ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

卫宁北山库井沟石墨矿床地质地球化学特征及成因

李海峰, 姜喜冬, 于海滨, 海连富, 刘向东

李海峰,姜喜冬,于海滨,等. 卫宁北山库井沟石墨矿床地质地球化学特征及成因[J]. 西北地质,2024,57(5):181−191. doi: 10.12401/j.nwg.2023025
引用本文: 李海峰,姜喜冬,于海滨,等. 卫宁北山库井沟石墨矿床地质地球化学特征及成因[J]. 西北地质,2024,57(5):181−191. doi: 10.12401/j.nwg.2023025
LI Haifeng,JIANG Xidong,YU Haibin,et al. Geochemical Characteristics and Genesis of the Kujinggou Graphite Deposit in Weining Beishan, Ningxia[J]. Northwestern Geology,2024,57(5):181−191. doi: 10.12401/j.nwg.2023025
Citation: LI Haifeng,JIANG Xidong,YU Haibin,et al. Geochemical Characteristics and Genesis of the Kujinggou Graphite Deposit in Weining Beishan, Ningxia[J]. Northwestern Geology,2024,57(5):181−191. doi: 10.12401/j.nwg.2023025

卫宁北山库井沟石墨矿床地质地球化学特征及成因

基金项目: 宁夏自然科学基金项目“宁夏中卫市单梁山石墨矿成矿特征及找矿方向研究”(2020AAC03456)资助。
详细信息
    作者简介:

    李海峰(1969−),男,正高级工程师,长期从事基础地质及矿产地质调查研究。E−mail:903041579@qq.com

  • 中图分类号: P619.25+2

Geochemical Characteristics and Genesis of the Kujinggou Graphite Deposit in Weining Beishan, Ningxia

  • 摘要:

    库井沟石墨矿床位于宁夏卫宁北山–内蒙古阿拉善左旗南部地区,矿体赋存于下石炭统臭牛沟组区域变质岩中,原岩为滨浅海相陆源碎屑岩和碳酸盐岩沉积建造。矿体产状与地层产状近于一致,呈平行层状分布于变质石英砂岩中,走向近东西。矿石主要为含石墨碳质板岩,固定碳含量平均为5.53%。石墨主要呈不规则鳞片状单晶或呈块状聚晶集合体产出,多数大于1 μm。石墨矿石整体表现为低Si、低碱、高烧矢量的特点,大离子亲石元素Rb、Ba、Sr富集石墨矿石∑REE为101×10−6~137×10−6,平均为117×10−6,围岩的∑REE为42×10−6。石墨矿石和围岩的稀土元素分异程度较高,轻稀土元素明显富集,并都具有δEu和δCe负异常。石墨矿石的C同位素值变化很小,集中在−24.3‰~−24.0‰,表明库井沟矿床中碳质来源主要为有机物,并掺杂部分无机碳。库井沟石墨矿床属于区域变质型,滨浅海相–泻湖相沉积建造是其形成的物质基础,石墨的形成与区域变质变形作用密切相关。

    Abstract:

    The Kujinggou graphite deposit is located in the southern area of Weining Beishan, Ningxia and Alashan Zuoqi, Inner Mongolia. The ore body is hosted in the regional metamorphic rocks of the Lower Carboniferous Chouniugou Formation, and the original rocks are sedimentary construction of shallow marine terrestrial clastic and carbonate rocks. The ore body is distributed in parallel layers in the metamorphic quartz sandstone, which is basically consistent with the stratigraphic production, with a near east-west orientation. The ore is mainly graphite-bearing carbonaceous slate with an average fixed carbon content of 5.53%. Graphite is mainly produced as irregularly scaled single crystals or as massive polycrystalline assemblages, mostly larger than 1 μm. Graphite ore is characterized by low Si, low alkali and high LOI as a whole, and trace element analysis shows enrichment of Rb, Ba and Sr. The ∑REE of graphite ore ranges from 101×10−6 to 137×10−6, with an average of 117×10−6, and the ∑REE of the host rocks is 42×10−6. The REE distribution patterns of both graphite ore and host rocks are high on the left and low on the right, and the ∑REE in graphite ore is higher than that in host rocks, which shows a high degree of REE differentiation in ore and host rocks in general, and a significant enrichment of LREE. The negative anomalies of Eu and Ce are obvious. The carbon isotope values of the graphite ore vary very little and are concentrated between −24.3‰ and −24.0‰, indicating that the carbonaceous source is mainly organic with some inorganic carbon involved. The genesis type of this deposit is regional metamorphic, and the shallow marine and lagoonal sedimentary environment makes the material basis for the graphite formation in Kujinggou, graphite formation is closely related to regional metamorphic deformation

  • 石墨是中国24种战略性矿产资源之一,因其具有良好的导电性、导热性、化学稳定性、耐高温性、耐腐蚀性等特性,而成为新兴产业的重要原材料(王登红,2019陈正国等,2021张艳飞等,2022)。石墨矿床按成因可划分为区域变质型、接触变质型和同化混染型3类(彭素霞等,2018)。近年来,中国石墨矿产的找矿勘探不断取得突破成果,石墨资源储量增长迅速(颜玲亚等,2018张艳飞等,2020a)。

    宁夏卫宁北山–内蒙古阿拉善左旗南部地区属构造活动带与稳定地块的交接部位,沉积环境多样,并经历了复杂的变质变形过程,矿化蚀变广泛发育,为石墨成矿提供了优越的成矿地质条件。目前在两省交界处内蒙古一侧已发现库井沟、阎地拉图、石驼山–新工地、喇嘛敖包、炭井沟等处石墨矿,预估矿物量超1000万吨(梁利东等,2020),显示了该区良好的石墨找矿前景,而靠宁夏一侧则发现有新照壁山和乌车梁等处石墨矿,勘探程度低、探明储量少,亟需加强基础地质研究。笔者在详细的矿产地质调查基础上,以宁夏卫宁北山单梁山地区库井沟石墨矿床为研究对象,结合前人勘探成果,通过全岩主微量元素分析、C同位素分析等手段,研究含矿岩系的地球化学特征,恢复原岩性质,并与其他石墨矿床进行类比,进而探讨石墨矿床成因。研究成果对卫宁北山地区同类型矿床的研究和找矿前景预测具有借鉴意义。

