ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

基于3种不同机器学习算法的滑坡易发性评价对比研究

王本栋, 李四全, 许万忠, 杨勇, 李永云

王本栋,李四全,许万忠,等. 基于3种不同机器学习算法的滑坡易发性评价对比研究[J]. 西北地质,2024,57(1):34−43. doi: 10.12401/j.nwg.2023033
引用本文: 王本栋,李四全,许万忠,等. 基于3种不同机器学习算法的滑坡易发性评价对比研究[J]. 西北地质,2024,57(1):34−43. doi: 10.12401/j.nwg.2023033
WANG Bendong,LI Siquan,XU Wanzhong,et al. A Comparative Study of Landslide Susceptibility Evaluation Based on Three Different Machine Learning Algorithms[J]. Northwestern Geology,2024,57(1):34−43. doi: 10.12401/j.nwg.2023033
Citation: WANG Bendong,LI Siquan,XU Wanzhong,et al. A Comparative Study of Landslide Susceptibility Evaluation Based on Three Different Machine Learning Algorithms[J]. Northwestern Geology,2024,57(1):34−43. doi: 10.12401/j.nwg.2023033

基于3种不同机器学习算法的滑坡易发性评价对比研究

详细信息
    作者简介:

    王本栋(1995–),男,硕士研究生,主要从事地质灾害成因分析和治理的研究。E–mail:940001225@qq.com

    通讯作者:

    李四全(1971–),男,正高级工程师,主要从事工程地质与水文地质研究。E–mail:907215864@qq.com

  • 中图分类号: P694

A Comparative Study of Landslide Susceptibility Evaluation Based on Three Different Machine Learning Algorithms

  • 摘要:

    准确的滑坡易发性评价结果是山区滑坡灾害防治的关键,可有效规避潜在滑坡带来的风险。为获得准确、可靠的滑坡预防参考,笔者以云南芒市为研究对象,选取高程、地层岩性、年均降雨量等9项评价因子,通过多重共线性分析,构建研究区滑坡易发性评价指标体系。分别基于支持向量机(SVM)、BP神经网络和随机森林(RF)3种典型机器学习算法进行滑坡易发性评价。利用准确性(ACC)、ROC曲线下面积(AUC)、滑坡比(Sei)及野外实地考察对模型评价结果精度进行对比验证分析。结果显示RF模型的ACC、AUC和极高易发区的SeV值最高,分别为0.867、0.94、9.21;BP神经网络模型次之,其SeV值分别为0.829、0.90、9.14;SVM最低,其SeV值分别为0.794、0.88、6.85。此外,RF算法所得结果还与实地考察情况保持了较高的一致性。实验结果表明与其他两种算法相比,RF算法在芒市区域具有更高的准确性和可靠性,更适合用于该区域的滑坡易发性建模,且利用该模型获得的评价结果,能够为芒市区域的滑坡防治提供理论依据和科学参考。

    Abstract:

    Accurate landslide susceptibility evaluation results are the key to landslide disaster prevention and control in mountainous areas, which can effectively avoid the risk caused by potential landslides. To obtain an accurate and reliable reference for landslide prevention, this paper selects nine evaluation factors, including elevation, stratigraphic lithology, average annual rainfall et al, and constructs a landslide susceptibility evaluation index system in the study area through multiple covariance analysis, taking Mangcheng, Yunnan Province as the research object. Subsequently, three typical machine learning models based on support vector machine (SVM), BP neural network and random forest (RF) were used for landslide susceptibility evaluation. Finally, the accuracy of the model evaluation results was compared and validated by using accuracy (ACC), area under the ROC curve (AUC), landslide ratio (Sei) and field fieldwork. The results showed that the RF model had the highest SeV values of 0.867, 0.94 and 9.21 for ACC, AUC, and very high susceptibility areas, respectively; the BP neural network model had the second highest values of 0.829, 0.90 and 9.14; the SVM had the lowest values of 0.794, 0.88 and 6.85; and the RF model results were more consistent with the field study. The results of experiments show that compared with the other two algorithms, the RF algorithm has higher accuracy and reliability in the Mangshi region and is more suitable for landslide susceptibility modeling in the region, and the evaluation results obtained by using the model can provide a theoretical basis and scientific reference for landslide control in the Mangshi region.

  • 青海东昆仑地区是中国重要的造山带之一(吴树宽等,2023),祁漫塔格成矿带位于该造山带西段(图1a)。近年来,随着该地区众多岩浆热液型多金属矿床(点)的发现,其已逐渐成为中国西部重要的、最具找矿潜力的成矿远景勘查区之一,引起了地质科研者们浓厚的研究兴趣,推动了该地区成矿规律研究工作的不断进行(丰成友等,2011张爱奎,2012高永宝等,2014钟世华等,2017a2017b)。

    图  1  东昆仑造山带地区地质构造简图(a)与祁漫塔格区域地质矿产简图(b)(据丰成友等,2012钟世华等,2017a2017b王新雨等,2021修改)
    Figure  1.  (a) Tectonic sketch map of east Kunlun orogenic beltand geology and (b) mineral deposit distribution in the Qimantage area

    牛苦头多金属矿床位于祁漫塔格成矿带中段野马泉–开木棋河东侧(图1b),前人对牛苦头矿区开展了一系列研究工作,认为牛苦头矿区矽卡岩底部隐伏的花岗闪长岩为成矿岩体(蒋成伍,2013贾建团,2013),其成矿时代与区域大多数铅锌多金属矿床(卡尔却卡、虎头崖、肯德可克、野马泉、尕林格等铁多金属矿床)成矿时代一致,为晚三叠纪。随着牛苦头矿区勘查工作的进展以及研究工作的不断深入,前人逐渐意识到,华力西期(晚泥盆世)可能为矿区主要成矿岩体(李加多等,2019王新雨等,20202021)。然而证据不够充分,尤其是矿石矿物年代学成矿研究工作较为空白。此外,矿区成矿物质来源问题一直没有很好的解决,前人研究仅仅从成矿岩体以及金属中S、Pb的物质来源着手(王新雨等,2021),金属成矿物质来源研究较为匮乏。

