ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    祁连山–柴北缘地区岩浆活动的时空分布、成因演变及构造岩浆演化

    李平, 高晓峰, 吕鹏瑞, 朱小辉, 陈隽璐

    李平, 高晓峰, 吕鹏瑞, 等. 祁连山–柴北缘地区岩浆活动的时空分布、成因演变及构造岩浆演化[J]. 西北地质, 2023, 56(4): 283-317. DOI: 10.12401/j.nwg.2023034
    引用本文: 李平, 高晓峰, 吕鹏瑞, 等. 祁连山–柴北缘地区岩浆活动的时空分布、成因演变及构造岩浆演化[J]. 西北地质, 2023, 56(4): 283-317. DOI: 10.12401/j.nwg.2023034
    LI Ping, GAO Xiaofeng, LÜ Pengrui, et al. Spatial–Temporal Distribution, Petrogenetic Evolution and Tectono–Magmatic Evolution in Qilian Mountains and Northern Margin of Qaidam[J]. Northwestern Geology, 2023, 56(4): 283-317. DOI: 10.12401/j.nwg.2023034
    Citation: LI Ping, GAO Xiaofeng, LÜ Pengrui, et al. Spatial–Temporal Distribution, Petrogenetic Evolution and Tectono–Magmatic Evolution in Qilian Mountains and Northern Margin of Qaidam[J]. Northwestern Geology, 2023, 56(4): 283-317. DOI: 10.12401/j.nwg.2023034

    祁连山–柴北缘地区岩浆活动的时空分布、成因演变及构造岩浆演化

    基金项目: 中国地质调查局项目(DD20230005、DD20230032、12120114020501、DD20221691、DD30230028),陕西省自然科学基础研究计划(2023-JC-YB-268、2023-JC-ZD-15、2022JM-149)和国家自然科学基金( 41502061)联合资助
    详细信息
      作者简介:

      李平(1983−),男,高级工程师,长期从事岩浆岩石学研究和区域地质调查工作。E–mail:gogogis@qq.com

      通讯作者:

      陈隽璐(1964–),男,研究员,主要从事大地构造研究工作。E–mail:chjl0116@163.com

    • 中图分类号: P588.1

    Spatial–Temporal Distribution, Petrogenetic Evolution and Tectono–Magmatic Evolution in Qilian Mountains and Northern Margin of Qaidam

    • 摘要:

      祁连山及邻区广泛出露有形成于不同时代、具有复杂成因类型的侵入岩类,它们记录了祁连山、柴北缘和宗务隆构造带多阶段、多期次的构造岩浆事件。根据侵入岩的空间展布情况、年代学时空格架和岩石成因类型,祁连山–柴北缘地区的侵入岩浆活动主要可分为3个阶段:前寒武纪(2.47 Ga~561 Ma)、早古生代—泥盆纪(517~360 Ma)、中晚二叠世—三叠纪(271~210 Ma)。①前寒武纪花岗岩(2470~561 Ma)的形成记录了区内古老大陆的聚合、离散过程及北祁连洋的开启。②自前寒武纪末期洋盆打开以来,祁连山和柴北缘地区在517~359 Ma形成有大量的侵入岩类,祁连山、柴北缘和宗务隆地区自中泥盆世以来开始明显的显示出相对独立的构造–岩浆演化过程。其中,自517 Ma以后,祁连山地区形成有俯冲成因地球化学特征的花岗岩、埃达克质岩石和碱性花岗类,与区内同期火山岩一同构成弧盆系的火山–侵入岩组合;中南祁连在奥陶纪(452~444 Ma)和早志留世初(431 Ma)广泛形成的强过铝质S型碰撞成因花岗岩与晚奥陶世出现的磨拉石沉积建造,表明了祁连山碰撞造山事件发生于晚奥陶世—早泥盆世(452~431 Ma)阶段;柴北缘地区可能于463 Ma左右已经开始进入碰撞–后碰撞造山阶段,略早于祁连山地区。440~425 Ma阶段,大量高Mg中性侵入岩和具有正εNd(t)、εHf(t)值同位素特征的埃达克质岩类,与430~420 Ma阶段的A型花岗岩,共同代表了中–南祁连后碰撞造山伸展作用。至泥盆纪,祁连山和柴北缘地区岩浆作用显示相对独立的构造演化进程。祁连地区该阶段侵入岩浆活动开始急剧减弱,北祁连少量形成于409~402 Ma阶段的A型花岗岩、中南祁连386 Ma的辉绿岩岩墙和老君山组山间磨拉石的出现,为祁连山在中泥盆世开始由后碰撞造山转为陆内伸展作用的地质记录;柴北缘地区在402~367 Ma折返及后续造山过程中发育有高Sr、低Y型花岗岩,且几乎同期形成有少量板块拆离成因的A型花岗岩(413~391 Ma)。晚泥盆世牦牛山组陆相砾岩–裂谷系火山岩建造,及早—中泥盆世至晚二叠世宗务隆山南缘–隆务峡、兴海–赛什塘–苦海等地断续出露的镁铁、超镁铁质岩石,可能与相对广泛的陆内裂解事件及宗务隆洋的形成、演化有关。③中晚二叠世—三叠纪(271~210 Ma),祁连山全区花岗岩浆活动仍较为微弱,但宗务隆构造带在中生代构成一期显著而特有的岩浆活动期。晚二叠世—早三叠世花岗岩形成于宗务隆洋向南的俯冲环境,240~220 Ma阶段的花岗岩与西秦岭地区碰撞–后碰撞成因花岗岩显示有相似的地球化学特征。至215 Ma,宗务隆地区A型花岗岩的发现标志了宗务隆构造带及邻区已全部进入了陆内造山阶段,整个秦–祁整个地区主造山期已经结束。三叠纪以后(<201 Ma),祁连山和柴北缘地区几乎无侵入岩浆活动。

      Abstract:

      Types of intrusions with different formation ages are widely exposed in Qilian Mountains and its adjacent areas, which record multi–stage tectono–magmatic events in Qilian Mountains, Northern Margin of Qaidam and Zongwulong tectonic belt. According to the spatial distribution, chronological framework and petrogenetic types, the intrusive magmatism in Qilian–Northern Margin of Qaidam region can be divided into three stages: Precambrian (2470~561 Ma), Early Paleozoic to Devonian (517~360 Ma), and Middle–Late Permian to Triassic (271~210 Ma). ① The Precambrian granites (2470 Ma~561 Ma) recorded the process of convergence and dispersion of ancient continents and the opening of the North Qilian Ocean. ② Since the opening of the Sinian ocean basin, a large number of intrusions have been formed between 517 and 359 Ma in Qilian Mountains and the Northern Margin of Qaidam. Since the Middle Devonian, the Qilian Mountains, the Northern Margin of Qaidam and the Zongwulong region have began to shown relatively independent tectonic–magmatic evolution process. Since 517 Ma, granitoids with geochemical characteristics of slab subduction, adakitic rocks and alkaline granites have been formed in Qilian Mountains, together with the volcanic rocks formed in the same period can constitute a volcanic–intrusive rock association of the arc–basin system. The strongly peraluminous S–type collision–related granites widely formed in the Ordovician (452~444 Ma) and Early Silurian (431 Ma) in Central and Southern Qilian, and the molasse sedimentary formation occurred in the Late Ordovician, indicate that the Qilian collision orogenic event occurred during the Late Ordovician and Early Devonian (452~431 Ma). In addition, the Northern Margin of Qaidam may have entered the collision–post–collision orogenic stage at ca. 463 Ma, slightly earlier than that of Qilian Mountains. In 440~425 Ma stage, a large number of high Mg neutral intrusive rocks, adakitic rocks with positive εNd(t) and εHf(t) values and the A-type granites formed during 430 Ma and 420 Ma, represent the post-collision orogenic extension of Central and Southern Qilian. To the Devonian, Qilian Mountains and the Northern Margin of the Qaidam Basin showed some differences for tectonic and magmatic evolution and have relatively independent evolution processes. The intrusive magmatism began to weaken sharply in Qilian Mountains. The occurrence of a small amount of A–type granite formed at 409~402 Ma in North Qilian, diabase dikes at 385.9Ma in Central and Southern Qilian and molasses in Laojunshan Formation is a geological record of Qilian Mountains from post–collision to intra–continental extension in the Middle Devonian. In Northern Margin of Qaidam, high Sr and low Y–type granites were developed during 402~367 Ma, and a small amount of A–type granite (413~391 Ma) was formed by slab broken–off almost at the same time. In addition, the continental conglomerate and rift–related volcanic rocks in Late Devonian Maoniushan Formation, and the ultramafic–mafic rocks intermittently exposed at southern Zongwulong–Longwu Gorge, Xinghai–Saishitang–Kuhai during the Early–Middle Devonian and the Late Permian may be related to the intracontinental extension and the evolution of Zongwulong Ocean. ③ From the Middle and Late Permian to Triassic (271~210 Ma), the granitic magma in Qilian Mountains is still weak. However, the Zongwulong belt formed a distinct and unique magmatic activity period in the Mesozoic. The Late Permian–Early Triassic granite was formed in the southward subduction of the Zongwulong Ocean. The geochemical futures of granites formed at ca. 240~220 Ma is similat to that of the collision or post–collision granite in Westeren Qinling. By 215 Ma, the discovery of A–type granite in Zongwulong belt marked them and its adjacent areas had all entered the intra–continental stage, and the main orogenic stage of the whole Qinling–Qilian region had ended. After the Triassic (<201 Ma), the magmatic activity in Qilian mountains and the northern margin of Qaidam was weakly.

