ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

山东蓬莱石家金矿床含金黄铁矿微量元素地球化学特征及其对成矿流体的约束

冯李强, 顾雪祥, 章永梅, 张英帅, 王鹏飞, 颜宏伟, 王大伟

冯李强, 顾雪祥, 章永梅, 等. 山东蓬莱石家金矿床含金黄铁矿微量元素地球化学特征及其对成矿流体的约束[J]. 西北地质, 2023, 56(5): 262-277. DOI: 10.12401/j.nwg.2023030
引用本文: 冯李强, 顾雪祥, 章永梅, 等. 山东蓬莱石家金矿床含金黄铁矿微量元素地球化学特征及其对成矿流体的约束[J]. 西北地质, 2023, 56(5): 262-277. DOI: 10.12401/j.nwg.2023030
FENG Liqiang, GU Xuexiang, ZHANG Yongmei, et al. Trace Element Geochemical Characteristics of Gold−Bearing Pyrite from the Shijia Gold Deposit in Penglai, Shandong Province and Its Constraints on Ore−Forming Fluids[J]. Northwestern Geology, 2023, 56(5): 262-277. DOI: 10.12401/j.nwg.2023030
Citation: FENG Liqiang, GU Xuexiang, ZHANG Yongmei, et al. Trace Element Geochemical Characteristics of Gold−Bearing Pyrite from the Shijia Gold Deposit in Penglai, Shandong Province and Its Constraints on Ore−Forming Fluids[J]. Northwestern Geology, 2023, 56(5): 262-277. DOI: 10.12401/j.nwg.2023030

山东蓬莱石家金矿床含金黄铁矿微量元素地球化学特征及其对成矿流体的约束

基金项目: 国家自然科学基金重点项目“新疆西天山北缘晚古生代斑岩–矽卡岩型铜钼铁多金属成矿与岩浆–热液作用过程”(42130804),中国地质调查局地质调查专项“全国金矿勘查成果集成与战略选区”(DD20230374)联合资助。
详细信息
    作者简介:

    冯李强(1991−),男,工程师,主要从事矿床学及矿床地球化学研究。E−mail:fengliqiang_yes@126.com

    通讯作者:

    顾雪祥(1963−),男,教授,博士生导师,主要从事矿床学与矿床地球化学研究。E−mail:xuexiang_gu@cugb.edu.cn

  • 中图分类号: P618.51;P578.2+92

Trace Element Geochemical Characteristics of Gold−Bearing Pyrite from the Shijia Gold Deposit in Penglai, Shandong Province and Its Constraints on Ore−Forming Fluids

  • 摘要:

    石家金矿床是位于胶东蓬莱−栖霞成矿带北段的一个石英脉型金矿床,其成矿过程大致可以分为石英−黄铁矿−绢云母阶段(Ⅰ)、石英−多金属硫化物−金阶段(Ⅱ)和石英−方解石−萤石阶段(Ⅲ)。为探讨石家金矿床成矿流体的性质,采用电感耦合等离子质谱仪(ICP−MS)技术,对石英−多金属硫化物−金阶段与自然金共生的黄铁矿开展微量元素分析。结果表明,黄铁矿富集Cu、Pb、Zn等亲硫元素,并且主要以矿物包裹体的形式赋存于黄铁矿中。稀土元素总量较低(ΣREE值为2.55×10−6~20.94×10−6),呈现出轻稀土元素富集、重稀土元素亏损的配分模式,LREE/HREE与(La/Yb)N值分别为16.15~52.12和18.26~481.62。黄铁矿表现出显著的Eu负异常(δEu值为0.16~0.62)而无明显Ce异常(δCe值为0.89~1.33),Hf/Sm、Th/La、Nb/La值均小于1。结合前人流体包裹体的研究,认为黄铁矿是在流体不混溶的作用下,从富Cl的还原性流体中沉淀的。Y/Ho、Zr/Hf、Nb/Ta值变化范围大,暗示成矿过程中热液体系受到了干扰,可能有大气降水的加入。Co、Ni含量和Co/Ni值显示黄铁矿为热液成因,成矿流体具有变质热液的特点,可能与富集岩石圈地幔的去挥发分作用有关。

    Abstract:

    The Shijia gold deposit is a quartz−vein type gold deposit located in the north of the Penglai−Qixia gold belt in Jiaodong. The mineralization process of Shijia can be roughly divided into quartz−pyrite−sericite (I), quartz−polymetallic sulfide−gold (II) and quartz−calcite−fluorite (III) stages. The rare earth element (REE) and trace elements of pyrite coexisting with natural gold in the quartz−polymetallic sulfide−gold stage was analyzed by inductively coupled plasma mass spectrometry (ICP−MS) to discuss the properties of ore−forming fluids in the Shijia gold deposit. Results show that pyrite is relatively enriched in sulphophile elements such as Cu, Pb, Zn, and mainly occurs in pyrite in the form of mineral inclusions. The contents of REE in pyrite are relatively low, enriched in LREE, and depleted in HREE, with ΣREE, LREE/HREE values and (La/Yb)N values of 2.55×10−6~20.94×10−6, 16.15~52.12 and of 18.26~481.62, respectively. Pyrite shows significant negative Eu anomalies (δEu=0.16~0.62) but no obvious Ce anomalies (δCe=0.89~1.33), and Hf/Sm, Th/La, Na/La ratios are all less than 1. Combined with previous studies of fluid inclusions, it is indicating that pyrite is precipitated from a reducing fluid dominated by Cl−enriched under the mechanism of fluid immiscibility. The wide variation range of Y/Ho, Zr/Hf, and Nb/Ta ratios suggests that the hydrothermal system was disturbed during the mineralization process, which may be related to the addition of meteoric water. The contents of Co and Ni and the Co/Ni values indicate that the pyrite is of hydrothermal origin, and the ore−forming fluids are presumed to be similar to the metamorphic fluid which may be associated with the devolatilization of the enriched lithospheric mantle.

  • 土壤是陆地生态系统的重要组成部分,发挥着维持生物活性和多样性、稳定陆地生态平衡等重要的生态功能。多数陆地植物以土壤为生长基质,植物生长发育需要的热量、空气、水分和养分皆与土壤有关,水分和养分主要通过根部从土壤中吸收,而土壤热量和空气均受土壤性质影响,此外土壤还为植物提供了根系伸展的空间和机械支撑作用(耿增超等,2020)。同时,土壤也是重要的环境因素,是环境污染物的缓冲带和过滤器,土壤的环境质量直接关系到农产品的安全,对人类的健康有着极其深刻的影响(吕贻忠等,2006)。因此,土壤是联系无机界与有机界、非生命和生命的中心纽带,在生态环境中扮演着十分重要的角色。

    由于土壤是由岩石的风化物(成土母质)形成的,除少数有机土外,矿物颗粒占整个土壤固相部分的95%以上,因此土壤的性质会在一定程度上继承母质的性质,并受到母质的岩石类型、结构、构造、矿物组成、化学成分等特征的制约(周爱国等,2001李天杰等,2004吕贻忠等,2006Juilleret et al.,2016Wilson,2019Vithanage et al.,2019欧阳渊等,2021贾磊等,2022)。地质建造是指同一时代、同一构造环境、同一地质作用下形成的,宏观上可识别填绘的一套岩石组合(中国地质调查局,2019),是地质环境的物质载体。在山地丘陵地貌区,大部分岩石在风化破碎后未经搬运或仅经历短距离搬运形成残积、塌积或坡积的成土母质,这些母质继续风化形成上覆的土壤层。因此,山地丘陵区的地质建造与上覆土壤层之间存在着密切的成因联系,而土壤层又直接制约着其上生态环境的质量。这表明在山地丘陵区,通过深入研究地质建造对区内土壤性质的制约,有望建立起地质背景与生态环境之间的联系,为地质工作服务生态文明建设提供理论支撑。

    尽管前人在地质建造影响土壤性质方面开展了一些研究(严明书等,2018Hahm et al.,2018赵凯丽等,2019王京彬等,2020张腾蛟等,20202021李樋等,2021a曾琴琴等,2021夏学齐等,2022),但这些研究以定性研究为主,常只研究土壤而未将地质建造和土壤作为一个体系开展对应研究,且往往仅关注个别元素或某种性质,而未将土壤与生态有关的各种性质进行综合研究。在上述背景下,笔者以西昌地区山地地貌上发育的红壤为例,对不同地质建造上形成红壤的风化壳剖面(基岩–土壤剖面)进行广泛采样调查,以期揭示和定量评价地质建造对土壤性质的制约作用,并为山地丘陵地貌区的生态地质调查提供工作思路。

    西昌地区位于中国西南四川省西南部的西昌市及其周边区域,坐标为E 102°00′00″~102°23′00″,N 27°40′00″~28°00′00″(图1图2)。该地区在大地构造上位于上扬子地块西缘和康滇断隆带北段(图1图2),区内自古太古代以来经历了多期次的构造活动,形成了前寒武纪基底及显生宙沉积盖层,在古生代末经历了海陆变迁,新生代时期由于青藏高原隆升引起的挤压,区内发生强烈的褶皱变形,形成现今复杂的一系列近南北走向的构造系统。研究区沉积地层分布较广,但以中新生界为主;区内岩浆岩广泛分布在研究区的西部,中东部少见;研究区内构造活动强烈,三条断裂带呈近南北向贯穿(图2a),这些断裂目前仍在活动(刘洪等,2021)。

    图  1  (a)研究区大地构造位置图和(b)研究区位置图
    QT. 羌塘地块;SG. 松潘–甘孜地块;UY. 上扬子地块
    Figure  1.  Location map of the study area
    图  2  (a)西昌地区形成红壤的6类地质建造图和(b)红壤分布图(红壤分布范围据国家地球系统科学数据中心,1995
    Figure  2.  (a) The map of 6 geological formations forming red soil in the Xichang area, and (b) the red soil distribution map

