ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    扬子北缘新元古代基性岩体铂族元素特征及找矿意义

    李章志贤, 郑绍鑫, 张晓琪

    李章志贤,郑绍鑫,张晓琪. 扬子北缘新元古代基性岩体铂族元素特征及找矿意义[J]. 西北地质,2024,57(2):1−13. doi: 10.12401/j.nwg.2023032
    引用本文: 李章志贤,郑绍鑫,张晓琪. 扬子北缘新元古代基性岩体铂族元素特征及找矿意义[J]. 西北地质,2024,57(2):1−13. doi: 10.12401/j.nwg.2023032
    LI Zhangzhixian,ZHENG Shaoxin,ZHANG Xiaoqi. Characteristics of Platinum Group Element in Neoproterozoic Mafic Intrusions in the Northern Margin of the Yangtze and Exploration Implications[J]. Northwestern Geology,2024,57(2):1−13. doi: 10.12401/j.nwg.2023032
    Citation: LI Zhangzhixian,ZHENG Shaoxin,ZHANG Xiaoqi. Characteristics of Platinum Group Element in Neoproterozoic Mafic Intrusions in the Northern Margin of the Yangtze and Exploration Implications[J]. Northwestern Geology,2024,57(2):1−13. doi: 10.12401/j.nwg.2023032

    扬子北缘新元古代基性岩体铂族元素特征及找矿意义

    基金项目: 国家自然科学基金项目“中国西部典型岩浆铂族元素和钴金属超常富集成矿动力学”(91962212),“扬子北缘新元古代早期低氧同位素锆石成因:幔源岩石多元同位素示踪”(42173005),陕西省教育厅项目“北秦岭松树沟铬铁矿矿床成矿机制研究”(15JK1760),西北大学地质学系国家基础科学人才培养基金“矿物成分对幔源岩浆氧化还原状态的制约”(XDCX2020-15)联合资助。
    详细信息
      作者简介:

      李章志贤(1998–),男,硕士研究生,矿物学、岩石学、矿床学专业。E–mail:lizhangzhixian@163.com

      通讯作者:

      张晓琪(1984–),女,讲师,从事幔源岩浆起源演化及成矿作用方面的研究。E–mail:zxq@nwu.edu.cn

    • 中图分类号: P588.12;P595

    Characteristics of Platinum Group Element in Neoproterozoic Mafic Intrusions in the Northern Margin of the Yangtze and Exploration Implications

    • 摘要:

      扬子地块北缘的汉南地区是中国最重要的基性–超基性岩体分布区之一。新元古代毕机沟和望江山岩体是汉南地区出露最好、研究程度最高的两个层状基性岩体。毕机沟和望江山岩体被认为是由亏损地幔经历10%~20%部分熔融形成的。远高于原始地幔的Cu/Pd值(Cu/Pd毕机沟值为3.52×104~3.97×105,Cu/Pd望江山值为1.78×104~1.61×106),表明岩体母岩浆在侵入浅部地壳之前就经历了早期硫化物熔离。毕机沟岩体中铱族元素(IPGE)与全岩Ni呈正相关,Cu/Ir与Ni/Pd呈负相关,说明在浅部岩浆房硫化物未饱和时,铂族元素的分配主要受橄榄石控制。望江山岩体中铂族元素与全岩Ni、V、TiO2无相关性,Cu/Ir与Ni/Pd呈正相关,说明望江山岩体中铂族元素受二次熔离硫化物的控制。毕机沟和望江山岩体中矿物不具有定向性,加上望江山岩体中二次熔离出的硫化物中铂族元素依然亏损,说明这些岩体更可能是岩浆单次贯入冷却形成的,而非岩浆通道。因此,浅部可能不具备赋存大型矿床的条件,今后的找矿工作应该聚焦于更深部。

      Abstract:

