ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义

张梓尧, 张义虎, 徐磊, 王怀涛

张梓尧,张义虎,徐磊,等. 西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义[J]. 西北地质,2024,57(5):232−247. doi: 10.12401/j.nwg.2023013
引用本文: 张梓尧,张义虎,徐磊,等. 西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义[J]. 西北地质,2024,57(5):232−247. doi: 10.12401/j.nwg.2023013
ZHANG Ziyao,ZHANG Yihu,XU Lei,et al. Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling[J]. Northwestern Geology,2024,57(5):232−247. doi: 10.12401/j.nwg.2023013
Citation: ZHANG Ziyao,ZHANG Yihu,XU Lei,et al. Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling[J]. Northwestern Geology,2024,57(5):232−247. doi: 10.12401/j.nwg.2023013

西秦岭宕昌–舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义

基金项目: 甘肃省级基础地质调查项目“甘肃省肃北县大一明镇–白头山地区1:5万区域地质矿产调查”(甘资字〔2023〕37号)和中国地质调查局项目“东天山昌吉–双沟山地区区域地质调查”(DD20190065)联合资助。
详细信息
    作者简介:

    张梓尧(1990−),女,讲师,研究方向为矿物学、岩石学与矿床学和科技类文献研究与翻译。E−mail:samanthas@qq.com

    通讯作者:

    徐磊(1986−),男,高级工程师,主要从事区域地质调查和矿产勘探研究工作。E−mail:397315452@qq.com

  • 中图分类号: P588.121;P597.3

Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling

  • 摘要:

    西秦岭造山带位于秦岭–大别造山带西段,其印支期花岗岩研究对认识中央造山带的构造演化具有十分重要的意义。笔者选择西秦岭宕昌–舟曲地区的燕麦层与憨班花岗岩体进行了岩相学、LA-ICP-MS锆石U-Pb年代学、地球化学的研究。结果表明,燕麦层的二长闪长岩、憨班的花岗闪长岩,具有高Al2O3、MgO,Mg#<45,富钠贫钾的特征,主体为亚碱性–碱性系列,准铝质–弱过铝质I型花岗岩,轻稀土高度富集,弱Eu负异常,富集Th、K、U等LILE;HFSE中强烈亏损Nb、Ta、P和Ti元素。锆石U-Pb同位素测年结果显示燕麦层与憨班岩体分别形成于(219.4±1.5)Ma和(222.1±1.9)Ma,其侵位时间为晚三叠世中期。综合地质、地球化学和年代学特征,研究区花岗岩体为后碰撞环境,可能形成于增厚地壳下部岩石圈地幔拆沉、软流圈上涌加热下地壳部分熔融的环境下。

    Abstract:

    The west Qinling orogenic belt is located in the west of Qinling-Dabie orogenic belt. The study of granites is of great significance for understanding the tectonic evolution of the central orogenic belt. In this paper, Petrography, LA-ICP-MS zircon U-Pb chronology and geochemistry of the Yanmaiceng and Hanban granitoids in the Tanchang-Zhouqu area of the Western Qinling Mountains were studied. The results show that the Yanmaiceng monzodiorite and HanBan granodiorite are characterized by high Al2O3, MgO, Mg# < 45, rich in Na and poor in K. The main –granites are subalkaline–alkaline series, quasi-aluminous~weakly peraluminous I-type granites, which are highly enriched in LREE, weak negative Eu anomaly, and enriched in LILE such as Th, K, U. The elements of Nb, Ta, P and Ti in HFSE were strongly depleted. Zircon U-Pb isotopic dating shows that the Yanmaiceng and Hanban granitoid were formed at (219.4±1.5) Ma and (222.1±1.9) Ma, respectively, and emplaced in the middle of Late Triassic. According to the geological, geochemical and chronological characteristics, the granites in the study area are in a post-collision environment, which may have been formed in the crust thickening, and the lower lithospheric mantle detachment occurred, resulting in the upwelling and thickening of the asthenosphere and the partial melting of the lower crust.

  • 秦岭造山带作为中国大陆中央造山带的重要组成部分,是由华北与华南板块自新元古代以来经过长期复杂的汇聚作用形成的一条复合型造山带(Mattauer et al.,1985Kroner et al.,1993Meng et al.,1999张国伟等,1996,2001裴先治等,2002Dong et al.,201120152016Wu et al.,2013)。秦岭造山带东连大别–苏鲁超高压变质岩带,西延昆仑、祁连造山带,夹持于华南、祁连、东昆仑等多个块体之间,形成了“三块夹两缝”的构造格局(Meng et al.,1999张国伟等,20012004冯益民等,2003)。商丹缝合带位于北部,是古生代秦岭–大别微地块与华北板块碰撞产物(张国伟等,2001),而位于南部的勉略缝合带是勉略洋盆在三叠纪闭合,最终扬子板块与南秦岭–华北克拉通碰撞产物(Dong et al.,20112021);张国伟等(2001)提出西秦岭–松潘大陆构造结来解决其复杂的演化历史和动力学机制。

    西秦岭造山带发育了大量的印支期花岗岩(Sun et al.,2002张成立等,2008Qin et al.,2009Zhu et al.,20112013Wang et al.,2013Xiong et al.,2016),形成于250~225 Ma以及225~200 Ma两个阶段,大量研究(张宏飞等,2005Cao et al.,2011Li et al.,2015Luo et al.,2015)认为西秦岭印支期花岗岩总体化学成分偏基性,属于准铝质–过铝质、高钾–钾玄岩系列I型花岗岩;且发育大小不一的暗色包体,代表一定程度的岩浆混合(李永军,2004Qin et al.,2010Li et al.,2015王晓霞等,2015)。但是西秦岭印支期花岗岩形成的构造环境依旧有不同的观点,包括①形成于后碰撞环境(张成立等,2008徐学义等,2014)。②印支早期花岗岩形成于活动陆缘下地壳的部分熔融(黄雄飞等,2013),而印支晚期花岗岩形成于华南与华北板块的全面碰撞过程(Qin et al.,2009Cao et al.,2011Zhu et al.,2011)。③形成于洋盆消减环境(Jiang et al.,2010)。④形成于活动陆缘,晚三叠世末期洋盆消失并导致随后的全面陆陆碰撞(LI et al.,2015)。但由于西秦岭缺少与碰撞有关的蛇绿岩或高压变质带,也没有古老基底出露,对于这些花岗岩的成因、来源与构造属性依旧存在争议。金维浚等(2005)首次在西秦岭发现了238~245 Ma埃达克岩,并将该埃达克岩形成环境解释为板块消减的活动陆缘环境,此环境下增厚下地壳熔融作用有关;近些年也不断有西秦岭210~250 Ma埃达克岩的发现(邱庆伦等,2008张旗等,2009Qin et al.,2010徐学义等,2014冯小明等,2021),揭示西秦岭在印支期曾经存在一个大于50 km的增厚地壳。埃达克岩地球化学特征的花岗岩研究对于俯冲–碰撞体系的制约、造山带深部物质循环、造山带构造动力学过程等具有十分重要的科学意义,但关于西秦岭埃达克岩的研究工作依旧相对薄弱。笔者对甘肃宕昌–舟曲地区新发现的埃达克质花岗岩体进行岩相学、岩石地球化学以及高精度锆石U-Pb年代学研究,探讨该区花岗岩的性质与成因,为西秦岭造山带在晚三叠世的岩石成因、岩浆源区以及构造演化提供证据。

    西秦岭造山带北接祁连地块,南邻巴颜喀拉–松潘甘孜地块,西连东昆仑与柴达木地块,东延东秦岭佛坪穹窿(图1)。研究区位于西秦岭造山带东段(图1b),主要出露一套志留纪沉积于深海盆地环境下的深色细碎屑岩和碳酸盐岩,以及一套泥盆纪—三叠纪台地相碳酸盐岩夹碎屑岩建造(图1c图1d)。研究区内印支期花岗岩也十分发育,总体呈椭圆状、树枝状近EW向展布。

    图  1  西秦岭造山带构造划分图及研究区地质图
    a.西秦岭构造简图据冯益民等(2002)修改;b.西秦岭印支期岩浆岩分布图据冯益民等(2002)修改;c.茹树沟和燕麦层花岗岩岩地质简图;d.憨班花岗岩地质简图
    Figure  1.  General tectonic map of West Qinling area and geological map of study area