    研究区内岩石地层单元和岩浆岩较为复杂,为了简化问题的讨论,可将区内的各种岩石地层单元和岩浆岩体归并划分成不同的地质建造,划分时主要依据岩石的岩性及岩石形成的时代和构造环境,合并相似的地质单元,再考虑成图精度的要求和实用性,将出露较小的地质单元与附近的地质单元进行归并处理。刘洪等(20202022)将研究区划分成10个类型的地质建造,其中形成红壤的地质建造包括6类(图2):①新近纪—第四纪陆相碎屑岩建造,主要为昔格达组,岩性为粉砂岩、黏土岩,底部含砾岩,为河流–湖泊冲积相沉积,分布于安宁河两侧及邛海四周。②三叠纪陆相碎屑岩建造,包括白果湾组、宝顶组、大荞地组和丙南组,岩性为砂岩、泥岩,河流–湖泊相沉积为主,主要分布在区内西部和东南部。③三叠纪中酸性岩建造,岩性主要为碱性正长岩和碱性花岗岩,其形成可能与板内裂谷作用机制下的玄武岩浆分异有关,主要分布在区内西北部。④二叠纪基性岩建造,岩性为峨眉山玄武岩和辉长岩,分布于区内西部。⑤元古代中酸性岩建造,包括花岗闪长岩、石英闪长岩、斜长花岗岩、二长花岗岩等,形成环境具有活动大陆边缘的特征,分布于区内西部。⑥元古代火山碎屑岩建造,包括开建桥组和列古六组,仅少量分布于区内东南角。不同地质建造上形成红壤的土壤剖面和生态景观如图3所示。

    图  3  西昌地区6类地质建造上形成红壤的土壤剖面和生态景观图
    a、b. 新近纪—第四纪陆相碎屑岩建造上生态景观和红壤剖面,R层为含砾砂岩;c、d. 三叠纪陆相碎屑岩建造上生态景观和红壤剖面,R层为砂岩;e、f. 三叠纪中酸性岩建造上生态景观和红壤剖面,R层为碱性花岗岩;g、h. 二叠纪基性岩建造上生态景观和红壤剖面,R层为辉绿岩;i、j. 元古代中酸性岩建造上生态景观和红壤剖面,R层为花岗岩;k、l. 元古代火山碎屑岩建造上生态景观和红壤剖面,R层为火山碎屑岩;A层. 淋溶层;B层. 淀积层;C层. 母质层;R层. 基岩层
    Figure  3.  Soil profile and ecological landscape of red soil formed on the six geological formations in the Xichang area

    研究区整体位于横断山脉的东南缘(图1),地貌兼具中山山地、河谷平原和干热峡谷等类型(图2b)。其中,区内西部主要属于牦牛山和磨盘山组成的中山山地,海拔为1500~3400 m;东部为螺髻山北段中山山地,海拔为1500~3000 m;中部为南北向狭长分布的安宁河谷平原,海拔约为1500 m;西南部小部分区域属于雅砻江沿岸的干热峡谷,海拔约为1200~1700 m。

    区内的红壤主要分布于较低海拔的山地地貌,包括安宁河谷两侧、邛海周围以及雅砻江沿岸,海拔为1500~2500 m,分布面积较广(图2b)。这些山地地貌上的基岩在风化破碎后都未经搬运或仅经历短距离搬运后形成上覆的红壤,因此基岩(地质建造)与其上覆红壤之间具有密切的成因联系(李樋等,2021b)。

    笔者选择研究区内的红壤进行采样和分析,原因有2点:①传统土壤类型的划分更注重气候和生物等成土因素的作用,同一地区同种土壤类型形成的气候和生物作用基本一致,因此选择同一种类型的土壤进行研究可以更准确地评价地质建造(母质)因素对土壤性质的影响。②红壤的形成通常经历了较强的淋溶作用,物理和化学风化程度均很高,其是否仍然保留了地质建造(母质)对其性质的影响也值得探究。

    笔者分别对可形成红壤的6类地质建造上的基岩和红壤进行了野外调查和样品采集,采样时对应采集各采样点同一风化壳剖面上的新鲜基岩和土壤样品。土壤样品统一采集B层,采样时连续均匀采集B层剖面上不同部位的土壤混合成一件土壤样品。共计采集基岩–土壤样品45组。

    对采集的基岩和土壤样品进行了植物必需营养元素(N、P、K、Ca、Mg、S、Cu、Zn、Mn、Fe、B、Mo、Cl、Ni)和重金属元素(Cr、Cd、Hg、Pb、As)含量分析,分析测试工作在中国地质调查局成都地质调查中心沉积盆地与油气资源自然资源部重点实验室完成,分析方法参考标准《区域地球化学样品分析方法》(DZ/T 0279.3-2016),同时对土壤样品进行了粒度、pH值等物理化学参数的分析,其中粒度分析测试工作在四川省科源工程技术测试中心完成,分析方法参考标准《化学品 土壤粒度分析试验方法》(GB/T 27845-2011),pH值在中国地质调查局成都地质调查中心沉积盆地与油气资源自然资源部重点实验室完成,分析方法参考标准《土壤检测 第2部分:土壤pH的测定》(NY/T 1121.2-2006)。

    6类地质建造中基岩和土壤的元素含量分析结果表明(表1图4),不同元素种类在基岩中含量或在土壤中含量均存在较大差异,但基岩与土壤中不同元素种类的含量显示出明显的正相关性。一些元素种类在基岩和土壤中含量均较低,如属于微量元素的Hg、Cd、Mo和属于主量元素的P、Mn,而另一些元素种类在基岩和土壤中含量均较高,如属于微量元素的Cu、Zn、Cl和属于主量元素的Fe、K(表1图4)。这种现象本质上是基岩和土壤中元素含量同时受地壳元素丰度控制的结果,即地壳元素丰度控制了地壳岩石(地质建造中基岩)中各元素种类含量的数量级范围,而地壳岩石中各元素种类的含量又控制了土壤相应元素种类含量的数量级范围。各类地质建造上形成红壤的元素含量配分型式都与地壳元素丰度的配分型式一致(图5),证明了土壤元素含量受地壳元素丰度的控制。地壳元素丰度对土壤元素含量的控制体现了岩石圈对土壤圈的影响作用。值得注意的是,这种控制作用是间接的和粗略的,地壳元素丰度仅控制了土壤中各种元素含量在数量级上的大致范围。

