Characteristics of Platinum Group Element in Neoproterozoic Mafic Intrusions in the Northern Margin of the Yangtze and Exploration Implications
-
摘要:
扬子地块北缘的汉南地区是中国最重要的基性–超基性岩体分布区之一。新元古代毕机沟和望江山岩体是汉南地区出露最好、研究程度最高的两个层状基性岩体。毕机沟和望江山岩体被认为是由亏损地幔经历10%~20%部分熔融形成的。远高于原始地幔的Cu/Pd值(Cu/Pd毕机沟值为3.52×104~3.97×105,Cu/Pd望江山值为1.78×104~1.61×106),表明岩体母岩浆在侵入浅部地壳之前就经历了早期硫化物熔离。毕机沟岩体中铱族元素(IPGE)与全岩Ni呈正相关,Cu/Ir与Ni/Pd呈负相关,说明在浅部岩浆房硫化物未饱和时,铂族元素的分配主要受橄榄石控制。望江山岩体中铂族元素与全岩Ni、V、TiO2无相关性,Cu/Ir与Ni/Pd呈正相关,说明望江山岩体中铂族元素受二次熔离硫化物的控制。毕机沟和望江山岩体中矿物不具有定向性,加上望江山岩体中二次熔离出的硫化物中铂族元素依然亏损,说明这些岩体更可能是岩浆单次贯入冷却形成的,而非岩浆通道。因此,浅部可能不具备赋存大型矿床的条件,今后的找矿工作应该聚焦于更深部。
Abstract:Multiple layered mafic intrusions occur along the northern margin of the Yangtze Block, SW China. The Neoproterozoic Bijigou and Wangjiangshan mafic intrusions are two of the best exposed intrusions in the region. The Bijigou and Wangjiangshan mafic intrusions are thought to be generated by 10% to 20% of partial melting of a depleted mantle source. Uniformly high Cu/Pd (3.52×104~3.97×105 for the Bijigou samples and 1.78×104~1.61×106 for the Wangjiangshan samples) indicate that the parental magma of these intrusions experienced prior sulfide segregation before their intrusions into the shallow crust. Positive correlation between IPGE with whole–rock Ni, and negative correlation between Cu/Ir and Ni/Pd illustrate that the distribution of PGE is mainly controlled by the accumulation of olivine under an S–unsaturated condition. In comparison no linearly correlation between PGE and whole–rock Ni, V and TiO2, and positive correlation between Cu/Ir and Ni/Pd illustrate that the PGE in the Wangjiangshan intrusion is controlled by the second-stage sulfide saturation. The general lack of parallel alignment of tabular minerals in the Bijigou and Wangjiangshan intrusions, combined the PGE depletions in the Wangjiangshan second segregated sulfides, indicates that these intrusions probably intruded and cooled under a single episode of magma replenishment, rather than a dynamic magma conduit system. Therefore the shallow part may not have the conditions to host large deposits and future prospecting work should focus on the deeper part.
-
Keywords:
- Neoproterozoic /
- mafic intrusion /
- PGE /
- sulfide segregation /
- Yangtze block
-
碳汇的增加和碳源的减少是降低大气中CO2浓度、实现“碳达峰、碳中和”目标的2个主要途径(王国强等,2023)。生态系统能够通过光合作用将CO2吸收并固定在植被、土壤、湿地等载体中(李姝等,2015),因此在增加“碳汇”、调节区域碳循环中具有重要作用。围绕生态系统的碳汇功能评估,国内学者目前已开展了一系列研究工作,其中包括针对不同类型陆地生态系统的碳汇评估方法(潘竟虎等,2015;关晋宏等,2016;冯晶红等,2020;谢立军等,2022;张杰等,2022),不同区域不同土地利用类型生态系统的碳汇时空变化 (彭文甫等,2016;杨文学等,2016;严慈等,2021;魏媛等,2022;杨静媛等,2022;洪增林等,2023)及碳汇影响因素(胡雷等,2015;张赫等,2020;李磊等,2022)等。但是,由于方法的不同、样本量的限制,有关生态系统碳汇变化估算结果仍存在极大不确定性。现有的碳汇评估方法多针对某一区域的单一生态系统类型进行,涉及不同土地利用类型时多采用同一固碳系数进行评估,难以体现不同区域不同时期生态系统的碳汇能力的差异;同时,关于碳汇评估效果的影响因素的研究相对缺乏,主要集中在经济发展、产业结构、土地利用变化等方面。
位于胡焕庸线以西的西北地区占据着国土面积的32%,但深居内陆,气候干旱、降水稀少,生态系统敏感脆弱,是双碳目标实现的关键和难点区域。精准估算西北地区生态系统碳汇,是促进区域生态保护,寻求生态系统碳汇能力提升途径的基础,对中国碳中和战略目标实现有着重要意义。笔者以西北地区为对象,在分析近40年碳汇用地演化的基础上,在省域尺度上采用特异性的固碳速率法分析了不同区域、不同时期和不同类型生态系统碳汇时空变化规律,并深入探讨了其驱动因素,以期为西北地区低碳国土空间塑造、固碳能力提升及双碳目标实现提供重要的参考依据。
1. 研究区概况
西北地区地理位置为E 73°~123°,N 36°~50°,深居中国西北部内陆,涵盖陕西、甘肃、宁夏、青海、新疆5省(区)和内蒙古自治区西部,面积约为375×104 km2。该区地域辽阔,人口相对稀少,气候干旱,降水稀少,蒸发旺盛(党学亚等,2022),多年平均降水量为235 mm。特殊的地理位置及气候条件决定了西北地区水资源短缺,生态环境脆弱(李文明等,2022;徐友宁等,2022)。根据西北地区地形地貌特点(计文化等,2022),将研究区划分为平原、台地、丘陵、低山、中山、高山6类,其中平原和丘陵面积最大(28.51%和28.37%),高山次之(18.53%),低山最小(0.76%)。
2. 估算方法及数据来源
文中土地利用、地貌类型、降水、气温等数据均来源于中国科学院资源环境科学与数据中心(https://www.resdc.cn)。土地利用数据涉及1980~2020年,通过Arcgis10.2软件按生态系统类型将其划分为林地、草地、农田、湿地、未利用地、水域6类,建设用地不涉及碳汇,本次估算不包括在内。
受数据资料限制,文中碳汇估算系数采用不同时期省域平均值测算,虽能体现不同省域不同时期生态系统碳汇能力的差异,但省域内地域性差异无法体现。耕地生态系统碳汇只考虑了施肥、秸秆还田、无固碳措施对土壤固碳速率的影响,忽略免耕固碳效应,测算的耕地碳汇量会有所偏低。
2.1 陆地生态系统碳汇估算