      Multiple layered mafic intrusions occur along the northern margin of the Yangtze Block, SW China. The Neoproterozoic Bijigou and Wangjiangshan mafic intrusions are two of the best exposed intrusions in the region. The Bijigou and Wangjiangshan mafic intrusions are thought to be generated by 10% to 20% of partial melting of a depleted mantle source. Uniformly high Cu/Pd (3.52×104~3.97×105 for the Bijigou samples and 1.78×104~1.61×106 for the Wangjiangshan samples) indicate that the parental magma of these intrusions experienced prior sulfide segregation before their intrusions into the shallow crust. Positive correlation between IPGE with whole–rock Ni, and negative correlation between Cu/Ir and Ni/Pd illustrate that the distribution of PGE is mainly controlled by the accumulation of olivine under an S–unsaturated condition. In comparison no linearly correlation between PGE and whole–rock Ni, V and TiO2, and positive correlation between Cu/Ir and Ni/Pd illustrate that the PGE in the Wangjiangshan intrusion is controlled by the second-stage sulfide saturation. The general lack of parallel alignment of tabular minerals in the Bijigou and Wangjiangshan intrusions, combined the PGE depletions in the Wangjiangshan second segregated sulfides, indicates that these intrusions probably intruded and cooled under a single episode of magma replenishment, rather than a dynamic magma conduit system. Therefore the shallow part may not have the conditions to host large deposits and future prospecting work should focus on the deeper part.

    • 图  1   扬子地块北缘毕机沟和望江山岩体地质图(据Dong et al.,2011Wang et al.,2016修)

      Figure  1.   Geological map of the Bijigou and Wangjiangshan intrusions at the northern of the Yangtze block

      图  2   毕机沟和望江山岩体的野外照片和不同岩石类型的岩相学特征

      a.毕机沟岩体的层状构造;b.毕机沟岩体磁铁辉长岩的背散射电子图像;c.毕机沟岩体的磁铁苏长岩;d.毕机沟岩体的橄榄辉长岩;e.望江山岩体的苏长辉长岩;f.望江山岩体的辉长岩;Ol.橄榄石;Mt.磁铁矿;Cpx.单斜辉石;Opx.斜方辉石;Pl.斜长石;Sil.硅酸盐矿物;Ilm.钛铁矿;Sul.硫化物

      Figure  2.   Field photos and petrographic characteristics of different rock types from the Bijigou and Wangjiangshan intrusions

      图  3   IPGE–Ni图解(a)、PPGE–Ni图解(b)、IPGE–V图解(c)、PPGE–V图解(d)、IPGE–TiO2(e)和PPGE–TiO2图解(f)

      Figure  3.   (a) IPGE–Ni, (b) PPGE–Ni, (c) IPGE–V, (d) PPGE–V, (e) IPGE–TiO2 and (f) PPGE–TiO2 binary plots

      图  4   世界典型层状侵入体(a)、毕机沟岩体(b)和望江山岩体(c)的铂族元素原始地幔标准化曲线

      南非Bushveld岩体上部带和关键带铂族元素数据引自Barnes等(2004);南非Stella岩体数据引自Maier等(2003);加拿大Coldwall岩体数据引自Good等(1994);加拿大Agnew岩体数据引自Vogel(1996);MORB和OIB数据引自Barnes等(2005));图4b和图4c虚线部分引自杨星等(1993)

      Figure  4.   (a) Primitive mantle-normalized platinum-group element diagrams of world classic PGE-bearing mafic intrusions,(b) the Bijigou intrusion and (c) the Wangjiangshan intrusion

      图  5   Ir–Pt相关图(a)与Ir–Pd相关图(b)

      Figure  5.   (a) Ir–Pt and (b) Ir–Pd bivariant diagrams

      图  6   毕机沟和望江山岩体Ni/Pd–Cu/Ir相关图(投图区域引自Barnes et al., 19882005

      Figure  6.   Ni/Pd–Cu/Ir plots of the Bijigou and Wangjiangshan intrusions

      图  7   扬子北缘汉南地区毕机沟和望江山岩体母岩浆演化与硫化物熔离过程模式图

      Figure  7.   Simplified model for the sulfide saturation history of the parental magma of the Bijigou and Wangjiangshan intrusions in the Hannan area, northern Yangtze Block, SW China