    表  1  不同地质建造中基岩和土壤样品的营养元素和重金属含量表
    Table  1.  Nutrient element and heavy metal content of bedrock and soil samples from each geological formation
    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    新近纪—第四纪陆相碎屑岩建造–基岩
    D0112R11.161.322.410.220.064.990.030.04/92.700.3630.5079.0033.900.1466.6023.906.820.01
    D1210R10.392.003.380.090.086.870.020.0528.0064.900.1749.60138.0048.60<0.05114.0028.706.130.02
    D2112R10.201.133.050.070.077.870.01/47.4077.700.3860.50106.0041.200.0887.9053.109.040.01
    D3111R20.131.583.020.060.025.430.02/38.9079.900.5020.4088.4038.400.0971.2033.607.080.08
    平均值0.471.512.970.110.066.290.020.0538.1078.800.3540.25102.8540.530.1084.9334.837.270.03
    新近纪—第四纪陆相碎屑岩建造–土壤
    D0112B10.841.422.750.100.096.610.020.1058.60104.000.5443.20143.0042.400.1580.1038.3011.800.04
    D1210B10.200.662.200.080.126.410.040.0617.9092.501.7439.5091.2046.00<0.0564.3029.1010.700.02
    D2112B10.230.512.020.060.054.630.02/50.8079.600.5525.3057.8027.300.0776.5026.808.040.03
    D3111B10.121.232.120.090.045.910.02/38.3060.100.7819.2067.2043.800.08103.0024.007.380.11
    平均值0.350.962.270.080.075.890.030.0841.4084.050.9031.8089.8039.880.1080.9829.559.480.05
    三叠纪陆相碎屑岩建造–基岩
    D1204R10.070.822.810.130.046.980.020.1412.6084.401.0759.10109.0076.700.17320.0015.103.670.04
    D1306R10.040.331.390.050.012.830.030.0521.9022.100.6214.8022.3035.30<0.05123.0015.001.900.03
    D1608R10.180.521.020.050.072.880.030.0320.2046.000.3311.1050.5017.20<0.0537.6014.908.630.06
    D2101R10.341.422.860.160.085.280.01/25.0098.000.4028.60120.0031.500.1870.2024.303.920.04
    D2102R11.171.742.160.160.036.030.01/24.8086.700.4518.60105.0026.500.1952.9029.103.730.04
    D2202R13.052.774.420.150.086.640.01/21.60109.000.2431.60111.0045.700.23107.0021.9030.600.04
    D2204R10.190.180.690.020.020.820.01/28.8021.500.183.3819.104.720.0612.2011.003.050.02
    D2207R10.441.852.520.160.065.700.01/18.2077.800.1729.40111.0037.200.2276.7022.604.170.03
    D2307R13.861.472.540.210.118.470.01/41.108.700.6748.4096.5029.100.1465.6016.001.460.02
    D2308R124.054.281.590.150.134.950.01/42.70124.000.4070.6053.1035.000.14129.0010.700.830.03
    D2401R10.240.260.870.030.011.000.01/25.4029.100.184.2623.807.79<0.0514.606.782.120.02
    D2402R10.110.932.700.110.065.860.01/16.70114.000.2829.0095.8034.900.1075.5033.804.000.03
    D3112R10.130.691.790.080.032.750.01/28.4057.600.366.3839.0015.500.1128.4019.002.030.03
    D3113R10.080.432.870.070.033.130.01/20.40120.000.5622.0039.9014.100.1277.4021.3017.900.05
    D3211R10.111.474.810.100.066.440.01/16.20128.000.1628.0079.6032.000.0896.0044.3021.800.07
    D3219R10.360.742.040.070.012.990.01/25.4083.300.1716.5069.8022.70<0.0546.6015.807.040.03
    平均值2.151.242.320.110.054.550.010.0724.3475.640.3926.3671.5929.120.1583.2920.107.300.04
    三叠纪陆相碎屑岩建造–土壤
    D1204B10.211.041.920.180.149.820.080.2139.0086.004.1858.40104.0060.300.13186.0024.6016.600.18
    D1306B10.060.601.770.090.0310.860.040.0821.5048.603.7766.4072.8053.700.05203.0035.2019.400.17
    D1608B10.170.571.640.070.055.170.060.1226.0060.204.6524.0072.2033.700.13132.0025.0010.200.02
    D2101B10.110.742.180.110.056.100.02/30.8079.800.7021.80116.0033.400.1877.3031.809.480.07
    D2102B10.411.333.590.070.097.510.02/22.9070.201.1433.10143.0053.700.12122.0034.6011.600.06
    D2202B13.212.613.760.160.106.730.02/25.6082.100.4630.60108.0047.200.35112.0029.607.930.03
    D2204B10.170.401.280.060.023.490.01/36.6041.600.5714.0038.3026.60<0.0552.8018.909.890.03
    下载: 导出CSV 
    | 显示表格
    续表1
    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    D2207B10.161.783.130.130.067.650.01/32.6074.700.4632.70111.0054.500.17116.0027.507.510.06
    D2307B13.172.192.300.250.1812.300.02/52.006.560.6081.80119.0056.800.22169.0015.901.720.02
    D2308B13.314.572.280.190.219.870.02/31.4096.000.9196.60102.0068.800.30174.0017.202.020.02
    D2401B10.220.602.100.090.143.830.02/26.8055.400.4113.0059.0019.600.1059.2023.003.160.03
    D2402B10.220.771.740.100.084.290.02/23.2075.500.5518.6069.0029.700.0773.3021.107.440.02
    D3112B10.150.811.320.080.025.830.03/39.3047.801.1819.0093.9034.900.0589.9026.3012.700.25
    D3113B10.180.622.430.140.086.540.02/36.1080.900.9531.8075.6034.700.09100.0036.509.900.10
    D3211B10.150.791.880.120.056.140.03/35.3066.001.2123.4073.0026.700.0793.1033.1014.900.16
    D3219B10.120.591.420.090.044.420.03/31.8074.500.7224.6065.3023.40<0.0579.0021.709.300.03
    平均值0.751.252.170.120.086.910.030.1431.9365.371.4036.8688.8841.110.14114.9126.389.610.08
    三叠纪中酸性岩建造–基岩
    D1206R10.190.145.190.020.164.710.020.0135.205.630.5910.50295.003.500.269.2521.000.700.00
    D1309R10.280.163.320.030.198.660.030.0129.402.701.548.56275.0013.400.0711.4029.200.230.01
    D1312R10.270.336.090.090.1010.030.020.0128.202.481.0517.20168.0020.20<0.0566.5019.101.710.00
    D1409R10.373.002.280.150.1311.920.030.0529.8030.800.59112.00137.0089.100.12189.008.810.560.00
    D2309R10.820.405.190.070.184.660.01/73.605.640.213.96123.001.400.153.148.960.640.02
    平均值0.390.814.410.070.158.000.020.0239.249.450.8030.44199.6025.520.1555.8617.410.770.01
    三叠纪中酸性岩建造-土壤
    D1206B10.370.593.080.110.045.450.070.1941.9035.301.6712.00109.0017.700.0667.1028.407.290.13
    D1309B10.110.541.470.060.059.170.050.0636.5056.704.3337.20150.0047.00<0.05124.0034.6021.800.10
    D1312B10.130.391.750.070.115.870.030.0462.8079.105.4428.8079.9028.00<0.0576.6022.308.240.02
    D1409B10.381.242.220.240.518.860.050.2228.6037.904.47123.00155.0065.900.35174.0033.506.460.10
    D2309B10.440.394.680.060.184.720.02/63.4016.700.4713.20101.008.290.1019.3014.002.800.02
    平均值0.290.632.640.110.186.810.050.1346.6445.143.2842.84118.9833.380.1792.2026.569.320.07
    二叠纪基性岩建造–基岩
    D1205R10.071.333.660.300.0420.600.030.1522.3088.901.66206.00178.00153.000.32218.0030.2031.800.04
    D1207R10.151.891.360.360.3020.350.030.0239.8011.300.19524.00178.0060.600.1674.308.732.470.01
    D2306R17.977.210.820.250.1711.260.01/20.003.650.5892.10113.0085.800.16279.008.870.600.02
    D2409R16.558.161.060.280.1411.520.01/25.802.690.8867.80103.00205.000.13652.007.080.340.02
    平均值3.684.651.730.300.1615.930.020.0826.9826.640.83222.48143.00126.100.19305.8313.728.800.02
    二叠纪基性岩建造-土壤
    D1205B10.503.491.730.170.1713.370.060.0713.5040.003.33118.00136.00157.000.16428.0018.403.370.03
    D1207B10.080.432.050.140.2011.860.040.0628.7028.504.4424.80177.0032.30<0.0588.1025.0013.700.07
    D2306B13.002.761.390.180.1713.820.02/24.7010.900.82116.00100.0093.800.12310.0012.802.440.06
    D2409B10.361.221.040.190.1712.940.03/35.0021.401.04112.00102.00161.000.05521.0017.203.880.04
    平均值0.991.981.550.170.1813.000.030.0725.4825.202.4192.70128.75111.030.11336.7818.355.850.05
    元古代中酸性岩建造–基岩
    D1105R11.941.131.820.230.145.450.020.0067.904.330.2812.60125.003.720.185.0218.300.230.00
    D1106R12.421.402.800.100.084.950.020.0054.206.130.5317.1094.104.490.068.1315.700.000.00
    下载: 导出CSV 
    | 显示表格
    续表1
    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    D1107R11.650.692.790.050.083.290.020.0245.504.420.336.5473.105.450.097.2516.300.830.00
    D1108R13.921.962.260.180.126.500.030.0199.602.460.3050.0084.4012.700.0625.008.000.420.00
    D1110R12.251.602.150.140.105.060.020.0144.803.140.2525.5068.8013.500.0917.6011.700.500.00
    D2105R11.810.703.160.110.042.320.01/25.905.29<0.12.2249.903.60<0.057.9212.600.240.00
    D2209R10.740.531.760.090.042.210.01/55.507.58<0.11.5242.601.750.094.239.410.000.01
    D2210R13.331.172.330.110.073.450.01/46.505.160.2011.5060.4017.20<0.0548.0010.501.800.01
    D2211R12.720.672.680.080.062.260.01/67.505.21<0.13.6755.102.400.066.0916.900.420.01
    D2212R13.561.121.840.120.063.110.03/81.206.600.166.3173.006.16<0.0519.8012.200.600.01
    D2214R10.561.702.700.120.052.750.04/52.4023.50<0.12.5454.504.22<0.0511.702.200.550.00
    D2406R11.070.604.580.040.042.210.01/32.408.311.2390.2073.4010.000.2312.8025.000.590.04
    D2407R16.614.321.050.180.127.690.01/66.504.830.1220.7081.1039.400.1090.607.610.310.00
    D2407R20.430.472.600.040.062.100.01/26.8037.90<0.13.3238.202.080.164.0615.000.280.03
    平均值2.361.292.470.110.073.810.020.0154.768.920.3818.1269.549.050.1119.1612.960.480.01
    元古代中酸性岩建造–土壤
    D1105B12.771.831.880.870.1810.820.030.0881.904.710.5219.80112.0011.900.1210.6013.001.340.02
    D1106B10.551.251.960.060.077.270.020.0348.1011.800.5524.80108.0014.80<0.0520.7018.302.810.04
    D1107B11.150.822.620.100.095.420.040.0938.8028.209.4532.6093.8023.800.16182.0018.803.060.02
    D1108B12.801.042.200.070.106.210.030.06124.004.515.7624.5064.8012.400.1263.2013.100.910.01
    D1110B11.680.622.170.080.075.140.040.0960.3017.009.4323.8049.5012.900.14163.0017.603.390.02
    D2105B12.130.703.170.090.043.420.01/77.807.150.2114.3061.204.73<0.0511.2017.500.490.01
    D2209B10.670.663.410.060.053.570.01/88.508.770.2710.6050.507.86<0.0513.1018.501.330.02
    D2210B11.700.862.540.060.053.190.03/67.005.580.174.4650.805.540.1018.8013.100.880.02
    D2211B11.560.533.280.050.052.240.02/57.204.040.1112.9044.902.26<0.054.7115.700.230.00
    D2212B11.310.782.830.080.053.140.02/58.905.380.197.2254.106.36<0.0519.1013.300.680.02
    D2214B10.231.442.380.060.043.150.01/66.708.220.1039.6049.506.19<0.0519.8020.500.430.01
    D2406B10.533.542.170.090.168.660.02/31.9014.000.40135.00126.00384.000.13437.0021.402.770.04
    D2407B12.303.691.070.090.099.920.02/47.2014.100.4637.6093.7059.800.07150.0011.903.980.02
    D2407B20.590.792.740.060.053.290.02/51.0021.800.347.9053.709.77<0.0518.3017.403.500.02
    平均值1.431.332.460.130.085.390.020.0764.2411.092.0028.2272.3240.170.1280.8216.441.840.02
    元古代火山碎屑岩建造–基岩
    D2222R10.080.235.740.010.032.200.01/27.2019.801.064.16169.001.440.093.5410.404.390.02
    D2601R10.130.413.830.020.032.560.02/48.9015.300.273.8041.103.250.065.0120.803.990.01
    平均值0.110.324.790.010.032.380.01/38.0517.550.673.98105.052.350.074.2815.604.190.01
    元古代火山碎屑岩建造–土壤
    D2222B10.160.453.440.030.053.680.03/35.6038.301.2719.30120.0014.900.1130.4026.7012.000.04
    D2601B10.140.383.330.020.032.670.03/64.1013.600.7314.7068.807.67<0.0512.4025.3023.600.04
    平均值0.150.423.390.030.043.170.03/49.8525.951.0017.0094.4011.290.1121.4026.0017.800.04
    大陆地壳
    元素丰度
    5.393.672.580.170.096.170.070.06472.0011.001.1025.0065.0056.000.10126.0014.801.700.04
     注:CaO、MgO、K2O、P2O5、MnO、TFe2O5、S、N元素含量为%;Cl、B、Mo、Cu、Zn、Ni、Cd、Cr、Pb、As、Hg元素含量为10–6;/表示无数据;大陆地壳元素丰度引自Wedepohl(1995)
    下载: 导出CSV 
    | 显示表格
    图  4  基岩与红壤中各元素含量的相关性
    a.含量较高的大量中量元素;b.含量较低的微量元素;每一个样品点代表一种元素在一种地质建造内所有基岩或土壤样品含量的平均值
    Figure  4.  Correlation of element contents in bedrock and red soil
    图  5  地壳元素丰度与不同地质建造中形成红壤元素含量的关系
    a.含量较高的大量中量元素;b.含量较低的微量元素;土壤元素含量为一种地质建造内所有土壤样品含量的平均值
    Figure  5.  Relationship between average element content of crust and element content of red soil formed in each geological formation