根据《陆地生态系统生产总值(GEP)核算技术指南》(生态环境部环境规划院,中国科学院生态环境研究中心,2020),采用固碳速率法直接测算林地、草地、农田、湿地4种生态系统净碳汇量,其计算公式为:
$$ {Q_{\text{t}}} = FCS + GSCS + WCS + CSCS $$ (1) 式中:
$ {Q_{\text{t}}} $ 为碳汇总量(tC/a);FCS为林地碳汇量(tC/a);GSCS为草地碳汇量(tC/a);WCS为湿地碳汇量(tC/a);CSCS为农田碳汇量(tC/a)。$$ FCS = FCSR \times SF \times \left( {1 + \beta } \right) $$ (2) 式中:FCSR为林地固碳速率(tC/hm2·a);SF为林地面积(km2);β为土壤固碳系数。
$$ GSCS = GSR \times SG $$ (3) 式中:GSR为草地土壤固碳速率(tC/hm2·a);SG为草地面积(km2)。
$$ WCS = SCS{R_{\text{i}}} \times S{W_{\text{i}}} $$ (4) 式中:
$ SCS{R_{\text{i}}} $ 为第i类水域湿地的固碳速率(tC/hm2﹒a);$ S{W_{\text{i}}} $ 为第i类水域湿地的面积(km2)。$$ CSCS = \left( {BSS + SCS{R_n} + PR \times SCS{R_s}} \right) \times SC $$ (5) 式中:BSS为无固碳措施下固碳速率(tC/hm2·a);
$ SCS{R_n} $ 为施用化肥固碳速率(tC/hm2·a);$ SCS{R_s} $ 为秸秆还田固碳速率(tC/ hm2·a);PR为秸秆还田率。$$ BSS = NSC \times BD \times H \times 0.1 $$ (6) 式中:NSC为土壤有机碳的变化;BD为土壤容重(g/cm3);H为土壤厚度(取20 cm)。
$$\operatorname{SCSR}_n=0.6352 \times T N F-1.0834 S $$ (7) 式中:TNF为单位面积耕地化学氮肥、复合肥总施用量(kg/hm2·a)
$$ TNF = {{\left( {NF + CF \times 0.3} \right)} \mathord{\left/ {\vphantom {{\left( {NF + CF \times 0.3} \right)} {{S_p}}}} \right. } {{S_p}}} $$ (8) 式中:Sp为耕作面积(hm2);NF和CF为化学氮肥和复合肥施用量(t)。
$$ SCS{R_n} = 17.116 \times S + 30.553 $$ (9) 式中:S为单位面积秸秆还田量(t/hm2·a)。
$$ S = {{\sum\nolimits_{j = 1}^n {{C_{yj}} \times SG{R_j}} } \mathord{\left/ {\vphantom {{\sum\nolimits_{j = 1}^n {{C_{yj}} \times SG{R_j}} } {{S_p}}}} \right. } {{S_p}}} $$ (10) 式中:
$ {C_{yj}} $ 为作物j在当年的产量(t);$ SG{R_j} $ 为作物j的草谷比;$ {S_p} $ 为耕作面积(hm2)。2.2 水域及未利用地碳汇估算
文中水域及未利用地的碳汇量估算采用以下公式:
$$ {Q_i} = \sum\nolimits_{j = 1}^n {{S_{\text{i}}}} \times {F_i} $$ (11) 式中:
$ {Q_i} $ 为碳汇量(tC/a);$ {S_i} $ 为不同土地类型面积(km2);$ {F_i} $ 为不同土地类型的固碳速率(tC/ hm2·a)。所用参数具体值及来源见表1和表2。表 1 主要参数列表Table 1. List of main parameters参数 定义 取值 单位 来源 FCSR 林地固碳速率 0.28~1.36 tC/hm2·a 陆地GEP核算技术指南 β 林地土壤固碳系数 0.646 / 陆地GEP核算技术指南 GSR 草地土壤固碳速率 0.02~0.06 tC/hm2·a 陆地GEP核算技术指南 $ SCS{R_{\text{i}}} $ 湿地的固碳速率 0.3026~0.6711 tC/hm2·a 陆地GEP核算技术指南 $ {S}_{水域} $ 水域的固碳速率 0.303 tC/hm2·a 张赫等,2020 $ {S}_{未利用地} $ 未利用地固碳速率 0.0005 tC/hm2·a 张赫等,2020 PR 秸秆还田推广实行率 0.8%~33.2% / 张国等,2017 NSC 土壤有机碳的变化 0.06 / 陆地GEP核算技术指南 H 土壤厚度 20 cm 陆地GEP核算技术指南 NF 化学氮肥施用量 / t 各省统计年鉴 CF 复合肥施用量 / t 各省统计年鉴 $ {C_{{\text{yj}}}} $ 作物j在当年的产量 / t 各省统计年鉴 $ SG{R_{\text{j}}} $ 作物j的草谷比 见表2 / 农业农村部办公厅 表 2 不同作物的草谷比Table 2. Ratio of grass to grain of different crops作物 草谷比 作物 草谷比 水稻 0.623 油料 2.0 麦类 1.366 棉花 8.1 玉米 2.0 豆类 1.57 薯类 0.5 麻类 8.10 烟叶 1.0 其它谷物 0.85 2.3 分布指数
为消除不同地貌区面积差异的影响,引入分布指数(P)来描述碳汇类型在地貌区的分布情况,计算公式如下(李磊等,2022):
$$ P = {{\left( {{{{S_{ie}}} \mathord{\left/ {\vphantom {{{S_{ie}}} {{S_i}}}} \right. } {{S_i}}}} \right)} \mathord{\left/ {\vphantom {{\left( {{{{S_{ie}}} \mathord{\left/ {\vphantom {{{S_{ie}}} {{S_i}}}} \right. } {{S_i}}}} \right)} {\left( {{{{S_e}} \mathord{\left/ {\vphantom {{{S_e}} S}} \right. } S}} \right)}}} \right. } {\left( {{{{S_e}} \mathord{\left/ {\vphantom {{{S_e}} S}} \right. } S}} \right)}} $$ (12) 式中:P为分布指数;
$ {S_{ie}} $ 为在e区域内i类型的面积;$ {S_i} $ 为研究区内i类型的总面积;$ {S_e} $ 表示e区域(本研究中指地貌区域)的面积;S为研究区总面积。当P=1时,表示该类型在e区域平稳分布;当P>1时,表示该类型在e区域为优势分布,反之劣势分布,且P值越大,分布优势越显著。3. 结果分析
3.1 西北地区土地利用时空演化特征
土地利用覆被变化是影响生态系统碳汇最主要的因素之一。从40年间西北地区土地利用分布可以看出(图1),受特有的气候和自然地理条件限制,未利用地和草地在西北地区占主导地位。未利用地主要分布于塔里木盆地、准噶尔盆地的荒漠区以及内蒙古北部的沙漠区,占比达46.11%~47.35%;草地主要分布于新疆天山山脉地区、青海南部地区及内蒙古赛罕塔拉城中草原、鄂尔多斯草原,占比达35.79%~36.90%;其次为耕地,主要分布在环塔里木盆地和环准噶尔盆地的边缘地带、关中平原、银川平原、甘肃的高原地区等,占比为7.55%~8.24%;再次是林地,主要分布在陕西秦岭、甘肃南部及中部武威地区、青海东南部,占4.80%~5.04%;湿地、水域和建设用地很少,分别占1.28%~1.46%、1.66%~2.04%和0.48%~0.94%。
时间尺度上,1980~2020年西北地区土地利用类型整体变化不大,但局部有一定的变化。林地、湿地和水域分布有增有减,其中林地在2015年前总体呈缓慢增长趋势,增幅1.52%,之后减少8 926 km2,减幅4.72%;湿地最大年变幅1.10%,40年总体减少14 190 km2。草地在2015年前呈波动性减少,2015年之后有所增加,40年中总体表现为增加,增加量14265 km2,增幅1.04%。耕地和建设用地持续增加,40年分别增加27 017 km2和17 041 km2,增幅分别为9.58%和94.48%,这与城市不断扩张有关。未利用地波动性减少,减少40434 km2,减幅2.28%。