    笔者研究花岗岩出露于西秦岭宕昌、舟曲地区的燕麦层、憨班与茹树沟。燕麦层岩体分布于宕昌县上漳湾村池地山~燕麦层一带(图1),总体近EW向椭圆状展布,西侧分叉,长约为3.9 km,宽约为1.8 km,出露面积约为4.29 km2。岩体侵入三叠纪大河坝组(Td)之中,接触证据主要有烘烤边、冷凝边和岩石破碎蚀变。岩体含有暗色包体,主包体要成分为英云闪长岩,包体呈椭圆状,大小不一,约为1 cm×2 cm~5 cm×10 cm。岩体主体为二长闪长岩与中细粒花岗闪长岩,二长闪长岩位于岩体西侧,出露面积约为3.37 km2,围岩强烈角岩化。岩石主要由钾长石(35%)、斜长石(32%),黑石英(28%)、云母(3%),角闪石(2%)组成,副矿物有磁铁矿、榍石和磷灰石等。

    憨班岩体位于舟曲县憨班乡南东方向约3.5 km处(图2)。岩体呈椭球状岩株出露,长轴为4.7 km,短轴为3.3 km,面积约为13.2 km2。岩体侵入志留系舟曲组(Sz)细碎屑岩夹粉砂质板岩中,构造位置为南秦岭陆缘逆冲带白龙江复背斜北翼。接触围岩变质为黑云母角岩、黑云母石英角岩、黑云母堇青石角岩,宽为5~150 m;岩体内部含有暗灰色-灰黑色闪长质包体,包体大小为2~15 cm,宽为1~4 cm,均呈NW向展布;同时发育黑云母、角闪石、石英等单矿物析离体,析离体大小为5 mm,形态呈豆荚状,眼球状;包体、析离体与母岩间界线平直清楚。岩体主要由花岗闪长岩组成:中-粗粒似斑状花岗闪长岩侵入体,由斜长石(41%)、石英(20%)、黑云母(10%)、钾长石(8%)等组成。斜长石矿物可见环带结构,岩石中含有粒状榍石、小柱粒状磷灰石,局部分布小团粒状金属矿物。含斑中–细粒花岗闪长岩侵入体,主要由斜长石(50%)、石英(25%)和钾长石(18%)组成,暗色矿物含量约6%,主要为黑云母;斑晶成分为斜长石,含量为1%~5%,大小为0.2 cm×0.5 cm~1 cm×5 cm。个别斜长石隐约见环带,零星分布针柱状磷灰石。

    图  2  燕麦层与憨班花岗岩照片
    a.花岗闪长岩野外照片;b.中粗粒似斑状花岗闪长岩标本;c.燕麦层二长闪长岩正交偏光片;d.憨班中细粒花岗闪长岩正交偏光片
    Figure  2.  Field photo and microscopic features of the Yanmaiceng and Hanban granite

    用于锆石U-Pb定年的样品为新鲜的二长闪长岩与花岗闪长岩,锆石分选在河北省廊坊市地质服务有限公司完成,首先通过电磁分离方法进一步去除磁性杂质,之后通过重液分选富集锆石颗粒,在双目镜下挑选出无包裹体、透明度高、无裂纹和晶型完好的锆石颗粒在双面胶上定向排列,使用环氧树脂固化,抛光使锆石暴露;之后,采集阴极发光图像(CL),用HNO3清洗并制靶。同位素年龄样测定由南京大学国家重点实验室采用LA-ICP-MS方法完成,测试结果用Glitter软件进行处理,并采用 Andersen(2002)的方法校正同位素比值,最终的年龄计算和图表绘制使用Isoplot3.23v软件,每一个分析点的同位素比值和同位素年龄的误差(标准偏差)为1σ,206Pb/238U加权平均年龄按 95%的置信度给出,详细处理过程参考文献Yuan 等(2004)

    对两件二长闪长岩和两件花岗闪长岩开展全岩主量、微量元素分析,采样均选取新鲜无蚀变岩石。样品分析在国土资源部武汉岩矿测试中心完成。主量元素采用型号ZSX Primus II X射线荧光光谱仪进行分析,微量及稀土元素分析采用型号Agilent 7500电感耦合等离子质谱完成,样品采用酸溶法。主量元素分析误差<5%;微量元素和稀土元素检测限<5×109,相对偏差<5%。分析方法见柳小明等(2002)

    二长闪长岩(YMC)与花岗闪长岩(HB)中的锆石多呈无色透明,半自形-自形柱状,锆石晶体长80~200 μm。阴极发光图像表明多数锆石内部发育清晰震荡环带结构,属于典型岩浆锆石(图3)。对挑选的锆石进行LA-ICP-MS U-Pb同位素测试,将测试得到的数据点进行普通铅校正后,获得有效点33个,其中燕麦层15个、憨班18个(表1)。去除古老继承锆石,其他测试点均集中于一致曲线,表明测试的锆石几乎没有U、Pb同位素的后期改变,数据置信度较高。燕麦层206Pb/238U表面年龄为215~224.7 Ma(表1),206Pb/238U表面年龄加权平均值为(219.4±1.5)Ma(MSWD=1.2<2);憨班206Pb/238U表面年龄为216.1~227.8 Ma(表1),206Pb/238U表面年龄加权平均值为(222.1±1.9)Ma(MSWD=1.5),加权平均值的误差与单个分析误差基本一致,数据点在谐和图(剔除4个年龄偏老的测点)内成群分布(图4),代表了岩浆结晶锆石的年龄,表明燕麦层与憨班岩体形成于晚三叠世中期。

    图  3  憨班与燕麦层花岗岩锆石CL图像
    Figure  3.  Cathodoluminescence images of selected zircon grains from the Hanban and Yanmaiceng granite
    图  4  憨班(a)与燕麦层(b)锆石U-Pb年龄谐和图
    Figure  4.  (a) Concordia diagram showing LA-ICP-MS zircon U-Pb dating for the Hanban and (b) Yanmaiceng granite

    燕麦层二长闪长岩样品低SiO2(含量平均为54.43%)、TiO2=0.86%~0.91%(岛弧玄武岩平均为0.8),高Al2O3(平均为18.15%),MgO含量3.35%~3.48%,Mg#平均为41.44,Na2O/K2O平均0.87,A/CNK=0.85~0.87,里特曼指数为4.01(表2)。在TAS图(图5a)中,数据点位于二长闪长岩区域;在硅钾图(图5b)中,数据点位于钾玄岩系列,属准铝质碱性二长闪长岩。燕麦层二长闪长岩的稀土总量(ΣREE)变化范围为238.82×10−6~262.02×10−6,平均为250.42×10−6;轻、重稀土比值(LREE/HREE)为16.58~16.97,平均为13.89;轻重稀土分馏明显,轻稀土强烈富集,重稀土趋势平缓;(La/Yb)N值为19.74~20.14,平均为19.99;具弱负Eu异常,δEu为0.85~0.88,平均为0.87(表1)。稀土模式配分曲线基本一致,右倾特征明显。微量元素中富集Th、U和K等大离子亲石元素(LILE),亏损Nb、Ta、P和Ti等高场强元素(HFSE),Rb/Sr值为0.03~0.05,高Sr、低Y,Sr/Y值为42.57~42.92,Nb/Ta值为16.43~17.76。