    • 祁连山位于中国中央造山链的中部,其北部以祁连山北缘断裂与河西走廊盆地为界,并通过阿拉善地块与古亚洲洋构造域接壤;南部以柴达木盆地北缘断裂与柴达木盆地为界,西北部被阿尔金断裂截切,东部与秦岭造山带相衔接;在地质构造上位于华北克拉通、华南陆块和塔里木克拉通之间的中心区域,是中国中央造山带或秦祁昆造山系的重要组成部分(冯益民等,1996徐学义等,2008a2008bSong et al.,2013夏林圻等,2016陈宣华等,2019)。 祁连山–柴北缘地区分布有大量不同时期、不同成因类型的花岗岩类,自北向南主要分布在北祁连构造带、中祁连构造带、南祁连构造带、宗务隆–甘家–楼房沟构造带(简称为“宗务隆构造带”)和柴北缘构造带等地。这些花岗岩的形成时代和构造岩浆成因及其形成机制,对于探讨祁连山、柴北缘和宗务隆地区的造山过程具有十分重要的地质意义。

      祁连山位于青藏高原东北部,呈北西西向展布,其南、北、东分别与柴达木地块、阿拉善地块、华北陆块相邻,北西方向则被阿尔金左行走滑断裂错断,其内部发育多个地块和缝合带, 是一条经历有长期复杂演化历史的复合型造山带(许志琴等,2006夏林圻等,2016)。中国西北地区以显著的逆冲推覆构造断裂系的发育为特征,断裂构造体系错综复杂 (图1)。祁连造山带及其盆山结合带以发育显著的前新生代和新生代逆冲断裂系为特征,最主要的断裂系统包括托莱南山–柴北缘、中祁连和北祁连等逆冲断层系,以及走滑断裂系统等(陈宣华等,2019)。新生代陆内造山作用强烈,逆冲断裂系统使得蛇绿混杂岩带在造山带的不同部位出现。

      图  1  祁连山–柴北缘地区侵入岩地质简图(据徐学义等,2019王永和等,2019
      Figure  1.  Geological map of the intrusions in Qinlian mountains and northern margin of Qaidam

      祁连山地区已发现的蛇绿岩多沿这些区域性断裂、逆冲推覆构造出现,其中九个泉–老虎山蛇绿混杂岩带、熬油沟–玉石沟–永登蛇绿混杂岩带、大道尔吉–拉脊山–永靖蛇绿混杂岩带记录了祁连山地区新元古代至早古生代大洋活动和深俯冲事件(图1)(史仁灯等,2004相振群等,2007曾建元等,2007Zhang et al.,2008夏小洪等,2010孟繁聪等,2010Wu et al.,2011Song et al.,2014Fu et al.,2018宋述光等,2019)。柴达木北缘地区的宗务隆构造带以一期显著的三叠纪侵入岩浆活动为特征,此与其东侧的西秦岭地区相类似。宗务隆构造带的南侧存有一条古生代的高压–超高压变质带,已有的同位素年代学研究显示区内高压–超高压变质岩石的变质时代属于晚奥陶世—早中志留世 (Chen et al.,2009Zhang et al.,2009宋述光等,2011)。根据蛇绿岩、高压–超高压变质系的时空分布和区域地质特征,笔者选择由北祁连、中祁连和南祁连构造带及宗务隆构造带和柴北缘构造带等构成的复杂地质区带为研究区(图1)(王永和等,2019)。

      整个区域的火山岩浆活动反映出,新元古代中—晚期至早古生代构成有一个完整的火山岩浆旋回。祁连山构造演化从Rodinia超大陆裂谷化和裂解,经早古生代大洋的打开和扩张、大洋板片俯冲、弧后拉伸及洋盆闭合,直至弧–陆碰撞和陆–陆碰撞;火山岩浆也逐渐从大陆裂谷和大陆溢流玄武质转变为MORB型、岛弧和弧后盆地型,直至碰撞后、裂谷岩浆喷发(夏林圻等,2016)。柴北缘古生代岩浆活动与祁连山地区表现出相似的岩浆活动特征,但构造动力学机制又存有差异。此外,宗务隆–甘家–楼房沟一带在晚古生代—中生代显示区域上相对独立的构造岩浆演化过程(郭安林等,2009)。整体上看,祁连山至柴北缘地区在区域结晶基底形成的基础上,伴随着不同阶段板块构造活动的启动、洋盆演化和造山事件,形成有大量具有复杂成因类型的中酸性侵入岩类(曾建元等,2006陈能松等,2007a雍拥等,2008吴才来等,2010秦海鹏,2012Tung et al.,2013朱小辉等,20152022张国栋,2016Wang et al.,2016Wu et al.,2019徐学义等,2019)(图1)。新近编制的系列地质图件将祁连山–柴北缘–西秦岭一带的构造–岩浆作用划分为吕梁期—四堡期、四堡期晚期—晋宁期、加里东期—华力西期和华力西期—印支期4个阶段(徐学义等,2019),这些中元古代—中生代广泛发育的花岗岩类记录了祁连山及邻区大陆地壳早期的形成、大陆岩石圈的伸展、裂解和洋壳岩石圈俯冲消减过程中的各种地质信息(Wu et al.,2019徐学义等,2019朱小辉等,2022)。

      北祁连构造带北邻阿拉善地块、南邻中祁连地块,东、西两端分别以宝鸡–青铜峡断裂和阿尔金断裂为界,该带主要由一系列的弧盆系地体构成(冯益民等,2021)。北祁连地区花岗岩浆活动主要发生在早寒武世—早泥盆世阶段(512~359.7 Ma),并在中元古代、新元古代和早三叠世有微弱的岩浆活动(图2)。北祁连东段的长宁驿地区出露有形成于1.76 Ga的黑云母花岗质片麻岩(王银川等,2012),在吊达坂、雷公山和牛心山等地也发育有形成于776~736 Ma的新元古代花岗质片麻岩–片麻状花岗岩等岩石组合(曾建元等,2006李猛等,2015)。已有工作表明,北祁连地区保存有完整的早古生代沟–弧–盆体系(夏林圻等,2003),这些早古生代花岗岩主体可由南、北2带构成,其中南带的侵入岩类基本侵入于古元古代北大河岩群或奥陶纪火山–沉积岩系之中,属于470~450 Ma形成的英云闪长岩–花岗闪长岩–二长花岗岩组合;北带则主要以黑云母花岗岩为主,多被认为是碰撞型花岗岩(吴才来等,20042010秦海鹏等,2012)。北祁连地区有部分辉长岩、辉绿岩与蛇绿岩套相伴出露,包括新元古代末期的玉石沟蛇绿及早古生代的熬油沟蛇绿、九个泉蛇绿岩、东草河蛇绿岩、柏木峡–门岗蛇绿岩和大岔达坂蛇绿岩中的基性侵入岩(史仁灯等,2004夏小洪等,2010王国强等,2018刘建栋等,2022)。

      图  2  祁连山–柴北缘地区不同构造单元侵入岩年龄分布特征图
      a.北祁连地区;b.中祁连地区;c.南祁连地区;d.宗务隆地区;e.柴北缘地区
      Figure  2.  Temporal distribution of the intrusions from different tectonic units in Qilian mountains and northern margin of Qaidam

      中祁连构造带夹持与北祁连和南祁连构造带之间,西以阿尔金断裂带为界,东南端以西秦岭北缘断裂为界并与西秦岭地区相连接。该带有新元古界变质火山–沉积岩组合、早古生代陆缘弧或弧间洋盆及陆表海沉积建造等构成(冯益民等,2021)。在中—新元古代(1192~756 Ma),马衔山和青海湖东北地区有一定数量片麻状花岗岩形成(王洪亮等,2007雍拥等,2008)。早古生代以后侵入岩较为发育,尤其是奥陶纪—志留纪(470.9~420.2 Ma)岩体广泛出露。早古生代花岗岩在中祁连西段的野马南山一带多为规模较大的岩基集中出露,主要为一套二长花岗岩–花岗闪长岩(毛景文等,2000苏建平等,2004雍拥等,2008秦海鹏等,2012);而中祁连东段花岗岩多为出露面积较小的岩枝、岩株(陈隽璐等,2008Yang et al.,2016Li et al.,2017)。早泥盆世侵入岩少量出露,代表性岩体有三个洼溏花岗岩(416.7 Ma,罗志文等,2015)和肃北闪长岩(415 Ma)(李建锋等,2010)。此外,中祁连西段的苏里地区、东段陇山和红土堡地区分别保存有新元古代中期、早志留世初和中泥盆世基性侵入岩墙群(何世平等,2007陈隽璐等,2008张金明等,2020)。

      南祁连构造带北邻中祁连构造带、南邻宗务隆构造带和西秦岭地区,西以阿尔金断裂为界、东至兰州以南洮河一线,由南祁连前陆盆地–陆表海盆地和化隆变质基底–结晶基底组成。南祁连中酸性岩体形成时代大多为479.7~428.6 Ma(图2),并主要在青海湖周缘及其以西的地区以岩基形大规模出露。代表性岩体包括小哈勒腾河、土尔根达坂、柴达木山北东段、阿日郭勒北和刚察等地区的花岗岩类(师江朋等,2015张国栋等,2016李五福等,2020),及南祁连化隆等地的奥陶纪花岗岩–二长花岗岩组合(郭周平等,2015崔加伟等,2016)。晚二叠世—早中三叠世侵入岩数量较少,在刚察和南祁连南缘零星出露(谢其锋等,2014胡万龙等,2016)。此外,南祁连拉脊山地区、化隆等地区存有少量辉长岩,分别形成于491 Ma和440 Ma(张照伟等,2012a2015付长垒等,2014)。