3.2 西北地区碳汇时空分布特征
3.2.1 西北地区碳汇的时序演化规律
随着不同历史时期土地利用分布的变化,生态系统碳汇量也发生一系列的变化(表3)。1980~2020年,西北地区生态系统碳汇量从1980年的3 956.50×104 tC/a上升至2020年的5826.44×104 tC/a,整体呈波动上升态势,仅个别区域(新疆)在2020年略有下降。区域生态系统碳汇总量的变化可分为2个阶段:1980年至2015年间,碳汇总量持续上升至6203.08×104 tC/a,35年间增加2246.58×104 tC/a;2016~2020年,由于新疆片区生态系统碳汇下降376.64×104 tC/a,导致区域碳汇总量降至5 826.44×104 tC/a。碳汇强度随时间的变化与碳汇量趋势一致,整体呈波动上升态势,仅个别时期有所下降。1980~2015年,生态系统碳汇强度从0.105 tC/ hm2上升到了0.165 tC/ hm2,但之后有所降低,2020年碳汇强度为0.155tC/ hm2。区域生态碳汇类型主要以林地碳汇为主,占比74.08%~81.77%,其次是草地(6.83%~10.95%)、水域(4.47%~7.55%)、耕地(4.48%~5.25%)、湿地(1.44%~2.30%)和未利用地(0.13%~0.21%)。
表 3 40年间西北地区生态系统碳汇量及占比Table 3. Carbon sink amount and proportion of ecosystem in Northwest China in 40 years年份 碳汇量(104 tC/a)及占比 碳汇强度(tC/hm2) 林地 草地 耕地 湿地 水域 未利用地 合计 1980 2953.84 433.05 177.17 90.40 293.69 8.34 3956.50 0.105 74.66% 10.95% 4.48% 2.28% 7.42% 0.21% 100.00% 1990 2980.04 433.42 188.55 90.54 282.87 8.33 3983.73 0.106 74.81% 10.88% 4.73% 2.27% 7.10% 0.21% 100.00% 2000 2971.03 428.09 208.04 92.34 302.70 8.35 4010.57 0.107 74.08% 10.67% 5.19% 2.30% 7.55% 0.21% 100.00% 2010 3923.06 424.95 262.92 91.62 292.55 8.38 5003.49 0.133 78.41% 8.49% 5.25% 1.83% 5.85% 0.17% 100.00% 2015 5072.23 423.64 314.07 89.46 295.36 8.32 6203.08 0.165 81.77% 6.83% 5.06% 1.44% 4.76% 0.13% 100.00% 2020 4734.70 435.97 299.90 87.40 260.22 8.25 5826.44 0.155 81.26% 7.48% 5.15% 1.50% 4.47% 0.14% 100.00% 3.2.2 西北地区碳汇空间分布特征
由于自然地理条件的差异,西北地区不同区域碳汇量差异较大(图2)。1980~2010年,碳汇量从高到低依次为新疆、甘肃、陕西、青海、内蒙古(西北片区)、宁夏;2015~2020年,碳汇空间格局发生变化,陕西超越甘肃位居第二。整个研究期内碳汇量最高的区域是新疆,达1 386.63~1 817.34×104 t/a。
由于不同行政区域面积相差较大,相比碳汇总量,碳汇强度更能客观反映一个地区的碳汇水平,便于不同地区进行横向比较。碳汇强度分布图(图3)显示,整个研究期内陕西省碳汇强度最高,达28.09~58.43 t/km2,其主要原因是该省林地面积占比较高,达22.55%~23.66%;甘肃省次之(林地占比9.57%~10.23%),宁夏第三;新疆在1980~2000年位列第四、青海位列第五,但2010~2020年间青海超过新疆,位居第四;整个研究期内蒙古(西北片区)一直位居第六,主要与该地区林地面积占比仅为1.84%~2.07%有关。
研究期内各区域的碳汇效应在时间变化上具有较大差异性。陕西、宁夏整体呈持续上升趋势,但1980~2000年上升相对较缓,之后上升速率加快;甘肃、内蒙古、青海碳汇强度整体呈波动上升趋势,且上升较缓;新疆呈先持续缓慢上升到2015年又有所下降。
3.3 不同生态系统类型碳汇变化趋势
不同生态系统类型中湿地和未利用地的碳汇量占比很小,且变化趋势不明显。因此,文中仅分析林地、草地、水域、耕地4类生态系统的碳汇量变化趋势(图4)。
3.3.1 林地生态系统
通过评估,西北地区林地碳汇量整体呈持平-持续上升–下降或基本持平态势,不同区域在时间变化上有所差异。1980~2000年,各区域基本呈持平状态,之后持续上升。2015~2020年,除新疆外基本持平或略增;新疆先波动持平,2010年开始上升,2015年又开始下降。2000~2015年,青海、内蒙古(西北片区)、陕西上升幅度较大,年增幅分别达23.99%和20.86%、7.62%;宁夏、甘肃上升幅度较小,年增幅分别达2.54%和1.02%。2000年以后,各区域林地碳汇量持续上升,与当地相继开展的“天然林资源保护工程”和“退耕还林”等政策有关(胡雷等,2015;关晋宏等,2016;张杰等,2022)。新疆林地碳汇量由开始的持平到2015年后大幅下降,与区域林地从1990开始缓慢减少到2015年后大幅降低有关,这与马丽娜等(2022)研究结论一致。
3.3.2 草地生态系统
评估期内,草地碳汇量整体处于基本持平态势,不同区域在时间变化上有所差异。内蒙古(西北片区)、甘肃、陕西、宁夏整体呈持平趋势;青海1980~2015年先波动持平,之后上升,年上升幅度1.10%;新疆1980-2015年波动缓慢下降(年下降幅度0.11%),在2015年又开始上升(年上升幅度0.73%);宁夏持续减少,减少约5 929 tC/a,降幅9.50%。
内蒙古(西北片区)、甘肃、陕西、宁夏草地碳汇量年度变化差异不大,这与草地面积变化较小有关。新疆2015年之前碳汇量缓慢下降,与区域草地退化,草地面积减少有关;之后受土地利用转移影响(王志强等,2022),草地面积增加导致其碳汇量相应增加。青海碳汇量增加与2015年后草地面积增加有关。
3.3.3 耕地生态系统
据评估,近40年的耕地碳汇量除青海外整体呈波动性增长态势。但不同区域在时间变化上也有所差异。受节水灌溉等影响,新疆、宁夏呈持续上升趋势,年升幅分别为3.62%和2.40%,这与40年间耕地面积不断增加,及农业产量提高有关;青海40年间整体变化不大,仅增加1.55万t,这与其耕地面积较少、作物产量较低有关。陕西、甘肃、内蒙古(西北地区)呈现先持续上升,2015年后又下降态势,2015年前升幅分别为1.76%、0.68%、3.13%,2015年后降幅分别为2.47%、0.81%和2.20%。陕西从1980年耕地面积虽然在缓慢减少,但由于作物产量提高,加上复合肥投入的增加,导致碳汇强度提高,从而使碳汇量不断增加;但由于2015~2020年耕地面积减少幅度增大,从而使整体碳汇量有所降低。近40年,甘肃和内蒙古耕地数量基本持平,由于作物产量提高及复合肥投入加大,使碳汇量不断增加,之后甘肃耕地面积大量缩减导致碳汇量降低,而内蒙古(西北片区)由于耕地面积、复合肥投入的减少略有降低。
3.3.4 水域生态系统
近40年来,内蒙古(西北片区)、甘肃、陕西、宁夏水域碳汇量整体呈持平趋势;新疆呈现先波动上升,至2015年又下降趋势,5年间下降50.80×104 t,年降幅6.39%;青海有升有降,之后2010年持续上升,年上幅1.64%。水域碳汇量随水域面积变化而变化,新疆受冰川融化、降水等(徐丽萍等,2020)影响水域面积发生改变。青海2010年之后受径流量、降水等影响,水域面积逐年增大(郭丰杰等,2022)。
4. 西北生态系统碳汇与地形地貌、温度和降水等驱动因素的关系
植被生长变化受多种要素影响。地貌是自然环境最基本的组成要素,在不同尺度上制约着气候、植被、土壤、水文等其他自然环境要素的变化(巩杰等,2017)。气候因素中,温度和降水是影响生态系统净生产力的两个最主要因素(刘应帅等,2022),它能通过影响植物的光合作用和呼吸作用进而影响生态系统的碳汇能力。因此探讨碳汇强度与地貌、降水、温度的关系对生态系统碳汇的提升至关重要。西北地区碳汇强度及各驱动因素分布见图5。
