/0091-7613(1999)027<0123:TOCOTN>2.3.CO;2

    Niu Yaoling, O'hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4).

    Patino D A E, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4): 689-710. doi: 10.1093/petroj/39.4.689

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    Pfander J A, Munker C, Stracke A, et al. Nb/Ta and Zr/Hf in ocean island basalts—implications for crust–mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letters, 2007, 254(1-2): 158-172. doi: 10.1016/j.jpgl.2006.11.027

    Qin Jiangfeng, Lai Shaocong, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China)[J]. Lithos, 2009, 112(3-4): 259-276. doi: 10.1016/j.lithos.2009.03.007

    Qin Jiangfeng, Lai Shaocong, Grapes R, et al. Origin of LateTriassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China: Implications for subduction of continental crust[J]. Lithos, 2010, 120(3-4): 347-367. doi: 10.1016/j.lithos.2010.08.022

    Rudnick R L, Gao Shan, Holland H D, et al. Composition of the continental crust[J]. The crust, 2003, 3: 1-64.

    Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0

    Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2005, 148(6): 635-661. doi: 10.1007/s00410-004-0632-9

    SUN S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sun Weidong, Li Shuguang, Chen Yadong, et al. Timing of synorogenic granitoids in the South Qinling, central China: Constraints on the evolution of the Qinling-Dabie orogenic belt[J]. The Journal of Geology, 2002, 110(4): 457-468. doi: 10.1086/340632

    Wang Xiaoxia, Wang Tao, Zhang Chengli. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129-151. doi: 10.1016/j.jseaes.2012.11.037

    Wu Yuanbao, Zheng Yongfei. Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007

    Xiong Xiaolin, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis[J]. Chemical Geology, 2005, 218(3-4): 339-359. doi: 10.1016/j.chemgeo.2005.01.014

    Xiong Xiaolin, Zhu Laiming, Zhang Guowei, et al. Geology and geochemistry of the Triassic Wenquan Mo deposit and Mo-mineralized granite in the Western Qinling Orogen, China[J]. Gondwana Research, 2016, 30: 159-178. doi: 10.1016/j.gr.2015.09.013

    Yin Q, Jagote, Kroner A. Precambrian(?)blue-schist-bearing ecologite belt in central China[J]. Terra Abstract, 1991, 3: 85-86.

    Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U‐Pb age and trace element determinations of zircon by laser ablation‐inductively coupled plasma‐mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    Zhang Hongfei, Jin Lanlan, Zhang Li, et al. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity[J]. Science in China Series D: Earth Sciences, 2007, 50(2): 184-196. doi: 10.1007/s11430-007-2015-3

    Zhu Laiming, Zhang Guowei, Chen Yanjing, et al. Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit[J]. Ore Geology Reviews, 2011, 39(1-2): 46-62. doi: 10.1016/j.oregeorev.2010.10.001

    Zhu Laiming, Zhang Guowei, Yang Tao, et al. Geochronology, petrogenesis and tectonic implications of the Zhongchuan granitic pluton in the Western Qinling metallogenic belt, China[J]. Geological Journal, 2013, 48(4): 310-334. doi: 10.1002/gj.2444

图(10)  /  表(2)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  26
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 修回日期:  2023-09-20
  • 网络出版日期:  2023-02-13
  • 刊出日期:  2024-10-19

目录

/

返回文章
返回