    宁夏卫宁北山地区处于北祁连造山带的东段,向北与阿拉善陆块相接,向东与鄂尔多斯地块相接,是构造活动带与稳定地块的交汇部位(图1a)。区域上主要出露古生界地层,其次为中、新生界地层。早古生界形成了以次深海斜坡相陆源碎屑–泥质沉积为主的浊积岩系,构成本区古生代各类建造的基底层(仲佳鑫等,2012)。其中自石炭纪开始本区接受连续沉积,地层由老至新分别为前黑山组、臭牛沟组、土坡组、太原组、大黄沟组、红泉组和五佛寺组,其中前黑山组、臭牛沟组为一套滨海–泻湖相碎屑岩和碳酸盐岩沉积组合,是卫宁北山地区矿床产出的主要层位。(图1b)。卫宁北山地区岩浆活动不强烈,仅在苦井沟、黄石坡沟、二人山、金场子等地零星发育一些闪长玢岩脉,岩脉一般宽1~6 m,延伸长度变化大,从数十米到数百米不等,走向主要呈近EW向,侵入余上泥盆统和下石炭统中。显微镜下观察发现闪长玢岩蚀变严重,主要为绿泥石化、绢云母化、高岭土化。锆石U-Pb年代学研究表明闪长玢岩的成岩年龄在143~150 Ma左右(刘勇等,2010艾宁等,2011)。

    图  1  研究区大地构造位置图(a)(霍福臣等,1989郭佩等,2017)及区域地质略图(b)(据中卫幅1∶20万区域地质图)
    Figure  1.  (a) Geotectonic location and (b) regional geological maps of Zhongwei

    卫宁北山地区构造类型复杂,主要为一系列走向近EW的略呈弧形弯曲的复式背、向斜,轴向长5~28 km,宽度可达数公里。与石墨矿床密切相关的是单梁山–骆驼山复式背斜。北屋子梁向斜呈紧闭线状分布于矿区北侧,走向近EW向,轴长大于16 km,两翼倾向相向,其中北翼倾向150°~190°,倾角40°~75°,南翼倾向330°~10°,倾角60°~75°。断裂构造多为走滑性质的逆冲断层,在研究区西部主要呈EW向或近EW向,在东部则以NW向、SN向为主。

    库井沟矿区范围内主要出露泥盆纪—石炭纪地层,自下而上分为中宁组、臭牛沟组、靖远组,此外还有少量第四系分布(图2)。中宁组主体色调为紫红色,局部夹灰绿色,主要由砾岩、长石石英砂岩、粉砂岩和泥岩组成,具上粗下细的特征,显示内陆湖泊相碎屑岩沉积环境。臭牛沟组主要岩性为灰白色石英砂岩、灰黑色含石墨碳质板岩、浅灰绿色页岩灰岩及白云质灰岩,是区内晶质石墨矿的含矿层位。靖远组主要分布在矿区北部,岩性以灰白色变质含砾石英砂岩夹粉砂岩、页岩及生物灰岩透镜体为主。第四系主要为风积、冲洪积和残坡积。矿区范围内未见岩浆岩发育。

    图  2  库井沟石墨矿床矿区地质略图(据张春林等,2017
    Figure  2.  Geological map of the Kujinggou graphite deposit

    矿区范围内的构造形迹主要为褶皱和断裂。骆驼山–碱向山背斜位于矿区东南部,两翼地层对称,倾向变化较大,倾角为30°~40°,石炭系臭牛沟组出露于两翼,泥盆统中宁组二段出露于核部,背斜轴向呈NWW—SEE向,对矿区地层分布、构造形态影响明显,背斜卷入的地层在各处出露厚度不一。矿区内主要的断层为F1逆断层,分布于矿区的中部,呈NE向延伸,倾向北西,倾角约为60°,断层延长近300 m。F2逆断层与F3平移断层规模小,未对矿体产生破坏作用。

    矿区内已勘探发现4条主要矿体,分别被命名为Ⅰ号、Ⅱ号、Ⅲ号、Ⅳ号(表1)。矿体呈平行层状分布于变质石英砂岩中,与地层产状基本一致,走向近东西(图3图4A),倾向为350°~10°,倾角为9°~25°。主矿体长约为1500 m,宽约为690 m,矿体厚度为0.83~81.54 m,平均为41.19 m。固定碳品位为2.56%~6.53%,平均为5.53%。赋矿围岩为含石墨碳质板岩,近矿围岩主要是含石墨碳质板岩,实际就是具石墨矿化的碳质板岩,只是未达到工业要求,局部为变质石英砂岩。

    表  1  库井沟矿区晶质石墨矿矿体特征一览表
    Table  1.  Characteristics of orebodies in the Kujinggou graphite deposit
    矿体
    编号
    矿石
    类型
    赋矿标
    高(m)
    埋藏深
    度(m)
    规模(m)厚度厚度变化
    系数(%)
    矿体
    形态
    产状(°)C 品位(%)品位变化
    系数(%)
    长度斜深最小-
    最大平均
    倾向倾角最小-
    最大平均
    晶质
    (鳞片)
    状石墨
    12551340442103110~7212.19~53.0119.7368.23似层状00~143.04~8.974.8752.88
    120113251022200136~10802.00~123.2037.7862.05似层状00~203.03~7.524.3448.49
    11801248159400150~3222.00~50.4825.2366.21透镜状02~144.11~7.525.5061.35
    1270132056400100~35843.92~85.1757.8424.49透镜状04~103.86~5.244.5450.31
    下载: 导出CSV 
    | 显示表格
    图  3  库井沟石墨矿床A-A′纵剖面图(据张春林等,2017
    Figure  3.  Vertical section A-A′ showing the distribution and morphology of Kujinggou graphite deposit
    图  4  库井沟石墨矿床矿石特征
    A.矿体的野外露头;B、C.块状矿石;D、E.单偏光下石墨呈鳞片变晶结构,弱定向构造;F.电子显微镜下鳞片状石墨;Gr.晶质石墨
    Figure  4.  Photographs showing mineral associations and textures of Kujinggou graphite ores