4.1 生态系统碳汇与地貌的关系分析
西北地区地处中国第一和第二地势阶梯之上,横跨干旱–半干旱区、青藏高原高寒区、东部季风区3大自然地理分区;有阿尔泰山、天山、昆仑山、阿尔金山、祁连山、秦岭、大巴山、巴颜喀拉山和可可西里山等山脉;并有内蒙古高原、黄土高原、准噶尔盆地、塔里木盆地、柴达木盆地(党学亚等,2022)。不同的地貌类型,其生态系统的碳汇量也有差异。通过评估,各生态碳汇类型在地貌区中的分布见表4。地貌对生态碳汇类型的分布具有明显的控制作用。林地在山区呈优势分布,特别是中山地貌区,分布指数达4.4,在其他地貌类型区呈劣势分布;草地在山区呈优势分布,在其他地貌类型区呈劣势分布;耕地在地势较为平坦的平原和台地呈优势分布,在低中山区呈稳态分布;水域和湿地在平原呈优势分布;未利用地在丘陵区呈优势分布,在平原和台地呈稳态分布。
表 4 生态碳汇类型在地貌类型中的分布指数Table 4. Distribution index of ecological carbon sink types in landform types类型 平原 台地 丘陵 低山 中山 高山 林地 0.3 0.4 0.4 1.6 4.4 1.3 草地 0.8 0.9 0.8 1.5 1.5 1.5 耕地 1.7 1.3 0.7 1.0 1.2 0.1 水域 2.5 0.9 0.3 0.5 0.1 0.4 未利用地 1.0 1.1 1.4 0.6 0.3 0.8 4.2 生态系统碳汇与降水的关系分析
西北地区平均降水量差别较大(2.1~1 208 mm),为研究碳汇强度在不同降水区的变化趋势,以100 mm为一个梯度,将研究区降水量划分为12个级别。研究表明,西北地区碳汇强度总体上随降水量增加呈先上升后下降又上升的态势(图6)。具体地,在降水量2~802 mm段,呈持续上升阶段,并在102~802 mm出现最大值,其碳汇强度约为127.41 t/km2;在803~1 002 mm出现持续下降,最低约为44.06 t/km2;在1003~1 208 mm随降水量增加而增加。结合区域地形地貌分析,902~1 002 mm主要分布在陕西南部汉中及汉江流域,海拔低,耕地、草地较多,其碳汇强度相对较低。
为进一步分析降水量与碳汇强度相关性,对不同降水区平均降水量与其对应的平均碳汇强度作相关分析。结果显示,降水量2~802 mm段呈显著正相关(r=0.915 2),803~1 002 mm段呈显著负相关(r=−0.981 5); 1003~1 208 mm段呈显著正相关(r=0.997 7)。
4.3 生态系统碳汇与气温的关系分析
为研究碳汇强度在不同气温区的变化趋势,以3 ℃为一个梯度,将研究区气温(−22.3~17.7 ℃)划分为14个级别。研究表明,西北地区碳汇强度总体上随气温增加呈波动上升的态势(图7)。低于零下2 ℃区域,其碳汇强度均较低,最高为9.52 t/km2;−2.0~10 ℃区域,其碳汇强度变化不大,在1~4 ℃区最高,为12.27 t/km2;10 ℃开始,其碳汇强度随温度升高而持续上升,在16~18 ℃区域出现最大值,其碳汇强度为71.98 t/km2。
对不同气温区平均温度与其对应的平均碳汇强度作相关分析。结果显示,2 ℃以下呈正相关(r=0.631 5),2 ℃以上呈显著正相关(r=0.959 5)。
5. 结论
(1)受特有的自然地理环境控制性影响,西北地区未利用地和草地占主导地位。土地利用类型40年间整体变化不大,但局部有一定的变化。林地先呈缓慢增长趋势,2015年后开始下降;草地先波动性减少后又增长趋势;耕地、建设用地呈持续增长趋势;未利用地波动性减少;湿地、水域则有增有减。
(2)2020年西北地区生态碳汇量约为5 826.44×104 tC/a,其中林地占主导地位,其次为草地、水域、耕地、湿地、未利用地。碳汇量大小依次为新疆、陕西、甘肃、青海、内蒙古(西北片区)、宁夏;碳汇强度大小依次为陕西、甘肃、宁夏、新疆、青海、内蒙古(西北片区)。1980~2020年,西北地区碳汇量变化整体呈波动上升态势,个别时期有所下降,主要由于新疆在2015~2020年间林地降幅较大所致。
(3)受水土保持、天然林保护等措施影响,各区域林地碳汇整体呈上升趋势,而新疆受2015年林地大幅下降影响有所降低。草地整体处于基本持平态势。耕地碳汇受灌溉、经济等投入影响,除青海外整体呈波动性增长态势。受气温等影响,青海水域面积有所增加,新疆则先增加后降低。
(4)西北地区生态碳汇与地貌、降水、气温有一定的相关关系。地貌是控制性因素,降水和气温具有一定的正相关关系。不同的地貌类型,决定了土地利用类型,决定了碳汇的强度大小;不同降水区呈现出相关差异性,低降水区和高降水区呈显著正相关,中降水区呈显著负相关;碳汇强度与气温呈现正相关,在较高温和高温区相关性显著。
-
图 1 扬子地块北缘毕机沟和望江山岩体地质图(据Dong et al.,2011;Wang et al.,2016修)
Figure 1. Geological map of the Bijigou and Wangjiangshan intrusions at the northern of the Yangtze block
图 2 毕机沟和望江山岩体的野外照片和不同岩石类型的岩相学特征
a.毕机沟岩体的层状构造;b.毕机沟岩体磁铁辉长岩的背散射电子图像;c.毕机沟岩体的磁铁苏长岩;d.毕机沟岩体的橄榄辉长岩;e.望江山岩体的苏长辉长岩;f.望江山岩体的辉长岩;Ol.橄榄石;Mt.磁铁矿;Cpx.单斜辉石;Opx.斜方辉石;Pl.斜长石;Sil.硅酸盐矿物;Ilm.钛铁矿;Sul.硫化物
Figure 2. Field photos and petrographic characteristics of different rock types from the Bijigou and Wangjiangshan intrusions
图 4 世界典型层状侵入体(a)、毕机沟岩体(b)和望江山岩体(c)的铂族元素原始地幔标准化曲线
南非Bushveld岩体上部带和关键带铂族元素数据引自Barnes等(2004);南非Stella岩体数据引自Maier等(2003);加拿大Coldwall岩体数据引自Good等(1994);加拿大Agnew岩体数据引自Vogel(1996);MORB和OIB数据引自Barnes等(2005));图4b和图4c虚线部分引自杨星等(1993)
Figure 4. (a) Primitive mantle-normalized platinum-group element diagrams of world classic PGE-bearing mafic intrusions,(b) the Bijigou intrusion and (c) the Wangjiangshan intrusion
图 6 毕机沟和望江山岩体Ni/Pd–Cu/Ir相关图(投图区域引自Barnes et al., 1988,2005)
Figure 6. Ni/Pd–Cu/Ir plots of the Bijigou and Wangjiangshan intrusions
表 1 毕机沟岩体、望江山岩体样品主量(%)、微量元素(10−6)与稀土元素(10−6)组成分析结果表
Table 1 Major (%), trace element (10−6) and REE concentrations (10−6) analyses of the Bijigou and Wangjiangshan samples
样品号 WJS502 WJS503 WJS510 WJS516 WJS517 WJS519 WJS606 WJS612 WJS614 BJG502 BJG503 BJG507 BJG514 BJG516 BJG522 岩性 橄榄
辉长岩辉长
苏长岩橄榄
辉长苏
长岩橄榄
苏长岩橄榄
苏长岩橄榄
苏长岩磁铁
辉长岩辉长
苏长岩辉长
岩磁铁
含橄辉
长岩磁铁
辉长岩橄榄
辉长岩辉长
岩磁铁
辉长岩磁铁
辉长苏