    表  2  花岗岩的主量 (%)、稀土和微量元素(10−6)
    Table  2.  Major (%) and trace elements (10−6) data for the granite in Tanchang
    元素YMC1YMC2HB1HB2HB3HB4RSG1RSG2RSG3
    SiO253.9654.9070.9872.9973.2067.7858.9460.4862.92
    Al2O318.5917.714.1914.4114.7515.5015.8415.6515.40
    Fe2O31.542.961.320.280.200.611.511.360.63
    FeO6.405.141.851.670.782.025.124.504.93
    CaO6.766.381.741.231.512.565.003.823.11
    MgO3.353.480.800.250.251.103.342.842.27
    K2O3.493.754.064.574.264.794.504.724.79
    Na2O3.193.123.993.973.924.132.883.283.13
    TiO20.8630.9100.3360.1290.1200.4300.7960.6910.591
    P2O50.4090.3360.1310.0380.0530.2000.2930.2360.188
    MnO0.1190.1240.0570.0270.0210.0590.1140.1030.089
    LOI0.240.250.070.060.200.200.791.481.09
    Cr36.0040.5062.708.712.9725.9087.8049.0035.80
    Ni14.8014.9011.502.5722.1022.0012.2016.2010.20
    Co26.1027.005.541.223.455.1316.7017.0015.30
    Li35.931.8166.068.995.670.539.531.841.0
    Rb23.737.5193.0288.0191.0180.069.141.831.0
    Cs4.433.9624.101.8419.8010.7010.206.178.95
    Sr794779292198224912557472333
    Ba868751724768846139085311821045
    V154.0186.041.027.25.346.0110.0122.0110.0
    Sc9.8910.602.290.922.174.658.248.506.83
    Nb18.415.127.648.710.419.326.420.420.9
    Ta1.120.852.361.071.351.311.711.461.67
    Zr208.0264.0302.01270.084.9282.0350.0251.0215.0
    Hf5.116.028.3828.102.716.438.606.465.91
    Be2.442.2410.308.637.086.913.713.043.04
    U5.153.624.5629.603.5010.409.266.778.43
    Th14.6012.8017.7049.908.6326.3328.1021.1020.80
    La54.348.657.617.617.180.876.257.349.0
    Ce103.091.4106.033.232.6152.0142.0106.088.0
    Pr11.2010.2010.803.623.7516.9014.0010.808.95
    Nd47.6043.9043.5015.0013.2059.1055.2043.1035.50
    Sm8.287.847.323.182.9810.009.147.236.08
    Eu2.172.001.580.690.732.381.861.571.44
    Gd6.626.275.732.542.367.387.606.055.07
    Tb0.860.840.680.330.300.910.980.780.67
    Dy4.254.222.971.431.464.325.003.943.37
    Ho0.790.780.500.210.240.760.960.740.64
    Er2.102.101.290.520.551.912.662.041.75
    Tm0.300.300.180.070.070.250.400.300.27
    Yb1.781.791.030.360.431.702.401.821.57
    Lu0.270.280.160.060.060.250.370.290.25
    Y18.5018.3012.205.446.9621.6023.5018.2015.40
    ΣREE262.02238.82251.5484.2582.79352.60342.27260.16217.96
    LREE226.55203.94226.8073.2970.36313.56298.40226.00188.97
    ΣY35.4734.8824.7410.9612.4339.0443.8734.1628.99
    (La/Yb)N20.1417.9436.7132.1428.5334.0920.9520.7920.6
    δEu0.880.850.730.730.810.810.670.710.78
    δCe0.940.920.950.930.950.960.960.950.93
     注:样品HB3和HB4数据引自刘明强,2012
    下载: 导出CSV 
    | 显示表格
    图  5  宕昌花岗岩分类图解(部分数据引自刘明强,2012
    a.全碱-硅图解;b.K2O-SiO2图解;c.A/NK-A/NCK图解,虚线是I型与S型花岗岩的分界;d.K2O-Na2O图解
    Figure  5.  TAS, K2O-SiO2, A/NK-A/CNK and K2O-Na2O diagrams of Tanchang granite

    憨班花岗闪长岩样品高Si(SiO2含量平均71.24%)和Al(Al2O3含量14.19%~15.5%),低Mg(MgO含量平均为0.60%)、Fe(Fe2O3T含量平均为2.36%)和Ca(CaO含量平均为1.76%),TiO2含量平均为0.25%,Mg#平均为29.91,Na2O+K2O平均为8.42%,Na2O/K2O平均为1.10,A/CNK=0.93~1.07,里特曼指数平均为2.54。在TAS图(图5a)中,一件样品落入石英二长岩区域,其他样品全部位于花岗岩区域,为准铝质-过铝质高钾钙碱性花岗岩。主量元素的岩石地球化学特征与埃达克岩相似。憨班花岗闪长岩的稀土总量(ΣREE)变化范围为82.79×10−6~352.6×10−6,平均为192.29×10−6;轻、重稀土比值(LREE/HREE)为12.86~18.09,平均为15.55,明显发生轻重稀土的分馏;(La/Yb)N值为28.53~36.71,平均为32.87;具弱负铕异常,δEu为0.73~0.81,平均为0.77。稀土模式配分曲线基本一致,右倾特征明显。微量元素中富集Th、U和K等LILE元素,亏损Nb、Ta、P和Ti等HFSE元素,Rb/Sr平均为0.79,Sr/Y值为23.93~42.22(平均为33.68),Nb/Ta值为7.70~45.51(平均为19.90)。

    茹树沟花岗岩SiO2含量为58.94%~62.92%,Al2O3含量为15.4%~15.84%,Fe2O3T含量平均为7.58%,CaO含量平均为3.98%,TiO2含量平均为0.69%(大陆地壳平均为0.69%),Mg#值平均为42.72,Na2O+K2O值为7.38%~8%,富K、贫Na(图5d),Na2O/K2O值平均为0.66,A/CNK=0.84~0.96,里特曼指数平均为3.41。在TAS图(图5a)中总体位于二长岩至石英二长岩区域,硅钾图(图5b)中投点位于钾玄岩系列。A/NK-A/NCK图解(图5c)中投点位于准铝质区域,主量元素的地球化学特征类似于埃达克质岩石。茹树沟花岗岩的稀土总量(ΣREE)为217.96×10−6~342.27×10−6,平均为273.46×10−6;轻、重稀土比值(LREE/HREE)为13.59~20.37,平均为14.24,轻重稀土分馏明显,与总体趋势一致;(La/Yb)N值为20.60~20.79,平均为20.78;具弱负Eu异常,δEu值为0.67~0.78,平均为0.72。稀土模式配分曲线基本一致,右倾特征明显。微量元素中富集Th、U和K等LILE元素,亏损Nb、Ta、P和Ti等HFSE元素,Rb/Sr值平均为0.10,Sr/Y值为21.62~25.93,平均为23.75,Nb/Ta值为7.70~45.51(平均为19.90)。

    表  1  宕昌花岗岩的LA-ICP-MS锆石U-Pb同位素分析结果
    Table  1.  LA-ICP-MS zircon U-Pb analytic for granite in Tanchang
    分析号207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th
    YMC010.052500.001280.247960.006090.034210.000460.011440.00057307.254.31224.94.95216.92.89229.911.45
    YMC020.054070.001320.253280.006250.033930.000460.010820.00052373.754.04229.25.06215.12.88217.610.40
    YMC030.054320.000870.261640.004460.034890.000440.013560.00049384.235.39236.03.59221.12.72272.39.730
    YMC040.051140.000920.242340.004560.034320.000440.010420.00037247.340.87220.33.73217.52.72209.67.330
    YMC050.051050.000800.240770.004060.034150.000430.011210.00040243.235.85219.03.32216.52.66225.47.950
    YMC060.053670.001420.253670.006730.034280.000480.009990.00048357.258.62229.65.45217.32.99200.99.670
    YMC070.052490.001110.248310.005360.034310.000450.009440.00049306.647.17225.24.36217.52.83190.09.830
    YMC080.051190.000790.241430.004030.034210.000430.010910.00040249.635.28219.63.30216.82.67219.48.020
    YMC090.053130.000900.256560.004590.035030.000440.009860.00049334.237.78231.93.71221.92.77198.39.800
    YMC100.049260.001150.232700.005500.034260.000460.010220.00037160.353.57212.44.53217.22.86205.47.490
    YMC110.052080.000780.251460.004070.035020.000440.011270.00033288.833.88227.83.30221.92.72226.46.500
    YMC120.051170.000880.245000.004450.034730.000440.010690.00047248.339.30222.53.63220.12.76215.09.470
    YMC130.050590.000810.243470.004160.034910.000440.010570.00041222.336.66221.33.39221.22.73212.58.270
    YMC140.049670.000980.239910.004860.035040.000460.010520.00035179.545.20218.33.98222.02.84211.66.940
    YMC150.049990.000860.233750.004210.033920.000430.010780.00041194.339.54213.33.47215.02.69216.88.280
    YMC160.049760.001040.242880.005240.035360.000460.011020.00061183.648.18220.84.28224.02.87221.512.13
    YMC170.051580.000840.252160.004380.035460.000450.010990.00034266.637.12228.33.55224.72.79220.96.760
    YMC180.051630.001100.250900.005420.035250.000470.011040.00045269.048.02227.34.40223.32.91222.09.060
    HB010.053050.001890.257530.009060.035230.000540.011780.00074331.078.97232.77.31223.23.36236.714.74
    HB020.051560.000900.252140.004610.035490.000450.013670.00063266.039.57228.33.74224.82.80274.412.66
    HB030.070920.001130.356380.006000.036470.000460.022570.00091955.132.40309.54.49230.92.88451.118.00
    HB040.109410.001442.558720.037010.169720.002130.071670.001951789.623.741288.910.56101111.72139936.70
    HB050.050210.001190.248880.005990.035970.000480.014140.00062204.954.29225.74.87227.83.00283.812.31
    HB060.048560.000880.236080.004460.035290.000450.012840.00063126.442.18215.23.67223.62.80257.812.50
    HB070.050650.000810.247800.004220.035500.000440.013060.00040225.136.59224.83.43224.92.76262.27.900
    HB080.074710.001350.540700.010130.052520.000690.019540.001111060.736.06438.96.67330.04.20391.221.97
    HB090.051450.000800.254470.004220.035890.000450.012160.00042260.935.23230.23.42227.32.78244.38.290
    HB100.050570.000730.245860.003870.035280.000440.010970.00020221.133.19223.23.15223.52.71220.54.000
    HB110.051140.000700.240330.003620.034100.000420.010410.00037247.131.20218.72.96216.12.60209.47.410
    HB120.052460.000850.249710.004270.034530.000430.011370.00033305.736.25226.33.47218.82.69228.66.510
    HB130.050770.000830.244630.004240.034960.000440.009860.00031230.337.34222.23.46221.52.73198.26.220
    HB140.052690.000710.253010.003780.034830.000430.010940.00027315.530.47229.03.06220.72.66219.95.330
    HB150.115350.001360.592370.007950.037250.000450.022150.000401885.421.13472.45.07235.82.83442.77.840
    HB160.052580.000760.257210.004040.035480.000440.011760.00029310.732.50232.43.26224.72.73236.35.840
    HB170.052490.000810.249830.004150.034520.000430.011170.00029306.834.89226.43.37218.82.68224.65.720
    HB180.052370.000630.250430.003430.034680.000420.010390.00016301.527.08226.92.78219.82.61208.93.170
    HB190.051220.000710.244190.003730.034570.000420.011330.00033250.731.68221.83.04219.12.64227.76.540
    下载: 导出CSV 
    | 显示表格