    石墨矿石镜下具鳞片变晶结构和变余泥质结构,矿石构造主要包括浸染状构造、块状构造及板状构造。矿石中的有用矿物主要为晶质石墨;脉石矿物主要是碳质和黏土矿物,以及微量黄铁矿、白铁矿、方解石和绢云母。通过109件粒度分析样品的镜下观察,矿石中的石墨主要呈不规则鳞片状单晶或呈块状聚晶集合体产出,石墨晶体大小不等,50目(粒径大于0.287 mm)以上和100目(粒径为0.147 mm)以下的比例相当,绝大部分石墨晶体粒径处于这两个区间内。

    本研究样品采自库井沟石墨矿床Ⅰ号、Ⅱ号、Ⅲ号、Ⅳ号矿体的地表和岩心,岩性均为含石墨碳质板岩,所有样品均较为新鲜,石墨矿物未发生氧化作用。

    主微量元素分析测试由宁夏回族自治区地质矿产中心实验室完成,采用熔片法X-射线荧光光谱法(XRF)分析主量元素,测试结果的相对误差小于2%;采用等离子质谱法(ICP-MS)分析微量元素和稀土元素,测试结果的相对误差低于5%~10%。

    石墨矿石样品先破碎至200目,在双目镜下挑选出纯净的石墨颗粒送至中地大环境地质研究院,采用MAT系列稳定同位素气体质谱仪分析测试碳同位素组成,具体分析方法见Du 等 (2021),分析误差在0.1%以内。

    石墨矿石因遭受不同程度的变质作用和风化作用,其主量元素含量呈现较大的变化范围(表2),SiO2含量为44.22%~70.98%,平均为54.55%;Al2O3含量为8.56%~20.60%,平均为17.13%;K2O含量为1.63%~3.68%,平均为2.80%;Na2O含量为0.32%~3.26%,平均为1.31%;K2O+Na2O含量为2.06%~6.15%,K2O/Na2O值为0.89~5.44,碱度指数(A/NK)为2.6~5.2,铝过饱和指数(A/CNK)为2.0~4.6。石墨矿石总体特征为富Si、Al,碱质含量低且K2O含量大于Na2O含量。

    表  2  库井沟石墨矿床矿石主量元素测试结果(%)
    Table  2.  Major element compositions of ore in Kujinggou graphite deposit (%)
    样品号 位置(m)SiO2CaOMgOAl2O3TFe2O3K2ONa2OP2O5TiO2V2O5固定碳
    ZK704-DH133.6055.090.431.5219.636.833.490.860.2560.430.0182.57
    ZK806-DH227.9053.420.441.8320.057.082.841.090.2140.390.0182.27
    ZK808-DH1136.4051.250.611.8317.857.622.893.260.2980.390.0192.39
    ZK2302-DH263.5053.070.421.5918.617.012.912.750.3350.450.0172.41
    ZK1506-DH1162.9055.730.391.4820.607.503.041.500.1970.350.0212.25
    ZK1508-DH1109.7755.170.361.6320.155.763.280.890.1770.490.0202.56
    ZK008-DH1114.0055.820.651.8219.556.732.990.990.2100.400.0172.48
    ZK1504-DH1127.4054.280.331.5420.206.772.861.140.2700.330.0172.58
    ZK706-DH168.5055.610.291.3020.555.043.680.930.2130.520.0172.51
    ZK2001-DH1106.7754.340.391.8020.197.073.031.090.2420.360.0192.57
    ZK2306-DH186.2054.000.811.6417.617.522.602.740.2400.410.0172.22
    ZK1104-DH170.6070.981.991.3210.763.991.870.480.0720.440.0130.51
    ZK1105-DH183.1055.941.382.3019.976.992.811.250.1780.720.0301.82
    XL XT DH-136.0050.431.601.2714.402.292.740.880.310.580.1910.72
    XL XT DH-255.7063.330.330.3310.661.741.740.320.370.420.1210.65
    XL XT DH-349.1053.420.880.578.567.371.631.590.250.400.0811.52
    XL XT DH-438.0044.220.170.4919.824.973.361.090.130.730.0494.81
    XL XT DH-553.1045.710.240.519.1812.712.690.840.080.290.1112.06
    下载: 导出CSV 
    | 显示表格

    库井沟石墨矿床微量元素和稀土元素测试结果如表3表4所示。石墨矿石的微量元素含量总体较稳定,大离子亲石元素Rb、Sr、Ba的含量具有较宽的变化范围,分别为73.8×10−6~204.3×10−6、72.9×10−6~264.2×10−6和264.4×10−6~740.7×10−6,Rb(139.7×10−6)、Sr(194.7×10−6)及Ba(527.7×10−6)的平均值均小于后太古宙澳大利亚平均页岩(PAAS; Taylor et al., 1985)中Rb、Sr、Ba的含量。Sr、Nb、Ti等元素亏损明显,Zr略微富集(图5)。Rb/Sr值为0.25~1.4,Sr/Ba值为0.17~1.16。V/Cr值为0.17~1.16,Ni/Co值为0.50~1.12。

    表  3  库井沟石墨矿床含矿岩石微量元素分析结果(10−6
    Table  3.  Trace elements compositions of graphite ore of the Kujinggou graphite deposit (10−6)
    元素 ZK305-1ZK305-2ZK1104-1ZK1104-2ZK1104-3ZK1104-4ZK1105-1ZK1105-2ZK1105-3ZK307-1ZK307-2ZK306-1ZK306-2
    Rb184.573.8110.0204.3154.8168.1153.794.5127.2113.8159.5162.0110.8
    Sr146.172.987.7432.3264.2221.9580.1206.487.486.8136.5121.087.5
    Ba682.1264.4399.9740.7608.2615.6546342.4489.7430.1628.4671.3441.6
    Nb20.2/17.420.821.922.820.8/17.216.420.920.415.6
    Zr179.3165.6208.5198.8238.6238225.8202.5274.6274.1226.4233.6200.5
    V72.221.332.388.077.486.195.744.932.631.576.086.036.0
    Cr81.933.759.584.082.792.998.350.951.950.882.381.745.2
    Co18.39.714.98.712.211.41716.711.11221.117.713.9
    Ni40.818.222.610.534.91742.325.917.919.640.739.521.8
    Y37.216.521.336.135.734.234.617.92019.229.332.717.7
    La63/50.484.876.965.666.7/54.450.863.663.9/
    P780.3528.9786841.91407.6706.11111.3711549.3467.8860800.7542.8
    Ti4910278041005640562057105380380043204280523053203660
    Rb/Sr1.261.011.250.470.590.760.260.461.461.311.171.341.27
    Sr/Ba0.210.280.220.580.430.361.060.600.180.200.220.180.20
    Ni/Co2.231.881.521.212.861.492.491.551.611.631.932.231.57
    V/Cr1.131.581.840.951.071.081.031.131.591.611.080.951.26
    下载: 导出CSV 
    | 显示表格
    图  5  库井沟石墨矿石与围岩微量元素蛛网图
    原始地幔值据Sun 等(1989);上地壳值据Rudnick等(2003);PAAS(澳大利亚后太古宙平均页岩)据Taylor 等(1985)
    Figure  5.  Primitive mantle-normalized trace element patterns of ore and host rock in Kujinggou graphite deposit
    表  4  库井沟石墨矿床含矿岩石系稀土元素分析结果(10−6
    Table  4.  Rare earth elements compositions of graphite ore of the Kujinggou graphite deposit (10−6
    样品号 LaCePrNdSmCdEuTbDyHoErTmYbLuY
    XL XT DH-130.532.59.6930.26.075.501.561.073.631.002.390.472.470.5418.2
    XL XT DH-232.213.18.9427.3264.25.621.391.002.700.591.340.261.260.2810.5
    XL XT DH-331.531.810.635.121.96.411.641.234.451.212.820.552.520.5524.2
    XL XT DH-411.110.23.089.27238.61.380.390.301.360.431.110.241.170.268.15
    XL XT DH-515.316.78.6826.21.073.681.050.772.900.791.810.351.570.3415.3
    下载: 导出CSV 
    | 显示表格