      宗务隆构造带夹持于宗务隆山–青海南山断裂和宗务隆山南缘断裂之间,经夏河甘家,东延至留坝楼房沟一带(王永和等,2019)。此构造带内中泥盆世牦牛山组出露有陆相砾岩及裂谷系火山,并断续出露有晚泥盆世—中晚二叠世的镁铁–超镁铁岩块体(王秉璋等,2000张智勇等,2004张克信等,2007郭安林等,2009),晚二叠世—三叠纪形成有大量的的中酸性侵入岩(Wu et al.,2019)(图2)。全吉地块则为宗务隆南缘断裂和古生代柴北缘构造带之间呈北西西相展布的前寒武纪地质体,由一系列的结晶基性和新元古代弧岩浆物质构成。近年来,部分工作表明其在晚志留世—早泥盆世大陆深俯冲过程中,通过俯冲剥蚀作用卷入至俯冲带并发生有超高压变质作用(张建新等,2015)。柴北缘构造带含有新元古代—奥陶纪的沙柳河、绿梁山蛇绿岩(张贵宾等, 2005朱小辉等,20142015),早古生代高压–超高压变质体(宋述光等,20112015)以及一定数量的俯冲–后碰撞造山成因的侵入岩类组成(吴才来等,2007,20082014董增产等,2014钱兵等,2017庄玉军等,2020岳悦等,2021)。

      依据已获取的祁连山–柴北缘地区侵入岩的形成年龄(图3),建立了研究区的侵入岩浆活动期次,可划分为前寒武纪、早古生代—泥盆纪和中晚二叠世—三叠纪3个岩浆活动期。

      图  3  祁连山–柴北缘地区中酸性和基性侵入岩年代学统计图
      a.中酸性侵入岩;b.基性侵入岩
      Figure  3.  Chronological map of intermediate–acid and basic intrusive rocks in Qilian mountains and northern margin of Qaidam

      整个祁连山地区在古生代之前形成的花岗岩和基性侵入岩数量相对古生代明显较少(图2图3)。祁连山–柴北缘地区最古老的变质侵入体为全吉地块的莫河片麻岩,其原岩主要为英云闪长岩,形成年龄为(2470±19)Ma(李晓彦等,2007)。北祁连东段的长宁驿岩体和柴北缘地区的鹰峰岩体也分别获得1.76 Ga和1.78~1.73 Ga的U–Pb年龄值(Xiao et al.,2004王银川等,2012Wang et al.,2015余吉远等,2021),同期在绿梁山地区存有形成于~1.8 Ga的辉绿岩墙(Liao et al.,2014)。此后在中元古代末期,中祁连和柴北缘等地有少量侵入岩出露,代表性岩体为中祁连东段形成于1 192 Ma的马衔山岩体(王洪亮等,2007),其内部发育大量表壳岩捕掳体且普遍经历有强烈的变形和变质作用改造。

      新元古代花岗岩在祁连山和柴北缘地区多呈片麻状花岗岩产出,形成时代为952~561 Ma(林慈銮等,2006曾建元等,2006董国安等,2007雍拥等,2008Tung et al.,2013付长垒等,2018)。新元古代早中期的侵入岩主要分布在北祁连、中祁连和柴北缘地区,如中祁连响河尔、五间房、五峰村等地形成于887~846 Ma的碰撞成因花岗岩(雍拥等,2008);新元古代晚期的侵入岩在北祁连吊达坂、雷公山和牛心山及南祁连拉脊山等地有部分出露(曾建元等,2006Tung et al.,2013李猛等,2015付长垒等,2018)。北祁连柏木峡(674 Ma)、柴北缘滩间山(837 Ma)等地区也保存有新元古代基性侵入岩(朱小辉等,2015宋泰忠等,2016)。

      早古生代至泥盆纪为祁连山及邻区最为重要的花岗岩浆活动期次,岩浆活动持续时间长且作用范围广泛(图3),为祁连山及邻区洋–陆演化过程的岩浆活动记录。

      寒武纪花岗岩浆活动(517~490.5 Ma)主要发生在北祁连和中祁连,北祁连地区的代表性岩体包括柯柯里斜长花岗岩(512.4 Ma)、石英闪长岩(500.7 Ma)、下古城石英闪长岩(505.4 Ma)、热水花岗闪长岩(510 Ma)、油葫芦正长花岗岩(498 Ma)和川刺沟碱性花岗岩(501 Ma)等(吴才来等,2010秦海鹏等,2014a王建等,2018Fu et al.,2020Pan et al.,2020)。中祁连地区的代表性岩体有乌尔格拉特花岗闪长岩(490.5 Ma)和乐都娘娘山石英闪长岩(500.8 Ma)等(秦海鹏等,2012黄增保等,2014)。北祁连寒武纪基性侵入岩相对发育,且多与蛇绿岩的形成密切关联,如北祁连大岔达坂、熬油沟、东草河和九个泉等蛇绿岩套中存有形成于505~449 Ma的辉长岩,中–南祁连拉脊山地区也有形成于491 Ma的辉长岩(付长垒等,2014)。柴北缘地区在开屏沟、锡铁山、绿梁山等地存有少量寒武纪辉长、辉绿岩(袁桂邦等,2002朱小辉等,2015廖宇斌等,2020)。

      奥陶纪侵入岩浆活动(484~443.9 Ma)在祁连山地区较为广泛,其中:①北祁连构造带的奥陶纪花岗岩类在牛心山、酥油沟、野牛滩、乌鞘岭、小柳沟、西格拉、民乐窑沟等地出露,形成时代为476.7~449 Ma(吴才来等,2006秦海鹏等,20122014b赵辛敏等,2014白赟等,2017Pan et al.,2020);偏中性的闪长岩玢岩–闪长岩组合则在车路沟、西岔沟和大道尔吉地区出露,形成时代为471~476 Ma(Wang et al.,2017樊新祥等,2020Pan et al.,2020)。②中祁连奥陶纪中酸性岩体由大红泉、石板墩、董家庄、新店和永靖等地区的等花岗岩–花岗闪长岩–花岗岩序列构成,形成时代为470.9~443.9 Ma(雍拥等,2008黄增保等,2014侯荣娜等,2015罗志文等,2015Yang et al.,2015)。③南祁连在哈拉湖西南地区的柴达木山和扫迪等地分别发育有形成于456.2 Ma和461.5 Ma的岩体(廖华等,2014朱小辉等,2016),在刚察一带有众多形成于473.4~444 Ma的中酸性岩类组成(秦海鹏等,2012张国栋等,2016),化隆地区也有形成于453~446 Ma的花岗岩类(郭周平等,2015)。④宗务隆构造带和柴北缘构造带内的奥陶纪花岗出露相对有限,包括在察汗诺以北有形成于470.4~447.3 Ma的花岗闪长岩–二长花岗岩–正长花岗组合(Gao et al.,2022),以及在赛什腾山、嗷唠山、团鱼山等地的也有奥陶纪侵入岩的出露(吴才来等,2008)。⑤奥陶纪基性侵入岩在北祁连和中祁连地区的石居里、老虎山、乙什春和多藏等地(457.9~444 Ma)有少量出露(宋忠宝等,2007余吉远等,2012师江朋等,2017),在柴北缘锡铁山、莫托尔曰特等地有形成于480~460.5 Ma的辉长岩(朱小辉等,2015)。

      志留纪花岗岩浆活动(443.5~420.2 Ma)在祁连山全区也广泛存在,与奥陶纪花岗岩共同构成了祁连山地区的大规模形成的加里东期花岗岩带。其中,①北祁连构造带在金佛寺、毛藏寺、黑石山、黄门川、西格拉和龙王山等地区发育有志留纪花岗岩,形成时代为443.2~418.2 Ma(吴才来等,2010魏方辉等,2012王国良等,2013赵国斌等,2013秦海鹏等,2014b)。②中祁连则在石包城、三个洼塘和肃北地区具花岗岩–花岗闪长岩–石英闪长岩组合,形成时代为442.5~435 Ma(李建锋等,2010罗志文等,2015);乐都和榆中地区也有形成于441~420 Ma的基性侵入岩(李建锋等,2010罗志文等,2015Yang et al.,2016Li et al.,2017)。③南祁连地区的志留纪花岗岩(442.1~428.6 Ma)则主要分布在刚察地区(师江朋,2015张国栋等,2016)。④祁连山–柴北缘地区在志留纪又呈现出一个较为明显的基性侵入岩浆活动期,中祁连马衔山地区在441 Ma和434 Ma分别形成有2期基性岩墙群(何世平等,2008),而且440 Ma期的基性岩墙群在马衔山、陇山、秦岭凤县–太白、河南西峡等地区古元古代变质基底地层中普遍存在(陈隽璐等,2006)。南祁连化隆地区于440.7~436 Ma形成有与铜镍矿有关的辉长岩或堆晶岩(张照伟等,20142015)。宗务隆构造带和柴北缘构造高压超高压变质带的呼德生等地分别有形成于418.3 Ma和425.2 Ma的橄榄辉长岩和辉长岩(周伟等,2015a钱兵等,2017)。