    总体来说,燕麦层、憨班与茹树沟花岗岩花岗岩样品ΣREE=82.79×10−6~352.6×10−6,多数为217.96×10−6~262.02×10−6,LREE/HREE值为12.86~18.08,(La/Yb)N值为19.47~40.11,样品具有微弱–弱的负Eu异常(δEu=0.67~0.88)。稀土元素配分模式图中为轻稀土富集而重稀土相对亏损的右倾曲线,变化特征总体一致,为明显的壳幔混合特征(图6)。在微量元素蛛网图(图6a)中,样品曲线跳跃特征明显,总体趋势基本一致,具有Sr的负异常,富集Th、K、U等LILE元素;强烈亏损Nb、Ta、P和Ti等HFSE元素,暗示可能主要来源于大陆下地壳;Nb/Ta值为11.69~17.76,平均为14.65,高于地壳值(11~12)且低于原始地幔与球粒陨石值(约17.5)(Jochum et al.,1997),接近洋壳值(16.8)(Niu et al.,2003),Nb/Ta值反映岩浆源区很可能有幔源的物质成分加入(Jochum et al.,1997);K、Rb等微量元素含量的差异暗示岩浆来源与演化的复杂性。主、微量元素均显示出明显的岩浆混合特征,为较为典型的壳幔花岗岩,也可从其岩体内部含有较多的微粒暗色包体佐证。

    图  6  微量元素原始地幔标准化蛛网图(a)与稀土元素球粒陨石表转化分布型式图(b)
    大陆地壳成分数据源自Rudnick等(2003); 夏河埃达克岩数据源自邱庆伦等(2008)韦萍等(2013)徐学义等(2014);温泉埃达克岩数据源自Zhang等(2007)Zhu等(2013)徐学义等(2014);标准化值源自Sun等(1989)
    Figure  6.  (a) Primitive mantle-normalized spider diagrams and (b) chondrite-normalized REE distribution patterns

    主、微量元素Harker图解显示(图7),CaO、Al2O3、MgO、TiO2、Fe2O3T、P2O5与SiO2之间都具有较好的负相关关系;而K2O和Na2O与SiO2之间有微弱的正相关关系,δEu随SiO2的变化基本无变化,指示花岗岩岩浆同源演化的特征。稀土元素配分模式图中有微弱的负Eu异常,表明Eu的弱负异常不是由于斜长石的分离结晶作用或者源区大量斜长石残留导致。

    图  7  宕昌花岗岩哈克图解
    Figure  7.  Harker diagram of the Tanchang granite

    Chappell等(1992)提出以A/NCK=1.1为花岗岩类型判别界线,大于1.1者为S型,小于1.1的则为I型(图5c),同时发现P的丰度随着较强过铝质S型长英质熔体中长英质熔体晶体的分馏而显著增加,而在类似的较弱过铝质I型花岗岩中P的丰度减少。根据文中花岗岩A/NKC=0.84~1.07,以及P2O5与SiO2的负相关性(图7h),都表明了该花岗岩有I型特征;并且岩石中存在少量角闪石与闪长质暗色微粒包体也指示为I型花岗岩。样品弱Eu负异常与高Sr低Y和Yb等特征与A型花岗岩区分。实验岩石学证明准铝质花岗岩类主要由地壳中基性岩类(玄武质成分)部分熔融形成(Beard et al.,1991Sisson et al.,2005Johannes et al.,2012),而过铝质酸性花岗岩类则是碎屑沉积岩类部分熔融的产物(Douce et al.,1998Patino et al.,1998)。而对基性岩部分熔融实验也表明玄武质岩石来源的熔体Mg#值通常小于45,形成的花岗岩一般显示I型的特征(Rapp et al.,1999)。文中的花岗岩样品Mg#值低(19~43),这些证据表明本研究花岗岩原岩可能是来源于玄武质岩石,而岩石含有大量的暗色包体则表明幔源镁铁质岩浆的机械混合,岩石样品总体相对富钾贫钠与西秦岭下地壳为高K玄武质岩石的推论一致(Zhang et al.,2007)。虽然总体特征一致,但是3个花岗岩体的源区特征或者混染程度存在一定程度的不同,燕麦层、憨班和茹树沟花岗岩SiO2含量(分别平均为54.43%、71.24%和60.78%)存在差异,差异也表现在特征微量元素中,如相容元素Cr、Ni和Co的含量;同时憨班花岗岩Rb/Sr值(0.79)远高于燕麦层和茹树沟(分别平均为0.04与0.10),在稀土元素配分模式图中范围更宽,微量元素跳跃特征更加明显,尤其是HB2样品强烈富集Th、U、Zr和Hf,憨班花岗岩锆石中含有古老继承锆石(表1)等均表明憨班花岗岩相较于燕麦层和茹树沟花岗岩有变沉积岩基底的更多熔融加入。研究认为,区内花岗岩体是古老变玄武质基底与少量古老沉积基底部分熔融同时受到幔源岩浆不同程度混染的结果。

    Defant 等(1990)将埃达克岩定义为:年轻的大洋地壳(≤25Ma)俯冲形成的弧岩浆岩系,其地球化学特征为SiO2≥56%,Al2O3≥15%,MgO≤3%(最高不超过6%),低Y(<18×10−6)和Yb(<1.9×10−6),高Sr(>400 ×10−6),低的重稀土元素(HREE)与高场强元素(HFSE)。研究区花岗岩样品大多数具有高Sr(472 ×10−6~779 ×10−6),低Y(15.4 ×10−6~23.5 ×10−6)和Yb(1.57 ×10−6~2.4 ×10−6)的特征,以及较高的(La/Yb)N值(17.94~22.77)与较弱的负铕异常(δEu=0.67~0.88)。根据经典的埃达克岩图解(图8a图8b),结合张旗等(2012)提出新的Sr-Yb判别图(图8c),样品总体投入了埃达克型区域,位于榴辉岩相趋势演化线上,稀土与微量元素特征与夏河、温泉埃达克岩基本一致(图6),与张成立等(2008)总结西秦岭埃达克岩的地球化学特征一致。通过岩石主微量元素的分析结合前人在西秦岭地区对于埃达克岩的研究,文中样品总体具有埃达克岩的特征。

    图  8  Sr/Y-Y图解(a)、 (La/Yb)N-YbN图解(b)、Sr-Yb图解(c)(张旗等,2012)与(Dy/Yb)N-(La/Yb)N图解(d) (标准化数值据源自Sun等,1989
    Figure  8.  (a) Sr/Y-Y, (b)(La/Yb)N-YbN, (c) Sr-Yb and (d) (Dy/Yb)N-(La/Yb)N discriminant diagram

    张旗等(20062009)研究C型埃达克岩后指出其形成深度大于50 km。若是花岗岩原岩来自与正常地壳厚度岩石的部分熔融,平衡于斜长石相,因此不会出现强负铕异常,而当地壳厚度超过50Km时,斜长石全部熔融,少有或未有残留。文中花岗岩样品的δEu与SiO2之间不存在负相关性,说明Eu元素的弱亏损与岩浆的分离结晶作用无关,显示了源区部分熔融时并未大量残存斜长石,指示其形成深度可能大于50 km。Rapp等(1999)则认为埃达克质岩浆的源区残留相为榴辉岩,强调石榴子石在部分熔融过程中是与其相容的重稀土及Nb、Ta等高场强元素的主要控制矿物。实验岩石学研究表明(邓晋福等,1996Xiong et al.,2005),当压力大于1.0 Gpa时,熔体能够与角闪石、石榴子石和单斜辉石同时存在,因为Y和Yb等重稀土元素优先进入石榴子石,同时单斜辉石与斜方辉石的存在也会造成LREE与HREE的分馏;而大于1.5 Gpa的压力使得残留矿物中出现金红石导致与其平衡共存的岩浆熔体强烈亏损Nb、Ta等HFSE元素。文中岩石样品亏损HREE元素,Gd/Yb值为3.16~7.05,埃达克岩图解中总体位于榴辉岩相趋势演化线上(图7a),蛛网图中Nb、Ta强烈负异常,(Dy/Yb)N-(La/Yb)N图解表现为石榴子石残留趋势(图7d),表明源区残留了石榴子石,甚至可能残留金红石。表明源区形成压力至少大于1.2 Gpa,形成深度大于50 km。