    金属矿物Re–Os测年是近年来矽卡岩多金属矿床成矿时代研究较为较为有效的一种测年方法,其中,最为有效的属于辉钼矿Re–Os测年(李超等,2016)。然而,对于辉钼矿含量较低的多金属矿来说,辉钼矿测年具有较大的难度和局限性。而黄铁矿、黄铜矿中Re含量低,并且具有一定的初始Os,其Re–Os等时线年龄不仅能够限定金属矿物成矿时代,而且能够示踪金属矿物成矿物质来源(李超等,2009)。

    笔者拟从成矿岩体锆石U–Pb年代学、矿石矿物Re–Os年代学入手,探讨成岩时代与成矿时代的耦合关系,为矿区铅锌矿床成矿时代提供新的有力证据。尝试采用黄铁矿的同位素初始比值对其成矿物质来源进行示踪,以解决牛苦头多金属矿床的成矿时代以及成矿来源等成矿相关问题,为研究野马泉–牛苦头–四角羊地区矽卡岩型铁锌多金属矿床成矿地质特征、矿床成因以及找矿预测工作提供相关理论依据。

    东昆仑造山带西侧的祁漫塔格成矿带位于青藏高原中北部,成矿条件较为优越(毛景文等,2012Yu et al.,2017刘渭等,2021)(图1a图1b)。成矿带地区出露地层复杂,主要包括以下地层与岩性:新元古界金水口群主要为一套夹片岩、大理岩、片麻岩的混合岩;上奥陶统滩间山群岩组主要为一套夹火山岩组的碎屑岩地层;下石炭统大干沟组与缔敖苏组为一套沉积碳酸盐地层,岩性包括生物碎屑灰岩、大理岩、白云岩、鲕粒状灰岩和砂岩;下—中二叠统打柴沟组为一套灰岩夹炭质条带岩的岩石组合;第四系包括风积、冲积物和亚砂土。该地区构造活动发育较为复杂,构造受昆中、那陵郭勒断裂影响,产状主要呈NWW、NW向,局部近EW向,也常常发育近EW向的褶皱构造。区内岩浆岩被第四系覆盖严重,侵入岩发育强烈,时代分为华力西期和印支期2组,受NWW和N向构造断裂控制明显。

    牛苦头矿区出露地层为上奥陶统滩间山群岩组与第四系(图2)。滩间山群在本矿区表现为一套浅海相沉积地层(碳酸盐岩、碎屑岩),岩性表现为灰岩、大理岩、条带状灰岩、碳质灰岩、粉砂岩、泥质粉砂岩。矿区内断裂分为NWW和NE向,以NWW向为主,为昆北断裂的次级分支断裂,但NE向也同样明显,NE向构造代表主要为牛苦头沟和四角羊沟断裂。矿区内岩浆岩种类复杂,包括辉长闪长岩、石英闪长岩、二长花岗岩、正长花岗岩、似斑状花岗岩以及富石英花岗岩类等,空间穿插关系复杂。

    图  2  牛苦头矿区地质图
    Figure  2.  Geological map of the Niukutou ore district

    矿区M1矿段作为其主要开采地段,其矿体类型主要为层状或不规则脉状矿体,矿石成分主要为磁黄铁矿、闪锌矿、磁铁矿、方铅矿、黄铜矿、黄铁矿,可见少量毒砂与赤铁矿。矿石构造主要呈块状、浸染状、细脉浸染状、条带状以及班杂状。M4矿段矿体产状、矿石结构构造与M1基本类似,但其矿石成分与M1矿段有所区别,矿石中磁铁矿含量较大,其次为磁黄铁矿、闪锌矿、黄铁矿,方铅矿含量较少。

    矿区主要矿体顺层产出,受地层和硅钙面控制明显(图3),局部受导矿构造影响,可切穿地层。脉石矿物与区域上其他矽卡岩矿床有所区别,局部矽卡岩Mn含量较高,与铅锌矿化关系密切。脉石矿物包括(锰)阳起石、(锰)黑柱石、(锰)钙铁辉石、石榴子石、硅辉石、石英、方解石、绿帘石、绿泥石等(图4)。花岗岩体位于矿体与矽卡岩之下,为二长花岗岩–花岗闪长岩组合,蚀变为绿泥石化、钾化及少量辉石化,局部花岗岩中可见星点状闪锌矿化与黄铁矿化。

    图  3  牛苦头M1磁异常区10号地质勘探线剖面图
    Figure  3.  Geological profile of No.10 exploration line n in M1 magnetic anomaly area of Niukutou deposit
    图  4  岩石、矿石手标本图
    a. 块状磁黄铁矿矿石;b. 斑杂状闪锌矿化,产于锰钙辉石矽卡岩中;c. 块状闪锌矿、磁黄铁矿石;d. 磁黄铁矿化石榴子石矽卡岩;e. 闪锌矿化含方解石黑柱石辉石矽卡岩;f. 闪锌矿化锰钙辉石矽卡岩;Q. 石英;Cal. 方解石;Ilv. 黑柱石; Jo. 锰钙辉石;Px. 辉石;Sp. 闪锌矿;Po. 磁黄铁矿;Grt. 石榴子石
    Figure  4.  Specimens of rocks and ores

    研究样品采自M1矿段10线钻孔底部,岩性分别为花岗闪长岩和二长花岗岩(图5a、图5b),取样位置见图3

    图  5  牛苦头矿区花岗岩类手标本及镜下照片
    a. M1矿段钻孔ZK1007底部强蚀变花岗闪长岩手标本;b. M1矿段钻孔ZK1009底部蚀变二长花岗岩发育绢云母化;c. M1矿段钻孔底部强蚀变花岗闪长岩中发育的绢云母化长石(正交偏光);d. M1矿段钻孔底部蚀变二长花岗岩中发育的绢云母化长石与环带状中长石(正交偏光)
    Figure  5.  Specimen and microscope photo of the granites from the Niukutou deposit