      泥盆纪花岗岩浆作用(418.2~359.7 Ma)在祁连山地区较弱,而在柴北缘构造带中表现的较为明显。其中,①北祁连有形成于417.7 Ma的小柳沟花岗闪长岩(赵辛敏等,2014)、383 Ma的黄羊河黑云母二长花岗岩(吴才来等,2014)和408.7 Ma的干沙鄂博碱性侵入岩(409.7 Ma)(黄增保等,2018)。②中祁连有形成于415 Ma的肃北花岗闪长岩(李建锋等,2010)和416.7 Ma的三个洼塘花岗岩(罗志文等,2015)。③在柴北缘绿梁山、野马滩、嗷唠河、巴力给哈滩、水文站、大羊头煤矿等地集中发育有形成于428~359.7 Ma的泥盆纪花岗岩(张宏飞等,2006吴才来等,200720082014Wang et al.,2014Wu et al.,2019)。④泥盆纪至早石炭世初期的基性侵入岩在北祁连寒山(347.1 Ma),以及中祁连东段的静宁、通渭和红土堡(385.7 Ma)等地出露(杨建国等,2005何世平等,2007)。宗务隆–柴北缘构造带也分别有形成于418.3 Ma和357 Ma的辉长岩(周伟等,2015b庄玉军等,2019)。

      此阶段,祁连山和柴北缘地区花岗岩形成数量较少。中—晚二叠世花岗岩(271.2~252 Ma)在南祁连化石沟(胡万龙等,2016)、宗务隆山狼士当(Wu et al., 2019)和柴北缘三岔沟(吴才来等,2008)地区有少量出露。三叠纪岩体在祁连山东段关山(229 Ma)、草川铺(210 Ma)、通渭马营镇(229.8 Ma)和柴北缘冷湖等地(243 Ma)也零星出露(杨明慧等,2002Zhang et al.,2006周争艳等,2015Li et al.,2017)。同时,在宗务隆山、赛什腾山和冷湖等地也有这一时期的次辉长岩出露(董增产等,2014王苏里等,2016庄玉军等,2020),在青海南山沟后杂岩中辉长岩、辉长闪长岩分别具有248.8 Ma和243.2 Ma的同位素年龄(张永明等,2017)。

      晚二叠世—三叠纪花岗岩(252~210 Ma)在宗务隆构造带内相对集中的出露,构成有一期较为特有的岩浆期次。在宗务隆构造带内许给沟、察汗河、察汗诺、晒勒克郭来一带有形成于252~241 Ma的三叠纪中酸性侵入岩(吴才来等,2016Wu et al.,2019)。从形成时代上看,其余西秦岭地区花岗岩的年代学分布特征也具有相似之处。

      三叠纪以后(201Ma~),全区几乎未发育花岗岩。张越等(2018)在北祁连牛心山地区曾发现有形成于(166.6±2.4)Ma的似斑状正长花岗岩。

      相对古生代,整个祁连山地区在古生代之前形成的花岗岩和基性侵入岩数量明显较少(图2图3)。从柴北缘地区至北祁连构造带花岗岩形成时代有逐步变小、形成规模逐步变大的趋势。

      元古宙中酸性侵入岩均侵入于古—中元古代地层之中,多具片麻状构造特征且与普遍发生有混合岩化等高级变质作用,如全吉地块发现有形成于2.47 Ga的莫河片麻岩(李晓彦等,2007)。随后在1.83 Ga左右,以青海德令哈(变)基性岩墙群(Liao et al.,2014)和柴北缘鹰峰环斑花岗岩的形成为标志,代表了祁连山以南地区存有的哥伦比亚超大陆裂解事件。其中,鹰峰环斑花岗岩属裂谷成因的A型花岗岩(图4a、图4d图5图6图7),其LA–ICP–MS锆石测年结果约为1.73 Ga(胡能高等,2007余吉远等,2021),该花岗岩形成时代年龄、环斑结构地球化学特征与华北克拉通(NCC)内的典型元古代(~1.7 Ga)环斑花岗岩相似(Wang et al.,2015)。该花岗岩的εNd(t)值为−5.71~−6.09,锆石εHf(t)值为−5.21~8.28,TDM2值为2.80~2.94 Ga(图5),反映其物质源区由太古宙古老地壳物质构成(胡能高等,2007Wang,2015)。这些古老岩体的形成时代以及同位素地球化学源区特征,均是祁连–柴北缘地区存有古老地质体的直接证据(图3图5b)。同期,祁连山东段形成于1.76 Ga的长宁驿二长花岗质片麻岩也被认为是伸展构造下岩浆活动的产物(王银川等,2012)。

      图  4  祁连山及邻区元古代侵入岩岩石类型图
      a. SO2–(Na2O+K2O)图(底图据Middlemost,1994Irvine et al.,1971);b. ANK–ACNK图(底图据Shand, 1943);c. SO2–K2O图(底图据Richwood, 1989);d. Y–Sr/Y图与(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO图(底图据Whalen et al., 1987);数据引自董国安等(2007)胡能高等(2007)秦海鹏等(2012)Tung等(2013)Wang(2015)李猛等(2015)Yang等(2016)陶刚等(2017)
      Figure  4.  The rock type diagrams of Proterozoic intruisons from Qilian and its adjacent regions
      图  5  祁连山及邻区元古代侵入岩同位素特征图
      a. 岩体age–εNd(t)图;b. 锆石age–εHf(t)和Hf同位素二阶段模式年龄分布图;数据引自胡能高等(2007)Tung等(2013)Wang (2015)Yang等(2016)
      Figure  5.  The diagrams of isotopic characteristics for the Proterozoic intruisons from Qilian and its adjacent regions
      图  6  祁连山及邻区元古代侵入岩稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b).
      Figure  6.  (a) Chondrite–normalized REE distribution patterns and (b) Primitive mantle–normalized trace elements spider diagram for Proterozoic intruisons from Qilian and its adjacent regions
      图  7  祁连山及邻区元古代中酸性侵入岩构造环境判别图
      Figure  7.  Tectonoc environment discrimination diagrams of Proterozoic intruisons from Qianlian and its adjacent regions

      中元古代,中祁连地区构成有一个岩浆活动峰期(图3b),主要为一套富铝的片麻状花岗岩–花岗闪长岩组合。青海省1∶5万玉龙滩、抓什究、贺尔、桥头4幅区域地质调查工作在北祁连发现有形成于1150~1116 Ma的片麻状二长花岗岩–花岗岩组合(青海省地质调查院,2014)。中祁连东段马衔山保存有1192 Ma的片麻状二长花岗岩,其被认为形成于 Rodinia 超大陆在祁连地区的汇聚事件(王洪亮等,2007)。

      新元古代(1.0~0.76 Ga),祁连山花岗岩开始形成有一定的规模,主要由~900 Ma和~800 Ma两阶段的花岗岩构成(Tung et al.,2013)。早期的花岗岩主要由I型的钙碱性花岗闪长岩–花岗岩组合构成,如中祁连地区硫磺矿花岗闪长岩、托勒花岗、响河和五间房花岗岩等(雍拥等,2008陶刚等,2017);中后期在北祁连吊大坂、雷公山、牛心山(776~736 Ma)等地形成有准铝质–弱过铝质的石英闪长岩–花岗岩序列(苏建平等,2004曾建元等,2006李猛等,2015),且中祁连海晏–尕海地区在816~795 Ma期间形成有一期强过铝质岩浆(雍拥等,2008Tung et al., 2013)(图4b)。Hf–Nd同位素特征显示,这两个阶段的花岗岩也显示出一定的差异(图5),中祁连海晏和尕海地区~800 Ma的强过铝质花岗岩εNd(t)值(−6.7~−12.7)明显小于~900 Ma花岗岩的εNd(t)值,二阶段Hf模式年龄(TDM2=2.2~3.0 Ga)表明古老地壳物质是最重要的物质来源(图5)(Tung et al.,2013)。这些新元古代花岗岩多属于Rodina超大陆聚合或后续裂解机制下的产物,但强过铝质花岗岩序列略迟的形成时代可能反映出在超大陆裂解环境下祁连地区内部仍存有不同块体的碰撞或挤压作用。

      新元古代晚期,北祁连柏木峡辉长岩、玉石沟堆晶辉长岩和中南祁连拉脊山口斜长花岗岩的形成时代分别为675 Ma、550 Ma和561 Ma(宋泰忠等,2016史仁灯等,2004付长垒等,2018),这些侵入岩与新元古代中后期的裂谷系火山岩(夏林圻等,2016)等一同构成了祁连山地区洋盆开启的标志。

      (1)寒武纪—奥陶纪弧盆系花岗岩和碰撞成因花岗岩

      祁连山地区自517 Ma开始就有一定规模的寒武纪花岗岩形成(Fu et al.,2020),且祁连山和柴北缘构造带的花岗岩浆活动至奥陶纪表现强烈,各构造单元中–基性侵入岩均有广泛出露。