长岩SiO2 48.0 51.0 45.1 45.0 45.0 46.3 42.9 51.1 48.4 41.9 42.8 44.3 35.8 43.0 41.7 TiO2 0.33 1.06 1.12 0.31 0.50 1.27 2.98 1.14 1.14 2.41 2.24 0.57 4.55 4.52 3.57 Al2O3 20.9 18.3 16.9 18.2 13.5 18.5 14.5 16.0 16.8 15.2 13.8 17.3 14.2 15.5 14.7 TFe2O3 6.32 8.57 12.7 9.63 12.7 10.9 17.1 9.81 10.9 18.9 17.3 14.1 27.0 16.7 17.1 MnO 0.10 0.16 0.16 0.12 0.16 0.14 0.27 0.17 0.16 0.18 0.22 0.17 0.26 0.20 0.26 MgO 7.39 7.31 9.33 13.7 18.3 8.93 5.92 6.18 8.28 5.91 6.84 10.5 4.42 6.05 6.23 CaO 13.9 10.2 12.5 9.49 7.42 10.5 10.9 8.72 10.2 11.4 12.8 8.55 9.10 11.1 11.3 Na2O 2.06 2.95 1.76 1.77 1.59 2.60 2.92 3.38 2.98 2.28 2.09 2.06 2.09 2.38 2.44 K2O 0.16 0.22 0.05 0.16 0.27 0.19 0.44 1.65 0.31 0.12 0.10 0.11 0.13 0.09 0.11 P2O5 0.05 0.16 0.20 0.06 0.10 0.18 1.08 0.19 0.14 0.05 1.09 0.05 0.33 0.07 2.00 LOI 0.38 0.23 0.21 1.07 0.73 0.16 0.87 1.32 0.34 0.99 0.36 2.01 1.41 -0.07 -0.30 Total 99.51 99.61 99.94 99.53 99.98 99.55 99.83 99.62 99.62 99.32 99.55 99.64 99.24 99.53 99.24 Li 3.81 4.21 2.75 5.14 5.67 4.71 6.90 14.0 8.96 4.78 2.91 3.18 6.11 3.24 5.76 Be 0.32 0.37 0.27 0.28 0.35 0.47 1.11 0.92 0.59 0.21 0.23 0.17 0.20 0.20 0.25 Sc 28.9 27.6 33.1 11.6 15.1 26.3 42.2 31.8 32.5 44.8 56.8 12.4 39.2 49.2 43.1 V 88.9 86.0 282 70.8 88.5 191 361 166 197 729 472 177 716 406 330 Cr 419 195 233 503 467 198 22.6 192 264 5.41 5.37 46.6 6.70 5.77 8.35 Co 47.2 37.4 67.2 74.9 95.9 66.4 52.0 39.8 57.2 83.3 56.0 86.1 56.7 50.0 46.3 Ni 125 65.3 162 338 466 197 21.4 52.8 91.6 5.59 5.38 58.5 2.60 18.5 4.43 Cu 53.1 8.67 83.4 42.4 23.8 44.0 63.1 45.1 62.2 20.2 20.5 38.6 20.2 28.2 13.5 Zn 39.1 55.6 85.0 62.2 83.5 71.8 157 87.0 78.0 98.9 109 79.7 180 89.2 116 Ga 16.2 16.5 16.8 12.7 11.0 16.2 21.5 18.2 16.9 20.3 18.8 15.2 24.5 17.6 19.3 Ge 1.07 1.20 1.25 0.95 1.09 1.24 1.62 1.50 1.43 1.41 1.59 1.08 1.39 1.39 1.49 Rb 2.37 2.06 0.53 2.28 4.80 2.32 2.17 30.0 3.12 1.85 1.58 1.31 2.34 0.78 0.97 Sr 557 638 528 374 281 312 423 237 270 425 422 364 513 457 542 Y 9.45 12.2 13.1 5.66 9.49 20.6 64.4 41.0 26.1 8.48 21.7 3.38 8.08 7.60 26.0 Zr 25.1 37.2 16.5 21.7 43.0 64.2 177 257 107 12.3 15.7 6.55 9.72 20.4 15.8 Nb 0.91 2.20 0.50 1.00 2.20 2.58 19.6 7.19 3.35 0.44 0.60 0.28 0.49 1.34 1.43 Cs 0.09 0.08 0.15 0.17 0.15 0.06 0.08 0.66 0.12 0.27 0.17 0.62 0.69 0.35 0.35 Ba 88.6 120 55.6 69.6 93.4 124 220 907 126 47.0 50.9 45.4 43.1 45.1 59.4 La 4.08 3.81 4.07 3.21 5.31 4.83 30.0 15.3 6.68 1.56 6.07 1.30 1.92 1.46 8.38 Ce 9.38 9.21 10.7 7.06 12.0 13.0 75.6 38.1 16.9 4.02 16.4 2.87 4.92 3.69 23.5 Pr 1.31 1.33 1.67 0.93 1.58 2.03 10.7 5.18 2.47 0.65 2.59 0.39 0.79 0.59 3.63 Nd 6.24 6.67 8.79 4.20 7.04 10.5 50.2 23.9 12.1 3.73 14.1 1.89 4.56 3.43 20.1 Sm 1.61 1.80 2.34 0.99 1.64 2.99 12.0 6.06 3.50 1.21 3.87 0.49 1.36 1.11 5.32 Eu 0.83 1.25 1.04 0.53 0.60 1.26 3.27 1.79 1.37 0.68 1.43 0.40 0.89 0.70 2.17 Gd 1.78 2.13 2.60 1.06 1.75 3.43 12.4 6.51 4.08 1.48 4.42 0.57 1.67 1.39 5.99 Tb 0.28 0.35 0.42 0.17 0.28 0.59 1.94 1.09 0.71 0.26 0.69 0.09 0.27 0.23 0.89 Dy 1.78 2.19 2.53 1.05 1.72 3.62 11.7 6.98 4.55 1.62 4.07 0.61 1.59 1.48 5.06 Ho 0.37 0.45 0.51 0.22 0.36 0.76 2.31 1.46 0.94 0.33 0.81 0.13 0.32 0.30 0.98 Er 1.02 1.30 1.39 0.62 1.04 2.12 6.40 4.28 2.68 0.93 2.18 0.37 0.86 0.83 2.46 Tm 0.14 0.18 0.18 0.09 0.15 0.31 0.89 0.64 0.39 0.13 0.28 0.05 0.11 0.11 0.30 Yb 0.90 1.21 1.15 0.58 0.97 1.93 5.50 4.30 2.54 0.81 1.68 0.35 0.67 0.72 1.74 Lu 0.13 0.18 0.16 0.09 0.15 0.29 0.80 0.65 0.37 0.12 0.24 0.05 0.10 0.10 0.24 Hf 0.71 0.92 0.59 0.54 1.07 1.65 4.45 5.28 2.68 0.43 0.56 0.19 0.35 0.59 0.49 Ta 0.08 0.18 0.08 0.07 0.15 0.21 0.92 0.33 0.21 0.07 0.08 0.05 0.05 0.15 0.15 Pb 1.19 1.09 0.58 2.35 1.96 1.14 2.35 4.83 3.98 0.78 1.01 2.51 0.66 0.62 0.71 Th 0.22 0.18 0.05 0.19 0.53 0.19 0.47 1.02 0.47 0.06 0.23 0.09 0.06 0.05 0.21 U 0.04 0.05 0.01 0.04 0.12 0.05 0.14 0.32 0.12 0.02 0.06 0.03 0.02 0.02 0.06 表 2 毕机沟岩体、望江山岩体样品铂族元素组成表(10−9)