      表  1   毕机沟岩体、望江山岩体样品主量(%)、微量元素(10−6)与稀土元素(10−6)组成分析结果表

      Table  1   Major (%), trace element (10−6) and REE concentrations (10−6) analyses of the Bijigou and Wangjiangshan samples

      样品号WJS502WJS503WJS510WJS516WJS517WJS519WJS606WJS612WJS614BJG502BJG503BJG507BJG514BJG516BJG522
      岩性橄榄
      辉长岩
      辉长
      苏长岩
      橄榄
      辉长苏
      长岩
      橄榄
      苏长岩
      橄榄
      苏长岩
      橄榄
      苏长岩
      磁铁
      辉长岩
      辉长
      苏长岩
      辉长
      磁铁
      含橄辉
      长岩
      磁铁
      辉长岩
      橄榄
      辉长岩
      辉长
      磁铁
      辉长岩
      磁铁
      辉长苏
      长岩
      SiO248.051.045.145.045.046.342.951.148.441.942.844.335.843.041.7
      TiO20.331.061.120.310.501.272.981.141.142.412.240.574.554.523.57
      Al2O320.918.316.918.213.518.514.516.016.815.213.817.314.215.514.7
      TFe2O36.328.5712.79.6312.710.917.19.8110.918.917.314.127.016.717.1
      MnO0.100.160.160.120.160.140.270.170.160.180.220.170.260.200.26
      MgO7.397.319.3313.718.38.935.926.188.285.916.8410.54.426.056.23
      CaO13.910.212.59.497.4210.510.98.7210.211.412.88.559.1011.111.3
      Na2O2.062.951.761.771.592.602.923.382.982.282.092.062.092.382.44
      K2O0.160.220.050.160.270.190.441.650.310.120.100.110.130.090.11
      P2O50.050.160.200.060.100.181.080.190.140.051.090.050.330.072.00
      LOI0.380.230.211.070.730.160.871.320.340.990.362.011.41-0.07-0.30
      Total99.5199.6199.9499.5399.9899.5599.8399.6299.6299.3299.5599.6499.2499.5399.24
      Li3.814.212.755.145.674.716.9014.08.964.782.913.186.113.245.76
      Be0.320.370.270.280.350.471.110.920.590.210.230.170.200.200.25
      Sc28.927.633.111.615.126.342.231.832.544.856.812.439.249.243.1
      V88.986.028270.888.5191361166197729472177716406330
      Cr41919523350346719822.61922645.415.3746.66.705.778.35
      Co47.237.467.274.995.966.452.039.857.283.356.086.156.750.046.3
      Ni12565.316233846619721.452.891.65.595.3858.52.6018.54.43
      Cu53.18.6783.442.423.844.063.145.162.220.220.538.620.228.213.5
      Zn39.155.685.062.283.571.815787.078.098.910979.718089.2116
      Ga16.216.516.812.711.016.221.518.216.920.318.815.224.517.619.3
      Ge1.071.201.250.951.091.241.621.501.431.411.591.081.391.391.49
      Rb2.372.060.532.284.802.322.1730.03.121.851.581.312.340.780.97
      Sr557638528374281312423237270425422364513457542
      Y9.4512.213.15.669.4920.664.441.026.18.4821.73.388.087.6026.0
      Zr25.137.216.521.743.064.217725710712.315.76.559.7220.415.8
      Nb0.912.200.501.002.202.5819.67.193.350.440.600.280.491.341.43
      Cs0.090.080.150.170.150.060.080.660.120.270.170.620.690.350.35
      Ba88.612055.669.693.412422090712647.050.945.443.145.159.4
      La4.083.814.073.215.314.8330.015.36.681.566.071.301.921.468.38
      Ce9.389.2110.77.0612.013.075.638.116.94.0216.42.874.923.6923.5
      Pr1.311.331.670.931.582.0310.75.182.470.652.590.390.790.593.63
      Nd6.246.678.794.207.0410.550.223.912.13.7314.11.894.563.4320.1
      Sm1.611.802.340.991.642.9912.06.063.501.213.870.491.361.115.32
      Eu0.831.251.040.530.601.263.271.791.370.681.430.400.890.702.17
      Gd1.782.132.601.061.753.4312.46.514.081.484.420.571.671.395.99
      Tb0.280.350.420.170.280.591.941.090.710.260.690.090.270.230.89
      Dy1.782.192.531.051.723.6211.76.984.551.624.070.611.591.485.06
      Ho0.370.450.510.220.360.762.311.460.940.330.810.130.320.300.98
      Er1.021.301.390.621.042.126.404.282.680.932.180.370.860.832.46
      Tm0.140.180.180.090.150.310.890.640.390.130.280.050.110.110.30
      Yb0.901.211.150.580.971.935.504.302.540.811.680.350.670.721.74
      Lu0.130.180.160.090.150.290.800.650.370.120.240.050.100.100.24
      Hf0.710.920.590.541.071.654.455.282.680.430.560.190.350.590.49
      Ta0.080.180.080.070.150.210.920.330.210.070.080.050.050.150.15
      Pb1.191.090.582.351.961.142.354.833.980.781.012.510.660.620.71
      Th0.220.180.050.190.530.190.471.020.470.060.230.090.060.050.21
      U0.040.050.010.040.120.050.140.320.120.020.060.030.020.020.06
      下载: 导出CSV