      祁连山地区寒武纪—奥陶纪花岗岩主要由偏中性的闪长岩–二长闪长岩–二长岩及斜长花岗岩–花岗闪长岩–花岗岩–石英闪长岩序列(图8a、图8c)组成(吴才来等,2010秦海鹏等,2014a黄增保等,2014王建等,2018Fu et al.,2020Pan et al.,2020)。这些花岗岩多为中–高钾钙碱性(图8b、图8d)的准铝–弱过铝质(图9a、图9c)I型花岗岩(吴才来等,2006秦海鹏等,2014a赵辛敏等,2014Yang et al.,2015Pan et al.,2020)。寒武纪,北祁连热水花岗闪长岩、柯柯里石英闪长岩和中祁连乌尔格拉特二长花岗岩具有较高的Sr/Y值(图8b)(吴才来等,2010黄增保等,2014Fu et al.,2020)。奥陶纪以后,北祁连牛心山花岗岩(476 Ma)、西格拉花岗长岩(465 Ma)、车路沟英云闪长岩(462 Ma)、浪力克毛藏寺花岗闪长岩(471 Ma)、中祁连巴米山二长花岗和黑山花岗岩(451Ma)及南祁连化隆赛支寺花岗闪长岩(446 Ma)等侵入岩均具有较高的Sr/Y值(图9d)。西格拉、车路沟和毛藏地区岩体被认为属于钠质埃达克岩(吴才来等,2006秦海鹏等,2014a樊新祥等,2020),这些岩体在微量元素原始地幔标准化图解上大多显示出Nb、Ta和Ti等高场强元素亏损(图10),属俯冲成因花岗岩(图11)。另外,北祁连地区强烈的加里东造山运动形成有一系列的蛇绿岩残片,记录了区内早古生代板块构造的演化过程。其中,熬油沟、东草河、九个泉蛇绿岩中辉长岩类的形成时代分别为503 Ma、497 Ma和490 Ma(相振群等,2007曾建元等,2007夏小洪等,2010)。熬油沟辉长岩以富集LREE和LILE,相对亏损HREE和HFSE为持征,表明洋壳之下的地幔属于类似OIB源的富集地幔(张招崇等,1998)。九个泉辉绿岩、东草河辉绿–玄武质熔岩的全岩地球化学成分与 N–MORB 相近,且部分具有微弱的俯冲带地球化学印记,显示SSZ型蛇绿岩的地球化学特征(曾建元等,2007夏小洪等,2010)。综述所述,祁连山及其邻区寒武纪—奥陶纪侵入岩组合和地球化学成因特征反映了一期广泛的大洋俯冲消减事件。

      图  8  祁连山及邻区寒武纪和奥陶纪侵入岩岩石类型判别图
      a. 寒武纪侵入岩SO2–(Na2O+K2O)图;b. 寒武纪侵入岩SO2–K2O图;c.奥陶纪侵入岩 SO2–(Na2O+K2O)图;d. 奥陶纪侵入岩SO2–K2O图;a、c底图据Middlemost(1994)Irvine等(1971);b、d.底图据Richwood(1989);寒武纪侵入岩数据引自吴才来等(20042010)秦海鹏等(2014a)黄增保等(2014)王建等(2018)Pan等(2020)Fu等(2020);奥陶纪侵入岩数据引自 毛景文等(2000)吴才来等(2004200620072008)苏建平等(2004)雍拥等(2008)陈隽璐等(2008)秦海鹏等(20122014b)齐瑞荣等(2012)黄增保等(2015)Yang等(2015)郭周平等(2015)崔加伟等(2016))、Yang等(2016)白赟等(2017))、Wang 等(2017)Wang等(2018)计波等(2019)Pan 等(2020)Niu等(2021))和Gao等(2022)
      Figure  8.  Rock type diagrams of the Cambrian and Ordovician intruisons from Qilian and its adjacent regions
      图  9  祁连山及邻区寒武纪侵入岩和奥陶纪侵入岩岩石成因类型图
      a. 寒武纪侵入岩ANK–ACNK图;b.寒武纪侵入岩(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO图 ;c.奥陶纪侵入岩 ANK–ACNK图;d.奥陶纪侵入岩(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO图 ;a、c.底图据Shand(1943);b、d.底图据Whalen等(1987);寒武纪侵入岩数据引自吴才来等(20042010)秦海鹏等(2014a)黄增保等(2014)王建等(2018)Pan等(2020)Fu等(2020);奥陶纪侵入岩数据引自 毛景文等(2000)吴才来等(2004200620072008)苏建平等(2004)雍拥等(2008)陈隽璐等(2008)秦海鹏等(20122014b)齐瑞荣等(2012)黄增保等(2015)Yang等(2015)郭周平等(2015)崔加伟等(2016))、Yang等(2016)白赟等(2017))、Wang 等(2017)Wang等(2018)计波等(2019)Pan 等(2020)Niu等(2021))和Gao等(2022)
      Figure  9.  Petrogenetic type diagrams of the Cambrian and Ordovician intruisons from Qilian and its adjacent regions
      图  10  祁连山及邻区寒武纪侵入岩和奥陶纪侵入岩稀土元素球粒陨石标准化图及微量元素原始地幔标准化图
      Figure  10.  Chondrite–normalized REE distribution patterns and Primitive mantle–normalized trace elements spider diagram for the Cambrian and Ordovician intruisons from Qilian and its adjacent regions
      图  11  祁连山及邻区寒武纪侵入岩和奥陶纪侵入岩构造环境判别图
      a. 寒武纪侵入岩(Y+Nb)–Rb图;b. 寒武纪侵入岩(Y+Ta)–Rb图;c. 奥陶纪侵入岩(Y+Nb)–Rb图;d. 奥陶纪侵入岩(Y+Ta)–Rb图;底图据Pearce等(1984); 寒武纪侵入岩数据引自吴才来等(20042010)秦海鹏等(2014a)黄增保等(2014)王建等(2018)Pan等(2020)Fu等(2020);奥陶纪侵入岩数据引自 毛景文等(2000)吴才来等(2004200620072008)苏建平等(2004)雍拥等(2008)陈隽璐等(2008)秦海鹏等(20122014b)齐瑞荣等(2012)黄增保等(2015)Yang等(2015)郭周平等(2015)崔加伟等(2016))、Yang等(2016)白赟等(2017))、Wang 等(2017)Wang等(2018)计波等(2019)Pan 等(2020)Niu等(2021))和Gao等(2022)
      Figure  11.  Tectonic environment discrimination diagrams of the Cambrian and Ordovician intruisons from Qilian and its adjacent regions

      除以上占绝大多数的俯冲成因花岗岩外,区内还发育正长花岗岩–正长岩–二长岩序列(图8a、图8c)。形成于501 Ma的北祁连川刺沟A型花岗岩(王建等,2018)和498 Ma的碱性系列侵入岩(Fu et al.,2020)为区内较早的古生代碱性侵入岩记录。南祁连鲁满山二长花岗岩具有A型花岗岩的地球化学特征(郭周平等,2015)(图9d)。结合构造环境判别图(图11c、图11d),可以看祁连山部分奥陶纪花岗岩的形成与伸展环境存在一定的联系,这与大岔达坂地区同期弧后性质火山岩浆事件相耦合(孟繁聪等,2010Xia et al.,2012)。夏林圻等(2016)认为北祁连大约在早寒武世(520 Ma)时,低角度向北俯冲的祁连洋板片发生陡角度后撤导致岛弧后方的软流圈上涌,从而引发弧后岩石圈伸展,形成北祁连弧后盆地。寒武纪阶段,祁连山地区花岗岩岩浆作用和构造岩浆特征总体表现出类似岛弧、弧后盆地的演化过程。

      祁连山地区在奥陶纪还发育一定数量的强过铝质S型花岗岩,主要形成于2个阶段,前者(>463 Ma)发育少量的强过铝质花岗岩,主要分布在北祁连野马咀、腊洞沟和民乐窑沟等地(图9c)(吴才来等,2006Wang et al.,2018);后者为一定数量的强过铝质花岗岩,形成于452~444 Ma阶段,包括中南祁连地区的积石山S型二云母花岗岩,董家庄–新店、什川和化隆等地的强过铝质中酸性侵入岩等(雍拥等,2008陈隽璐等,2008Yang et al.,2016)。结合寒武纪花岗岩浆特征可以看出,以民乐窑沟S型花岗岩为代表的祁连山地区早期的强过铝质岩浆可能源自俯冲过程中北祁连地区的弧–弧碰撞或弧–陆碰撞。中南祁连地区在452~444 Ma阶段集中出露强过铝质岩石,以及党河南山鸡叫沟(467 Ma)和化隆(452.9 Ma)等地发现的钾玄系列岩石(张莉莉等,2013郭周平等,2015)均表明祁连山地区在452~444 Ma阶段已经开始进入了碰撞造山阶段。此外,祁连山边马沟–肃南地区保存着志留纪初期磨拉石建造的前陆盆地及北祁连造山带中最晚形成于晚奥陶世的弧火山岩(~446 Ma)(夏林圻等,2016),这些均与祁连山地区花岗岩所反映的452~444 Ma阶段碰撞成因花岗岩的构造动力学机制相耦合。

      北祁连地区寒武纪侵入岩显示出从辉长岩、闪长岩到花岗岩成分的巨大变化(图9),这些侵入岩的地球化学特征和Sr–Nd–Hf同位素组成表明其经历复杂的岩浆演化过程,来源于多种岩浆物质(图12图10)。除了柯柯里岩体具有新元古代源区组成外(图12a),这些岩体的Hf同位素二阶段模式年龄为1288~1922 Ma。北祁连奥陶纪乌鞘岭、中祁连积石山、南祁连化隆和宗务隆察汗诺酸性侵入岩的εNd(t)值分别为−0.7~−8.4、−4.4~−7.4、−7.4~−8.0和−2.4~−8.33,均小于0,表明这些区域内的相关岩体均为地壳物质熔融而成(秦海鹏等,2012Yang et al.,2016崔加伟等,2016Gao et al.,2022)。中祁连巴米山(2.8~3.8)、柴北缘团鱼山(1.5~2.2)和赛什滕山(0.6)等地出露具正εNd(t)值的奥陶纪岩体(吴才来等,2008Yang et al.,2015),显示中祁连和柴北缘地区在奥陶纪经历有一期重要的幔源物质加入事件。此外,具有正εHf(t)值的侵入岩主要分布在中南祁东段巴米山、化隆、湟源–刚察和宗务隆察汗诺等地区(秦海鹏等,2012Yang et al.,2015崔加伟等,2016Wang et al.,2018Gao et al.,2022),说明中南祁连地区奥陶纪花岗岩浆演化过程中存有广泛的古老幔源物质或新生地壳物质加入。湟源北西地区的巴燕岩体(459.2 Ma、εHf(t)=−1.4~9.4)和巴米山岩体(459 Ma、εHf(t)=6.6~7.8)的εHf(t)值几乎均大于0,而且最小的二阶段模式年龄分别为678 Ma和742 Ma(秦海鹏等,2012Yang et al.,2015),表明该岩体源自于新生地壳的的熔融作用。总体来看,中南祁连和宗务隆地区在460 Ma前后出现相当数量具正εHf(t)值的中酸性岩体,这可能与北祁连奥陶纪岛弧带发生的玄武质新生地壳侧向增生事件有关。