    石墨矿石的∑REE为101×10−6~137×10−6,平均为117×10−6;LREE/HREE值为5.96~7.33,平均为6.63;δCe值为0.18~0.45,平均为0.32;δEu值为0.73~0.81,平均为0.76。围岩的稀土元素总量∑REE为42×10−6,明显低于石墨矿;LREE/HREE值为5.71,δCe值为0.41,δEu值为0.75。在球粒陨石标准化稀土元素配分曲线上,石墨矿石和围岩样品均表现为左高右低的形态(图6),表明矿石、围岩样品中轻、重稀土元素分异程度较高,轻稀土元素明显富集。石墨矿石和围岩样品都具有δEu和δCe负异常。

    图  6  库井沟石墨矿石与围岩稀土元素配分模式
    原始地幔值据Sun 等(1989);上地壳值据Rudnick等(2003);PAAS(澳大利亚后太古宙平均页岩)据Taylor 等(1985)
    Figure  6.  Chondrite-normalized REE patterns of ore and host rock in Kujinggou graphite deposit

    矿石中石墨样品的δ13C值变化很小,5个样品的δ13C值为−24.3‰~−24.0‰(表5)。

    表  5  库井沟石墨矿床矿石碳同位素组成测试结果
    Table  5.  Carbon isotope compositions of graphite ores in the Kujinggou deposit
    序号样品岩性δ13C(‰)
    1含石墨碳质板岩−24.0
    2含石墨碳质板岩−24.3
    3含石墨碳质板岩−24.3
    4含石墨碳质板岩−24.3
    5含石墨碳质板岩−24.2
    下载: 导出CSV 
    | 显示表格

    前人对宁夏卫宁北山石炭纪地层进行过沉积环境研究,认为该区石炭纪—早二叠世早期地层形成于基底坳陷下沉、盆地范围不断扩大的构造背景,臭牛沟组岩性以陆源碎屑岩和碳酸盐岩为主(李红霞等,2016中国区域地质志·宁夏志,2018)。本次研究的石墨矿体产出在碳质板岩中,明显保留沉积层序。石墨矿石和围岩样品显示出与典型变质沉积岩相似的主要元素地球化学特征,表现为低Si、低碱、烧矢量大。石墨矿石和围岩样品的微量元素测试数据表明Rb、Ba等大离子亲石元素较富集,Zr略微富集,Sr、Nb、Ti亏损明显(图5),显示出近海陆源碎屑物的特征。矿石、围岩中轻、重稀土元素分异明显,且二者都具有δEu和δCe负异常,与上地壳和PAAS的稀土元素配分模式相似,但是稀土元素总量低于上地壳和PAAS(图5)。在La/Yb-REE图解(图7)中,样品点全部落入沉积岩-钙质泥岩区域。

    图  7  石墨矿石La/Yb-∑REE图解(底图据Allegre et al., 1978
    Figure  7.  La/Yb-∑REE diagram for the graphite ores

    Ba、Sr含量可以较好地指示水体盐度变化(杨季华等,2020)。Sr与Ba化学性质相似,但是在溶液中Sr比Ba迁移能力强,淡水与海水相混合时,Ba易形成BaSO4沉淀,因此Sr/Ba值可以用于区分海相和陆相沉积环境,当Sr/Ba<1,表明沉积岩为陆相沉积;当Sr/Ba>1,表明沉积岩形成于海相环境(段威等,2020)。研究区石墨矿石的Sr/Ba值除一个值为1.06外,其余全部小于1,反映其原岩形成于陆相环境。在Sr-Ba图解(图8)中,全部样品落在半咸水区和咸水区,并且大部分数据点围绕现代三角洲半咸水黏土区范围边缘分布。变价元素(如V、Cr、Co、Ni)的溶解度随氧化还原条件发生改变为改变,因此,这些元素的含量可以反演古海洋的氧化还原条件,如Ni/Co>7、V/Cr>4.5时,均指示缺氧还原环境(程仕俊等,2021)。库井沟石墨矿床石墨矿石的Ni/Co值为1.2~2.2,V/Cr值为0.3~1.1,指示石墨矿石的原岩形成于相对氧化的沉积环境。Al2O3/(Al2O3+Fe2O3)值m可以指示沉积岩形成的大地构造环境,当m为0.6~0.9时指示大陆边缘环境,m为0.4~0.7时指示远洋深海环境,m为0.1~0.4时指示洋脊海岭环境。库井沟石墨矿床的Al2O3/(Al2O3+Fe2O3)值为0.42~0.86,平均为0.73,接近于大陆边缘环境下Al2O3/(Al2O3+Fe2O3)值(0.6~0.9)。

    图  8  石墨矿石Ba-Sr图解(底图据王仁民等,1986)
    Ⅰ.现代三角洲半咸水黏土区;Ⅱ.太平洋远洋沉积物区;Ⅲ.俄罗斯台地不同年代海相碳酸盐岩区;Ⅳ.现代高咸水沉积物区
    Figure  8.  Ba-Sr diagram for the graphite ores