      表  2   毕机沟岩体、望江山岩体样品铂族元素组成表(10−9

      Table  2   Platinum group element concentrations of the Bijigou and Wangjiangshan samples (10−9)

      样品号岩性IrRuPtPdΣPGE
      WJS502橄榄辉长岩0.0100.0400.0880.1860.325
      WJS503辉长苏长岩0.0190.0710.4240.4861.000
      WJS510橄榄辉长苏长岩0.0250.0780.7620.2921.158
      WJS516橄榄苏长岩0.0120.0430.4590.2650.779
      WJS517橄榄苏长岩0.0120.0440.2631.1931.513
      WJS519橄榄苏长岩0.0390.1370.4591.9812.616
      WJS606磁铁辉长岩0.0030.0570.0700.0810.211
      WJS612辉长苏长岩0.0050.0620.0290.0280.125
      WJS614辉长岩0.0030.0330.0270.0920.155
      BJG502磁铁含橄辉长岩0.0050.0390.0800.1790.304
      BJG503磁铁辉长岩0.0220.0340.2980.1480.503
      BJG507橄榄辉长岩0.0890.1491.2081.0972.544
      BJG514辉长岩0.0050.0560.0710.1130.246
      BJG516磁铁辉长岩0.0270.0460.2110.0710.354
      BJG522磁铁辉长苏长岩0.0050.0320.0500.0660.153
      下载: 导出CSV
    • 成来顺. 陕西毕机沟钒钛磁铁矿床铂族元素地球化学特征及其意义[J]. 矿产与地质, 2017, 31(6): 1072-1076 doi: 10.3969/j.issn.1001-5663.2017.06.009

      CHENG Laishun. Geochemical characteristics of platinum group elements of Bijigou V-Ti magnetite deposit in Shaanxi Province and its significance[J]. Mineral Resources and Geology, 2017, 31(6): 1072-1076. doi: 10.3969/j.issn.1001-5663.2017.06.009

      董显扬, 李行, 叶良和, 等. 中国超镁铁质岩[M]. 北京: 地质出版社, 1995

      DONG Xianyang, LI Hang, YE Lianghe, et al. Ultramafic Rocks in China[M]. Beijing:Geological Publishing House,1995.

      高永伟, 洪俊, 吕鹏瑞, 等. 哈萨克斯坦乌拉尔肯皮赛铬铁矿资源基地地质背景、成矿特征及矿床成因[J]. 西北地质, 2023, 56(1): 142−155.

      GAO Yongwei, HONG Jun, LÜ Pengrui, et al. Geological Background, Metallogenic Characteristics and Ore Genesis of the KempirsayChromite Resource Base in the Ural, Kazakhstan[J]. Northwestern Geology, 2023, 56(1): 142−155.

      巩志超, 黄廷弼, 任有祥, 等. 陕南洋县—西乡—南郑一带含铁基性岩体地质矿化特征及今后找矿意见[J]. 西北地质, 1975, (04): 3-18.
      刘晔, 柳小明, 胡兆初, 等. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析[J]. 岩石学报, 2007, 23(5): 1203 -1210.