    营养元素是植物生长发育必需的物质基础,在植物生命活动中发挥着不可替代的功能。植物的营养元素主要从土壤中吸收,土壤中营养元素的含量是土壤肥力的重要体现。14种营养元素在不同类型地质建造和相应土壤中的含量关系表明(图6),每一种营养元素在不同类型地质建造(基岩)中含量或在不同类型建造形成土壤中含量均存在较大差异。除S和N两种元素外,其余12种元素在土壤中的含量均与其在相应地质建造(基岩)中的含量呈明显的线性正相关关系,相关系数R的平方值较高,为0.70~0.97,表明土壤中的这些元素均主要来源于下伏地质建造中,且不同类型地质建造中某种营养元素的含量直接控制了其形成土壤中相应营养元素的含量。尽管基岩风化可以为土壤提供重要的S输入和少量的N输入(Morford et al.,2011Dynarski et al.,2019),但土壤中85%~95%的S和95%的N以有机态形式存在,生物地球化学循环过程对土壤中S和N含量影响更大(耿增超等,2020),这可能导致了地质建造与其形成土壤的S、N含量相关性很低或不存在相关性。

    图  6  基岩(地质建造)与土壤各种营养元素含量的相关性
    基岩和土壤的元素含量均为一种地质建造内所有基岩和土壤样品含量的平均值;CaO、B和Mo图解中均有1个异常点未参与R2值计算。
    Figure  6.  Nutrient elements correlation between the bedrock (geological formation) and the soil

    西昌地区的元古代火山碎屑岩建造具有最低的P2O5、MgO、TFe2O3、MnO、CaO、Cu、Ni含量和最高的K2O含量(图6)。相反,二叠纪基性岩建造具有最高的P2O5、MgO、TFe2O3、MnO、CaO、Cu、Ni含量和最低的K2O含量。因此,这两种地质建造形成的红壤在营养元素组成上差别最为显著(图6)。此外,尽管三叠纪陆相碎屑岩建造与元古代中酸性岩建造的岩性存在差异,但它们的K2O、P2O5、MgO、TFe2O3、MnO、Cu、Ni、Zn、Mo等营养元素含量十分接近(图6),这就造成它们所形成红壤的上述营养元素含量也十分接近(图6)。

    依据地质矿产行业标准《土地质量地球化学评价规范》(DZ/T 2016),对研究区不同类型地质建造上形成红壤营养元素含量的生态环境效应进行评价。结果显示(图7):①多数地质建造上形成红壤的K在适中或较丰范围,仅二叠纪基性岩建造上的红壤K较缺乏。②多数地质建造上形成红壤的P、Mg较缺或缺乏,仅二叠纪基性岩建造上的红壤的P、Mg达到适中范围。③二叠纪基性岩建造上红壤的Mn很丰富,而元古代火山碎屑岩建造上红壤的Mn很缺乏,其余建造上红壤的Mn在较缺至较丰之间变化。④多数地质建造上形成红壤的Ca均很缺乏,仅元古代中酸性岩建造上红壤的Ca主体在适中范围。⑤元古代火山碎屑岩建造及元古代中酸性岩建造上红壤的Cu较缺乏,而二叠纪基性岩建造上红壤的Cu含量过高,已超出适宜范围,存在污染风险,其余3种建造上红壤的Cu总体在适中至很丰富范围。⑥三叠纪陆相碎屑岩建造、三叠纪中酸性岩建造、二叠纪基性岩建造、元古代火山碎屑岩建造上红壤的Zn总体处于很丰富范围,而新近纪—第四纪陆相碎屑岩建造和元古代中酸性岩建造上红壤的Zn在较缺乏至较丰富之间变化。⑦二叠纪基性岩建造、元古代中酸性岩建造、元古代火山碎屑岩建造上红壤的B缺乏,而新近纪—第四纪陆相碎屑岩建造和三叠纪陆相碎屑岩建造上红壤的B丰富。⑧元古代中酸性岩建造上红壤的Mo、S总体缺乏,其余建造上红壤的Mo、S均为适中至丰富范围,其中三叠纪中酸性岩建造上部分红壤的Mo已过量,超出适宜范围。可见,不同类型地质建造上形成红壤的营养元素丰缺度存在显著差异。

    图  7  不同类型地质建造上形成红壤的营养元素丰缺度评价
    Figure  7.  Nutrient element abundance evaluation of red soil formed on each geological formations

    土壤中重金属元素超标不仅可直接影响植物生长,抑制土壤微生物活性,还可通过食物链、水体、粉尘等途径传递至人体,危害人体健康(张鑫,2019杨乐等,2020)。Cr、Cd、Pb、Hg、As等5种重金属元素(图8)及Cu、Zn、Ni等3种重金属元素(图6)含量特征显示,每一种重金属元素在不同类型地质建造(基岩)中含量或在不同类型建造形成土壤中含量均存在较大差异。除As外,其余重金属元素在土壤中的含量均与其在相应地质建造中的含量呈明显的正相关关系,相关系数R的平方值较高,为0.54~0.96,表明土壤中的这些重金属元素主要来源于下伏地质建造(基岩)中,且不同类型地质建造中某种重金属元素的含量直接控制了其形成土壤中相应重金属元素的含量。土壤中As元素除了来自基岩风化外,极容易受到人类工农业活动的影响(安礼航等,2020),这可能是区内地质建造与其形成土壤的As含量相关性低的原因。

    图  8  基岩(地质建造)与土壤中各重金属元素含量的相关性
    基岩和土壤的元素含量均为一种地质建造内所有基岩和土壤样品含量的平均值;Cd、Hg图解均中有1个异常点未参与R2值计算
    Figure  8.  Heavy metals correlation between the bedrock (geological formation) and the soil

    依据地质矿产行业标准《土地质量地球化学评价规范》(DZ/T 2016)和国家标准《土壤环境质量农用地土壤污染风险管控标准》(GB15618-2018),对不同类型地质建造上形成红壤重金属元素含量的生态环境风险进行评价(图9)。结果显示(图10):①所有地质建造形成红壤的Cd、Pb、Hg、As、Zn均低于农用地土壤污染风险筛选值,表明所有地质建造上红壤的上述重金属含量对农产品质量安全、农作物生长或土壤生态环境的风险低,一般情况下可以忽略。②二叠纪基性岩建造的Cr、Ni、Cu总体超标,高于农用地土壤污染风险筛选值,对农产品质量安全、农作物生长或土壤生态环境可能存在风险,应当加强土壤环境监测和农产品协同监测,原则上应当采取安全利用措施。③新近纪—第四纪陆相松散碎屑岩建造和元古代火山碎屑岩建造上红壤的Cr、Ni、Cu含量未超标,属安全范围。④三叠纪陆相碎屑岩建造、三叠纪中酸性岩建造、元古代中酸性岩建造上红壤的Cr、Ni、Cu含量总体均为安全范围,但有少部分存在超标现象,应予以关注。可见,不同类型地质建造上形成红壤的重金属污染风险存在显著差异。

    图  9  不同类型地质建造上形成红壤的重金属污染风险评价
    Figure  9.  Risk assessment of heavy metal pollution of red soils formed on different geological formations
    图  10  不同类型基岩建造上形成红壤物理化学性质差异图
    a. 红壤颗粒粒级百分含量图;b. 红壤酸碱性图;NQms. 新近纪—第四纪陆相碎屑岩建造;Tss. 三叠纪陆相碎屑岩建造;Tγδ. 三叠纪中酸性岩建造;Pβ. 二叠纪基性岩建造; Ptγδ. 元古代中酸性岩建造;Ptpr. 元古代火山碎屑岩建造
    Figure  10.  Physical and chemical properties of red soils formed on different bedrock formations

    土壤质地是土壤的基本物理性质之一,土壤蓄水、供水、保肥、供肥、容气、通气、保温、导温和耕性等均受土壤质地影响(耿增超等,2020)。研究区内不同类型地质建造上形成红壤的土壤粒级存在一定的差异(表2图10a),元古代中酸性岩建造上形成的红壤具有最高的砂粒和最低的黏粒含量,其质地为砂质壤土;三叠纪碱性岩建造、二叠纪基性岩建造和新近纪—第四纪陆相松散碎屑岩建造上形成的红壤粉粒含量最高,质地属于粉质壤土;三叠纪陆相砂质碎屑岩建造和元古代火山碎屑岩建造上形成的红壤介于上述两者之间,质地属于壤土。

    表  2  不同类型地质建造上形成红壤的粒级分布和pH值
    Table  2.  Particle size distribution and pH value of red soil formed on different geological formations
    红壤的下伏地质建造类型砂粒含量
    (0.075~1 mm)
    粉粒含量
    (0.075~0.005 mm)
    黏粒含量
    (< 0.005 mm)
    pH
    新近纪-第四纪陆相碎屑岩建造42.65%48.06%9.30%6.26
    三叠纪陆相碎屑岩建造45.57%45.40%9.03%5.91
    三叠纪中酸性岩建造40.55%50.29%9.17%5.53
    二叠纪基性岩建造39.77%47.44%12.80%5.68
    元古代中酸性岩建造53.86%39.84%6.30%5.63
    元古代火山碎屑岩建造46.82%40.05%13.14%4.92
    下载: 导出CSV 
    | 显示表格

    土壤的酸碱性是土壤的基本化学性质之一,它不仅直接影响植物生长,而且对土壤营养元素和重金属元素的化学形态和生物有效性产生影响(耿增超等,2020)。虽然研究区内不同地质建造形成的红壤均为酸性,但酸性程度存在一定差异(表2图10b)。元古代火山碎屑岩建造上形成红壤的pH值最低(4.9),显示较强的酸性;而新近纪—第四纪陆相松散碎屑岩建造上形成红壤的pH值最高(6.3),显示弱酸性。