    M1矿段钻孔底部花岗闪长岩,经鉴定岩性为中粒钾化黑云母花岗闪长岩(图5a),石英含量约为25%,自形–半自形结构,粒径为0.6~1.5 mm。斜长石,自形结构,含量约为55%,粒径为1~1.5 mm,斜长石表面多发生泥化、绢云母化。钾长石含量约为10%~15%,粒径为0.5~0.8 mm,多为正长石,局部表面发育泥化。黑云母含量约为3%~5%,片状,局部为泥化。花岗闪长岩中普遍发育钾化、硅化、绢云母化,表明M1底部岩体发生较强的热液蚀变(图5c)。

    M1矿段钻孔底部二长花岗岩一般为中细粒结构(图5b),块状构造,其主要由石英(35%)、正长石(35%)、斜长石(25%)和黑云母(5%)组成。斜长石中可发现具有环带结构的中长石。蚀变主要为长石的钾化和绢云母化,同时普遍发育浸染状黄铁矿化(图5d)。

    选取M1矿段10线钻孔ZK1007、ZK1009底部的2件花岗闪长岩(NZC01、NZC13)进行锆石U–Pb定年分析(图3)。Re–Os测年样品则选择M1矿段ZK1004钻孔底部黄铁矿闪锌矿矿石样品6件作为测试对象(图3)。

    花岗岩锆石测年在合肥工业大学矿物原位分析实验室完成,分析仪器为Agilent7900电感耦合等离子质谱仪(美国),与之配套的为美国生产的Analyte气态准分子激光剥蚀系统。激光以He为载气,统一剥蚀半径为30 um。标样采用91500、PLE为外标的锆石进行校正,每测10个样品,用2个91500标样和1个PLE标样进行校正。随时观察仪器的信号,以保证数据的精确有效。数据处理及普通Pb校正采用CP–MS–Da–Ta–Cal(Liu,2010李艳广等,2023)和EXCEL宏程序ComPbCorr#3-17(Andersen,2002),年龄谐和图解使用Isoplot3.0获取(王新雨等,2021)。

    用于黄铁矿 Re–Os 同位素测试的样品采自牛苦头M1矿段ZK1004钻孔底部块状矿石,共 6 件,其中块状矿石中黄铁矿与磁黄铁矿、闪锌矿共生,为同阶段硫化物。将包含黄铁矿的闪锌矿矿石进行粉碎,剔除杂物,保证实验的黄铁矿样品纯度高于99%。

    在中国地质科学院国家测试中心进行了黄铁矿 Re–Os 同位素组成测定。对于黄铁矿含量低的样品,采用逐级剥谱法扣除O同位素的干扰。其中Re同位素质量分馏校正采用的普通Re的185Re/187Re值为0.59738。而Os同位素质量分馏校正采用192Os/188Os值作为内标(杜安道等,2009)。详细测定方法及流程见2009李超等(2016)

    花岗闪长岩和二长花岗岩采样位置见图3,其锆石U–Pb同位素组成见表1。在CL图像下,花岗闪长岩中(NZC01)锆石呈无色透明的长–短柱状(图6)。长约为135~265 μm,宽为45~75 μm。大多数锆石具岩浆震荡环带,局部可见锆石形态残缺不完整,可能为晚阶段热液作用所致。锆石中Th含量为63×10−6~393×10−6,U含量为183×10−6~1085×10−6,Th/U值为0.3~0.56(均大于0.3),属于典型岩浆锆石成因。20个锆石LA–ICP–MS加权平均年龄为(362.2±2.7)Ma(MSWD=3.9,n=20)(图6),均为华力西期晚泥盆纪。

    表  1  牛苦头成矿花岗岩锆石U–Pb数据统计表
    Table  1.  U–Pb isotopic compositions of Niukutou granitoids
    测点号UThTh/U同位素比值年龄(Ma)
    (10−6206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U
    NZC01.110853930.360.057380.00060.425700.00630.053850.000736023653
    NZC01.2225740.330.057580.00060.413790.01060.052150.001336122925
    NZC01.3266810.300.057250.00060.431110.00860.054610.001035923964
    NZC01.4240910.380.060050.00060.445130.01140.053780.001337623625
    NZC01.5201710.350.056150.00060.417800.01020.054030.001335223725
    NZC01.63581730.480.059310.00060.447550.00940.054700.001037124004
    NZC01.7195700.360.059300.00060.441630.01070.054020.001237123725
    NZC01.82701140.420.058560.00060.429620.00870.053270.001136723404
    NZC01.9183630.340.057540.00060.426270.01100.053710.001336123595
    NZC01.10271820.300.057860.00060.432390.00900.054110.001036323764
    NZC01.111981020.520.057830.00060.423050.01070.053120.001336223345
    NZC01.122591190.460.056500.00060.412020.00880.052960.001135423274
    NZC01.133081360.440.058150.00080.421860.01120.052640.001336433135
    NZC01.142841150.410.056960.00070.417950.00970.053370.001235723445
    NZC01.152411020.420.057450.00060.429720.00910.054230.001136023814
    NZC01.16190910.480.057790.00070.427680.01370.053920.001736233686
    NZC01.173171770.560.057960.00070.439760.00980.055010.001136324134
    NZC01.183871950.500.058400.00060.436390.00800.054210.000936623803
    NZC01.193001240.410.057340.00060.416980.00800.052820.000935923214
    NZC01.203321620.490.057550.00060.415500.00790.052340.000936123003
    NZC13.1201800.400.058280.00060.421080.01050.052420.001236543579
    NZC13.22801030.370.056850.00060.412060.00910.052640.001035643508
    NZC13.3185680.370.058790.00070.444500.01290.054760.0014368437311
    NZC13.42081190.570.057960.00060.433360.01140.054190.0013363436610
    NZC13.5228880.390.057210.00060.424240.01170.053940.0014359435910
    NZC13.65651780.320.060000.00070.442180.00840.053550.000837653727
    NZC13.7193660.340.056230.00060.416400.01190.053830.0015353435310
    NZC13.8182850.470.057670.00060.419700.01190.053070.0014361435610
    NZC13.92441200.490.057630.00060.429480.00950.054090.001136143638
    NZC13.10185660.360.059490.00070.434900.01170.052970.0013373436710
    NZC13.11131480.370.056650.00060.419350.01350.053760.0016355435611
    NZC13.12247910.370.057750.00060.417300.00900.052480.001036243548
    NZC13.132511060.420.057730.00060.427490.00900.053710.001036243618
    NZC13.142841070.380.056620.00060.414790.00810.053140.000935543527
    NZC13.15167560.340.058390.00060.431160.01130.053540.0013366436410
    下载: 导出CSV 
    | 显示表格
    图  6  牛苦头矿区成矿花岗闪长岩、二长花岗岩锆石年龄谐和及加权平均年龄图
    Figure  6.  Zircon U–Pb Concordia and weighted average of granitoids in Niukutou ore district