      LIU Ye, LIU Xiaoming, HU Zhaochu, et al. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS[J]. Acta Petrologica Sinica, 2007, 23(5): 1203-1210.

      任有祥, 巩志超. 陕南望江山基性岩体的地质矿化特征及成因讨论[J]. 西北地质, 1976(3): 28-36.
      苏犁. 中国中西部几个新元古代镁铁–超镁铁岩体研究及对Rodinia超大陆裂解事件的制约[D]. 西安: 西北大学, 2004

      SU Li. Studies of Neoproterozoic mafic and ultramafic in-trusions in western-central China and their constrains on breakup of Rodinia Supercontinent[D]. Xi’an: Northwest University, 2004.

      王丰翔, 李晓明, 栾卓然, 等. 全球铂族金属资源分布、供需及消费格局[J]. 地质通报, 2022, 41(10): 1829−1846.

      WANG Fengxiang, LI Xiaoming, LUAN Zhuoran, et al. Global PGEs resource distribution, supply and demand and consumption trends[J]. Geological Bulletin of China, 2022, 41(10): 1829−1846.

      王建其, 柳小明. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证[J]. 岩矿测试, 2016, 35(02): 145-151 doi: 10.15898/j.cnki.11-2131/td.2016.02.006

      WANG Jianqi, LIU Xiaoming. Proficiency Testing of the XRF Method for Measuring 10 Major Elements in Different Rock Types[J]. Rock and Mineral Analysis, 2016, 35(2): 145-151. doi: 10.15898/j.cnki.11-2131/td.2016.02.006

      王岩, 王梦玺, 焦建刚. 扬子地块北缘新元古代望江山层状岩体矿物成分和铂族元素特征: 对岩浆演化过程和构造环境的制约[J]. 地质力学学报, 2019, 25(2): 267-285 doi: 10.12090/j.issn.1006-6616.2019.25.02.026

      WANG Yan, WANG Mengxi, JIAO Jiangang. Mineral composition and platinum-group elements of the Neoproterozoic Wangjiangshan layered intrusion in the northern margin of the Yangtze Block: implications for the processes of magma evolution and tectonic setting[J]. Journal of Geomechanics, 2019, 25 (2): 267-285. doi: 10.12090/j.issn.1006-6616.2019.25.02.026

      吴新斌, 吴凡, 毛友亮, 等. 汉南杂岩高桥沟花岗斑岩体岩石地球化学特征及侵位机制时代归属探讨[J]. 西北地质, 2023, 56(4): 329−335.

      WU Xinbin, WU Fan, MAO Youliang, et al. Petrological Characteristics and Emplacement Mechanism of the Gaoqiaogou Granitic Porphyry in the Hannan Complex: A Geochemistry Approach[J]. Northwestern Geology, 2023, 56(4): 329−335.

      杨合群. 陕西毕机沟一带岩浆型钒钛磁铁矿[J]. 西北地质, 2021, 54(2): 110-110

      YANG Hequn. Magmatic vanadium-titanium magnetite in Bijigou area, Shaanxi Province[J]. Northwest Geoscience, 2021, 54(2): 110-110.

      杨合群, 苏犁, 宋述光, 等. 论陕西毕机沟钒钛磁铁矿床成因[J]. 地质与勘探, 2013, 40: 1036-1045

      YANG Hequn, SU Li, SONG Shuguang, et al. On Genesis of the Bijigou V-Ti Magnetite Deposit in Shaanxi Province[J]. Geology and Exploration, 2013, 49 (06): 1036-1045.

      杨星, 潘晓萍, 姚文光, 等. 汉南金水-青泥坑镁铁层状杂岩体与含铂性研究[J]. 西北地质科学, 1993, 14(1): 1–62

      YANG Xing, PAN Xiaoping, YAO Wenguang, et al. Mafic layered complex body and its platinum-bearing nature in Jinshui-Qingnikeng Hanlan[J]. Northwest Geoscience, 1993, 14(1): 1-62.