Table 2 Platinum group element concentrations of the Bijigou and Wangjiangshan samples (10−9)
样品号 岩性 Ir Ru Pt Pd ΣPGE WJS502 橄榄辉长岩 0.010 0.040 0.088 0.186 0.325 WJS503 辉长苏长岩 0.019 0.071 0.424 0.486 1.000 WJS510 橄榄辉长苏长岩 0.025 0.078 0.762 0.292 1.158 WJS516 橄榄苏长岩 0.012 0.043 0.459 0.265 0.779 WJS517 橄榄苏长岩 0.012 0.044 0.263 1.193 1.513 WJS519 橄榄苏长岩 0.039 0.137 0.459 1.981 2.616 WJS606 磁铁辉长岩 0.003 0.057 0.070 0.081 0.211 WJS612 辉长苏长岩 0.005 0.062 0.029 0.028 0.125 WJS614 辉长岩 0.003 0.033 0.027 0.092 0.155 BJG502 磁铁含橄辉长岩 0.005 0.039 0.080 0.179 0.304 BJG503 磁铁辉长岩 0.022 0.034 0.298 0.148 0.503 BJG507 橄榄辉长岩 0.089 0.149 1.208 1.097 2.544 BJG514 辉长岩 0.005 0.056 0.071 0.113 0.246 BJG516 磁铁辉长岩 0.027 0.046 0.211 0.071 0.354 BJG522 磁铁辉长苏长岩 0.005 0.032 0.050 0.066 0.153 -
成来顺. 陕西毕机沟钒钛磁铁矿床铂族元素地球化学特征及其意义[J]. 矿产与地质, 2017, 31(6): 1072-1076 doi: 10.3969/j.issn.1001-5663.2017.06.009 CHENG Laishun. Geochemical characteristics of platinum group elements of Bijigou V-Ti magnetite deposit in Shaanxi Province and its significance[J]. Mineral Resources and Geology, 2017, 31(6): 1072-1076. doi: 10.3969/j.issn.1001-5663.2017.06.009
董显扬, 李行, 叶良和, 等. 中国超镁铁质岩[M]. 北京: 地质出版社, 1995 DONG Xianyang, LI Hang, YE Lianghe, et al. Ultramafic Rocks in China[M]. Beijing:Geological Publishing House,1995.
高永伟, 洪俊, 吕鹏瑞, 等. 哈萨克斯坦乌拉尔肯皮赛铬铁矿资源基地地质背景、成矿特征及矿床成因[J]. 西北地质, 2023, 56(1): 142−155. GAO Yongwei, HONG Jun, LÜ Pengrui, et al. Geological Background, Metallogenic Characteristics and Ore Genesis of the KempirsayChromite Resource Base in the Ural, Kazakhstan[J]. Northwestern Geology, 2023, 56(1): 142−155.
巩志超, 黄廷弼, 任有祥, 等. 陕南洋县—西乡—南郑一带含铁基性岩体地质矿化特征及今后找矿意见[J]. 西北地质, 1975, (04): 3-18. 刘晔, 柳小明, 胡兆初, 等. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析[J]. 岩石学报, 2007, 23(5): 1203 -1210. LIU Ye, LIU Xiaoming, HU Zhaochu, et al. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS[J]. Acta Petrologica Sinica, 2007, 23(5): 1203-1210.
任有祥, 巩志超. 陕南望江山基性岩体的地质矿化特征及成因讨论[J]. 西北地质, 1976(3): 28-36. 苏犁. 中国中西部几个新元古代镁铁–超镁铁岩体研究及对Rodinia超大陆裂解事件的制约[D]. 西安: 西北大学, 2004 SU Li. Studies of Neoproterozoic mafic and ultramafic in-trusions in western-central China and their constrains on breakup of Rodinia Supercontinent[D]. Xi’an: Northwest University, 2004.
王丰翔, 李晓明, 栾卓然, 等. 全球铂族金属资源分布、供需及消费格局[J]. 地质通报, 2022, 41(10): 1829−1846. WANG Fengxiang, LI Xiaoming, LUAN Zhuoran, et al. Global PGEs resource distribution, supply and demand and consumption trends[J]. Geological Bulletin of China, 2022, 41(10): 1829−1846.
王建其, 柳小明. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证[J]. 岩矿测试, 2016, 35(02): 145-151 doi: 10.15898/j.cnki.11-2131/td.2016.02.006 WANG Jianqi, LIU Xiaoming. Proficiency Testing of the XRF Method for Measuring 10 Major Elements in Different Rock Types[J]. Rock and Mineral Analysis, 2016, 35(2): 145-151. doi: 10.15898/j.cnki.11-2131/td.2016.02.006
王岩, 王梦玺, 焦建刚. 扬子地块北缘新元古代望江山层状岩体矿物成分和铂族元素特征: 对岩浆演化过程和构造环境的制约[J]. 地质力学学报, 2019, 25(2): 267-285 doi: 10.12090/j.issn.1006-6616.2019.25.02.026 WANG Yan, WANG Mengxi, JIAO Jiangang. Mineral composition and platinum-group elements of the Neoproterozoic Wangjiangshan layered intrusion in the northern margin of the Yangtze Block: implications for the processes of magma evolution and tectonic setting[J]. Journal of Geomechanics, 2019, 25 (2): 267-285. doi: 10.12090/j.issn.1006-6616.2019.25.02.026
吴新斌, 吴凡, 毛友亮, 等. 汉南杂岩高桥沟花岗斑岩体岩石地球化学特征及侵位机制时代归属探讨[J]. 西北地质, 2023, 56(4): 329−335. WU Xinbin, WU Fan, MAO Youliang, et al. Petrological Characteristics and Emplacement Mechanism of the Gaoqiaogou Granitic Porphyry in the Hannan Complex: A Geochemistry Approach[J]. Northwestern Geology, 2023, 56(4): 329−335.