    牛苦头M1矿段二长花岗岩中(NZC013)锆石CL图像晶形较好,呈无色透明短柱状,长约为150~250 μm,宽约为80~100 μm,少数锆石局部出现残缺,可能为晚期岩浆热液所致。锆石Th含量为48×10−6~178×10−6,U含量为131×10−6~565×10−6,Th/U值为0.34~0.57(均大于0.3),为典型岩浆锆石成因(王新雨等,2021)。 测得15个锆石LA–ICP–MS加权平均年龄为(361.8±3.4)Ma(MSWD=2.5,n=15)(图6),均属于华力西期晚泥盆纪。

    黄铁矿Re–Os数据分析结果见表2。矿石样品中黄铁矿与闪锌矿共生关系见图7a。牛苦头铅锌矿床黄铁矿中普Re含量为0.031×10−9~7.887×10−9187Os含量为0.20×10−12~29.96×10−12,普Os含量较低,相对于187Os可忽略不计。黄铁矿187Re/188Os值为61.7~32860,属于低含量、高放射成因硫化物(LLHR),黄铁矿Re–Os等时线年龄为(359.2±6.3)Ma(图7b),个别数据的等时线年龄为(352±15)Ma,初始187OS/188Os值为0.13±0.24(表2)。个别数据的等实线年龄与M4钻孔底部成矿岩体锆石U–Pb年龄一致(353.0±3.6 Ma)(王新雨等,2021)。

    表  2  牛苦头铅锌矿床黄铁矿Re–Os同位素数据统计表
    Table  2.  Re–Os data of pyrite from Niukutou Pb–Zn skarn deposit
    样品号Re (10−9普Os (10−9187Re (10−9187Os(10−9187Re/188Os187Os/188Os模式年龄(Ma)
    测定值不确
    定度
    测定值不确
    定度
    测定值不确
    定度
    测定值不确
    定度
    测定值不确
    定度
    测定值不确
    定度
    测定值不确
    定度
    NKC0737.8870.0580.00120.00004.9570.0370.029960.0002332860381198.01.3361.73.7
    NKC0720.3630.0030.00090.00000.2280.0020.001360.0000119632011.690.02356.03.7
    NZC-1150.8870.0070.00660.00010.5570.0040.003350.00003648.96.73.8800.010
    NKC0740.2140.0020.00280.00000.1350.0010.000790.00001376.24.52.2220.014
    NKC0750.2540.0020.00140.00000.1600.0010.000980.00001852.616.95.1910.078
    NKC0760.0310.0000.00240.00000.0190.0000.000200.0000161.71.40.6110.021  
    下载: 导出CSV 
    | 显示表格
    图  7  闪锌矿与黄铁矿镜下共生的显微照片(a)和牛苦头M1矿段黄铁矿Re–Os同位素等时线图解(b)
    Figure  7.  (a) micrograph of sphalerite intergrowth with pyriteand and (b) Re–Os isotope isochron of pyrite in M1 ore block of Niukutou ore district

    黄铁矿Re–Os同位素定年方法,是解决金属矿床成矿时代问题一种有效的技术手段。牛苦头M1磁异常区铅锌矿与闪锌矿共生的黄铁矿Re–Os加权平均值年龄为(359.2±6.3)Ma,代表了牛苦头铅锌矿床的成矿时代为晚泥盆世。该年龄与矿区M1和M4华力西晚期钻孔底部成矿岩体年龄(363~362 Ma)基本一致,代表了祁漫塔格地区晚泥盆世存在一期重要的矽卡岩型铅锌成矿作用。综上所述,华力西期岩浆作用是祁漫塔格矿区一期重要的岩浆侵入作用,对应于晚泥盆世始特提斯洋后碰撞伸展作用。该期岩浆岩在整个牛苦头矿区普遍都存在,尤其在M3和M5地区。因此,在牛苦头地区M3和M5磁异常区具有寻找华力西期岩浆岩有关的铅锌矿床。

    多数学者认为,中—晚三叠世是祁漫塔格造山带内非常重要的地质演化阶段(丰成友等,2012Yu et al.,2017),是祁漫塔格地区主要的成矿时期。该阶段下,构造环境由挤压变为伸展,有利于岩浆混合作用的发生,并进行分异演化,为矿区内铁锌铜多金属矿化提供了较好的构造条件(高永宝等,2014)。

    然而,也有部分学者对“印支期作为祁漫塔格地区唯一的矽卡岩成矿期”提出质疑,并通过事实和证据,提出该地区多金属成矿与泥盆纪岩浆作用有关 (高永宝等,2014宋忠宝等,2014李加多等,2019)。但未深层次揭露岩体与矿体时空关系以及成矿作用过程。

    测试结果表明,M1矿段钻孔底部成矿花岗闪长岩年龄为(362.2±2.7)~(361.8±3.4)Ma。 与与闪锌矿密切共生黄铁矿Re–Os等时线年龄为(359.2±6.3)Ma,年龄与矿区M1和M4华力西晚期钻孔底部成矿岩体年龄(363~362 Ma)基本一致,代表了祁漫塔格地区晚泥盆世存在一期重要的矽卡岩型铅锌成矿作用。结合前人发表的有关有关牛苦头矿区成矿岩体年龄(365~352 Ma)(李加多等,2019王新雨等,2021),认为由此确定牛苦头铅锌矿床形成于362~352 Ma,属于华力西期晚泥盆世。