      张国伟, 于在平, 董云鹏, 等. 秦岭区前寒武纪构造格巧与演化问题探讨[J]. 岩石学报, 2000, 16: 11–21

      ZHANG Guowei, YU Zaiping, DONG Yunpeng, et al. On Precambrian frame-work and evolution of the Qinling belt[J]. Acta Petrologica Sinica, 2000, 16(2): 11-21.

      张国伟, 张宗清, 董云鹏. 秦略造山带主要构造岩石地层单元的构造性质及其火地构造意义[J]. 岩石学报, 1995, 11: 101–114 doi: 10.3321/j.issn:1000-0569.1995.02.002

      ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng. Nature of Main Tectono-Lithostratigraphic Units of the Qingling Orogen: Implications of the Tectonoic Evolution[J]. Acta Petrologica Sinica, 1995, 11(2): 101-114. doi: 10.3321/j.issn:1000-0569.1995.02.002

      张宗清, 张国伟, 唐索寒, 等. 汉南侵入杂岩年龄及其快速冷凝原因[J]. 科学通报, 2000, 45: 2567–2572 doi: 10.3321/j.issn:0023-074X.2000.23.021

      ZHANG Zongqing, ZHANG Guowei, TANG Suohan, et al. Geochronology of the Hannan intrusive complex to adjoin the Qinling orogen and its rapid cooling reason[J]. Chinese Science Bulletin, 2000, 45(23): 2567-2572. doi: 10.3321/j.issn:0023-074X.2000.23.021

      赵莉, 张招崇, 王福生, 等. 一个开放的岩浆房系统: 攀西新街镁铁-超镁铁质层状岩体[J]. 岩石学报, 2006, 22(6): 1565-1578 doi: 10.3321/j.issn:1000-0569.2006.06.014

      ZHAO Li, ZHANG Zhaochong, WANG Fusheng, et al. Open–system magma chamber: An example from the Xinjie mafic–ultramafic layered intrusion in Panxi region, SW China[J]. Acta Petrologica Sinica, 2006, 22: 1565–1578. doi: 10.3321/j.issn:1000-0569.2006.06.014

      Ballhaus C, Bockrath C, Wohlgemuth-Ueberwasser C, et al. Fractionation of the noble metals by physical processes[J]. Contributions to Mineralogy and Petrology, 2006, 152: 667–684. doi: 10.1007/s00410-006-0126-z

      Barnes S J, Boyd R, Korneliussen A, et al. The Use of Mantle Normalization and Metal Ratios in Discriminating between the Effects of Partial Melting, Crystal Fractionation and Sulphide Segregation on Platinum-Group Elements, Gold, Nickel and Copper: Examples from Norway[J]. Springer Netherlands, 1988, 87: 113–143.

      Barnes S J, Lightfoot P C. Formation of magmatic nickel–sulfide ore deposits and processes affecting their copper and platinum–group element contents[J]. Economic Geology 100th Anniversary Volume: 2005, 179–213.

      Barnes S J, Maier W D, Ashwal L D. Platinum–group element distribution in the main zone and upper zone of the Bushveld Complex, South Africa[J]. Chemical Geology, 2004, 208: 293–317. doi: 10.1016/j.chemgeo.2004.04.018

      Barnes S J, Maier W D. Platinum–group elements and microstructures of normal Merensky Reef from Impala Platinum Mines, Bushveld Complex[J]. Journal of Petrology, 2002, 43: 103–128. doi: 10.1093/petrology/43.1.103

      Barnes S J, Naldrett A, Gorton M. The origin of the fractionation of platinum–group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53: 303–323. doi: 10.1016/0009-2541(85)90076-2

      Barnes S J, Picard C. The behaviour of platinum–group elements during partial melting, crystal fractionation, and sulphide segregation: An example from the Cape Smith Fold Belt, northern Quebec[J]. Geochimica Et Cosmochimica Acta, 1993, 57: 79–87. doi: 10.1016/0016-7037(93)90470-H

      Brenan J M, Finnigan C F, Mcdonough W F, et al. Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: The importance of ferric iron[J]. Chemical Geology, 2012, 302: 16–32.