    研究表明陆壳岩石的Zr/Hf值(36.3)类似于球粒陨石且相对稳定,但元素Hf在角闪石与单斜辉石中的相容性更强,在部分熔融过程若残留角闪石和单斜辉石则会导致岩浆熔体中二者比值的升高(David et al.,2000Pfander et al.,2007),文中花岗岩样品的Zr/Hf值大多为38.8~45.2,指示源区可能残留了角闪石与单斜辉石。且样品含有较多暗色包体暗示可能与玄武质岩浆的底侵作用有关,可能来自地壳的更深部位(刘明强,2012张旗等,2012)。综合分析认为花岗岩样品形成深度大于50 km,且受到幔源岩浆的混染,源区可能残留角闪石+石榴子石+单斜辉石。

    秦岭复合造山带先后经历了新元古代、古生代与中生代的花岗质岩浆作用,每期岩浆作用都为研究其构造背景提供了大量的信息。研究南秦岭勉略构造带以北的迷坝与光头山等花岗岩体之后,Sun等(2002)确定其形成于晚三叠世(206~220 Ma),晚于勉略洋盆的闭合时代(242~221 Ma)和大别超高压变质时间(240~225 Ma)(李曙光等,1996郑永飞等,2003)。通过古生物证据以及同位素年代学,张国伟等(2003)认为西秦岭是一近EW向延伸的印支期俯冲碰撞缝合带,提出从东昆仑南缘玛沁、德尔尼及康县接勉略处曾存在勉略有限洋盆,勉略洋二叠纪至三叠纪的打开及最终碰撞造山是EW向穿时性的。冯益民等(2003)认为西秦岭造山带是典型的“碰撞-陆内造山带”,从中晚泥盆世到中三叠世末处于以伸展海盆体系为主的盆山格局或海陆格局,中三叠世拉丁期之后开始由板内伸展阶段向陆内叠覆造山环境转换。西秦岭埃达克质岩石主要形成于235~215 Ma,这些花岗质岩石主要形成于同碰撞晚期或后碰撞环境(王晓霞等,2015)。

    在Nb-Y与Ta-Yb判别图解(图9)中岩石样品投点位于同碰撞环境,有向板内环境演化的趋势,图解中的同碰撞环境包括了从碰撞开始至结束的各个时期。大陆碰撞作用发生后还有一段相当长碰撞汇聚期,而且大陆主碰撞期(同碰撞)不利于岩浆上升,大规模的岩浆作用主要出现在主碰撞期后,板内时期之前(后碰撞)(肖庆辉等,2002)。研究区花岗岩属于壳幔花岗岩,是基性下地壳部分熔融与底侵幔源岩浆混染的结果,其形成深度大于50 km,源区残留了角闪榴辉岩相岩石,代表了晚三叠世中期(225~215 Ma)独特的构造环境,即当时岩石圈地幔拆沉导致软流圈上涌,上涌的软流圈部分熔融形成的玄武质岩浆加热当时处于后碰撞体制下的加厚下地壳,使其发生部分熔融,形成类似于埃达克岩的岩浆,相似于西秦岭西段(徐多勋等,2015),同时也能解释研究花岗岩体的特征与其EN向著名的五朵金花岩体(教场坝、柏家庄、碌础坝、中川、正沟)(Zhang et al.,2007),以及宕昌流纹岩(黄雄飞等,2013)等的差异,可能是同一时期的不同深度地壳部分熔融的产物,而210 Ma后已经到了后碰撞板内演化阶段(Yin et al.,1991李曙光等,1996穆可斌等,2019)。

    图  9  宕昌花岗岩岩石Nb-Y判别图解(a)与Ta-Yb判别图解(b)(Pearce et al.,1984
    VAG.火山弧花岗岩;Syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;虚线是产于异常洋脊ORG的边界线
    Figure  9.  (a) Nb-Y diagram and (b) Ta-Yb diagram of the Tanchang granite

    综上所述,研究区埃达克质花岗质岩石可能是软流圈上涌加热高钾变基性下地壳发生部分熔融形成,岩浆源区伴有幔源岩浆的加入,最终上升侵位形成(图10)。印支末期(225~215 Ma)西秦岭正处于后碰撞环境,存在大于50 km的加厚地壳。

    图  10  西秦岭220~215 Ma所处的转换拉伸构造复原图
    Figure  10.  Transitional extensional tectonic restoration map of West Qinling at 220-215 Ma

    (1)憨班岩体与燕麦层岩体的LA-ICP-MS锆石U-Pb年龄分别为(222.1±1.9)Ma与(219.4±1.5)Ma,其侵位时间为晚三叠世中期。

    (2)燕麦层、茹树沟以及憨班岩体具有相似的主量与微量元素特征,属于高钾–钾玄岩、钙碱性–碱性系列,准铝质–弱过铝质I型花岗岩,系同源演化而来,具有埃达克岩的特征,是基性下地壳与少量变沉积岩基底部分熔融与底侵幔源岩浆不同程度混染的结果,其形成深度大于50 km,源区残留了角闪榴辉岩相岩石。

    (3)燕麦层、茹树沟以及憨班岩体是华北板块与扬子板块陆陆碰撞之后,地壳加厚,岩石圈地幔拆沉导致软流圈上涌加热加厚下地壳部分熔融的产物,形成于后碰撞环境。

  • 图  1   西秦岭造山带构造划分图及研究区地质图

    a.西秦岭构造简图据冯益民等(2002)修改;b.西秦岭印支期岩浆岩分布图据冯益民等(2002)修改;c.茹树沟和燕麦层花岗岩岩地质简图;d.憨班花岗岩地质简图

    Figure  1.   General tectonic map of West Qinling area and geological map of study area

    图  2   燕麦层与憨班花岗岩照片

    a.花岗闪长岩野外照片;b.中粗粒似斑状花岗闪长岩标本;c.燕麦层二长闪长岩正交偏光片;d.憨班中细粒花岗闪长岩正交偏光片

    Figure  2.   Field photo and microscopic features of the Yanmaiceng and Hanban granite

    图  3   憨班与燕麦层花岗岩锆石CL图像

    Figure  3.   Cathodoluminescence images of selected zircon grains from the Hanban and Yanmaiceng granite

    图  4   憨班(a)与燕麦层(b)锆石U-Pb年龄谐和图

    Figure  4.   (a) Concordia diagram showing LA-ICP-MS zircon U-Pb dating for the Hanban and (b) Yanmaiceng granite

    图  5   宕昌花岗岩分类图解(部分数据引自刘明强,2012

    a.全碱-硅图解;b.K2O-SiO2图解;c.A/NK-A/NCK图解,虚线是I型与S型花岗岩的分界;d.K2O-Na2O图解

    Figure  5.   TAS, K2O-SiO2, A/NK-A/CNK and K2O-Na2O diagrams of Tanchang granite

    图  6   微量元素原始地幔标准化蛛网图(a)与稀土元素球粒陨石表转化分布型式图(b)

    大陆地壳成分数据源自Rudnick等(2003); 夏河埃达克岩数据源自邱庆伦等(2008)韦萍等(2013)徐学义等(2014);温泉埃达克岩数据源自Zhang等(2007)Zhu等(2013)徐学义等(2014);标准化值源自Sun等(1989)

    Figure  6.   (a) Primitive mantle-normalized spider diagrams and (b) chondrite-normalized REE distribution patterns

    图  7   宕昌花岗岩哈克图解

    Figure  7.   Harker diagram of the Tanchang granite

    图  8   Sr/Y-Y图解(a)、 (La/Yb)N-YbN图解(b)、Sr-Yb图解(c)(张旗等,2012)与(Dy/Yb)N-(La/Yb)N图解(d) (标准化数值据源自Sun等,1989

    Figure  8.   (a) Sr/Y-Y, (b)(La/Yb)N-YbN, (c) Sr-Yb and (d) (Dy/Yb)N-(La/Yb)N discriminant diagram