    因此,推测矿区矿体原岩沉积于大陆边缘的滨浅海,沉积微环境相对氧化,沉积时水体盐度较低,并混合有不均匀的咸水–半咸水。

    石墨C同位素被广泛用于约束石墨物质来源。形成石墨的碳主要来自:①有机物;②碳酸盐岩;③地幔碳。其中有机物的C同位素值介于−17‰~−40‰,集中于−26‰~−28‰范围内(Schidlowski, 1987, 2001; Hoefs, 2009);典型海洋碳酸盐的碳同位素值位于−2‰~+4‰范围内(Sharp, 2007);地幔碳的碳同位素值约为−7‰(Hahn-Weinheimer et al., 1981; Weis et al., 1981)(图9)。陈衍景等(2000)认为生物成因的有机碳和化学成因的无机碳都是华北石墨矿床中的物质来源,其对应不同的矿床成因类型。朱建江等(2021)认为,由富12C的有机物形成的石墨具有轻的C同位素组成特征,由富13C的碳酸盐或地幔碳形成的石墨具有重的C同位素组成特征,当富12C和富13C的两种流体混合时,形成的石墨的C同位素组成介于二者之间。

    图  9  库井沟与不同地区石墨矿床及含碳物质的C同位素值特征对比(数据引自刘敬党等,2017
    Figure  9.  Carbon isotope compositions of graphite and carboniferous from Kujinggou and other regions

    库井沟石墨矿床的C同位素值变化很小,集中在−24.3‰~−24.0‰,靠近有机物C同位素的主要变化区间,暗示库井沟矿床中碳质来源主要为有机物,并掺杂部分无机碳。考虑到矿区内臭牛沟组为一套滨浅海相陆源碎屑岩–碳酸盐岩沉积组合,矿区外围也主要由奥陶系、志留系陆源碎屑岩和碳酸盐岩组成,地层中的碳酸盐岩在发生硅酸盐化蚀变过程中释放出的CO2可以参与到石墨结晶作用,从而作为无机碳的来源。区域上金场子金矿床碳酸盐矿物的C同位素组成特征也表明了沉积碳酸盐是必须的流体CO2来源之一(海连富等,2021)。

    岩石中的石墨可以由有机质通过变质作用生成,也可以在一定的温压条件下从碳过饱和的C-H-O流体中结晶析出(Luque et al., 1998; Zhu et al., 2020张艳飞等,2020b)。库井沟石墨矿床赋存于下石炭统臭牛沟组的浅变质岩中,矿体空间展布严格受地层产状制约,主要呈层状、似层状和透镜体状产于碳质板岩中,与围岩产状近于一致,矿石仍显示出一定的原生沉积特征。赋矿地层臭牛沟组形成于海进作用过程(与地质历史上气候变暖有关),富含动植物化石(宁夏区域地质志,2018),形成碳质的初始富集。区域构造运动为有机碳质成分的石墨化提供了合适的地质环境条件。印支期造山作用活化了先成的断裂构造,并使区域地层进一步挤压变形,原岩中的有机质在区域变质作用过程中发生脱氧、脱氢的还原反应形成碳氢化合物,此外碳酸盐岩发生硅酸盐化蚀变释放CO2,两者易于结合发生氧化还原反应生成石墨。库井沟石墨矿床中鳞片状石墨在围岩中均匀分布,矿石中固定碳含量变化稳定,表明石墨晶体形成后没有发生大范围迁移,而是在进变质作用过程中,在原地重结晶形成粒度更大的鳞片状石墨晶体或集合体。由于区域变质程度不高,臭泥沟组的变质变形程度较弱,导致释放的CO2少,石墨结晶时间短,因此石墨的13C值更靠近有机物的13C值主要变化区间。

    (1)库井沟石墨矿床中矿石类型以含石墨碳质板岩为主,石墨矿石的主量元素特征为低Si、低碱、烧矢量大,指示原岩为一套滨浅海相陆源碎屑岩–碳酸盐岩沉积组合。原岩沉积时的沉积微环境相对氧化,沉积时水体介质性质主要为盐度较低、混合不均匀的咸水–半咸水。

    (2)库井沟石墨矿床的碳同位素值变化很小,集中在−24.3‰~−24.0‰,碳质来源主要为有机碳。

    (3)库井沟矿床赋存于石炭系臭牛沟组变质岩系中,属典型的区域变质型石墨矿床,沉积作用形成碳质的初始富集,区域变质作用造成晶质石墨的富集。

  • 图  1   研究区大地构造位置图(a)(霍福臣等,1989郭佩等,2017)及区域地质略图(b)(据中卫幅1∶20万区域地质图)

    Figure  1.   (a) Geotectonic location and (b) regional geological maps of Zhongwei

    图  2   库井沟石墨矿床矿区地质略图(据张春林等,2017

    Figure  2.   Geological map of the Kujinggou graphite deposit

    图  3   库井沟石墨矿床A-A′纵剖面图(据张春林等,2017

    Figure  3.   Vertical section A-A′ showing the distribution and morphology of Kujinggou graphite deposit

    图  4   库井沟石墨矿床矿石特征

    A.矿体的野外露头;B、C.块状矿石;D、E.单偏光下石墨呈鳞片变晶结构,弱定向构造;F.电子显微镜下鳞片状石墨;Gr.晶质石墨

    Figure  4.   Photographs showing mineral associations and textures of Kujinggou graphite ores

    图  5   库井沟石墨矿石与围岩微量元素蛛网图

    原始地幔值据Sun 等(1989);上地壳值据Rudnick等(2003);PAAS(澳大利亚后太古宙平均页岩)据Taylor 等(1985)

    Figure  5.   Primitive mantle-normalized trace element patterns of ore and host rock in Kujinggou graphite deposit

    图  6   库井沟石墨矿石与围岩稀土元素配分模式

    原始地幔值据Sun 等(1989);上地壳值据Rudnick等(2003);PAAS(澳大利亚后太古宙平均页岩)据Taylor 等(1985)

    Figure  6.   Chondrite-normalized REE patterns of ore and host rock in Kujinggou graphite deposit

