ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    机器学习算法在地球物理测井中的适用性及应用

    Applicability and Application of Machine Learning Algorithm in Logging Interpretation

    • 摘要: 机器学习,特别是深度神经网络学习算法的发展,正在改变人们发现知识的方式。目前油气工业正在向转向非常规和深海的油气勘探和开发。基于有限岩石物理参数建立的评价解释模型难以满足反映非常规储层复杂的岩性和结构,这使传统测井评价技术受到了很大的挑战。以油气大数据为基础、机器学习算法为核心、油气大数据云计算为动力以及油气应用场景为源泉的油气人工智能(Oil & Gas AI)极大地改变传统的油气工业各个领域。笔者以地球物理测井为研究对象,依据数据驱动的地球物理知识发现原理和机器学习属性,按照“数据–算法–平台–知识–应用场景”研究思路,开展机器学习算法在测井技术中的适用性研究。对机器算法的内在特性、原理、质量控制、硬件要求,学习模型选择、测试以及性能评价实现过程进行分析。笔者梳理和总结了机器学习算法在测井中适用性的树状图,尤其是在油气测井的方法研究、数据处理以及地层评价中的应用潜力与机器学习算法对应关系,其中包括数据校正的模拟方法、数据标定的岩石物理分析、测井数据质量控制、综合评价以及油藏评价监测。研究表明,机器学习算法在岩性识别与储层分类、力学评价、以及油藏评价等方面应用有明显的优势,贯穿于测井方法、仪器设计、测井作业及测井解释中。机器学习算法相对于传统的岩石物理建模方法,以数据为纽带综合评价岩石物理的多重属性。这从数据科学角度突破了实验条件和物理属性的限制,具有跨学科、综合性的特点。

       

      Abstract: Machine learning, especially the development of deep neural network learning algorithms, is changing the way people discover knowledge. As the oil and gas industry is shifting to unconventional oil and gas exploration and development, the evaluation and interpretation model based on limited petrophysical parameters is difficult to meet the complex lithology and structure of unconventional reservoirs, which poses a great challenge to the traditional logging evaluation technology. Oil & gas artificial Intelligence (Oil & Gas AI), based on oil and gas big data, machine learning algorithms, oil and gas application scenarios, has greatly promoted the application and development of AI technology in various professionals of oil and gas industry. According to the data–driven petrophyical knowledge discovery, and the research idea of the “data–algorithm–platform–knowledge–application scenario”, firstly we analyzed the inherent attributes, principles, quality control, hardware requirements, learning model selection, testing, and performance evaluation implementation process for the machine learning algorithm. The tree graph of the applicability of the machine learning algorithm in logging is summarized, especially the relationship between the application potential and machine learning algorithm in oil and gas logging. These applications include simulation methods for data correction, petrophysical analysis for data calibration, logging data quality control, integrated evaluation, and reservoir monitoring. The study case shows that machine learning algorithms in lithology identification and reservoir evaluation, classification, mechanics, and reservoir evaluation based on the data link across multiple physical properties of petrophysics compared with traditional well logging method, which break through the limitation of experimental conditions and physical properties and has interdisciplinary and comprehensive characterization, had obvious advantages and potentials in well logging technology.

       

    /

    返回文章
    返回