    图  9   宕昌花岗岩岩石Nb-Y判别图解(a)与Ta-Yb判别图解(b)(Pearce et al.,1984

    VAG.火山弧花岗岩;Syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;虚线是产于异常洋脊ORG的边界线

    Figure  9.   (a) Nb-Y diagram and (b) Ta-Yb diagram of the Tanchang granite

    图  10   西秦岭220~215 Ma所处的转换拉伸构造复原图

    Figure  10.   Transitional extensional tectonic restoration map of West Qinling at 220-215 Ma

    表  2   花岗岩的主量 (%)、稀土和微量元素(10−6)

    Table  2   Major (%) and trace elements (10−6) data for the granite in Tanchang

    元素YMC1YMC2HB1HB2HB3HB4RSG1RSG2RSG3
    SiO253.9654.9070.9872.9973.2067.7858.9460.4862.92
    Al2O318.5917.714.1914.4114.7515.5015.8415.6515.40
    Fe2O31.542.961.320.280.200.611.511.360.63
    FeO6.405.141.851.670.782.025.124.504.93
    CaO6.766.381.741.231.512.565.003.823.11
    MgO3.353.480.800.250.251.103.342.842.27
    K2O3.493.754.064.574.264.794.504.724.79
    Na2O3.193.123.993.973.924.132.883.283.13
    TiO20.8630.9100.3360.1290.1200.4300.7960.6910.591
    P2O50.4090.3360.1310.0380.0530.2000.2930.2360.188
    MnO0.1190.1240.0570.0270.0210.0590.1140.1030.089
    LOI0.240.250.070.060.200.200.791.481.09
    Cr36.0040.5062.708.712.9725.9087.8049.0035.80
    Ni14.8014.9011.502.5722.1022.0012.2016.2010.20
    Co26.1027.005.541.223.455.1316.7017.0015.30
    Li35.931.8166.068.995.670.539.531.841.0
    Rb23.737.5193.0288.0191.0180.069.141.831.0
    Cs4.433.9624.101.8419.8010.7010.206.178.95
    Sr794779292198224912557472333
    Ba868751724768846139085311821045
    V154.0186.041.027.25.346.0110.0122.0110.0
    Sc9.8910.602.290.922.174.658.248.506.83
    Nb18.415.127.648.710.419.326.420.420.9
    Ta1.120.852.361.071.351.311.711.461.67
    Zr208.0264.0302.01270.084.9282.0350.0251.0215.0
    Hf5.116.028.3828.102.716.438.606.465.91
    Be2.442.2410.308.637.086.913.713.043.04
    U5.153.624.5629.603.5010.409.266.778.43
    Th14.6012.8017.7049.908.6326.3328.1021.1020.80
    La54.348.657.617.617.180.876.257.349.0
    Ce103.091.4106.033.232.6152.0142.0106.088.0
    Pr11.2010.2010.803.623.7516.9014.0010.808.95
    Nd47.6043.9043.5015.0013.2059.1055.2043.1035.50
    Sm8.287.847.323.182.9810.009.147.236.08
    Eu2.172.001.580.690.732.381.861.571.44
    Gd6.626.275.732.542.367.387.606.055.07
    Tb0.860.840.680.330.300.910.980.780.67
    Dy4.254.222.971.431.464.325.003.943.37
    Ho0.790.780.500.210.240.760.960.740.64
    Er2.102.101.290.520.551.912.662.041.75
    Tm0.300.300.180.070.070.250.400.300.27
    Yb1.781.791.030.360.431.702.401.821.57
    Lu0.270.280.160.060.060.250.370.290.25
    Y18.5018.3012.205.446.9621.6023.5018.2015.40
    ΣREE262.02238.82251.5484.2582.79352.60342.27260.16217.96
    LREE226.55203.94226.8073.2970.36313.56298.40226.00188.97
    ΣY35.4734.8824.7410.9612.4339.0443.8734.1628.99
    (La/Yb)N20.1417.9436.7132.1428.5334.0920.9520.7920.6
    δEu0.880.850.730.730.810.810.670.710.78
    δCe0.940.920.950.930.950.960.960.950.93
     注:样品HB3和HB4数据引自刘明强,2012
    下载: 导出CSV

    表  1   宕昌花岗岩的LA-ICP-MS锆石U-Pb同位素分析结果

    Table  1   LA-ICP-MS zircon U-Pb analytic for granite in Tanchang

    分析号207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th
    YMC010.052500.001280.247960.006090.034210.000460.011440.00057307.254.31224.94.95216.92.89229.911.45
    YMC020.054070.001320.253280.006250.033930.000460.010820.00052373.754.04229.25.06215.12.88217.610.40
    YMC030.054320.000870.261640.004460.034890.000440.013560.00049384.235.39236.03.59221.12.72272.39.730
    YMC040.051140.000920.242340.004560.034320.000440.010420.00037247.340.87220.33.73217.52.72209.67.330
    YMC050.051050.000800.240770.004060.034150.000430.011210.00040243.235.85219.03.32216.52.66225.47.950
    YMC060.053670.001420.253670.006730.034280.000480.009990.00048357.258.62229.65.45217.32.99200.99.670
    YMC070.052490.001110.248310.005360.034310.000450.009440.00049306.647.17225.24.36217.52.83190.09.830
    YMC080.051190.000790.241430.004030.034210.000430.010910.00040249.635.28219.63.30216.82.67219.48.020
    YMC090.053130.000900.256560.004590.035030.000440.009860.00049334.237.78231.93.71221.92.77198.39.800
    YMC100.049260.001150.232700.005500.034260.000460.010220.00037160.353.57212.44.53217.22.86205.47.490
    YMC110.052080.000780.251460.004070.035020.000440.011270.00033288.833.88227.83.30221.92.72226.46.500
    YMC120.051170.000880.245000.004450.034730.000440.010690.00047248.339.30222.53.63220.12.76215.09.470
    YMC130.050590.000810.243470.004160.034910.000440.010570.00041222.336.66221.33.39221.22.73212.58.270
    YMC140.049670.000980.239910.004860.035040.000460.010520.00035179.545.20218.33.98222.02.84211.66.940
    YMC150.049990.000860.233750.004210.033920.000430.010780.00041194.339.54213.33.47215.02.69216.88.280
    YMC160.049760.001040.242880.005240.035360.000460.011020.00061183.648.18220.84.28224.02.87221.512.13
    YMC170.051580.000840.252160.004380.035460.000450.010990.00034266.637.12228.33.55224.72.79220.96.760
    YMC180.051630.001100.250900.005420.035250.000470.011040.00045269.048.02227.34.40223.32.91222.09.060
    HB010.053050.001890.257530.009060.035230.000540.011780.00074331.078.97232.77.31223.23.36236.714.74
    HB020.051560.000900.252140.004610.035490.000450.013670.00063266.039.57228.33.74224.82.80274.412.66
    HB030.070920.001130.356380.006000.036470.000460.022570.00091955.132.40309.54.49230.92.88451.118.00
    HB040.109410.001442.558720.037010.169720.002130.071670.001951789.623.741288.910.56101111.72139936.70
    HB050.050210.001190.248880.005990.035970.000480.014140.00062204.954.29225.74.87227.83.00283.812.31
    HB060.048560.000880.236080.004460.035290.000450.012840.00063126.442.18215.23.67223.62.80257.812.50
    HB070.050650.000810.247800.004220.035500.000440.013060.00040225.136.59224.83.43224.92.76262.27.900
    HB080.074710.001350.540700.010130.052520.000690.019540.001111060.736.06438.96.67330.04.20391.221.97
    HB090.051450.000800.254470.004220.035890.000450.012160.00042260.935.23230.23.42227.32.78244.38.290
    HB100.050570.000730.245860.003870.035280.000440.010970.00020221.133.19223.23.15223.52.71220.54.000
    HB110.051140.000700.240330.003620.034100.000420.010410.00037247.131.20218.72.96216.12.60209.47.410
    HB120.052460.000850.249710.004270.034530.000430.011370.00033305.736.25226.33.47218.82.69228.66.510
    HB130.050770.000830.244630.004240.034960.000440.009860.00031230.337.34222.23.46221.52.73198.26.220
    HB140.052690.000710.253010.003780.034830.000430.010940.00027315.530.47229.03.06220.72.66219.95.330
    HB150.115350.001360.592370.007950.037250.000450.022150.000401885.421.13472.45.07235.82.83442.77.840
    HB160.052580.000760.257210.004040.035480.000440.011760.00029310.732.50232.43.26224.72.73236.35.840
    HB170.052490.000810.249830.004150.034520.000430.011170.00029306.834.89226.43.37218.82.68224.65.720
    HB180.052370.000630.250430.003430.034680.000420.010390.00016301.527.08226.92.78219.82.61208.93.170
    HB190.051220.000710.244190.003730.034570.000420.011330.00033250.731.68221.83.04219.12.64227.76.540
    下载: 导出CSV
  • 邓晋福, 刘厚祥, 赵海玲, 等. 燕辽地区燕山期火成岩与造山模型[J]. 现代地质, 1996, 10(02): 137-148

    DENG Jinfu, LIU Houxiang, ZHAO Hailing et al. Yanshanian igneous rocks and orogeny model in Yanshan-Liaoning area[J]. Geoscience, 1996, 10(02): 137-148.

    冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带结构造山过程及动力学[M]. 西安: 西安地图出版社, 2002, 1−263
    冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质, 2003, 36(01): 1-10 doi: 10.3969/j.issn.1009-6248.2003.01.001

    FENG Yimin, CAO Xuanduo, ZHANG Erpeng, et al. Tectonic evolution framework and nature of the West Qinling Orogenic Belt[J]. Northwestern Geology, 2003, 36(01): 1-10. doi: 10.3969/j.issn.1009-6248.2003.01.001

    冯小明, 李注苍, 齐建宏. 西秦岭德乌鲁岩体成因及地质意义——来自岩石地球化学的证据[J]. 岩石矿物学杂志, 2021, 40(02): 347-362 doi: 10.3969/j.issn.1000-6524.2021.02.012

    FENG Xiaoming, LI Zhucang, QI Jianhong. The origin and geological significance of the Dewulu pluton in West Qinling: Evidence from petrogeochemistry[J]. Acta Petrologica ET Mineralogica, 2021, 40(02): 347-362. doi: 10.3969/j.issn.1000-6524.2021.02.012

    黄雄飞, 莫宣学, 喻学惠, 等. 西秦岭宕昌地区晚三叠世酸性火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2013, 29(11): 3968-3980

    HUANG Xiongfei, MO Xuanxue, YU Xuehui, et al. Zircon U-Pb chronology, geochemistry of the Late Triassic acid volcanic rocks in Tanchang area, West Qinling and their geological signicance[J]. Acta Petrologica Sinica, 2013, 29(11): 3968-3980.

    李永军, 李注苍, 丁仨平, 等. 西秦岭温泉花岗岩体岩石学特征及岩浆混合标志[J]. 地球科学与环境学报, 2004, 23(03): 7-12 doi: 10.3969/j.issn.1672-6561.2004.03.002

    LI Yongjun, LI Zhucang, DING Sanping, et al. Petrology fetures and magma mingling marks of the Wenquan granite from western Qinling[J]. Journal of Earth Sciences and Environment, 2004, 23(03): 7-12. doi: 10.3969/j.issn.1672-6561.2004.03.002

    金维浚, 张旗, 何登发, 等. 西秦岭埃达克岩的SHRIMP定年及其构造意义[J]. 岩石学报, 2005, 21(03): 959-966 doi: 10.3321/j.issn:1000-0569.2005.03.033

    JIN Weijun, ZHANG Qi, HE Dengfa, et al. SHRIMP dating of adakites in western Qinling and their implications[J]. Acta Petrologica Sinica, 2005, 21(03): 959-966. doi: 10.3321/j.issn:1000-0569.2005.03.033

    李曙光, 孙卫东, 张国伟, 等. 南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学——古生代洋盆及其闭合时代的证据[J]. 中国科学(D辑: 地球科学), 1996, 26(03): 223-230

    LI Shuguang, SUN Weidong, ZHANG Guowei, et al. Chronology and geochemistry of metamorphic rocks from Heigouxia vally in the Mian-Lue tectonic zone, South Qinling evidence for a Paleozoic ocean basin and its close time[J]. Science in China(Series D), 1996, 26(03): 223-230.

    柳小明, 高山, 袁洪林, 等. 193nmLA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析[J]. 岩石学报, 2002, 18(03): 408-418 doi: 10.3969/j.issn.1000-0569.2002.03.017

    LIU Xiaoming, GAO Shan, YUAN Honglin, et al. Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS[J]. Acta Petrologica Sinica, 2002, 18(03): 408-418. doi: 10.3969/j.issn.1000-0569.2002.03.017

    刘明强. 甘肃西秦岭舟曲憨班花岗岩体的单颗粒锆石U-Pb年龄及地质意义[J]. 地质科学, 2012, 47(03): 899-907 doi: 10.3969/j.issn.0563-5020.2012.03.023

    LIU Mingqiang. Single-grain zircon U-Pb ages and geological significance of the Hanban granite from Zhouqu(Gansu)in[J]. Earth Science, 2012, 47(03): 899-907. doi: 10.3969/j.issn.0563-5020.2012.03.023

    穆可斌, 裴先治, 李瑞保, 等. 南秦岭白龙江群中花岗岩脉群年代学、地球化学特征及地质意义[J]. 西北地质, 2019, 52(03): 111-135 doi: 10.19751/j.cnki.61-1149/p.2019.03.010

    MU Kebin, PEI Xianzhi, LI Ruibao, et al. Geochronology, geochemistry and geological significance of the granite veins in the Bailongjiang Group, South Qinling[J]. Northwestern Geology, 2019, 52(03): 111-135. doi: 10.19751/j.cnki.61-1149/p.2019.03.010

    裴先治, 张国伟, 赖绍聪, 等. 西秦岭南缘勉略构造带主要地质特征[J]. 地质通报, 2002, 21(8-9): 486-494

    PEI Xianzhi, ZHANG Guowei, LAI Shaocong, et al. Main geological feature of the Mianlue tectonic belt on the southern maigin of the West Qinling[J]. Geological Bulletin of China, 2002, 21(8-9): 486-494

    邱庆伦, 龚全胜, 卢书伟, 等. 甘肃夏河地区印支期埃达克岩的厘定及其意义[J]. 甘肃地质, 2008, 17(03): 6-12

    QIU Qinglun, GUN Quansheng, LU Shuwei, et al. Geochemical characteristics and geological significance of adakitic granitoids in Xiahe county of Gansu Province[J]. Gansu Geology, 2008, 17(03): 6-12.

    王晓霞, 王涛, 张成立. 秦岭造山带花岗质岩浆作用与造山带演化[J]. 中国科学: 地球科学, 2015, 45(08): 1109-1125

    WANG Xiaoxia, WANG Tao, ZHANG Chengli. Granitic magmatism and orogenic belt evolution in Qinling Orogenic Belt[J]. Science China: Earth Sciences, 2015, 45(08): 1109-1125.

    韦萍, 莫宣学, 喻学惠, 等. 西秦岭夏河花岗岩的地球化学、年代学及地质意义[J]. 岩石学报, 2013, 29(11): 3981-3992

    WEI Ping, MO Xuanxue, YU Xuehui et al. Geochemistry, chronology and geological significance of the granitoids in Xiahe, West Qinling[J]. Acta Petrologica Sinica, 2013, 29(11): 3981-3992.

    肖庆辉, 邓晋福, 马大铨, 等. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002, 1– 294.
    徐多勋, 杨拴海, 李瑞保, 等. 西秦岭西段塔洞花岗闪长岩体年代学、地球化学特征及其地质意义[J]. 地球科学与环境学报, 2015, 37(03): 22-33 doi: 10.3969/j.issn.1672-6561.2015.03.005

    XU Duoxun, YANG Shuanhai, LI Ruibao, et al. Geochronological, geochemical characteristics and geological significance of Tadong granodiorite pluton in the west section of West Qinling[J]. Journal of Earth Sciences and Evironment, 2015, 37(03): 22-33. doi: 10.3969/j.issn.1672-6561.2015.03.005

    徐学义, 陈隽璐, 高婷, 等. 西秦岭北缘花岗质岩浆作用及构造演化[J]. 岩石学报, 2014, 30(02): 371-389

    XU Xueyi, CHEN Juanlu, GAO Ting, et al. Granitoid magmatism and tectonic evolution in northern edge of the Western Qinling terrane, NW China[J]. Acta Petrologica Sinica, 2014, 30(02): 371-389.

    张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(03): 304-316 doi: 10.3969/j.issn.1006-7493.2008.03.003

    ZHANG Chenli, WANG Tao, WANG Xiaoxia, et al. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling Orogenic Belt[J]. Geological Journal of China Universities, 2008, 14(03): 304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003

    张国伟, 董云鹏, 赖绍聪, 等. 秦岭-大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学(D辑: 地球科学), 2003, 33(12): 1121-1135

    ZHANG Guowei, DONG Yunpeng, LAI Shaocun, et al. Mianlue Orogenic and Suture in the southern margin of Qinling-Dabie Orogenic Belt[J]. Science in China(Series D), 2003, 33(12): 1121-1135.