    同一种地质建造一般具有相似的基岩岩石类型、矿物组成、化学组成、结构构造等特征,风化成土过程中,这些特征可能在一定程度上遗传给其形成的土壤,从而影响着其形成土壤的性质。笔者以西昌地区山地地貌区发育的红壤为例,对不同类型地质建造上的基岩和红壤进行了地球化学分析和理化性质分析。研究结果表明:在山地丘陵区,地表的红壤与下伏的地质建造之间具有密切的成生关系;红壤的营养元素和重金属元素含量与下伏地质建造中相应元素的含量呈现近似线性的正相关关系;红壤的质地和酸碱性等理化性质也因其发育于不同类型的地质建造而存在差异。因此,尽管研究区内的红壤经历了较强烈的淋溶风化作用,红壤的土壤性质仍然显著地受到下伏地质建造的制约。

    实际上,如果不考虑土壤类型,即在不同的气候和植被条件下,山地丘陵区地质建造对上覆土壤性质的制约作用也是明显的。例如,笔者曾采集了大凉山区二叠纪基性岩建造上的49件土壤样品,采集地点包括西昌市、普格县、冕宁县、雷波县等地,涉及土壤类型包括红壤、黄壤、黄棕壤、棕壤、暗棕壤等。这些土壤样品也存在明显的Cu、Cr、Ni、Cd、Mn等重金属元素超标现象,其中Cu超标率为83.67%,Cr超标率为36.73%,Ni超标率为53.06%,Cd超标率为24.49%,Mn超标率53.06%,这种超标现象与二叠纪基性岩建造上红壤重金属的超标现象相似,而大凉山区其他地质建造类型上形成土壤的重金属超标比例很低,这一现象说明地质建造对土壤元素含量等性质的制约作用可以跨越土壤类型,而具有普遍性。

    前人的有关研究也支持这一结论,夏学齐等(2022)对贵州地区的研究表明基岩类型是造成土壤Cd空间变异的重要原因,石灰岩、玄武岩、炭质页岩等岩石类型常造成土壤的高Cd背景;王京彬等(2020)对河北承德地区的研究发现,相似岩性的岩石风化成的土壤具有相似的K、Mg、P、Fe和Ca等元素含量;严明书等(2018)对重庆渝北地区的研究表明基岩类型是土壤元素含量的重要控制因素,同时基岩的形成时代也会影响土壤的元素含量;董玲玲等(2008)对喀斯特山区的研究表明不同基岩上发育的土壤存在理化性质差异;赵凯丽等(2019)对湖南祁阳地区红壤的研究表明,不同岩性母质发育的土壤pH值存在较大差异,石灰岩剖面土壤的pH值最高,而板页岩剖面土壤的pH值最低;Hahm等(2018)对美国西海岸附近两种相邻地质建造区的对比研究表明,岩性类型的差异导致了上覆土壤厚度和土壤层保水能力的差异,进而导致两个区域植被群落特征的不同;卫晓锋等(2020)对河北承德柴白河流域的研究也表明地质建造类型制约着土壤的厚度和营养元素含量等性质,进而对其上植物群落组成产生影响。可见,地质建造对土壤性质的制约作用是普遍存在的,然而在以往的土壤学研究中这种作用是普遍被低估的(Juilleret et al.,2016Wilson,2019)。

    值得注意的是,生态学研究中多关注降水、气温等气候作用对植物群落和生态状况的影响,强调气候为植物生长提供必需的水分和光热等大环境条件,然而气候作用很难解释气候条件相似下相邻区域的植物群落组成差异现象(田海芬等,2014卫晓锋等,2020)。不同的地质建造由于形成具有不同性质和特征的土壤,从而为植物生长孕育了不同的小环境,这种小环境可以较大程度地影响植物种群空间分布格局、生态系统生产力和生态景观演化(Hahm et al.,20142018Jiang et al.,2020卫晓锋等,2020),这种影响作用可以与气候垂直分带对植被和生态的影响作用一样大(Hahm et al.,2014)。因此,地质建造对土壤性质及生态环境的影响值得被重视和深入研究。

    在中国生态文明建设战略的大背景下,生态地质调查成为地质调查工作转型的新方向(李金发,2014聂洪峰等,20192021施俊法,2020刘洪等,2022李文明等,2022赵银兵等, 2022)。生态地质调查是调查生态赋存的基础地质环境条件和研究各种生态环境问题或生态过程的地学机理,为生态保护修复和国土空间用途管制等工作提供地球系统科学解决方案(聂洪峰等,2019袁国礼等,2023)。目前,生态地质的调查内容和工作方法仍在探索和完善中,如何建立起地质背景与生态环境之间的联系和相互作用机制仍是摆在地质学家面前的重要命题。

    山地丘陵区不同地质建造中基岩的类型、结构、构造、矿物组成、化学成分等特征深刻地影响着其形成土壤的理化性质(质地、结构、酸碱度等)和元素组成(包括营养元素和重金属元素),而土壤的这些性质和特征又会引起养分、水分、热量、空气、空间等生态环境因子的变化(周爱国等,2001),从而造成生态系统和生态环境质量的差异。因此,山地丘陵区地质建造可以通过“地质建造–土壤性质–生态环境”的路径制约生态系统的发展和生态环境的质量,从而在一定程度上建立起了地质与生态环境之间的联系。

    综上所述,在山地丘陵区的生态地质调查过程中,可以把“地质建造–土壤性质–生态环境”这一关系作为工作思路之一。具体而言,调查人员首先可以根据已有的1∶25万或1∶5万地质图将工作区划分成若干地质建造区,划分方法参考刘洪等(20202022),然后针对每种地质建造开展一定量的基岩-土壤剖面调查及采样分析,获得每种地质建造区内土壤的理化性质及元素组成特征,随后根据各地质建造区的土壤质地、酸碱性和营养元素丰缺度对区内的农业种植规划、施肥、名特优农产品布局、林业选种、水土流失防治等工作提供建议。与此同时,在土壤重金属超标的地质建造区,可进一步开展土壤重金属形态、生物有效性研究及地下水、农作物、人体组织的重金属超标情况调查,对区内土壤重金属污染修复和地方病防治提供依据。此外,生态地质调查中通常会进行区域生态地质脆弱性评价(张景华等,20202021),可以将受地质建造制约的土壤营养元素丰缺度、土壤重金属含量、土壤质地、土壤酸碱性、土壤厚度、地形地貌、地下水保蓄能力等因素纳入生态地质评价指标,从而更充分体现地质建造对生态环境的影响,更科学地开展生态地质脆弱性评价和指导生态保护修复及国土空间规划等工作。

    (1)西昌地区各类地质建造上形成红壤的元素含量配分型式都与地壳元素丰度的配分型式一致,反映了地壳元素丰度对土壤元素含量在数量级范围上的间接控制作用。

    (2)西昌山地丘陵地貌区内红壤的营养元素和重金属元素含量与下伏地质建造(基岩)中相应元素的含量呈明显的线性正相关关系(S、N、As除外),相关系数R的平方值为0.54~0.97,表明红壤中的这些元素均主要来源于下伏地质建造(基岩)中,同时反映了地质建造类型对其形成土壤营养元素和重金属元素含量的直接控制作用。西昌山地丘陵地貌区内地质建造类型还影响了其形成土壤的粒级(质地)、酸碱性等理化性质。

    (3)山地丘陵区地质建造对土壤性质(质地、酸碱度、结构、厚度、营养元素含量和重金属元素含量等)的制约具有普遍性,土壤性质的差异又可影响生态环境因子的变化从而具有不同的生态环境效应。因此,山地丘陵区地质建造可以通过“地质建造–土壤性质–生态环境”的路径制约生态系统的发展和生态环境的质量,从而在一定程度上建立起地质与生态环境之间的联系。

    (4)山地丘陵区的生态地质调查可以把“地质建造–土壤性质–生态环境”这一关系作为工作思路之一,在利用已有地质图进行地质建造类型划分的基础上,开展各类型地质建造内土壤性质的调查研究,为农林业发展、污染治理、地方病防治、生态地质脆弱性评价、生态保护修复及国土空间规划等工作提供科学建议。

    致谢:四川省地质矿产勘查开发局攀西地质队谢恩顺高级工程师、李雁龙高级工程师、肖启亮高级工程师、曾建高级工程师、文登奎高级工程师和侯谦工程师在野外采样工作中给予帮助,国家地球系统科学数据中心(http://www.geodata.cn)提供了土壤类型数据支撑,在此一并表示衷心的感谢。

  • 图  1   胶东半岛大地构造位置图(a)(据Zhao et al.,2005修改)、胶东金矿集区金矿床分布图(b)(据Deng et al.,2020修改)、 大柳行地区地质简图(c)(据Feng et al.,2020修改)

    Figure  1.   (a) Tectonic location of the Jiaodong Peninsula, (b) geological map showing the distribution of gold deposits in the Jiaodong Peninsula and (c) regional geological map of the Daliuhang area.

    图  2   石家金矿区地质图(a)、 −400 m中段平面图(b)与 84号勘探线剖面图(c)

    Figure  2.   (a) Schematic geology of the Shijia gold deposit, (b) plan view of −400 m level and (c) cross−section of prospecting line 84

    图  3   石家金矿床矿体与矿石特征图

    a. 含金石英硫化物脉,两侧为蚀变的花岗岩;b. 石英脉型矿石,石英中呈浸染状分布的黄铁矿、闪锌矿、方铅矿以及自然金;c. 蚀变岩型矿石,见浸染状分布的黄铁矿和弥散状分布的石英;d. 黄铁绢英岩化,绢云母呈片状、鳞片状(正交偏光);e. 墨绿色萤石、方解石以及灰白色石英共生;f. 黄铁矿、闪锌矿以及方铅矿呈稠密浸染状分布于石英中;g. 块状硫化物矿石;h. 梳状石英,可见少量硫化物分布其中;i. 晶洞状石英;j. 自形黄铁矿(反射光);k. 他形自然金充填于黄铁矿裂隙以及黄铁矿和闪锌矿空隙中(反射光);l. 方铅矿与闪锌矿充填于黄铁矿裂隙中(反射光);m. 黄铁矿与闪锌矿呈共生边结构(反射光); n. 黄铜矿沿裂隙交代闪锌矿(反射光);o. 黄铜矿固溶体呈格状分布于闪锌矿中(反射光);Au. 自然金;Cal. 方解石;Ccp. 黄铜矿;Fl. 萤石;Kf. 钾长石;Gn. 方铅矿;Py. 黄铁矿;Qz. 石英;Ser. 绢云母;Sp. 闪锌矿