    综合以上分析,认为牛苦头矿区M1、M4矿段大规模铅锌成矿作用时代为华力西期晚泥盆世。华力西期岩浆岩在整个牛苦头矿区普遍都存在,尤其在M3和M5地区。因此,在牛苦头地区M3和M5磁异常区具有寻找华力西期岩浆岩有关的铅锌矿床。

    这个事实也进一步说明了祁漫塔格地区存在大规模“华里西期铅锌成矿作用”,为祁漫塔格地区区别于“印支期成矿作用的”的另一期中酸性岩浆岩找矿标志。

    在岩浆演化及成矿流体运移过程中,由于Os亲铁、亲铜的特性,其可作为示踪成矿物质来源的元素,由于牛苦头矿床闪锌矿矿石中包含大量黄铁矿。因此,可以利用黄铁矿的Os同位素特征示踪牛苦头矿区闪锌矿的物质来源(丰成友等,2007李超等,2009)。其中,地幔中187Os/188Os值约为0.12,而上地壳中的187Os/188Os值约为1,牛苦头黄铁矿–闪锌矿矿石的初始(187Os/188Os)i值为0.13±0.24,显示出幔源岩浆参与了成矿。矽卡岩矿床一般由成矿岩体与地层发生交代而形成,地层和成矿岩体可能同时贡献了成矿物质。牛苦头海西期岩浆岩为祁漫塔格地区晚泥盆世后碰撞造山环境下岩石圈减薄过程中壳幔混合作用的产物(莫宣学等,2007高永宝等,2014),牛苦头铅锌多金属矿床成矿物质可能主要来源于壳幔作用的混合。

    东昆仑造山带经历了4次岩浆构造旋回,形成的岩石构造组合基本上对应于4个时代,分别为:元古宙(前寒武纪)、早古生代、晚古生代—早中生代、晚中生代—新生代,其中以晚古生代—早中生代(华力西期—印支期)的岩浆岩较为发育(莫宣学等,2007田龙等,2023)。各构造旋回相关的成矿作用主要集中在晚古生代—早中生代,其中东昆仑晚古生代成矿包括夏日哈木岩浆岩型铜镍矿床、白干湖矽卡岩–云英岩–石英脉型钨锡多金属矿床,矿床形成时代为430~422 Ma,属于志留世。该期成矿作用形成于志留纪碰撞造山后局部拉张环境(Zhong et al.,2018)。进入泥盆世(410~360 Ma),形成一系列花岗闪长岩–石英闪长岩–二长花岗岩类,与区内的矽卡岩型铁铅锌铜多金属成矿密切相关,这些侵入岩以 I 型花岗岩为主。目前,发现该时期矿床较少,近年来该时代矿床也逐渐被重视,其代表矿床包括牛苦头–四角羊铅锌多金属矿床、野马泉M13磁异常区铁锌矿床等(高永宝等,2014王新雨等,2021),形成于区内早古生代—晚古生代早期构造–岩浆旋回的碰撞–后碰撞阶段,由古老陆壳重熔而成,加入部分地幔物质,壳幔岩浆混合作用可能是其大规模集中成矿的主要因素。

    结合上述Re–Os同位素成矿物质来源分析,可以认为牛苦头矽卡岩型铅锌多金属矿床形成于晚泥盆世祁漫塔格洋俯冲于柴达木地块之下后的碰撞–后碰撞阶段,此时背景下,岩石圈减薄、软流圈上涌,强烈的壳幔相互作用诱发了大规模的岩浆活动,这也与牛苦头矿区成矿岩体中含有大量包体的事实相一致(李加多等,2019王新雨等,2021)。中酸性晚泥盆世花岗闪长岩–二长花岗岩侵入到滩间山群发生了相互交代作用,晚泥盆世花岗岩类提供了成矿物质,岩浆与滩间山群大理岩接触带提供了赋矿空间,从而形成了牛苦头矽卡岩型铅锌多金属矿床。

    (1)牛苦头矿区成矿二长花岗岩与花岗闪长岩时代为(362.2±2.7)~(361.8±3.4)Ma。 Re–Os等时线年龄为(359.2±6.3)Ma。成岩与成矿时代耦合,由此确定牛苦头铅锌矿床形成于362~359 Ma。

    (2)根据黄铁矿初始值(187Os/188Os)i分析,可以认为牛苦头铅锌矿床金属成矿物质可能主要来源于壳幔相互作用的混合岩浆。

    (3)结合已有资料,提出牛苦头铅锌矿床形成于碰撞–后碰撞阶段的拉伸背景之下。

    致谢:野外工作得到了青海鸿鑫矿业有限公司技术中心工作人员郭天军、刘明、王燕的大力支持; Re–Os测试技术得到了中国地质科学院国家测试中心李超教授的悉心指导;审稿专家对论文提出了许多宝贵的意见和建议,对以上人员表示最衷心的谢意。

  • 图  1   研究区地理位置及样本分布

    Figure  1.   Geographical location of the study area and distribution of sample

    图  2   评价因子分级

    Figure  2.   Evaluation factor classification

    图  3   研究区滑坡易发性结果(a、b、c分别为SVM、BP、RF模型下的滑坡易发性结果)

    Figure  3.   Landslide susceptibility results in the study area (a, b and c are landslide susceptibility results under SVM, BP and RF models, respectively)

    图  4   测试样本ROC曲线

    Figure  4.   Test sample ROC curve

    图  5   局部滑坡易发性结果图及野外考察照片

    a、b、c. 分别为SVM、BP神经网络、RF算法得到的局部滑坡易发性图;d、e. 分别为野外实地考察图

    Figure  5.   Amplification of local landslide susceptibility results and field study