    图  7   石墨矿石La/Yb-∑REE图解(底图据Allegre et al., 1978

    Figure  7.   La/Yb-∑REE diagram for the graphite ores

    图  8   石墨矿石Ba-Sr图解(底图据王仁民等,1986)

    Ⅰ.现代三角洲半咸水黏土区;Ⅱ.太平洋远洋沉积物区;Ⅲ.俄罗斯台地不同年代海相碳酸盐岩区;Ⅳ.现代高咸水沉积物区

    Figure  8.   Ba-Sr diagram for the graphite ores

    图  9   库井沟与不同地区石墨矿床及含碳物质的C同位素值特征对比(数据引自刘敬党等,2017

    Figure  9.   Carbon isotope compositions of graphite and carboniferous from Kujinggou and other regions

    表  1   库井沟矿区晶质石墨矿矿体特征一览表

    Table  1   Characteristics of orebodies in the Kujinggou graphite deposit

    矿体
    编号
    矿石
    类型
    赋矿标
    高(m)
    埋藏深
    度(m)
    规模(m)厚度厚度变化
    系数(%)
    矿体
    形态
    产状(°)C 品位(%)品位变化
    系数(%)
    长度斜深最小-
    最大平均
    倾向倾角最小-
    最大平均
    晶质
    (鳞片)
    状石墨
    12551340442103110~7212.19~53.0119.7368.23似层状00~143.04~8.974.8752.88
    120113251022200136~10802.00~123.2037.7862.05似层状00~203.03~7.524.3448.49
    11801248159400150~3222.00~50.4825.2366.21透镜状02~144.11~7.525.5061.35
    1270132056400100~35843.92~85.1757.8424.49透镜状04~103.86~5.244.5450.31
    下载: 导出CSV

    表  2   库井沟石墨矿床矿石主量元素测试结果(%)

    Table  2   Major element compositions of ore in Kujinggou graphite deposit (%)

    样品号 位置(m)SiO2CaOMgOAl2O3TFe2O3K2ONa2OP2O5TiO2V2O5固定碳
    ZK704-DH133.6055.090.431.5219.636.833.490.860.2560.430.0182.57
    ZK806-DH227.9053.420.441.8320.057.082.841.090.2140.390.0182.27
    ZK808-DH1136.4051.250.611.8317.857.622.893.260.2980.390.0192.39
    ZK2302-DH263.5053.070.421.5918.617.012.912.750.3350.450.0172.41
    ZK1506-DH1162.9055.730.391.4820.607.503.041.500.1970.350.0212.25
    ZK1508-DH1109.7755.170.361.6320.155.763.280.890.1770.490.0202.56
    ZK008-DH1114.0055.820.651.8219.556.732.990.990.2100.400.0172.48
    ZK1504-DH1127.4054.280.331.5420.206.772.861.140.2700.330.0172.58
    ZK706-DH168.5055.610.291.3020.555.043.680.930.2130.520.0172.51
    ZK2001-DH1106.7754.340.391.8020.197.073.031.090.2420.360.0192.57
    ZK2306-DH186.2054.000.811.6417.617.522.602.740.2400.410.0172.22
    ZK1104-DH170.6070.981.991.3210.763.991.870.480.0720.440.0130.51
    ZK1105-DH183.1055.941.382.3019.976.992.811.250.1780.720.0301.82
    XL XT DH-136.0050.431.601.2714.402.292.740.880.310.580.1910.72
    XL XT DH-255.7063.330.330.3310.661.741.740.320.370.420.1210.65
    XL XT DH-349.1053.420.880.578.567.371.631.590.250.400.0811.52
    XL XT DH-438.0044.220.170.4919.824.973.361.090.130.730.0494.81
    XL XT DH-553.1045.710.240.519.1812.712.690.840.080.290.1112.06
    下载: 导出CSV

    表  3   库井沟石墨矿床含矿岩石微量元素分析结果(10−6

    Table  3   Trace elements compositions of graphite ore of the Kujinggou graphite deposit (10−6)

    元素 ZK305-1ZK305-2ZK1104-1ZK1104-2ZK1104-3ZK1104-4ZK1105-1ZK1105-2ZK1105-3ZK307-1ZK307-2ZK306-1ZK306-2
    Rb184.573.8110.0204.3154.8168.1153.794.5127.2113.8159.5162.0110.8
    Sr146.172.987.7432.3264.2221.9580.1206.487.486.8136.5121.087.5
    Ba682.1264.4399.9740.7608.2615.6546342.4489.7430.1628.4671.3441.6
    Nb20.2/17.420.821.922.820.8/17.216.420.920.415.6
    Zr179.3165.6208.5198.8238.6238225.8202.5274.6274.1226.4233.6200.5
    V72.221.332.388.077.486.195.744.932.631.576.086.036.0
    Cr81.933.759.584.082.792.998.350.951.950.882.381.745.2
    Co18.39.714.98.712.211.41716.711.11221.117.713.9
    Ni40.818.222.610.534.91742.325.917.919.640.739.521.8
    Y37.216.521.336.135.734.234.617.92019.229.332.717.7
    La63/50.484.876.965.666.7/54.450.863.663.9/
    P780.3528.9786841.91407.6706.11111.3711549.3467.8860800.7542.8
    Ti4910278041005640562057105380380043204280523053203660
    Rb/Sr1.261.011.250.470.590.760.260.461.461.311.171.341.27
    Sr/Ba0.210.280.220.580.430.361.060.600.180.200.220.180.20
    Ni/Co2.231.881.521.212.861.492.491.551.611.631.932.231.57
    V/Cr1.131.581.840.951.071.081.031.131.591.611.080.951.26
    下载: 导出CSV

    表  4   库井沟石墨矿床含矿岩石系稀土元素分析结果(10−6

    Table  4   Rare earth elements compositions of graphite ore of the Kujinggou graphite deposit (10−6

    样品号 LaCePrNdSmCdEuTbDyHoErTmYbLuY
    XL XT DH-130.532.59.6930.26.075.501.561.073.631.002.390.472.470.5418.2
    XL XT DH-232.213.18.9427.3264.25.621.391.002.700.591.340.261.260.2810.5
    XL XT DH-331.531.810.635.121.96.411.641.234.451.212.820.552.520.5524.2
    XL XT DH-411.110.23.089.27238.61.380.390.301.360.431.110.241.170.268.15
    XL XT DH-515.316.78.6826.21.073.681.050.772.900.791.810.351.570.3415.3
    下载: 导出CSV

    表  5   库井沟石墨矿床矿石碳同位素组成测试结果

    Table  5   Carbon isotope compositions of graphite ores in the Kujinggou deposit

    序号样品岩性δ13C(‰)
    1含石墨碳质板岩−24.0
    2含石墨碳质板岩−24.3
    3含石墨碳质板岩−24.3
    4含石墨碳质板岩−24.3
    5含石墨碳质板岩−24.2
    下载: 导出CSV
  • 艾宁, 任战利, 李文厚, 等. 宁夏卫宁北山地区矿床类型及成矿时代[J]. 矿床地质, 2011, 30(05): 941-948

    Ai Ning, REN Zhanli, LI Wenhou, et al. Metallogenic epoch and ore-forming types of ore deposits in Weiningbeishan area, Ningxia [J]. Mineral Deposits, 2011, 30(05): 941-948.