      Brenan J M, Mcdonough W F, Ash R. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2005, 237: 855–872. doi: 10.1016/j.jpgl.2005.06.051

      Brenan J M, Mcdonough W F, Dalpe C. Experimental constraints on the partitioning of rhenium and some platinum–group elements between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2003, 212: 135–150. doi: 10.1016/S0012-821X(03)00234-6

      Campbell I H, Naldrett A J, Barnes S J. A model for the origin of the platinum–rich sulfide horizons in the Bushveld and Stillwater Complexes[J]. Journal of Petrology, 1983, 24: 133–165. doi: 10.1093/petrology/24.2.133

      Capobianco C J, Hervig R L, Drake M J. Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt[J]. Chemical Geology, 1994, 113: 23–43. doi: 10.1016/0009-2541(94)90003-5

      Chu Z Y, Yan Y, Chen Z, et al. Comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples[J]. Geostandards and Geoanalytical Research, 2015, 39: 151-169. doi: 10.1111/j.1751-908X.2014.00283.x

      Dong Y P, Liu X M, Santosh M, et al. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U–Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif[J]. Precambrian Research, 2011, 189: 66–90. doi: 10.1016/j.precamres.2011.05.002

      Good D J, Crocket J H. Genesis of the Marathon Cu–platinum–group element deposit, Port Coldwell alkalic complex, Ontario; a Midcontinent rift–related magmatic sulfide deposit[J]. Economic Geology, 1994, 89: 131–149. doi: 10.2113/gsecongeo.89.1.131

      Govindaraju K. 1994 complication of working values and sample description for 383 geostandards[J]. Geostandards Newsletter, 1994, 18: 1–158. doi: 10.1111/j.1751-908X.1994.tb00502.x

      Li C S, Naldrett A J. Geology and petrology of the Voisey's Bay intrusion: reaction of olivine with sulfide and silicate liquids[J]. Lithos, 1999, 47: 1–31. doi: 10.1016/S0024-4937(99)00005-5

      Li H B, Zhang Z C, Li Y S, et al. Petrogenesis and metallogenesis of the Xinjie layered mafic–ultramafic intrusion, China: Modeling of recharge, assimilation and fractional crystallization[J]. Journal of Asian Earth Sciences, 2015, 113: 1056–1067. doi: 10.1016/j.jseaes.2015.02.030

      Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break–up of the Rodinia Supercontinent[J]. Precambrian Research, 2003, 122: 111–140. doi: 10.1016/S0301-9268(02)00222-X

      Lorand J P, Luguet A, Alard O. Platinum–group element systematics and petrogenetic processing of the continental upper mantle: A review[J]. Lithos, 2013, 164–167: 2–21.

      Maier W D, Barnes S J, Gartz V, et al. Pt–Pd reefs in magnetitites of the Stella layered intrusion, South Africa: A world of new exploration opportunities for platinum group elements[J]. Geology, 2003, 31: 885–888.

      Meisel T, Moser J. Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP–MS in 11 geological reference materials[J]. Chemical Geology, 2004, 208: 319–338. doi: 10.1016/j.chemgeo.2004.04.019

      Mitchell R H, Keays R R. Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal–rich intergranular components in the upper mantle[J]. Geochimica et Cosmochimica Acta, 1981, 45: 2425–2433, 2435–2442.

      Naldrett A J, Gasparrini E C, Barnes S J et al. The Upper Critical Zone of the Bushveld Complex and the origin of Merensky–type ores[J]. Economic Geology, 1986, 81: 1105–1117. doi: 10.2113/gsecongeo.81.5.1105

      Naldrett A J. From the mantle to the bank: the life of a Ni–Cu–(PGE) sulfide deposit[J]. South African Journal of Geology, 2010, 113: 1–32. doi: 10.2113/gssajg.113.1-1

      Pagé P, Barnes S J, Béard J H, et al. In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: Implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation[J]. Chemical Geology, 2012, 302–303: 3–15.