    表  1   评价因子多重共线性分析结果

    Table  1   Results of multiple covariance analysis of evaluation factors

    评价因子容差VIF评价因子容差VIF
    高程 0.781 1.281 起伏度 0.176 5.693
    坡度 0.159 6.298 地层岩性 0.990 1.010
    坡向 0.979 1.022 年均降雨量 0.981 1.019
    平面曲率 0.708 1.413 土地利用 0.984 1.017
    剖面曲率 0.869 1.151
    下载: 导出CSV

    表  2   测试样本精度评价

    Table  2   Test sample accuracy evaluation

    评价指标评价模型
    SVMBP神经网络RF
    TP(真阳性)130143138
    FP(假阳性)293129
    TN(真阴性)139138156
    FN(假阴性)412716
    ACC(准确度)0.7940.8290.867
    下载: 导出CSV

    表  3   易发性分区合理性检验结果

    Table  3   Rationality test results of susceptibility zoning

    评价
    模型
    易发区分级面
    积(km2
    滑坡
    点(个)
    Mei(%)Dei(%)Sei(%)
    SVM极低(I)1260.044743.518.320.19
    低(II)624.74721.578.320.39
    中(III)449.24915.518.670.56
    高(IV)328.0410911.3319.291.70
    极高(V)234.113138.0855.406.85
    BP神经
    网络
    极低(I)1282.662744.294.780.11
    低(II)619.453121.395.490.26
    中(III)443.814215.327.430.49
    高(IV)330.447311.4112.921.13
    极高(V)219.733927.5969.389.14
    RF极低(I)1262.131743.583.000.07
    低(II)684.862023.653.540.15
    中(III)422.733714.606.550.45
    高(IV)287.12619.9110.801.09
    极高(V)239.254308.2676.119.21
    下载: 导出CSV
  • 陈玉萍, 袁志强, 周博, 等. 遗传算法优化BP网络在滑坡灾害预测中的应用研究[J]. 水文地质工程地质, 2012, 39(1): 114-119

    Chen Yuping, Yuan Zhiqiang, Zhou Bo, et al. Application of back propagation neural networks with optimization of genetic algorithms to landslide hazard prediction[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 114-119. (in Chinese)

    杜国梁, 杨志华, 袁颖, 等. 基于逻辑回归–信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质, 2021, 48(5): 102-111

    Du Guoliang, Yang Zhihua, Yuan Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet trafficcorridor using logistic regression- information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102-111. (in Chinese)

    黄发明, 胡松雁, 闫学涯, 等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报, 2022, 41(2): 79–90

    HUANG Faming, HU Songyan, YAN Xueya, et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology 2022, 41(2): 79–90.

    黄武彪, 丁明涛, 王栋, 等. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价[J]. 地球科学, 2022, 47(6): 2015-2030

    Huang Wubiao, Ding Mingtao, Wang Dong, et al. Evaluation of landslide susceptibility based on layer adaptive weighted convolutional neural network model along Sichuan-tibet traffic torridor[J]. Earth Science, 2022, 47(6): 2015-2030. (in Chinese)

    黄煜, 谢婉丽, 刘琦琦, 等. 基于GIS与MaxEnt模型的滑坡易发性评价—以铜川市中部城区为例[J]. 西北地质, 2023, 56(1): 266-275. doi: 10.12401/j.nwg.2022001

    HUANG Yu, XIE Wanli, LIU Qiqi, et al. Landslide Susceptibility Assessment Based on GIS and MaxEnt Model: Example from Central Districts in Tongchuan City[J]. Northwestern Geology, 2023, 56(1): 266−275. doi: 10.12401/j.nwg.2022001

    贾俊, 毛伊敏, 孟晓捷, 等. 深度随机森林和随机森林算法的滑坡易发性评价对比—以汉中市略阳县为例[J]. 西北地质, 2023, 56(3): 239−249.

    JIA Jun, MAO Yimin, MENG Xiaojie, et al. Comparison of Landslide Susceptibility Evaluation by Deep Random Forest and Random Forest Model: A Case Study of Lueyang County, Hanzhong City[J]. Northwestern Geology, 2023, 56(3): 239−249.

    康孟羽, 朱月琴, 陈晨, 等. 基于多元非线性回归和BP神经网络的滑坡滑动距离预测模型研究[J]. 地质通报, 2022, 41(12): 2281−2289.

    KANG Mengyu, ZHU Yueqin, CHEN Chen, et al. Research on landslide sliding distance prediction model based on multiple nonlinear regression and BP neural network[J]. Geological Bulletin of China, 2022, 41(12): 2281−2289.

    李东, 周可法, 孙卫东, 等. BP神经网络和SVM在矿山环境评价中的应用分析[J]. 干旱区地理, 2015, 38(1): 128-134

    Li Dong, Zhou Kefa, Sun WeiDong, et al. Application of BP neural network and SVM in mine environmental assessment[J]. Arid Land Geography, 2015, 38(1): 128-134. (in Chinese)

    李宇嘉, 陈宁生, 杨溢, 等. 汉源县中海村“8·21”雨后型滑坡特征与成因[J]. 成都理工大学学报(自然科学版), 2022, 49(2): 185−195.

    LI Ningjia, CHENG Ningsheng, YANG Yi, et al. Characteristics and causes of 8·21 rainfall-induced landslide at Zhonghai Village, Hanyuan County, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(2): 185−195.

    林荣福, 刘纪平, 徐胜华, 等. 随机森林赋权信息量的滑坡易发性评价方法[J]. 测绘科学, 2020, 45(12): 131-138

    Lin Rongfu, Liu Jiping, Xu Shenghua, et al. Evaluation method of landslide susceptibility based on random forest weighted information[J]. Science of Surveying and Mapping, 2020, 45(12): 131-138. (in Chinese)

    刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1085-1091

    Liu Jian, Li Shulin, Chen Tao. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085-1091. (in Chinese)

    刘璐瑶, 高惠瑛, 李照. 基于CF与Logistic回归模型耦合的永嘉县滑坡易发性评价[J]. 中国海洋大学学报(自然科学版), 2021, 51(10): 121-129

    Liu Luyao, Gao Huiying, Li Zhao. Landslide susceptibility assessment based on coupling of CF model and logistic regression model in Yongjia county[J]. Periodical of Ocean University of China, 2021, 51(10): 121-129. (in Chinese)

    刘希林, 庙成, 田春山. 区域滑坡和泥石流灾害两种危险性评价方法的比较分析[J]. 防灾减灾工程学报, 2017, 37(1): 71-78

    Liu Xilin, Miao Cheng, Tian Chunshan. Comparative analysis of two methods for assessing hazard of landslide and debris-flow on a regional scale[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(1): 71-78. (in Chinese)

    马啸, 王念秦, 李晓抗, 等. 基于RF-FR模型的滑坡易发性评价——以略阳县为例[J]. 西北地质, 2022, 55(3): 335−344.