    Figure  3.   Orebody and ore characteristics of the Shijia gold deposit

    图  4   石家金矿床围岩蚀变特征图

    a. 石英脉两侧为硅化、钾化、黄铁矿化花岗岩;b.黄铁绢英岩化;c. 石英脉两侧蚀变花岗岩中黑云母、角闪石等暗色矿物蚀变为绿泥石;d. 石英硫化物脉两侧见绿帘石呈粒状分布于花岗岩中;e. 粉红色方解石脉切割与石英脉;f. 石英脉向外变为黄铁绢英岩化花岗岩和未蚀变花岗岩; Cal. 方解石;Chl. 绿泥石;Epi. 绿帘石;Gn. 方铅矿;Kf. 钾长石;Pl. 斜长石;Py. 黄铁矿;Qz. 石英

    Figure  4.   Hydrothermal alteration characteristics of the Shijia gold deposit

    图  5   石家金矿床矿物生成顺序图

    Figure  5.   Mineral paragenetic sequence of the Shijia gold deposit

    图  6   石家金矿床主成矿阶段黄铁矿稀土元素配分曲线(球粒陨石REE数据据Sun et al.,1989

    Figure  6.   Chondrite–normalized rare earth element patterns for ore–main stage pyrite from the Shijia gold deposit

    图  7   石家金矿床主成矿阶段黄铁矿中国东部大陆地壳标准化微量元素蛛网图

    Figure  7.   Continental crust in eastern China−normalized trace elements spider diagram of the ore−main stage pyrite from the Shijia gold deposit

    图  8   石家金矿床主成矿阶段黄铁矿微量元素二元图解

    Figure  8.   Binary diagram of trace elements in ore−main stage pyrite from the Shijia gold deposit

    a. Zn−Cd图解;b. Pb−Sb图解;c. Ce−La图解

    图  9   石家金矿床主成矿阶段黄铁矿Co–Ni判别图解

    胶东其他金矿床Co–Ni数据引自陈炳翰等(2014)郭林楠等(2019)李杰等(2020)Hu et al.(2022)李秀章等(2022)

    Figure  9.   Co vs. Ni discrimination diagram for ore–main stage pyrite from the Shijia gold deposit

    表  1   石家金矿床主成矿阶段黄铁矿微量元素分析品采样位置统计表

    Table  1   Location of trace element analysis sample of ore–main stage pyrite from the Shijia gold deposit

    序号样品编号矿体编号勘探线编号采样深度(m)样品类型
    1SJ-1Py32628线−595含黄铁矿石英脉
    2SJ-2Py32628线−555含黄铁矿石英脉
    3SJ-3Py32628线−515含黄铁矿石英脉
    4SJ-4Py32628线−475含黄铁矿石英脉
    5SJ-5Py32628线−435含黄铁矿石英脉
    6SJ-6Py32628线−395多金属硫化物石英脉
    7SJ-7Py32628线−355乳白色石英–多金属硫化物脉
    8SJ-8Py32632线−315乳白色石英–多金属硫化物脉
    9SJ-9Py32640线−280乳白色石英–多金属硫化物脉
    10SJ-10Py32640线−240乳白色石英硫化物脉
    11SJ-11Py32652~56线−205乳白色石英硫化物脉
    12SJ-12Py32656线−165乳白色石英硫化物脉
    13SJ-13PyM212线−745石英硫化物脉
    14SJ-14PyM24线−635石英硫化物脉
    15SJ-15PyM24线−595含黄铁矿石英脉
    16SJ-16PyM24线−555石英硫化物脉
    下载: 导出CSV

    表  2   石家金矿床主成矿阶段黄铁矿稀土元素含量(10−6)及其特征值统计表

    Table  2   REE content (10−6) and characteristic values of the ore–main stage pyrite from the Shijia gold deposit

    样品
    编号
    LaCePrNdSmEuGdTbDyHoErTmYbLuΣREELREE/HREE(La/Yb)NδEuδCe
    SJ-1Py1.092.110.230.840.110.0050.0870.0030.0290.0040.0030.0054.5133.42156.370.161.04
    SJ-2Py1.732.950.291.090.140.0190.1020.0060.0180.0110.0020.0056.3643.19248.190.481.02
    SJ-3Py4.710.10.993.560.280.040.2850.0170.0820.0390.0030.00720.1145.44481.620.431.15
    SJ-4Py1.031.910.210.730.080.0040.0520.0150.0050.0020.0024.0452.12369.410.191.01
    SJ-5Py1.552.410.281.040.10.0060.0960.0390.0050.0060.025.5632.4955.590.180.89
    SJ-6Py1.644.330.391.470.130.0170.1270.0080.0430.0150.0030.0148.1937.9884.030.41.33
    SJ-7Py3.386.750.773.090.440.0280.320.0270.0920.0270.0030.01414.9329.92173.180.231.03
    SJ-8Py4.117.570.853.240.480.040.3420.0350.1430.0050.0420.0060.050.00316.9226.0258.960.30.99
    SJ-9Py0.641.190.120.450.070.0030.0450.0140.0070.0030.0112.5530.941.730.171.05
    SJ-10Py0.561.090.120.540.090.0120.0670.0030.0430.0090.0050.0222.5616.1518.260.481.03
    SJ-11Py4.327.340.813.20.490.0570.3670.0330.1590.0140.0610.010.0540.00616.9223.0357.380.410.96
    SJ-12Py1.052.210.261.070.180.0130.1060.010.0560.020.0030.0140.0034.9922.5453.80.291.05
    SJ-13Py15.526.73.0611.71.740.2911.170.1220.460.0320.1170.0190.060.01760.9929.54185.300.620.95
    SJ-14Py1.372.450.2681.040.1620.010.1170.0120.0460.0040.0320.0080.030.0055.5520.8732.760.220.99
    SJ-15Py4.729.11.114.40.7660.0890.4850.050.1710.0030.0280.0040.01720.9426.63199.160.450.97
    SJ-16Py1.071.860.1960.740.0810.010.0680.0140.0030.0044.0544.46191.880.411.00
     注:–表示低于检测限。
    下载: 导出CSV

    表  3   石家金矿床主成矿阶段黄铁矿微量元素含量(10−6)及其特征值统计表

    Table  3   Trace elements content (10−6) and characteristic values of the ore−main stage pyrite from the Shijia gold deposit

    样品
    编号
    SJ-
    1Py
    SJ-
    2Py
    SJ-
    3Py
    SJ-
    4Py
    SJ-
    5Py
    SJ-
    6Py
    SJ-
    7Py
    SJ-
    8Py
    SJ-
    9Py
    SJ-
    10Py
    SJ-
    11Py
    SJ-
    12Py
    SJ-
    13Py
    SJ-
    14Py
    SJ-
    15Py
    SJ-
    16Py
    Li0.320.2780.3190.3190.5370.8010.3860.2910.3250.3960.8540.2420.550.1850.330.268
    Be0.0040.0110.0090.0020.0140.0330.0080.0060.0240.0040.0220.0030.0030.005
    Sc0.2750.230.2520.3710.0360.2930.3740.4950.4350.2680.390.280.4290.2750.2290.29
    V0.2630.1970.3030.2560.4530.370.260.7450.4790.3291.290.280.4290.4420.2170.239
    Cr0.7261.921.890.7450.0082.253.471.060.2152.160.081.551.07
    Co88.246.819.64.723.011.459.9711030.845.941.753.920919629546.4
    Ni88.743.911.95.552.962.758.3388.811.310.874.834.550.119362943.7
    Cu15713318623129319817927.912514726367.821.585.6184131
    Zn85841953163292>100003426881118557618711979123051.46321245425
    Ga0.4470.3980.9130.9141.21.10.9170.5620.4050.6570.6730.4030.4251.360.380.408
    Rb0.4160.2990.4210.3510.5850.4470.5212.420.7870.7371.430.3940.8040.4720.2720.31
    Sr3.241.014.052.144.344.553.053.352.955.064.311.270.8711.011.151.04
    Y0.0690.0740.1350.5840.1160.2030.1910.4030.0850.2170.4250.1530.7190.1940.2520.055
    Mo0.0130.2940.1580.0060.0280.0480.2290.590.430.5020.0830.0550.8320.276
    Cd5.633.5930.520.363.719.945.21.013.7913.711.260.223.936.13.49
    In0.8446.22.231.922.040.4670.1550.0390.1730.1760.0570.0210.0080.2470.2166.11
    Sb4.142.046.7510.914.919.58.524.266.9310.476.86.753.7432.86.442.06
    Cs0.0090.0070.0050.0070.0080.0170.0070.0460.0110.0150.0260.0070.0250.0090.0060.002
    Ba1.331.052.191.391.991.351.746.752.482.936.252.161.871.721.841.32
    La1.091.734.71.031.551.643.384.110.6440.5584.321.0515.51.374.721.07
    Sm0.1070.1430.2840.0810.1030.130.4360.4810.0650.0890.4920.181.740.1620.7660.081
    Ho0.0050.0140.0320.0040.003
    W0.0070.0260.0180.0050.0440.0090.0170.1280.0260.0720.0080.024
    Pb6162684661634298025189413629835117095>1000026471174737947265
    Bi1.6716.71.430.8920.1744.680.1990.4890.3090.2532.951.192.6416
    Th0.0390.1310.1220.0090.0570.0570.1321.540.2430.0461.170.6670.5171.060.0830.068
    U0.0140.1050.0330.0150.010.040.0560.3060.0560.0760.1250.5390.070.3940.0440.025
    Nb0.0090.0240.0290.020.0230.0220.0180.4470.0240.0090.0860.0130.0150.0620.0030.011
    Ta0.0030.0040.0040.0050.0060.0030.020.0050.0060.0070.0050.0050.0130.0020.004
    Zr0.3680.40.4060.3740.4070.3350.4881.890.5810.4431.331.40.5131.690.3560.359
    Hf0.0080.010.0220.0080.0120.0180.0210.1170.0170.0160.0560.0860.0220.0540.0180.012
    Sn3.7611.611.820.87.498.0610.50.5412.733.221.320.6130.172.810.5311.4
    Co/Ni0.991.071.650.851.020.531.201.242.734.250.561.564.171.020.471.06
    Hf/Sm0.070.070.080.100.120.140.050.240.260.180.110.480.010.330.020.15
    Nb/La0.010.010.010.020.010.010.010.110.040.020.020.010.000.050.000.01
    Th/La0.040.080.030.010.040.030.040.370.380.080.270.640.030.770.020.06
    Y/Ho80.6030.3622.4748.5084.00
    Zr/Hf46.0040.0018.4546.7533.9218.6123.2416.1534.1827.6923.7516.2823.3231.3019.7829.92
    Nb/Ta3.006.007.254.603.676.0022.354.801.5012.292.603.004.771.502.75
     注:−表示低于检测限。
    下载: 导出CSV
  • 毕献武, 胡瑞忠, 彭建堂, 等. 黄铁矿微量元素地球化学特征及其对成矿流体性质的指示[J]. 矿物岩石地球化学通报, 2004, 23(1): 1-4

    Bi X W, Hu R Z, Peng J T, et al. REE and HFSE geochemical characteristics of pyrites in Yao’an gold deposit: Tracing ore forming fluid signatures[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(1): 1-4.