    张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001, 1–806
    张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭—松潘大陆构造结[J]. 地学前缘, 2004, 11(03): 23-32 doi: 10.3321/j.issn:1005-2321.2004.03.004

    ZHANG Guowei, GUO Anlin, YAO Anping. Western Qinling-Songpan continental tectonic node in China’s continental tectonics[J]. Earth Science Frontiers, 2004, 11(03): 23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004

    张宏飞, 靳兰兰, 张利, 等. 西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J]. 中国科学(D辑: 地球科学), 2005, (10): 10-22

    ZHANG Hongfei, JIN Lanlan, ZHANG Li et al. Geochemistry of granitoids and limitation of Pb-Sr-Nd isotope composition on basement properties and tectonic properties in the Western Qinling Mountains[J]. Science in China(Series D), 2005, (10): 10-22.

    张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(09): 2249-2269 doi: 10.3321/j.issn:1000-0569.2006.09.001

    ZHANG Qi, WANG Yan, LI Chengdong, et al. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 2006, 22(09): 2249-2269. doi: 10.3321/j.issn:1000-0569.2006.09.001

    张旗, 殷先明, 殷勇, 等. 西秦岭与埃达克岩和喜马拉雅型花岗岩有关的金铜成矿及找矿问题[J]. 岩石学报, 2009, 25(12): 3103-3122

    ZHANG Qi, YIN Xianming, YIN Yong, et al. Issues on metallogenesis and prospecting of gold and copper deposits related to adakite and Himalayan type granite in west Qinling[J]. Acta Petrologica Sinica, 2009, 25(12): 3103-3122.

    张旗, 李承东. 花岗岩: 地球动力学意义[M]. 北京: 海洋出版社, 2012, 1–268.
    郑永飞, 龚冰, 赵子福, 等. 大别-苏鲁造山带超高压变质岩原岩性质: 锆石氧同位素和U-Pb年龄证据[J]. 科学通报, 2003, 48(2): 110-119

    ZHENG Yongfei, GONG Bing, ZHAO Zifu,et al. Protolith properties of ultrahigh pressure metamorphic rocks in the Dabie-Sulu orogenic belt: evidence from zircon oxygen isotopes and U-Pb age[J]. Chinese Science Bulletin, 2003, 48(2): 110-119.

    Andersen T. Correction of common lead in U–Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X

    Beard J S, Lofgern G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365

    Cao Xiaofeng, LvXinbiao, Yao Shuzhen, et al. LA–ICP–MS U–Pb zircon geochronology, geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling, China[J]. Ore Geology Reviews, 2011, 43(1): 120-131. doi: 10.1016/j.oregeorev.2010.03.004

    Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1-2): 1-26. doi: 10.1017/S0263593300007720

    David K, Schiano P, Alleger C J. Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes[J]. Earth and Planetary Science Letters, 2000, 178(3-4): 285-301. doi: 10.1016/S0012-821X(00)00088-1

    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    Dong Yunpeng, Zhang Guowei, Neubaue R F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Science, 2011, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002

    Dong Yunpeng, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009

    Dong Yunoeng, SUN Shengsi, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131-194. doi: 10.1016/j.gr.2021.03.006

    DONG Yunpeng, ZHANG Xiaoning, LIU Xiaomin, et al. Propagation tectonics and multiple accretionary processes of the Qinling Orogen[J]. Journal of Asian Earth Sciences, 2015, 104: 84-98.

    Douce A E P, Mccarthy T C. Melting of crustal rocks during continental collision and subduction. Hacher B R, Liu J G. When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks [M]. Springer, Dordrecht, 1998: 27-55.

    Jiang Yaohui, Jin Guodong, Liao Shiyong, et al. Geochemical and Sr–Nd–Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent–continent collision[J]. Lithos, 2010, 117(1-4): 183-197. doi: 10.1016/j.lithos.2010.02.014

    Johannes W, Holtz F. Petrogenesis and experimental petrology of granitic rocks[M]. Springer, Science & Business Media, 2012.

    Jochum K P, Pfander J, Snow J E, et al. Nb/Ta in mantle and crust[J]. Eos Transactions American Geophysical Union, 1997, 78, 804.

    Kroner A, Zhang Guowei, Sun Y. Granulites in the Tongbai area, Qinling belt, China: geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia[J]. Tectonics, 1993, 12(1): 245-255. doi: 10.1029/92TC01788

    Li Nuo, Chen Yanjing, Santosh M, et al. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: implication for termination of the northernmost paleo-Tethys[J]. Gondwana Research, 2015, 27(1): 244-257. doi: 10.1016/j.gr.2013.09.017

    Li Xiaowei, Mo Xuanxue, Huang Xiongfei, et al. U–Pb zircon geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling: Petrogenesis and geodynamic implications[J]. Journal of Asian Earth Sciences, 2015, 97: 38-50. doi: 10.1016/j.jseaes.2014.10.017

    Luo Biji, Zhang Hongfei, Xu Wangchun, et al. The Middle Triassic Meiwu Batholith, West Qinling, Central China: implications for the evolution of compositional diversity in a composite Batholith[J]. Journal of Petrology, 2015, 56(6): 1139-1172. doi: 10.1093/petrology/egv032

    Mattauer M, Matte P, Malavieille J, et al. Tectonics of the Qinling belt: build-up and evolution of eastern Asia[J]. Nature, 1985, 317(6037): 496-500. doi: 10.1038/317496a0

    Meng Qingren, Zhang Guowei. Timing of collision of the North and South China blocks: controversy and reconciliation[J]. Geology, 1999, 27(2): 123-126. doi: 10.1130/0091-7613(1999)027<0123:TOCOTN>2.3.CO;2

    Niu Yaoling, O'hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4).

    Patino D A E, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4): 689-710. doi: 10.1093/petroj/39.4.689

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    Pfander J A, Munker C, Stracke A, et al. Nb/Ta and Zr/Hf in ocean island basalts—implications for crust–mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letters, 2007, 254(1-2): 158-172. doi: 10.1016/j.jpgl.2006.11.027

    Qin Jiangfeng, Lai Shaocong, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China)[J]. Lithos, 2009, 112(3-4): 259-276. doi: 10.1016/j.lithos.2009.03.007

    Qin Jiangfeng, Lai Shaocong, Grapes R, et al. Origin of LateTriassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China: Implications for subduction of continental crust[J]. Lithos, 2010, 120(3-4): 347-367. doi: 10.1016/j.lithos.2010.08.022

    Rudnick R L, Gao Shan, Holland H D, et al. Composition of the continental crust[J]. The crust, 2003, 3: 1-64.

    Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0

    Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2005, 148(6): 635-661. doi: 10.1007/s00410-004-0632-9

    SUN S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sun Weidong, Li Shuguang, Chen Yadong, et al. Timing of synorogenic granitoids in the South Qinling, central China: Constraints on the evolution of the Qinling-Dabie orogenic belt[J]. The Journal of Geology, 2002, 110(4): 457-468. doi: 10.1086/340632

    Wang Xiaoxia, Wang Tao, Zhang Chengli. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129-151. doi: 10.1016/j.jseaes.2012.11.037

    Wu Yuanbao, Zheng Yongfei. Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007

    Xiong Xiaolin, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis[J]. Chemical Geology, 2005, 218(3-4): 339-359. doi: 10.1016/j.chemgeo.2005.01.014

    Xiong Xiaolin, Zhu Laiming, Zhang Guowei, et al. Geology and geochemistry of the Triassic Wenquan Mo deposit and Mo-mineralized granite in the Western Qinling Orogen, China[J]. Gondwana Research, 2016, 30: 159-178. doi: 10.1016/j.gr.2015.09.013

    Yin Q, Jagote, Kroner A. Precambrian(?)blue-schist-bearing ecologite belt in central China[J]. Terra Abstract, 1991, 3: 85-86.

    Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U‐Pb age and trace element determinations of zircon by laser ablation‐inductively coupled plasma‐mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    Zhang Hongfei, Jin Lanlan, Zhang Li, et al. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity[J]. Science in China Series D: Earth Sciences, 2007, 50(2): 184-196. doi: 10.1007/s11430-007-2015-3

    Zhu Laiming, Zhang Guowei, Chen Yanjing, et al. Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit[J]. Ore Geology Reviews, 2011, 39(1-2): 46-62. doi: 10.1016/j.oregeorev.2010.10.001

    Zhu Laiming, Zhang Guowei, Yang Tao, et al. Geochronology, petrogenesis and tectonic implications of the Zhongchuan granitic pluton in the Western Qinling metallogenic belt, China[J]. Geological Journal, 2013, 48(4): 310-334. doi: 10.1002/gj.2444

图(10)  /  表(2)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  26
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 修回日期:  2023-09-20
  • 网络出版日期:  2023-02-13
  • 刊出日期:  2024-10-19

目录

/

返回文章
返回