    MA Xiao, WANG Nianqin, LI Xiaokang, YAN Dong, LI Jialin. Assessment of Landslide Susceptibility Based on RF-FR Model: Taking Lueyang County as an Example[J]. Northwestern Geology, 2022, 55(3): 335−344.

    孟晓捷, 张新社, 曾庆铭, 等. 基于加权信息量法的黄土滑坡易发性评价——以1∶5万天水市麦积幅为例[J]. 西北地质, 2022, 55(2): 249−259.

    MENG Xiaojie, ZHANG Xinshe, ZENG Qingming, et al. The Susceptibility Evaluation of Loess Landslide Based on Weighted Information Value Method: Taking 1∶50 000 Map of Maiji District of Tianshui City As an Example[J]. Northwestern Geology, 2022, 55(2): 249−259.

    唐睿旋, 晏鄂川, 唐薇. 基于粗糙集和BP神经网络的滑坡易发性评价[J]. 煤田地质与勘探, 2017, 45(6): 129-138

    Tan Ruixuan, Yan Echuan, Tan Wei. Landslide susceptibility evaluation based on rough set and back-propagation neural network[J]. Coal Geology & Exploration, 2017, 45(6): 129-138. (in Chinese)

    孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 55(3): 96−107.

    SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Geo-hazards Research and Investigation in the Loess Regions of Western China[J]. Northwestern Geology, 2022, 55(3): 96−107.

    田媛, 巨能攀, 解明礼, 等. 滑坡编录表达模式对易发性评价结果的影响[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 606−615.

    TIAN Yuan, JU Nengpan, XIE Mingli, et al. Analysis of the impact of landslide cataloguing expression patterns on the evaluation results of landslide susceptibility[J], Journal of Chengdu University of Technology (Science Technology Edition), 2022, 49(5): 606−615.

    王朋伟, 安玉科. 滑坡匀速变形阶段快速诊断方法研究[J]. 西北地质, 2023, 56(5): 197−203.

    WANG Pengwei, AN Yuke. Research on Rapid Diagnosis Method of Landslide’s Uniform Deformation Stage[J]. Northwestern Geology, 2023, 56(5): 197−203.

    王海芝, 王颂, 周剑, 等. 樟木堆积体斜坡动力稳定性与极限承载力评价[J]. 西北地质, 2022, 55(1): 262−273.

    WANG Haizhi, WANG Song, ZHOU Jian, et al. Dynamic Stability Analysis and Ultimate Bearing Capacity Evaluation of Zhangmu Landslide Deposit[J]. Northwestern Geology, 2022, 55(1): 262−273.

    王毅, 方志策, 牛瑞卿, 等. 基于深度学习的滑坡灾害易发性分析[J]. 地球信息科学学报, 2021, 23(12): 2244-2260 doi: 10.12082/dqxxkx.2021.210057

    Wang Yi, Fang Zhice, Niu Ruiqing, et al. Landslide susceptibility analysis based on deep learning[J]. Journal of Geo-information Science, 2021, 23(12): 2244-2260. (in Chinese) doi: 10.12082/dqxxkx.2021.210057

    吴孝情, 赖成光, 陈晓宏, 等. 基于随机森林权重的滑坡危险性评价: 以东江流域为例[J]. 自然灾害学报, 2017, 26(5): 119-129

    Wu Xiaoqing, Lai Chengguang, Chen Xiaohong, et al. A landslide hazard assessment based on random forest weight: a case study in the Dongjiang River Basin[J]. Journal of Natural Disasters, 2017, 26(5): 119-129. (in Chinese)

    杨平芬, 李艳美, 杨保住. 云南省芒市土壤肥力现状及变化趋势[J]. 云南农业科技, 2014, (5): 4-7 doi: 10.3969/j.issn.1000-0488.2014.05.001

    Yang Pingfen, Li Yanmei, Yang Baozhu. Status and trends of soil fertility in Mangshi, Yunnan province[J]. Yunnan Agricultural Science and Technology, 2014, (5): 4-7. (in Chinese) doi: 10.3969/j.issn.1000-0488.2014.05.001

    张林梵, 王佳运, 张茂省, 等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质, 2022, 55(2): 260-270

    Zhang Linfan, Wang Jiayun, Zhang Maosheng, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology, 2022, 55(2): 260-270. (in Chinese)

    郑迎凯, 陈建国, 王成彬, 等. 确定性系数与随机森林模型在云南芒市滑坡易发性评价中的应用[J]. 地质科技通报, 2020, 39(6): 131-144

    Zheng Yingkai, Chen Jianguo, Wang Chengbin, et al. Application of certainty factor and random forests model in landslide susceptibility evaluation in Mangshi city[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 131-144. (in Chinese)

    周定义, 左小清, 喜文飞, 等. 联合SBAS-InSAR和PSO-BP算法的高山峡谷区地质灾害危险性评价[J]. 农业工程学报, 2021, 37(23): 108-116 doi: 10.11975/j.issn.1002-6819.2021.23.013

    Zhou Dingyi, Zuo Xiaoqing, Xi Wenfei, et al. Combined SBAS-InSAR and PSO-BP algorithm for evaluating the risk of geological disasters in alpine valley regions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23): 108-116. (in Chinese) doi: 10.11975/j.issn.1002-6819.2021.23.013

    周宇, 常鸣, 孙文静, 等. 基于改进证据权重法的北海道地震同震滑坡易发性评价[J]. 地理与地理信息科学, 2022, 38(1): 138-144

    Zhou Yu, Chang Ming, Sun Wenjing, et al. Susceptibility evaluation of Hokkaido earthquake coseismic landslides based on improved weights of evidence method[J]. Geography and Geo-Information Science, 2022, 38(1): 138-144. (in Chinese)

    Adnan Ozdemir, Tolga Altural. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey[J]. Journal of Asian Earth Sciences, 2013, 64: 180-197. doi: 10.1016/j.jseaes.2012.12.014

    L Ayalew, H Yamagishi. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan[J]. Geomorphology, 2005, 65(1): 15-31.