      Pang Kwannang, Li C S, Zhou M F, et al. Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China[J]. Lithos, 2009, 110: 199–214. doi: 10.1016/j.lithos.2009.01.007

      Pang Kwannang, Zhou M F, Qi L, et al. Flood basalt–related Fe–Ti oxide deposits in the Emeishan large igneous province, SW China[J]. Lithos, 2010, 119: 123–136. doi: 10.1016/j.lithos.2010.06.003

      Park J W, Campbell I H, Eggins S M. Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: evidence from the Ambae volcano, Vanuatu[J]. Geochimica et Cosmochimica Acta, 2012, 78: 28–50. doi: 10.1016/j.gca.2011.11.018

      Peach C L, Mathez E A, Keays R R. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting[J]. Geochim Cosmochim Acta, 1990, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S

      Peach C L, Mathez E A, Keays R R. Experimentally determined sulfide melt-silicate melt partition coefficients for iridium andpalladium[J]. Chemical Geology, 1994, (117): 361-377.

      Qi L, Zhou M F. Platinum–group elemental and Sr–Nd–Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China[J]. Chemical Geology, 2008, 248: 83–103. doi: 10.1016/j.chemgeo.2007.11.004

      Righter K, Campbell A J, Humayun M, et al. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr–bearing spinel, olivine, pyroxene and silicate melts[J]. Geochimica Et Cosmochimica Acta, 2004, 68: 867–880. doi: 10.1016/j.gca.2003.07.005

      Sá J H S, Barnes S J, Prichard H M, et al. The Distribution of Base Metals and Platinum–Group Elements in Magnetititeand Its Host Rocks in the Rio Jacare Intrusion, Northeastern Brazil[J]. Economic Geology, 2005, 100: 333–348.

      Taylor S R, Mclennan S M. The continental crust: its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.

      Vogel D C. The geology and geochemistry of the Agnew Intrusion: implications for the petrogenesis of early Huronian mafic igneous rocks in Central Ontario, Canada[J]. The University of Melbourne, 1996, 163.

      Wang M X, Oliver N, Christina W. The flaw in the crustal ‘zircon archive’: mixed Hf isotope signatures record progressive contamination of late–stage liquid in mafic–ultramafic layered intrusions[J]. Journal of Petrology, 2016, 57: 27–52. doi: 10.1093/petrology/egv072

      Zhang X Q, Zhang H F, Zou H B. Rift–related Neoproterozoic tholeiitic layered mafic intrusions at northern Yangtze Block, South China: Mineral chemistry evidence[J]. Lithos, 2020, 356–357: 105376.

      Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic–ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints[J]. Lithos, 2009, 113: 369–392. doi: 10.1016/j.lithos.2009.04.023

      Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222–223: 13–54.

      Zhao J H, Zhou M F. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China[J]. Lithos, 2009, 107: 152–168. doi: 10.1016/j.lithos.2008.09.017

      Zhong H, Qi L, Hu R Z, et al. Rhenium–osmium isotope and platinum–group elements in the Xinjie layered intrusion, SW China: Implications for source mantle composition, mantle evolution, PGE fractionation and mineralization[J]. Geochimica Et Cosmochimica Acta, 2011, 75: 1621–1641. doi: 10.1016/j.gca.2011.01.009

      Zhong H, Tao Y, Prevec S A, et al. Trace–element and Sr–Nd isotopic geochemistry of the PGE–bearing Xinjie layered intrusion in SW China[J]. Chemical Geology, 2004, 203: 237–252. doi: 10.1016/j.chemgeo.2003.10.008

      Zhou M F, Kennedy A K, Sun M, et al. Neoproterozoic arc–related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia[J]. The Journal of Geology, 2002, 110: 611–618. doi: 10.1086/341762

      Zhou M F, Robinson P T, Lesher C M, et al. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China[J]. Journal of Petrology, 2005, 46: 2253–2280. doi: 10.1093/petrology/egi054

    图(7)  /  表(2)
    计量
    • 文章访问数:  286
    • HTML全文浏览量:  61
    • PDF下载量:  126
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-12
    • 修回日期:  2022-12-28
    • 录用日期:  2023-01-25
    • 网络出版日期:  2023-03-16
    • 刊出日期:  2024-04-19

    目录

      /

      返回文章
      返回