      图  12  祁连山及邻区寒武纪侵入岩和奥陶纪侵入岩同位素特征图
      a.寒武纪侵入岩age–εNd(t)图;b.寒武纪侵入岩Hf同位素二阶段模式年龄分布图;c.奥陶纪侵入岩age–εNd(t)图;d.奥陶纪侵入岩Hf同位素二阶段模式年龄分布图;寒武纪侵入岩数据自数据引自吴才来等(2010)秦海鹏等(20122014a)Fu等(2020)Pan等(2020);奥陶纪侵入岩数据引自吴才来等(2008)雍拥等(2008)秦海鹏等(20122014b)郭周平等(2015)Yang等(20152016)崔加伟等(2016)Wang等(2017)白赟等(2017)Wang等(2018)Pan等(2020)Gao等(2022)
      Figure  12.  Isotopic characteristic diagrams of the Cambrian and Ordovician intruisons from Qilian and its adjacent regions

      柴北缘在奥陶纪具有较为强烈的花岗岩浆活动(吴才来等,2008Gao et al.,2022)。其中,柴北缘西段的赛什腾山至嗷唠山一带保存形成于473~465 Ma阶段的俯冲型花岗岩(吴才来等,2008);欧龙布鲁克地区于463.4 Ma之后开始出现的钾玄系列岩石和后碰撞岩成因的埃达克岩类(Gao et al.,2022),反映出柴北缘地区于463 Ma左右已经开始进入碰撞–后碰撞造山阶段,略早于祁连山地区。

      (2)志留纪碰撞–后碰撞造山型花岗岩

      除宗务隆地区志留纪花岗岩数量较少外,祁连山及柴北缘其余地区在志留纪仍持续有奥陶纪以来较为显著的花岗岩浆作用。北祁连志留纪中酸性侵入岩主要在金佛寺、西格拉、老虎山、黑石山、苏家山、龙王山和黄门川等地出露,规模大小不一,多沿区域构造线分布,岩石类型为石英闪长岩–英云闪长岩/斜长花岗岩–花岗闪长岩–二长花岗岩等,均为准铝–弱过铝质(ACNK值为0.86~1.08)中钾–高钾钙碱性系列花岗岩类(图13a~图13c)(魏方辉等,2012熊子良等,2012王国良等,2013赵国斌等,2013秦海鹏等,2014bWang et al.,2018张海瑞等,2019)。中祁连志留纪花岗岩出露相对有限:中祁连西段三个洼塘、肃北和石包城等地以钙碱性的准铝质I型花岗岩类为主(图13a、图13b)(李建锋等,2010罗志文等,2015)。南祁连志留纪花岗岩主要在刚察泉吉和哈拉湖周缘以较大的岩基形式出露,以石英闪长岩–花岗闪长岩–二长花岗岩–正长花岗岩序列为代表(图13a)。这些花岗岩的ACNK值为0.85~1.10、δ值为1.47~2.52、K2O/Na2O值为0.95~2.36,大多属于富钾的准铝–弱过铝质钙碱性I型花岗岩(图13b、图13c

      图  13  祁连山及邻区志留纪侵入岩岩石类型图
      a. SO2–(Na2O+K2O)图(底图据Middlemost,1994Irvine et al.,1971);b. ANK–ACNK图)(底图据Shand, 1943); c. SO2–K2O图 (底图据Richwood,1989) ;d. Y–Sr/Y图和(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO图(底图据Whalen et al.,1987);数据引自王金荣等(2008)吴才来等(2010)李建锋等(2010)赵国斌等(2013)Yang等(201520162020)师江朋等(2015)Wang等(20172018)Li等(2017)Zhao等(2017)张海瑞等(2019)Pan等(2020)Niu等(2021)李冰等(2022)
      Figure  13.  Rock type diagrams of the Silurian intruisons from Qilian and its adjacent regions

      此阶段祁连山地区除少量出露的碱性花岗岩和埃达克质岩石外,在微量元素、稀土元素地球化学特征上均显示出较为统一的地球化学特征(图14图15),可能反应出志留纪相对稳定的构造–岩浆演化过程。该阶段祁连山地区有几个较为重要的岩石成因特征:①祁连山在志留纪后期(452~444 Ma)已经开始出现大范围的碰撞造山事件显示,但在中祁连东段乐都等地出露志留纪I型和S型花岗岩组合(431 Ma)(Yang et al.,2016),表明祁连山局部地区的碰撞造山事件可能持续至431 Ma。②北祁连地区出露SiO2含量中等–略低且具有较高Mg#值的侵入岩,如老虎山石英闪长岩(439.8 Ma)、毛藏寺花岗闪长岩(424 Ma)、苏家山花岗闪长岩(425 Ma)和西岔沟高镁闪长岩(425 Ma)等(王金荣等,2008熊子良等,2012张海瑞等,2019Pan et al.,2020)。在北祁连黑石山(440 Ma)、熬油沟(438 Ma),中祁连石包城(435 Ma)和南祁连扎子沟(434 Ma)等地也分布有一定数量的埃达克质岩石(图13d)(李建锋等,2010Chen et al.,2012赵国斌等,2013秦海鹏等,2014bWang et al.,2017)。这些在440~424 Ma阶段集中形成的高Mg#值的中性侵入岩和埃达克质岩可能是在后碰撞造山过程中由拆沉作用或幔源物质上涌导致玄武质地壳熔融而形成。③北祁连、中祁连相当数量花岗岩的εHf(t)值大于0,反映了一定程度新生地壳物质源区的加入,可能与后碰撞造山过程有直接关联。④中南祁连在430~420 Ma阶段形成有一定数量的A型花岗岩(Li et al.,2017),刚察大寺部分志留纪花岗岩也显示有A型花岗岩的地球化学特征(图13d)(师江朋等,2015),构造环境判别图解(图16a)也表明了该阶段部分花岗岩的形成直接源于伸展环境。

      图  14  祁连山及邻区志留纪侵入岩同位素特征图
      Figure  14.  Isotopic characteristic diagrams of the Silurian intruisons from Qilian and its adjacent regions
      图  15  祁连山及邻区志留纪侵入岩稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b)
      Figure  15.  (a) Chondrite–normalized REE distribution patterns, and (b) Primitive mantle–normalized trace elements spider diagram for the Silurian intruisons from Qilian and its adjacent regions
      图  16  祁连山及邻区志留纪中酸性侵入岩构造环境判别图
      Figure  16.  Tectonic environment discrimination diagrams of the Silurian intruisons from Qianlian and its adjacent region

      在奥陶纪末—志留纪初(大约444 Ma),因弧–陆碰撞,北祁连大洋板片与祁连大陆岩石圈脱离。约444 Ma,北祁连大洋板片的断离诱使软流圈上涌,进而在祁连陆块北缘诱发产生445~428 Ma碰撞后裂谷火山活动(夏林圻等,2016)。同期的花岗岩浆作用也反映出相似的构造演化过程:北祁连440~424 Ma阶段,老虎山石英闪长岩、毛藏寺花岗闪长岩、苏家山花岗闪长岩和西岔沟闪长岩等具有高Mg#值的岩类,均显示有碰撞造山环境下地幔物质加入的地球化学特征,这些岩体的形成可能与碰撞造山结束后由挤压向伸展环境转变过程下幔源物质的贡献有关(Pan et al.,2020)。伴随着碰撞造山作用结束、加厚的岩石圈物质拆沉及地幔物质的底侵形成了以黑石山岩体为代表的埃达克质岩石(图16d)(赵国斌等,2013)。虽然整个北祁连志留纪侵入岩具复杂的地球化学特征(图15a、图15b),但熊子良等(2012)提出北祁连此期花岗岩类无明显变形,应当为非挤压机制下后构造侵位而成。中南祁连地区扫迪岩体具有正εNd(t)值(图14a),北祁连西段部分440~438 Ma花岗岩的εHf(t)值均大于0(εHf(t)=+5.7~+11)(图14b),这些同位素特征说明北祁连西段早志留世存有新生地壳物质生成或者较为明显的壳幔岩浆作用(Wang et al.,2018)。同期,中祁连东段马衔山地区分别在441 Ma和434 Ma形成两期基性岩墙群,表明后碰撞造山过程中祁连地块保存北西–南东向扩张作用的地质纪录(何世平等,2008)。至430~420 Ma,中祁连东段形成的A型花岗岩类(Li et al.,,2017),以及化隆地区裕龙沟岩体、亚曲岩体及下什堂岩体共同构成的青海地区镁铁–超镁铁岩成矿域(张照伟等,2012b),均进一步表明后碰撞造山伸展事件的存在。