    陈衍景, 刘丛强, 陈华勇, 等. 中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论[J]. 岩石学报, 2000, 16(2): 233-244

    CHEN Yanjing, LIU Congqiang, CHEN Huayong, et al. Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China: implications for several geoscientific problems [J]. Acta Petrologica Sinica, 2000, 16(2): 233-244.

    陈正国, 颜玲亚, 高树学. 战略性非金属矿产资源形势分析[J]. 中国非金属矿工业导刊, 2021, 2: 1–8, 23 doi: 10.3969/j.issn.1007-9386.2021.02.001

    CHEN Zhengguo, YAN Yalin, GAO Shuxue. Analysis on the situation of strategic non-metallic mineral resources [J]. China Non-metallic Minerals Industry, 2021, 2: 1–8, 23. doi: 10.3969/j.issn.1007-9386.2021.02.001

    程仕俊, 亢威, 周勇, 等, . 四川南江柏林坪石墨矿床成因: 岩石及 C-O 同位素地球化学约束[J]. 桂林理工大学学报, 2021, 41(4): 1-10

    CHENG Shijun, KANG Wei, ZHOU Yong, et al. Genesis of the Bolingping graphite deposit in Nanjiangm Sichuan: constraints of lithological and C-O isotopic geochemistry [J]. Journal of Guilin University of Technology, 2021, 41(4): 1-10.

    段威,唐文春,黄健华,等 .四川旺苍大河坝晶质石墨矿地质特征及成因[J].矿产与地质,2020,34(06):15-27.

    DUAN Wei, TANG Wenchun, HUANG Jianhua, et al. Geological characteristics and genesis of Dahaba crystalline graphite deposit in Wangcang, Sichuan [J]. Mineral Resources and Geology, 2020, 34(6): 15-27.

    郭佩, 刘池洋, 韩鹏, 等. 鄂尔多斯盆地西南缘下—中侏罗统碎屑锆石 U-Pb 年代学及其地质意义[J]. 大地构造与成矿学, 2017, 41(5): 892–907

    GUO Pei, LIU Chiyang, HAN Peng, et al. Geochemistry of detrital zircon form the lower-middle Jurassic strata in the southwestern Ordos basin, China, and its geological significance [J]. Geotectonica et Metallogenia, 2017, 41(5): 892–907.

    海连富, 刘安璐, 陶瑞, 等. 宁夏卫宁北山金场子金矿床流体来源及矿床成因: 来自流体包裹体和C-H-O同位素证据[J]. 地球科学, 2021, 46(12): 4274-4290

    HAI Lianfu, LIU Anlu, TAO Rui, et al. Source of fluid and genesis of Jinchangzi gold deposit in Weiningbeishan Ningxia: Evidence from fluid inclusions and C-H-O isotopes [J]. Earth Science, 2021, 46(12): 4274-4290.

    霍福臣, 潘行适, 尤国林, 等. 宁夏地质概论[M]. 北京: 科学出版社, 1989

    HUO Fuchen, PAN Xingshi, YOU Guolin, et al. Introduction to geology of Ningxia [M]. Beijing: Geological Publishing House, 1989.

    李红霞, 白生明, 黄玮, 等, . 浅析宁夏卫宁北山地区石炭纪地层沉积特征及演化规律[J]. 宁夏工程技术, 2016, 15(3): 217-222

    LI Hongxia, BAI Shengming, HUANG Wei, et al. A brief analysis on sedimentary features and evolvement rules of Carboniferous strata in Weining North Mountain area of Ningxia [J]. Ningxia Engineering Technology, 2016, 15(3): 217-222.

    梁利东, 黄瑞. 可控源音频大地电磁测深在卫宁北山石墨调查中的应用 [J]. 中国非金属矿工业导刊, 2020, 2: 49-53.
    刘敬党, 肖荣阁, 张艳飞, 等. 华北显晶质石墨矿床[M]. 北京: 科学出版社, 2017.
    刘勇, 李延栋, 王彦斌, 等. 宁夏卫宁北山金场子闪长玢岩岩脉地质特征及SHRIMP锆石U-Pb年龄[J]. 中国地质, 2010, 37(6): 1575-1583

    LIU Yong, LI Tingdong, WANG Yanbin, et al. Geological characteristics and zircon SHRIMP U-Pb data of Jinchangzi dioritic porphyrite dykes in Zhongwei city, Ningxia [J]. Geology in China, 2010, 37(6): 1575-1583.

    彭素霞, 陈向阳, 陈隽璐, 等. 新疆东准噶尔地区石墨矿成矿特征及成因探讨[J]. 西北地质, 2018, 51(4): 194-201

    PENG Suxia, CHEN Xiangyang, CHEN Junlu, et al. Metallogenic Geological Characteristics and Genesis of the Graphite Ore Belt in East Junggar, Xinjiang[J]. Northwestern Geology, 2018, 51(4): 194-201.

    王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209

    WANG Denghong. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation [J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209.

    王仁民, 贺高品, 陈珍珍, 等. 变质岩原岩图解判别法 [M]. 北京: 地质出版社,1986, 4-7+163-165.
    颜玲亚, 高树学, 陈正国, 等. 中国石墨矿成矿特征及成矿区带划分[J]. 中国地质, 2018, 45(3): 421-440

    YAN Lingya, GAO Shuxue, CHEN Zhengguo, et al. Metallogenic characteristics and metallogenic zoning of graphite deposits in China [J]. Geology in China, 2018, 45(3): 421-440.