    Binh Thai Pham, Biswajeet Pradhan, Dieu Tien Bui, et al. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India)[J]. Environmental Modelling & Software, 2016, 84: 240-250.

    Wei Chen, Hamid Reza Pourghasemi, Mahdi Panahi, et al. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques[J]. Geomorphology, 2017, 297: 69-85. doi: 10.1016/j.geomorph.2017.09.007

    FC Dai, CF Lee, YY Ngai. Landslide risk assessment and management: an overview[J]. Engineering Geology, 2002, 64(1): 65-87. doi: 10.1016/S0013-7952(01)00093-X

    Francisco Gutiérrez, Rogelio Linares, Carles Roqué, et al. Large landslides associated with a diapiric fold in Canelles Reservoir (Spanish Pyrenees): Detailed geological geomorphological mapping, trenching and electrical resistivity imaging[J]. Geomorphology, 2015, 241: 224-242. doi: 10.1016/j.geomorph.2015.04.016

    Harlow L L. The Essence of multivariate thinking: Basic themes and methods[M]. London: Lawrence ErlbaumAssociates, 2005: 199-207.

    Haydar Y. Hussin, Veronica Zumpano, Paola Reichenbach, et al. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model[J]. Geomorphology, 2016, 253: 508-523. doi: 10.1016/j.geomorph.2015.10.030

    Rumelhart d Hinton-G-Williams-R. . Learning representations by back-propagatingerrors[J]. Nature, 1986, 323: 533-536. doi: 10.1038/323533a0

    Faming Huang, Zhongshan Cao, Jianfei Guo, et al. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping[J]. Catena, 2020, 191: 104580. doi: 10.1016/j.catena.2020.104580

    Guan-Wei Lin, Hongey Chen, Tsun-Ying Shih, et al. Various links between landslide debris and sediment flux during earthquake and rainstorm events[J]. Journal of Asian Earth Sciences, 2012, 54-55: 41-48. doi: 10.1016/j.jseaes.2012.03.012

    Markus Meinhardt, Manfred Fink, Hannes Tuenschel. Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: Comparison of a new method to calculate weighting factors by means of bivariate statistics[J]. Geomorphology, 2015, 234: 80-97. doi: 10.1016/j.geomorph.2014.12.042

    Pham, BT, Shirzadi, et al. A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India[J]. Int J Sediment Res, 2018, 2018, 33(2): 157-170.

    B. Pradhan. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches[J]. Journal of the Indian Society of Remote Sensing, 2010, 38(2): 301-320. doi: 10.1007/s12524-010-0020-z

    Ryuta Tamura, Ken Kobayashi, Yuichi Takano, et al. Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor[J]. Journal of Global Optimization, 2019, 73(2): 431-446. doi: 10.1007/s10898-018-0713-3

    Shen Chaoyong, Feng Zhongke, Xie Chou, et al. Refinement of Landslide Susceptibility Map Using Persistent Scatterer Interferometry in Areas of Intense Mining Activities in the Karst Region of Southwest China[J]. Remote Sensing, 2019, 11(23): 2821-2843. doi: 10.3390/rs11232821

    Vijendra Kumar Pandey, Kaushal Kumar Sharma, Hamid Reza Pourghasemi, et al. Sedimentological characteristics and application of machine learning techniques for landslide susceptibility modelling along the highway corridor Nahan to Rajgarh (Himachal Pradesh), India[J]. Catena, 2019, 182: 104150. doi: 10.1016/j.catena.2019.104150

    Chao Zhou, Kunlong Yin, Ying Cao, et al. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China[J]. Engineering Geology, 2016, 204: 108-120. doi: 10.1016/j.enggeo.2016.02.009

    Zhifu Zhu, Shu Gan, Xiping Yuan, et al. Landslide Susceptibility Mapping with Integrated SBAS-InSAR Technique: A Case Study of Dongchuan District, Yunnan (China)[J]. Sensors, 2022, 22(15): 5587. doi: 10.3390/s22155587

  • 期刊类型引用(5)

    1. 何佳乐,唐卫东,刘天航,高永宝,魏立勇,范堡程,于锴. 龙首山构造带罗城花岗闪长岩地质年代学、岩石成因和构造背景研究. 西北地质. 2025(01): 52-67 . 本站查看
    2. 王利,梁天意. 内蒙古东部钓鱼台地区火山岩年代学、地球化学特征及地质意义. 西北地质. 2025(01): 68-80 . 本站查看
    3. 向浩予,刘松,康波,陈昌军,邓伟,邓修林,陈浩如. 班公湖-怒江成矿带西段白板地北部晚侏罗世花岗闪长岩锆石U-Pb年龄、微量元素组成及地质意义. 西北地质. 2025(01): 43-51 . 本站查看
    4. 宋彦博,王继春,袁硕浦,王建平,翟德高,柳振江,许展,王东星,邱广东,杨永亮. 内蒙古下陶勒盖铁铜矿床成矿岩体地球化学特征及其成岩成矿启示. 西北地质. 2024(02): 90-106 . 本站查看
    5. 程会,程旭,王新雨. 青海省祁漫塔格牛苦头铅锌矿床氧逸度特征与铅锌成矿作用关系研究. 地质与勘探. 2024(05): 863-881 . 百度学术

    其他类型引用(0)

图(5)  /  表(3)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  63
  • PDF下载量:  65
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-11-02
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2024-02-19

目录

/

返回文章
返回