杨合群. 陕西毕机沟一带岩浆型钒钛磁铁矿[J]. 西北地质, 2021, 54(2): 110-110 YANG Hequn. Magmatic vanadium-titanium magnetite in Bijigou area, Shaanxi Province[J]. Northwest Geoscience, 2021, 54(2): 110-110.
杨合群, 苏犁, 宋述光, 等. 论陕西毕机沟钒钛磁铁矿床成因[J]. 地质与勘探, 2013, 40: 1036-1045 YANG Hequn, SU Li, SONG Shuguang, et al. On Genesis of the Bijigou V-Ti Magnetite Deposit in Shaanxi Province[J]. Geology and Exploration, 2013, 49 (06): 1036-1045.
杨星, 潘晓萍, 姚文光, 等. 汉南金水-青泥坑镁铁层状杂岩体与含铂性研究[J]. 西北地质科学, 1993, 14(1): 1–62 YANG Xing, PAN Xiaoping, YAO Wenguang, et al. Mafic layered complex body and its platinum-bearing nature in Jinshui-Qingnikeng Hanlan[J]. Northwest Geoscience, 1993, 14(1): 1-62.
张国伟, 于在平, 董云鹏, 等. 秦岭区前寒武纪构造格巧与演化问题探讨[J]. 岩石学报, 2000, 16: 11–21 ZHANG Guowei, YU Zaiping, DONG Yunpeng, et al. On Precambrian frame-work and evolution of the Qinling belt[J]. Acta Petrologica Sinica, 2000, 16(2): 11-21.
张国伟, 张宗清, 董云鹏. 秦略造山带主要构造岩石地层单元的构造性质及其火地构造意义[J]. 岩石学报, 1995, 11: 101–114 doi: 10.3321/j.issn:1000-0569.1995.02.002 ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng. Nature of Main Tectono-Lithostratigraphic Units of the Qingling Orogen: Implications of the Tectonoic Evolution[J]. Acta Petrologica Sinica, 1995, 11(2): 101-114. doi: 10.3321/j.issn:1000-0569.1995.02.002
张宗清, 张国伟, 唐索寒, 等. 汉南侵入杂岩年龄及其快速冷凝原因[J]. 科学通报, 2000, 45: 2567–2572 doi: 10.3321/j.issn:0023-074X.2000.23.021 ZHANG Zongqing, ZHANG Guowei, TANG Suohan, et al. Geochronology of the Hannan intrusive complex to adjoin the Qinling orogen and its rapid cooling reason[J]. Chinese Science Bulletin, 2000, 45(23): 2567-2572. doi: 10.3321/j.issn:0023-074X.2000.23.021
赵莉, 张招崇, 王福生, 等. 一个开放的岩浆房系统: 攀西新街镁铁-超镁铁质层状岩体[J]. 岩石学报, 2006, 22(6): 1565-1578 doi: 10.3321/j.issn:1000-0569.2006.06.014 ZHAO Li, ZHANG Zhaochong, WANG Fusheng, et al. Open–system magma chamber: An example from the Xinjie mafic–ultramafic layered intrusion in Panxi region, SW China[J]. Acta Petrologica Sinica, 2006, 22: 1565–1578. doi: 10.3321/j.issn:1000-0569.2006.06.014
Ballhaus C, Bockrath C, Wohlgemuth-Ueberwasser C, et al. Fractionation of the noble metals by physical processes[J]. Contributions to Mineralogy and Petrology, 2006, 152: 667–684. doi: 10.1007/s00410-006-0126-z
Barnes S J, Boyd R, Korneliussen A, et al. The Use of Mantle Normalization and Metal Ratios in Discriminating between the Effects of Partial Melting, Crystal Fractionation and Sulphide Segregation on Platinum-Group Elements, Gold, Nickel and Copper: Examples from Norway[J]. Springer Netherlands, 1988, 87: 113–143.
Barnes S J, Lightfoot P C. Formation of magmatic nickel–sulfide ore deposits and processes affecting their copper and platinum–group element contents[J]. Economic Geology 100th Anniversary Volume: 2005, 179–213.
Barnes S J, Maier W D, Ashwal L D. Platinum–group element distribution in the main zone and upper zone of the Bushveld Complex, South Africa[J]. Chemical Geology, 2004, 208: 293–317. doi: 10.1016/j.chemgeo.2004.04.018
Barnes S J, Maier W D. Platinum–group elements and microstructures of normal Merensky Reef from Impala Platinum Mines, Bushveld Complex[J]. Journal of Petrology, 2002, 43: 103–128. doi: 10.1093/petrology/43.1.103
Barnes S J, Naldrett A, Gorton M. The origin of the fractionation of platinum–group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53: 303–323. doi: 10.1016/0009-2541(85)90076-2
Barnes S J, Picard C. The behaviour of platinum–group elements during partial melting, crystal fractionation, and sulphide segregation: An example from the Cape Smith Fold Belt, northern Quebec[J]. Geochimica Et Cosmochimica Acta, 1993, 57: 79–87. doi: 10.1016/0016-7037(93)90470-H
Brenan J M, Finnigan C F, Mcdonough W F, et al. Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: The importance of ferric iron[J]. Chemical Geology, 2012, 302: 16–32.
Brenan J M, Mcdonough W F, Ash R. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2005, 237: 855–872. doi: 10.1016/j.jpgl.2005.06.051
Brenan J M, Mcdonough W F, Dalpe C. Experimental constraints on the partitioning of rhenium and some platinum–group elements between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2003, 212: 135–150. doi: 10.1016/S0012-821X(03)00234-6
Campbell I H, Naldrett A J, Barnes S J. A model for the origin of the platinum–rich sulfide horizons in the Bushveld and Stillwater Complexes[J]. Journal of Petrology, 1983, 24: 133–165. doi: 10.1093/petrology/24.2.133
Capobianco C J, Hervig R L, Drake M J. Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt[J]. Chemical Geology, 1994, 113: 23–43. doi: 10.1016/0009-2541(94)90003-5
Chu Z Y, Yan Y, Chen Z, et al. Comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples[J]. Geostandards and Geoanalytical Research, 2015, 39: 151-169. doi: 10.1111/j.1751-908X.2014.00283.x
Dong Y P, Liu X M, Santosh M, et al. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U–Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif[J]. Precambrian Research, 2011, 189: 66–90. doi: 10.1016/j.precamres.2011.05.002
Good D J, Crocket J H. Genesis of the Marathon Cu–platinum–group element deposit, Port Coldwell alkalic complex, Ontario; a Midcontinent rift–related magmatic sulfide deposit[J]. Economic Geology, 1994, 89: 131–149. doi: 10.2113/gsecongeo.89.1.131
Govindaraju K. 1994 complication of working values and sample description for 383 geostandards[J]. Geostandards Newsletter, 1994, 18: 1–158. doi: 10.1111/j.1751-908X.1994.tb00502.x
Li C S, Naldrett A J. Geology and petrology of the Voisey's Bay intrusion: reaction of olivine with sulfide and silicate liquids[J]. Lithos, 1999, 47: 1–31. doi: 10.1016/S0024-4937(99)00005-5
Li H B, Zhang Z C, Li Y S, et al. Petrogenesis and metallogenesis of the Xinjie layered mafic–ultramafic intrusion, China: Modeling of recharge, assimilation and fractional crystallization[J]. Journal of Asian Earth Sciences, 2015, 113: 1056–1067. doi: 10.1016/j.jseaes.2015.02.030
Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break–up of the Rodinia Supercontinent[J]. Precambrian Research, 2003, 122: 111–140. doi: 10.1016/S0301-9268(02)00222-X
Lorand J P, Luguet A, Alard O. Platinum–group element systematics and petrogenetic processing of the continental upper mantle: A review[J]. Lithos, 2013, 164–167: 2–21.