    杨季华, 罗重光, 杜胜江, 等. 高黏土含量沉积岩古环境指标适用性讨论. 矿物学报, 2020, 40(6): 723-733

    YANG Jihua, LUO Chongguang, DU Shengjiang, et al. Discussion on the applicability of paleoenvironment index for sedimentary rocks with high clay eontet. Acta Mineralogica Sinica, 2020, 40(6): 723-733.

    张春林,白帅龙,袁建江,等.内蒙古自治区阿拉善左旗库井沟矿区晶质石墨矿勘探报告[R].北京:中国煤炭地质总局勘查研究总院.2017.

    ZHANG Chunling,BAI Shuailong,YUAN Jianjiang,et al. Exploration Report on Crystalline Graphite Ore in Kujinggou Mining Area, Alxa Left Banner, Inner Mongolia Autonomous Region[R].Beijing:General Prospecting Institute of China National Administration of Coal Geology.2017.

    张艳飞, 安政臻, 梁帅, 等. 石墨矿床分布特征、成因类型及勘查进展[J]. 中国地质, 2022, 49(1): 135-150

    ZHANG Yanfei, An Zhengzhen, LIANG Shuai, et al. Distribution characteristics, genetic types and prospecting progress of graphite deposits. Geology in China [J], 2022, 49(1): 135-150.

    张艳飞, 梁帅, 赵青, 等. 石墨矿床类型及显晶质石墨矿床成矿模式(Ⅰ): 成矿地质背景[J]. 化工矿产地质, 2020a, 42(1): 1-11, 18 doi: 10.3969/j.issn.1006-5296.2020.01.001

    ZHANG Yanfei, LIANG Shuai, ZHAO Qing, et al. Types of graphite deposits and metallogenic patterns of phanerocrystalline graphite deposits (Ⅰ): metallogenic geological background [J]. Geology of Chemical Minerals, 2020a, 42(1): 1-11, 18. doi: 10.3969/j.issn.1006-5296.2020.01.001

    张艳飞, 梁帅, 赵青, 等. 石墨矿床类型及显晶质石墨矿床成矿模式(Ⅱ): 矿石矿物及矿化特征[J]. 化工矿产地质, 2020b, 42(2): 97-105, 124

    ZHANG Yanfei, LIANG Shuai, ZHAO Qing, et al. Types of graphite deposits and metallogenic patterns of phanerocrystalline graphite deposits (Ⅱ): ore minerals and mineralizing charateristics [J]. Geology of Chemical Minerals, 2020b, 42(2): 97-105, 124.

    宁夏回族自治区地质调查院. 中国区域地质志•宁夏志[M]. 北京: 地质出版社, 2018

    Ningxia Hui Autonomous Region Institute of Geological Survey. The regional geology of China, Ningxia [M]. Beijing: Geological Publishing House, 2018.

    仲佳鑫, 李欢, 李鹏, 等. 宁夏卫宁北山金场子金矿床地质特征与控矿因素分析[J]. 西北地质, 2012, 45(3): 81-92

    ZHONG Jiaxin, LI Huan, LI Peng, et al. Geological Characteristics, Ore-Controlling Factors and Mineralization Law of Gold Ore in the North Mountain of Weining Area, Ningxia[J]. Northwestern Geology, 2012, 45(3): 81-92.

    朱建江, 刘福来, 刘福兴, 等. 胶—辽—吉造山带辽河群石墨矿碳同位素特征及成因分析[J]. 岩石学报, 2021, 37(2): 599-618 doi: 10.18654/1000-0569/2021.02.17

    ZHU Jianjiang, LIU Fulai, LIU Fuxing, et al. Carbon isotope and genesis study of graphite deposits in the Liaohe group of the Jiao-Liao-Ji orogenic belt [J]. Acta Petrologica Sinica, 2021, 37(2): 599-618. doi: 10.18654/1000-0569/2021.02.17

    Allegre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes [J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25. doi: 10.1016/0012-821X(78)90123-1

    Du Y, Song H, Tong J, et al. Changes in productivity associated with algal-microbial shifts during the Early Triassic recovery of marine ecosystems [J]. GSA Bulletin, 2021, 133(1-2), 362-378. doi: 10.1130/B35510.1

    Hahn-Weinheimer P, Hirner, A. Isotopic evidence for the origin of graphite [J]. Geochemical Journal, 1981, 15(1): 9-15. doi: 10.2343/geochemj.15.9

    Hoefs J. Stable isotope geochemistry [M]. 6th Edition. Berlin: Springer-Verlag, 2009, 53-107.

    Luque F G, Pasteris J D, Wopenka B, et al. Mineral fluid-deposited graphite: Mineralogical characteristics and mechanisms of formation [J]. American Journal of Science, 1998, 298(6): 471-498. doi: 10.2475/ajs.298.6.471

    Rudnick, R.L., Gao, S. Composition of the continental crust[A]. The crust[M]. Treatise on geochemistry, 2003, 3: 1−64

    Schidlowski M. Application of stable carbon isotopes to early biochemical evolution on Earth [J]. Annual Review of Earth and Planetary Sciences, 1987, 15: 47-72. doi: 10.1146/annurev.ea.15.050187.000403

    Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept [J]. Precambrian Research, 2001, 106, 117-134. doi: 10.1016/S0301-9268(00)00128-5

    Sharp Z. Principles of stable isotope geochemistry [M]. New Jersey:Pearson Education, 2007,1-344 .

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society London Special Publications, 1989, 42(1), 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Taylor S R , Mclennan S M. The continental crust: its composition and evolution [J]. The Journal of Geology, 1985, 94(4), 57-72.

    Weis P L, Friedman I, Gleason J P, et al. The origin of epigenetic graphite: Evidence from isotopes [J]. Geochimica et Cosmochimica Acta, 1981, 45(12): 2325-2332. doi: 10.1016/0016-7037(81)90086-7

    Zhu J J, Zhang L F, Tao R B, et al. The formation of graphite-rich eclogite vein in S. W. Tianshan (China) and its implication for deep carbon cycling in subduction zone [J]. Chemical Geology, 2020, 533: 119430. doi: 10.1016/j.chemgeo.2019.119430

图(9)  /  表(5)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-08-15
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2024-10-19

目录

/

返回文章
返回