      柴北缘地区志留纪绿梁山、锡铁山、团鱼山和察汗河等地出露的岩体,主要由闪长岩–花岗闪长岩–花岗岩序列组成,为准铝–弱过铝质钙碱性的I型花岗岩(吴才来等,2007Zhao et al., 2017Yang et al.,2020Niu et al.,2021)(图13a~图13c),部分岩体(~441 Ma)具有埃达克质岩类的地球化学特征(图13d)(Zhao et al.,2017Yang et al.,2020)。在绿梁山、锡铁山等地出露白云母花岗岩或二云母花岗岩等强过铝质S型花岗(图13b)(Yang et al.,2020)。柴北缘锡铁山(441~420 Ma)、察汗河(441)地区岩体的εNd(t)绝大多数小于0,但锡铁山地区花岗岩(441 Ma)的εHf(t)值(+0.5~+5.3)均大于0,显示出新生玄武质地壳的物质源区构成(Zhao et al.,2017)。这些岩体的同位素特征表明其可能源自碰撞–后碰撞转化过程中相对复杂或不同地壳尺度下物质源区的熔融事件。前人对高压–超高压变质岩的大量工作表明,柴北缘地区初始大陆碰撞、洋陆转换事件发生于445~438 Ma(Song et al.,2014)。因而,在晚奥陶世—早志留世阶段,本地区的构造体制由南祁连洋板块俯冲开始转变为柴达木地块的大陆俯冲,导致柴达木地块与欧龙布鲁克微地块之间发生了初始碰撞。随着大陆深俯冲作用的进行,在柴北缘地区出现了438~420 Ma的超高压榴辉岩相变质作用(Song et al.,2014),相关的碰撞造山事件使得大陆地壳增厚且形成有一系列的碰撞相关成因的花岗质岩类(吴才来等,2007)。前人研究表明,锡铁山一带的白云母S型花岗岩(431 Ma)代表了柴北缘地区陆–陆碰撞事件作用中上地壳富铝物质源区熔融的产物(Yang et al.,2020);察汗河地区具A型花岗岩地球化学特征的钾玄系列二长闪长岩(427.5 Ma)为碰撞造山结束后伸展机制下的产物(图16a、图16b)(Niu et al.,2021)。

      (3)泥盆纪以来祁连山持续伸展、柴北缘深俯冲折返与构造窗拆离及宗务隆洋开启3种不同机制下的构造–岩浆活动

      祁连山地区泥盆纪侵入岩浆活动急剧减弱,仅北祁连和中祁连地区有少量出露(图2)。北祁连在泥盆纪有少量A型花岗岩出露(图17d),黄羊河正长花岗岩(402 Ma)被认为属于铝质A型花岗岩(熊子良等,2012),干沙河南端的干沙鄂博碱性岩体(409.7 Ma)由霓辉正长岩、霓辉正长斑岩和石英正长斑岩等组成(黄增保等,2018)。中祁连的泥盆纪岩体在肃北的东山湾、三个洼塘等地发育,属于石英闪长岩–花岗闪长岩–花岗岩侵入序列(图17a)。东山湾花岗岩(415 Ma)为准铝质钙碱性I型花岗岩(李建锋等,2010),三个洼塘岩体中的泥盆纪花岗岩(416.7 Ma)属准铝质–强过铝质的钙碱性花岗岩(刘晓涛等,2014),罗志文等(2015)曾在其中发现有A型花岗岩。中祁连西段肃北地区在415~413.7 Ma阶段几乎同期形成有I型和A型花岗岩,且其中花岗闪长岩的εNd(t)值为0.84~2.64、TDM2值为0.78~0.90 Ga(图18)(李建锋等,2010),可能同伸展环境下幔源岩浆底侵诱发新生的玄武质地壳熔融有关(李建锋等,2010罗志文等,2015)。这些早泥盆世祁连山A型花岗岩(熊子良等,2012黄增保等,2018)与中祁连东段板内成因的红土堡基性岩墙(385.7 Ma)均形成于相同的构造动力学机制之下(何世平等,2007),为祁连山碰撞造山结束后持续伸展作用的体现。至中晚泥盆世,祁连山地区老君山组陆相砾岩的出露,表明了祁连山全区开始进入了陆内环境。

      图  17  祁连山及邻区泥盆纪侵入岩岩石类型图
      a. SO2–(Na2O+K2O)图 (底图据Middlemost,1994Irvine et al.,1971);b. ANK–ACNK图(底图据Shand, 1943);c. SO2–K2O 图(底图据Richwood,1989);d. Y–Sr/Y图和(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO 图(底图据Whalen et al.,1987); 数据引自吴才来等(20042007200820102014)李建锋等(2010)Wang等(2014)罗志文等(2015)周争艳等(2015)黄增保等(2018)Sun等(2020).
      Figure  17.  Rock type diagrams of the Devonian intruisons from Qilian and its adjacent regions.
      图  18  祁连山及邻区泥盆纪侵入岩同位素特征图
      a. 岩体age–εNd(t)图;b. 锆石age–εHf(t)和Hf同位素二阶段模式年龄分布图;数据引自吴才来等(200720082014)李建锋等(2010)熊子良等(2012)Wang等(2014)黄增保等(2018)Sun等(2020)
      Figure  18.  Isotopic characteristic diagrams of the Devonian intrusions from Qilian and its adjacent regions

      宗务隆构造带几乎无泥盆纪花岗岩的相关报道,仅其南缘的哈德森A型花岗岩有412.6 Ma的锆石U–Pb同位素年龄报道(Wu et al., 2019)。在兴海–赛什塘–苦海一带形成于393.5 Ma的辉绿岩岩墙群(孙延贵等,2004)和区内的牦牛山组山间磨拉石沉积–裂谷系火山岩建造表明整个地区已经进入陆内裂谷环境,宗务隆山–青海湖南山–隆务峡等地断续出露的中泥盆世—中晚二叠世镁铁–超镁铁质岩块(张克信等,2007郭安林等,2009),进一步表明宗务隆山—合作一带存有洋盆的形成演化。结合区域地层对比和镁铁–超镁铁质岩石的出露情况,认为中泥盆世—中晚二叠世的宗务隆–甘家–楼房沟一带形成有明显的裂谷拉伸,并伴生有洋盆的形成和演化(王永和等,2019)。

      柴北缘泥盆纪花岗岩沿赛什腾山、绿梁山、锡铁山等地区广泛分布(吴才来等,200720142016Wang et al.,2014Wu et al.,2019Sun et al.,2020),这些侵入岩的岩石类型和地球化学特征较为复杂(图17图18图19),主要有石英闪长岩–花岗闪长岩–二长花岗岩–(正长)花岗岩序列组成(图19),且绝大多数岩体属于中钾–高钾钙碱性系列岩石(图17a、图17c)。在ANK–ACNK图中(图17b),沙流河二云母花岗岩、绿梁山和都兰地区的部分中酸性侵入岩类属强过铝质花岗岩类(ACNK=1.10~1.17),其余均为准铝–弱过铝质岩石系列(吴才来等,2004, 2007Sun et al.,2020)。此外,沙柳河地区出露形成于403~396 Ma的S型二云母花岗岩(图17b)(Wang et al.,2014),绿梁山–野马滩一带出露高Sr、低Y型花岗岩(403~366.7 Ma)(图17d)(吴才来等,20042007Wang et al.,2014)。柴北缘嗷唠河、鱼卡、锡铁山、都兰等地泥盆纪花岗岩类的εNd(t)值和多数岩体的锆石εHf(t)值均小于0(吴才来等,200720082014Sun et al.,2020)(图18a、图18b)。但偏中性的野马滩闪长岩类(359.7 Ma/373.7 Ma)多具有较高的εHf(t)值(2.17~11.93)(图18b),沙流河(390.9 Ma)和鱼卡(396 Ma)地区的酸性侵入岩εHf(t)值大多也大于0(−4.8~7),反映出柴北缘地区部分中酸性侵入岩的物质源区中存有中新元古地幔物质或新生地壳的加入(Sun et al.,2020)。同期,与岩浆铜镍硫化物矿床和钛铁氧化物矿床形成有关的尕秀雅平东(408 Ma)和红柳沟北(418 Ma)镁铁–超镁铁质岩石,也被认为属柴北缘在晚志留世—晚泥盆世后造山伸展阶段拉张环境下的幔源岩浆活动密不可分(周伟等,2015a2015b)。

      图  19  祁连山及邻区泥盆纪侵入岩稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b)
      Figure  19.  (a) Chondrite–normalized REE distribution patterns, and (b) Primitive mantle–normalized trace elements spider diagram for the Devonian intruisons from Qilian and its adjacent regions

      可以看出,宗务隆构造带南缘形成于412.6 Ma左右的哈德森A型花岗岩(Wu et al.,2019)代表了欧龙布鲁克北缘宗务隆裂谷的开启(Wu et al.,2019吴才来等,2016)。随后,依克达木湖、野马滩等地的埃达克质英云闪长岩–花岗闪长岩(402 Ma)和似斑状花岗岩(366.7 Ma)(吴才来等,2004Wang et al., 2014)形成于柴北缘榴辉岩峰期变质事件后,可能与俯冲陆壳物质折返过程中在石榴子石稳定区的熔融作用有成因关联。而与埃达克岩几乎同期形成的碱性A型花岗岩(413~391 Ma)(图16d)可能为俯冲陆壳拆离后,构造窗邻近的壳源物质在热物质上涌和减压熔融环境下而成(吴才来等,2016Wu et al.,2019)。中晚泥盆世部分柴北缘花岗岩具有正εHf(t)值(图18b),也具有此种深部岩浆过程的同位素地球化学印记。与陆壳深俯冲相对应的地壳浅部地区,则持续发生有强烈的挤压作用,以致在沙流河等地出现有形成于396~403 Ma的强过铝质S型二云母花岗岩等(Wang et al.,2014;Sun et al.,2020)。由此可见,整个泥盆纪阶段的柴北缘地区花岗岩为深部陆壳物质后碰撞造山事件和中浅部地壳物质挤压熔融机制下共同作用的产物(图20)。