Maier W D, Barnes S J, Gartz V, et al. Pt–Pd reefs in magnetitites of the Stella layered intrusion, South Africa: A world of new exploration opportunities for platinum group elements[J]. Geology, 2003, 31: 885–888.
Meisel T, Moser J. Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP–MS in 11 geological reference materials[J]. Chemical Geology, 2004, 208: 319–338. doi: 10.1016/j.chemgeo.2004.04.019
Mitchell R H, Keays R R. Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal–rich intergranular components in the upper mantle[J]. Geochimica et Cosmochimica Acta, 1981, 45: 2425–2433, 2435–2442.
Naldrett A J, Gasparrini E C, Barnes S J et al. The Upper Critical Zone of the Bushveld Complex and the origin of Merensky–type ores[J]. Economic Geology, 1986, 81: 1105–1117. doi: 10.2113/gsecongeo.81.5.1105
Naldrett A J. From the mantle to the bank: the life of a Ni–Cu–(PGE) sulfide deposit[J]. South African Journal of Geology, 2010, 113: 1–32. doi: 10.2113/gssajg.113.1-1
Pagé P, Barnes S J, Béard J H, et al. In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: Implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation[J]. Chemical Geology, 2012, 302–303: 3–15.
Pang Kwannang, Li C S, Zhou M F, et al. Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China[J]. Lithos, 2009, 110: 199–214. doi: 10.1016/j.lithos.2009.01.007
Pang Kwannang, Zhou M F, Qi L, et al. Flood basalt–related Fe–Ti oxide deposits in the Emeishan large igneous province, SW China[J]. Lithos, 2010, 119: 123–136. doi: 10.1016/j.lithos.2010.06.003
Park J W, Campbell I H, Eggins S M. Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: evidence from the Ambae volcano, Vanuatu[J]. Geochimica et Cosmochimica Acta, 2012, 78: 28–50. doi: 10.1016/j.gca.2011.11.018
Peach C L, Mathez E A, Keays R R. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting[J]. Geochim Cosmochim Acta, 1990, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S
Peach C L, Mathez E A, Keays R R. Experimentally determined sulfide melt-silicate melt partition coefficients for iridium andpalladium[J]. Chemical Geology, 1994, (117): 361-377.
Qi L, Zhou M F. Platinum–group elemental and Sr–Nd–Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China[J]. Chemical Geology, 2008, 248: 83–103. doi: 10.1016/j.chemgeo.2007.11.004
Righter K, Campbell A J, Humayun M, et al. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr–bearing spinel, olivine, pyroxene and silicate melts[J]. Geochimica Et Cosmochimica Acta, 2004, 68: 867–880. doi: 10.1016/j.gca.2003.07.005
Sá J H S, Barnes S J, Prichard H M, et al. The Distribution of Base Metals and Platinum–Group Elements in Magnetititeand Its Host Rocks in the Rio Jacare Intrusion, Northeastern Brazil[J]. Economic Geology, 2005, 100: 333–348.
Taylor S R, Mclennan S M. The continental crust: its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
Vogel D C. The geology and geochemistry of the Agnew Intrusion: implications for the petrogenesis of early Huronian mafic igneous rocks in Central Ontario, Canada[J]. The University of Melbourne, 1996, 163.
Wang M X, Oliver N, Christina W. The flaw in the crustal ‘zircon archive’: mixed Hf isotope signatures record progressive contamination of late–stage liquid in mafic–ultramafic layered intrusions[J]. Journal of Petrology, 2016, 57: 27–52. doi: 10.1093/petrology/egv072
Zhang X Q, Zhang H F, Zou H B. Rift–related Neoproterozoic tholeiitic layered mafic intrusions at northern Yangtze Block, South China: Mineral chemistry evidence[J]. Lithos, 2020, 356–357: 105376.
Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic–ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints[J]. Lithos, 2009, 113: 369–392. doi: 10.1016/j.lithos.2009.04.023
Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222–223: 13–54.
Zhao J H, Zhou M F. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China[J]. Lithos, 2009, 107: 152–168. doi: 10.1016/j.lithos.2008.09.017
Zhong H, Qi L, Hu R Z, et al. Rhenium–osmium isotope and platinum–group elements in the Xinjie layered intrusion, SW China: Implications for source mantle composition, mantle evolution, PGE fractionation and mineralization[J]. Geochimica Et Cosmochimica Acta, 2011, 75: 1621–1641. doi: 10.1016/j.gca.2011.01.009
Zhong H, Tao Y, Prevec S A, et al. Trace–element and Sr–Nd isotopic geochemistry of the PGE–bearing Xinjie layered intrusion in SW China[J]. Chemical Geology, 2004, 203: 237–252. doi: 10.1016/j.chemgeo.2003.10.008
Zhou M F, Kennedy A K, Sun M, et al. Neoproterozoic arc–related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia[J]. The Journal of Geology, 2002, 110: 611–618. doi: 10.1086/341762
Zhou M F, Robinson P T, Lesher C M, et al. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China[J]. Journal of Petrology, 2005, 46: 2253–2280. doi: 10.1093/petrology/egi054
-
期刊类型引用(5)
1. 王璐晨,韩海辉,张俊,黄姣,顾小凡,常亮,董佳秋,龙睿,王倩,杨炳超. 塔里木河流域土地利用及人类活动强度的时空演化特征研究. 中国地质. 2024(01): 203-220 . 百度学术
2. 黄艳,刘晓曼,袁静芳,付卓,乔青. 2000—2020年华北干旱半干旱区碳储量变化特征及影响因素. 环境科学研究. 2024(04): 849-861 . 百度学术
3. 盖兆雪,郑文璐,王洪彦,杜国明. 气候变化下黑土区陆地生态系统碳储量时空格局与模拟. 农业机械学报. 2024(06): 303-316 . 百度学术
4. 王洪彦,郑文璐,盖兆雪. 基于InVEST模型的黑土区碳储量时空分异特征. 环境科学学报. 2024(07): 473-481 . 百度学术
5. 郭佳晖,刘晓煌,李洪宇,邢莉圆,杨朝磊,雒新萍,王然,王超,赵宏慧. 2000—2030年云贵高原碳储量和生境质量时空格局演变. 地质通报. 2024(09): 1485-1497 . 百度学术
其他类型引用(1)