    陈炳翰, 王中亮, 李海林, 等. 胶东台上金矿床成矿流体演化: 载金黄铁矿稀土元素和微量元素组成约束[J]. 岩石学报, 2014, 30(9): 2518-2532

    Chen B H, Wang Z L, Li H L, et al. Evolution of ore fluid of the Taishang gold deposit, Jiaodong: Constraints on REE and trace element component of auriferous pyrite[J]. Acta Petrologica Sinica, 2013, 30(9): 2518-2532.

    丁振举, 刘丛强, 姚书振, 等. 东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J]. 岩石学报, 2003, 19(4): 792-798 doi: 10.3321/j.issn:1000-0569.2003.04.022

    Ding Z J, Liu C Q, Yao S Z, et al. The Characteristics of exhalation-sedimentary deposit of Donggouba polymetal deposit: evidence from ore’s REE composition[J]. Acta Petrological Sinica, 2003, 19(4): 792-798. doi: 10.3321/j.issn:1000-0569.2003.04.022

    范宏瑞, 冯凯, 李兴辉, 等. 胶东-朝鲜半岛中生代金成矿作用[J]. 岩石学报, 2016, 32(10): 3225-3238.

    Fan H R, Feng K, Li X H, et al. Mesozoic gold mineralization in the Jiaodong and Korean peninsula[J]. Acta Petrological Sinica, 2016, 32(1): 3225-3258.

    范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496

    Fan H R, Li X H, Zuo Y B, et al. In-situ LA-(MC)-ICPMS and (Nano)SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit. Acta Petrologica Sinica, 2018, 34(12): 3479-3496.

    冯李强. 山东蓬莱石家金矿床成因与找矿方向[D]. 北京: 中国地质大学(北京), 2022

    FENG Liqiang. Genesis and prospecting direction of the Shijia gold deposit, Penglai, Shandong Province[D]. Beijing: China University of Geosciences (Beijing), 2022.

    高山, 骆庭川, 张本仁, 等. 中国东部地壳的结构和组成[J]. 中国科学(D辑), 1999, 29(3): 204-213

    Gao S, Luo T C, Zhang B R, et al. The structure and composition of the crust in eastern China[J]. Science in China (Series D), 1999, 29(3): 204-213.

    顾雪祥, 刘建明, Oskar S, 等. 湖南沃溪金-锑-钨矿床成因的稀土元素地球化学证据[J]. 地球化学, 2005, 34(5): 428-437 doi: 10.3321/j.issn:0379-1726.2005.05.002

    Gu X X, Liu J M, Oskar S, et al. REE geochemical evidence for the genesis of the Woxi Au-Sb-W deposit, Hunnan Province[J]. Geochimica, 2005, 34(5): 428-437. doi: 10.3321/j.issn:0379-1726.2005.05.002

    顾雪祥, 李葆华, 章永梅, 等. 矿床学研究方法及应用[M]. 北京: 地质出版社, 2019

    GU Xuexiang, LI Baohua, ZHANG Yongmei, et al. Methods and Applications of Ore Deposit Study[M]. Beijing: Geological Publishing House, 2019.

    郭林楠, 黄春梅, 张良, 等. 胶东罗山金矿床成矿流体来源: 蚀变岩型和石英脉型矿石载金黄铁矿稀土和微量元素特征约束[J]. 现代地质, 2019, 33(1): 121-136

    Guo L N, Huang C M, Zhang L, et al. Source of ore-forming fluids in the Luoshan gold deposit, Jiaodong: Constrains from REE and trace element features of auriferous pyrite in the altered-rock type and auriferous quartz vein type ores[J]. Geoscience, 2019, 3(1): 121-136.

    孔庆波. 苏鲁地体古元古代花岗质片麻岩锆石的U-Pb定年、REE和Lu-Hf同位素特征[J]. 地质通报, 2009, 28(1): 51-62 doi: 10.3969/j.issn.1671-2552.2009.01.007

    Kong Q B. Zircon U-Pb dating, REE and Lu-Hf isotopic characteristics of Paleoproterozoic orthogneiss in Sulu UHP terrane, eastern China[J]. Geological Bulletin of China, 2009, 28(1): 51-62 doi: 10.3969/j.issn.1671-2552.2009.01.007

    李厚民, 沈远超, 毛景文, 等. 石英、黄铁矿及其包裹体的稀土元素特征——以胶东焦家式金矿为例[J]. 岩石学报, 2003, 19(2): 267-274 doi: 10.3321/j.issn:1000-0569.2003.02.008

    Li H M, Shen Y C, Mao J W, et al. REE features of quartz and pyrite and their fluids inclusions: an example of Jiaojia-type gold deposits, northwestern Jiaodong peninsula[J]. Acta Petrologica Sinica, 2003, 19(2): 267-274. doi: 10.3321/j.issn:1000-0569.2003.02.008

    李杰, 宋明春, 梁金龙, 等. 焦家深部金矿床成矿流体来源: 来自黄铁矿微量元素及S-He-Ar同位素的约束[J]. 岩石学报, 2020, 36(1): 297-313 doi: 10.18654/1000-0569/2020.01.23

    Li J, Song M C, Liang J L, et al. Source of ore-forming fluids of the Jiaojia deeply-seated gold deposit: Evidences from trace elements and sulfur-helium-argon isotopes of pyrite[J]. Acta Petrologica Sinica, 2020, 36(1): 297-313. doi: 10.18654/1000-0569/2020.01.23

    李秀章, 王勇军, 李衣鑫, 等. 胶东蓬莱黑岚沟金矿床黄铁矿微区地球化学特征及对成矿流体的启示[J]. 地质通报, 2022, 41(6): 1023-1038

    Li X Z, Wang Y J, Li Y X, et al. Micro-geochemical characteristic of pyrites in the Heilangou gold deposit of penglai area and its implications for ore-forming fluid, Jiaodong gold province[J]. Geological Bulletin of China, 2022, 41(6): 1023-1038.

    刘福来, 薛怀明, 刘平华. 苏鲁超高压岩石部分熔融时间的准确限定: 来自含黑云母花岗岩中锆石U-Pb定年、REE和Lu-Hf同位素的证据. 岩石学报, 2009, 25(5): 1039-1055

    Liu F L, Xue H M, Liu P H. Partial melting time of ultrahigh-pressure metamorphic rocks in the Sulu UHPterrane: Contrained by zircon U-Pb ages, trace elements and Lu-Hf isotope compositions of biotite-bearing granite[J]. Acta Petrologica Sinica, 2009, 25(5): 1039-1055.

    马玉波, 杜晓慧, 张增杰, 等. 青城子层状/脉状铅锌矿床稀土元素地球化学特征及地质意义[J]. 矿床地质, 2013, 32(6): 1236-1248

    Ma Y B, Du X H, Zhang Z J, et al. REE geochemical characteristics of Qingchengzi stratiform/veined Pb-Zn ore district[J]. Mineral Deposits, 2013, 32(6): 1236-1248.

    任凤楼, 柳忠泉, 邱连贵, 等. 胶莱盆地莱阳期原型盆地恢复[J]. 沉积学报, 2008, 26(2): 221-233 doi: 10.14027/j.cnki.cjxb.2008.02.006

    Ren F L, Liu Z Q, Qiu L G, et al. The prototype character of Jiaolai basinin Cretaceous Laiyang Period[J]. Acta Sedimentologica Sinica, 2008, 26(2): 221-233. doi: 10.14027/j.cnki.cjxb.2008.02.006

    邱志伟, 李占轲, 袁中正. 胶东三山岛金矿床黄铁矿显微结构和微量元素特征: 对金富集机制的指示[J]. 地球科学, 2022, 47(1): 290-308 doi: 10.3321/j.issn.1000-2383.2022.1.dqkx202201023

    Qiu Z W, Li Z K, Yuan Z Z. Microstructure and trace elements of pyrite from Sanshandao gold deposit in Jiaodong district: Implications for mechanism of gold enrichment[J]. Earth Science, 2022, 47(1): 290-308. doi: 10.3321/j.issn.1000-2383.2022.1.dqkx202201023

    赛盛勋, 邱昆峰. 胶东乳山金矿床成矿过程: 周期性压力波动诱发的流体不混溶[J]. 岩石学报, 2020, 36(5): 1547-1566 doi: 10.18654/1000-0569/2020.05.14

    Sai S X, Qiu K F. Ore-forming processes of the Rushan gold deposit, Jiaodong: Fluid immiscibility induced by episodic fluid pressure fluctuations[J]. Acta Petrologica Sinica, 2020, 36(5): 1547-1566. doi: 10.18654/1000-0569/2020.05.14

    申俊峰, 李胜荣, 马广钢, 等. 玲珑金矿黄铁矿标型特征及其大纵深变化规律与找矿意义[J]. 地学前缘, 2013, 20(3): 55-75

    Shen J F, Li S R, Ma G G, et al. Typomorphic characteristics of pyrite from the Linglong gold deposi: Its vertical variation and prospecting significance[J]. Earth Science Frontiers, 2013, 20(3): 55-75.

    宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236 doi: 10.16111/j.0258-7106.2020.02.002

    Song M C, Lin S Y, Yang L Q, et al. Metallogenic model of Jiaodong Peninsula gold deposits[J]. Mineral Deposits, 2020, 39(2): 215-236. doi: 10.16111/j.0258-7106.2020.02.002

    王立强, 程文斌, 罗茂澄, 等. 西藏蒙亚啊铅锌矿床金属硫化物、石英稀土元素组成特征及其成因研究[J]. 中国地质, 2012, 39(3): 740-749 doi: 10.3969/j.issn.1000-3657.2012.03.015

    Wang L Q, Cheng W B, Luo M C, et al. A study of metallic sulfides, quartz REE composition characteristics and genesis of the Mengya’a lead-zinc deposit[J]. Geology in China, 2012, 39(3): 740-749. doi: 10.3969/j.issn.1000-3657.2012.03.015

    续海金, 宋衍茹, 叶凯. 苏鲁超高压地体部分熔融时间的厘定: 荣成花岗质片麻岩中浅色条带的锆石U-Pb定年、微量元素和Lu-Hf同位素证据[J]. 岩石学报, 2013, 29(5): 1594-1606

    Xu H J, Song Y R, Ye K, et al. Partial melting time of the Sulu UHP terrane: Constraints from zircon U-Pb age, trace element and Lu-Hf isotope composition of leucosome in Rongcheng granitic gneiss[J]. Acta Petrologica Sincia, 2013, 29(5): 1594-1606.

    严育通, 李胜荣, 贾宝剑, 等. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4): 214-226

    Yan Y T, Li S R, Jia B J, et al. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 2012, 19(4): 214-226.

    杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467

    Yang L Q, Deng J, Wang Z L, et al. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 2014, 30(9): 2447-2467.

    张红雨, 赵青青, 赵刚, 等. LA-ICP-MS原位微区分析黄铁矿微量元素技术方法及其在金矿床研究中的应用[J]. 矿床地质, 2022, 41(6): 1-18

    Zhang H Y, Zhao Q Q, Zhao G, et al. In situ LA-ICP-MS trace element analysis of pyrite and its application in study of Au deposit[J]. Mineral Deposits, 2022, 41(6): 1-18.

    张英帅, 顾雪祥, 章永梅, 等. 山东蓬莱石家金矿原生晕地球化学特征及深部找矿预测[J]. 现代地质, 2021, 35(1): 258−269.

    ZHANG Yingshuai, GU Xuexiang, ZHANG Yongmei, et al. Geochemical characteristics of primary halos and deep prospecting prediction of the Shijia gold deposit in Penglai, Shandong Province[J]. Geosciences, 2021, 35(1): 258−269.

    甄世民, 庞振山, 朱晓强, 等. 山西梨园金矿黄铁矿微量元素及S-Pb-He-Ar同位素地球化学特征及其地质意义[J]. 地学前缘, 2020, 27(2): 373-390 doi: 10.13745/j.esf.sf.2020.3.27

    Zhen S M, Pang Z S, Zhu XQ, et al. The characteristics of trace elements and S, Pb, He and Ar isotopes in the Liyuan gold deposit in Shanxi Province, and their siginificance[J]. Earth Science Frontiers, 2020, 27(2): 373-390. doi: 10.13745/j.esf.sf.2020.3.27

    Ames L, Zhou G Z, Xiong B C. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China[J]. Tectonics, 1996, 15: 472-89.

    Bau M. REE mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 1991, 93: 219-230. doi: 10.1016/0009-2541(91)90115-8

    Bau M, Dulskip. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 1995, 119(2): 213-223.

    Bralia A, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 1979, 14(3): 353-374.

    Deng J, Yang L Q, Groves D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China[J]. Earth-Science Reviews, 2020, 208: 103274. doi: 10.1016/j.earscirev.2020.103274

    Deng J, Wang Q F, Liu X F, et al. The formation of the Jiaodong gold province[J]. Acta Geologica Sinica (English Edition), 2022, 96(6): 1801-1820. doi: 10.1111/1755-6724.15026

    Douville E, Bienvenu P, Charlou J L. Yttrium and rare-earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimicaet Cosmochimica Acta, 1999, 63(5): 627-643. doi: 10.1016/S0016-7037(99)00024-1

    Feng L Q, Gu X X, Zhang Y M, et al. Geology and geochronology of the Shijia gold deposit, Jiaodong Peninsula, China[J]. Ore Geology Reviews, 2020, 120: 103432. doi: 10.1016/j.oregeorev.2020.103432

    Goldfarb R J, Santosh M. The dilemma of the Jiaodong gold deposits: Are they unique?[J] Geoscience Frontiers, 2014, 5(2): 139-153. doi: 10.1016/j.gsf.2013.11.001

    Henderson P. Rare earth element geochemistry[M]. Amsterdam: Elseriver Science Publishers, 1984: 123-125.

    Hu H L, Fan H R, Santosh M, et al. Ore-forming processes in the Wang’ershan gold deposit (Jiaodong, China): Insight from microtexture, mineral chemistry and sulfur isotope compositions[J]. Ore Geology Reviews, 2022, 123: 103600.

    Jahn B M, Liu D Y, Wan Y S, et al. Archean crustal evolution of the Jiaodong peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry[J]. American Journal of Science, 2008, 308: 232-269. doi: 10.2475/03.2008.03

    Large R R, Danyushevsky L V, Hollit C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668. doi: 10.2113/gsecongeo.104.5.635

    Li L, Santosh M, Li S R. The ‘Jiaodong type’ gold deposits: Characteristics, origin and prospecting[J]. Ore Geology Reviews, 2015, 65: 589-611. doi: 10.1016/j.oregeorev.2014.06.021

    Mao G Z, Hua R M, Gao J F, et al. Existing forms of REE in gold-bearing pyrite of the Jinshan gold deposit, Jiangxi Province, China[J]. Journal of Rare Earths, 2009, 27(6): 1079-1087. doi: 10.1016/S1002-0721(08)60392-0

    Mao J W, Wang Y T, Li H M, et al. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: evidence from D-O-C-S isotope systematics. Ore Geology Reviews, 2008, 33: 361-381.

    Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge.[J] Geochimica et Cosmochimica Acta, 1995, 59(17): 3511-3524.

    Oreskes N, Einaodi MT. Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia[J]. Economic Geology, 1990, 85: 1-28. doi: 10.2113/gsecongeo.85.1.1

    Tang J, Zheng Y F, Wu Y B, et al. Geocheronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogeny[J]. Precambrian Research, 2007, 152(1-2): 48-82. doi: 10.1016/j.precamres.2006.09.001

    Schade J, Cornell D H, Theart H F J. Rare-earth element and isotopic evidence for the genesis of the Prieska massive sulfide deposit, South Africa[J]. Economic Geology, 1989, 84(1): 49-63. doi: 10.2113/gsecongeo.84.1.49

    Shanon R D. Revised effective ionic radii and systematic studies of interatomic in halides and chalcogenides[J]. Acta Crystallographica, 1976, A32: 751-767.

    Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: Implications for composition and process[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67: 70-78. doi: 10.1016/0012-821X(84)90039-6

    Voute F, Hagemann S G, Evans N J, et al. Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source, and gold deposition mechanisms[J]. Mineralium Deposita, 2019, 54: 1077-1100. doi: 10.1007/s00126-018-0857-6

    Wang H, Lan T G, Fan H R, et al. Fluid origin and critical ore-forming processes for the giant gold mineralization in the Jiaodong Peninsula, China: Constraints from in situ elemental and oxygen isotopic compositions of quartz and LA-ICP-MS analysis of fluid inclusions[J]. Chemical Geology, 2022, 608: 121027. doi: 10.1016/j.chemgeo.2022.121027

    Yang K F, Fan H R, Santosh M, et al. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton[J]. Lithos, 2012: 146-147: 112-127. doi: 10.1016/j.lithos.2012.04.035

    Yang Q Y, Santosh M, Shen J F, et al. Juvenile vs. recycled crust in NE China: Zircon U-Pb geochronology, Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula[J]. Gondwana Research, 2014, 25(4): 1445-1468. doi: 10.1016/j.gr.2013.06.003

    Yaxley G M, Green D H, Kamenetsky V. Carbonatite metasomatism in the southeastern Australian lithosphere[J]. Journal of Petrology, 1998, 39: 1917-1930. doi: 10.1093/petroj/39.11-12.1917

    Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002

    Zhao K D, Jiang S Y. Rare-earth element and yttrium analyses of sulfides from the Dachang Sn-polymetallie ore field, Guangxi Province, China: Implication for ore genesis[J]. Geochemical Journal, 2007, 41(2): 121-134. doi: 10.2343/geochemj.41.121

  • 期刊类型引用(8)

    1. 邵璐,刘洪,欧阳渊,张景华,高文龙,刘小念,宋雯洁,吴君毅,苏悦. 三峡库区典型岩石土壤中重(类)金属迁移富集特征研究及风险评价. 西北地质. 2025(01): 204-218 . 本站查看
    2. 贾磊,刘洪,苏悦,窦磊,刘子宁,张景华. 基于地质条件的粤港澳地区成土母质类型划分. 中国地质调查. 2025(01): 69-80 . 百度学术
    3. 黄金廷,方拓,王强,王嘉玮,宋歌,张太平. 黄河三角洲典型植被–土壤主要营养成分特征分析. 西北地质. 2025(02): 41-50 . 本站查看
    4. 代许可,寇磊,蒋达源,潘泓宇,黄黎粤,谭向前. 鄂西秭归地区土壤高镉背景成因及其对农作物的影响. 资源环境与工程. 2025(02): 183-190 . 百度学术
    5. 任宇,曹文庚,肖舜禹,李祥志,潘登,王帅. 重金属在土壤中的分布、危害与治理技术研究进展. 中国地质. 2024(01): 118-142 . 百度学术
    6. 周雪妮,巴仁基,肖成志,曹亚廷,计扬. 基于地质建造的岷江上游干旱河谷区下段土壤特征和植被时空变化. 现代地质. 2024(03): 660-673 . 百度学术
    7. 赵洪菊,王国良,拜永山,陈光庭,张小永,郝呈禄,李五福,王春涛. 地质遗迹资源和旅游地质文化内涵探析:以青藏高原东北缘东岔地质文化村构建为例. 现代地质. 2024(05): 1400-1412 . 百度学术
    8. 包雲舟. 浅析环境保护下的矿山水工环地质勘查工作方法. 世界有色金属. 2023(23): 166-168 . 百度学术

    其他类型引用(1)

图(9)  /  表(3)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  50
  • PDF下载量:  130
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-12-23
  • 修回日期:  2023-02-22
  • 录用日期:  2023-02-26
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2023-10-19

目录

/

返回文章
返回