      图  20  祁连山及邻区泥盆纪中酸性侵入岩构造环境判别图
      Figure  20.  Tectonic environment diagrams of the Devonian intruisons from Qianlian and its adjacent region

      二叠纪,祁连山全区花岗岩浆作用十分微弱,仅南祁连零星出露。南祁连化石沟钙碱性二长花岗岩(252 Ma)(图21)的εNd(t)值略大于0(1.63~1.84),TDM2值为780~794 Ma(图22)(胡万龙等,2016)。宗务隆构造带石英二长岩(254.2 Ma)(Wu et al.,2019)、角闪辉长岩(254.3 Ma)(王苏里等,2016)及柴北缘三岔沟花岗岩(271.2~260.4 Ma)多属于准铝–弱过铝质(ACNK=0.96-1.05)钙碱性系列(图21a、图21b)(吴才来等,2008胡万龙等,2016)。同期,宗务隆山、赛什腾山和冷湖盐场等地中—晚二叠世基性侵入岩(董增产等,2014王苏里等,2016庄玉军等,2020)的形成可能与宗务隆洋向南的俯冲活动有关。

      图  21  祁连山及邻区二叠纪至侏罗纪侵入岩岩石类型图
      a. SO2–(Na2O+K2O)图(底图据Middlemost,1994Irvine et al.,1971);b. ANK–ACNK图(底图据Shand, 1943);c. SO2–K2O图 (底图据Richwood,1989);d. Y–Sr/Y图和(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO图(底图据Whalen et al.,1987); 数据引自张宏飞等(2006)吴才来等(2008)郭安林等(2009)周争艳等(2015)胡万龙等(2016)Li等(2017)张越等(2018)Wu等(2019)
      Figure  21.  Rock type diagrams of the Permian–Jurassic intruisons from Qilian and its adjacent regions.

      进入三叠纪以后,祁连山和柴北缘碰撞带三叠纪侵入岩仅有少量出露(杨明慧等,2002Zhang et al.,2006周争艳等,2015);北祁连东段发育有草川铺似斑状二长花岗岩(210.9 Ma)、关山二长花岗岩(227 Ma)和中祁连通渭营马镇二长花岗岩(229.8 Ma)等早三叠世岩体(Zhang et al.,2006周争艳等,2015Li et al.,2017),均为准铝质高钾钙碱系列花岗岩,且均显示出地壳成因的Nd同位素地球化学组成(图22)。其中,关山二长花岗岩具有略高的Sr/Yb值,部分样品Sr/Y值达25.44,属高Sr、低Y型(图21d)(Zhang et al.,2006)。柴北缘冷湖地区的花岗岩也曾获得有243Ma的TIMS锆石年龄(杨明慧等,2002)。同时,柴北缘察汗诺至乌兰以北的地区出露248.8~241.9 Ma的辉长岩、辉长闪长岩等(程婷婷等,2015张永明等,2017岳悦等,2021)。

      图  22  祁连山及邻区二叠纪—侏罗纪侵入岩同位素特征图.
      a. 岩体age–εNd(t)图;b. Nd同位素二阶段模式年龄分布图;数据引自张宏飞等(2006)Zhang等(2006)吴才来等(2008)胡万龙等(2016)Li等(2017)Wu等(2019)
      Figure  22.  Isotopic characteristic diagrams of the Permian–Jurassic intruisons from Qilian and its adjacent regions

      宗务隆–贵德一带则显著发育有大量的中生代花岗岩(图2d),其岩浆活动期与规模、数量与祁连山地区花岗岩存有显著差别,构成一条独特的印支期花岗岩岩浆岩带。这些中晚二叠世—三叠纪中酸性侵入岩多由花岗岩–花岗闪长岩构成(Wu et al.,2019),属中钾–高钾钙碱性的准铝–弱过铝质岩石系列(图21a、图21b)。在1∶25万都兰县幅测区内的三叠纪花岗岩集中形成于250~220 Ma,具有地壳重熔型花岗岩的特点。从岩石成因类型上看,该构造带内I型花岗岩自东向西广泛分布于同仁县东部的曲库乎、新街、贵德当家寺以及青海南山南部的黑马河、果可山、晒勒克郭来一带(Wu et al.,2019)。乌拉一带的哈德森沟地区有A型花岗岩发育(图21d)(Wu et al.,2019),察汗诺以北的二郎洞花岗岩也部分具有其地球化学特征(郭安林等,2009),且均显示出伸展环境下的地球化学特征(图23图24)。共和盆地西侧黑马河、大河坝地区三叠纪岩体的Nd同位素研究进一步显示,共和盆地周缘至全吉地块的印支期花岗岩类与西秦岭、东昆仑印支期花岗岩类具有相似的岩石地球化学和高放射成因Pb同位素组成,反映了物源区下地壳在区域上可能具有统一性(张宏飞等,2006)。

      图  23  祁连山及邻区二叠纪—至三叠纪侵入岩稀土元素球粒陨石标准化图(a、c)和微量元素原始地幔标准化图(b、d)
      Figure  23.  (a, c) Chondrite–normalized REE distribution patterns, and (b, d) Primitive mantle–normalized trace elements spider diagram for the Permian–Triassic intruisons from Qilian and its adjacent regions

      宗务隆构造带在240~220 Ma形成的中生代岩浆作用可能跟宗务隆洋俯冲或欧龙布鲁克微板块等块体间的汇聚事件有密切关联(张永明等,2017Wu et al.,2019)。沿宗务隆–甘家构造岩浆岩带东延的西秦岭地区也存有264~216 Ma的花岗岩浆演化和成矿期次,该系列的印支期花岗岩显示有埃达克或喜马拉雅型花岗岩的地球化学特征,反映出陆–陆碰撞或陆–陆俯冲事件在整个地区存有较为广泛的影响(徐学义等,2014)。由此可见,宗务隆构造带及西秦岭地区广泛存在的三叠纪花岗岩,为碰撞造山作用下持续岩浆活动的产物。随后,在236 Ma和215 Ma形成的哈德森岩体和二郎洞A型花岗岩(郭安林等,2009Wu et al.,2019),可能标志着宗务隆构造带及邻区已经全部进入了陆内造山阶段(图24)。与之相应的秦岭环斑花岗岩的形成时代为214~217 Ma (卢欣祥等,1999王晓霞等,2002),标志着秦–祁地区主造山期的结束并转入区域岩石圈构造伸展体制(张宏飞等,2006)。

      三叠纪以来(201 Ma~)几乎无花岗岩出露,张越等(2018)曾在北祁连牛心山复合岩体内测得有形成于166.6 Ma的似斑状正长花岗岩(图21a、图21b),认为其属S型花岗岩。

      图  24  祁连山及邻区中二叠纪—侏罗纪中酸性侵入岩构造环境判别图
      Figure  24.  Tectonic environment discrimination diagrams of the Permian–Jurassic intruisons from Qianlian and its adjacent region

      作为中央造山带的重要组成部分,祁连山–柴北缘地区经历有复杂、长期的构造演化过程,并发生有多阶段、多期次的构造岩浆作用(冯益民等,1996陈能松等,2007b夏林圻等,2016王永和等,2019徐学义等,2019Wu et al.,2019朱小辉等,2022)。根据年代学时空格架和侵入岩的空间展布情况,祁连山及邻区的侵入岩浆活动可分为3个主要期次,分别为前寒武纪(2470~561 Ma)、早古生代—泥盆纪(517~360 Ma)和中晚二叠世—三叠纪(271~210 Ma),每个岩浆期次内所记录的构造–岩浆活动也存在差异。

      (1)前寒武纪花岗岩(2470~561 Ma)的形成记录了区内古老大陆的聚合、离散过程及北祁连洋的开启。柴北缘鹰峰环斑花岗岩(1.77 Ga)的形成代表了哥伦比亚超大陆(~1.8 Ga)造山事件的结束(Wang, 2015余吉远等,2021);中祁连东段马衔山形成于1192 Ma的片麻状二长花岗岩(1192 Ma)则记录了区内早期的Rodinia 超大陆汇聚事件(王洪亮等,2007)。

      至新元古代晚期,北祁连吊达坂、雷公山和牛心山及南祁连拉脊山等地花岗岩的发育(曾建元等,2006Tung et al.,2013李猛等,2015付长垒等,2018),以及北祁连柏木峡(674 Ma)、柴北缘滩间山(837 Ma)等地区新元古代基性侵入岩的形成(朱小辉等,2015宋泰忠等,2016)可能与Rodina超大陆裂解事件有关。玉石沟蛇绿岩中堆晶辉长岩获得的550 Ma的锆石SHRIMP同位素年龄(史仁灯等,2004),反映了祁连主洋盆于震旦纪之前已经打开。

      (2)早古生代—泥盆纪(517~360 Ma),整个地区发生了强烈的大洋俯冲和碰撞造山过程,祁连和柴北缘2个独立的造山带形成了大规模遍布全区的中酸性侵入岩类,并表现出相近的岩浆演化进程。该期次主要由3个不同阶段的构造–侵入岩浆事件构成。

      ①进入寒武纪之后,于517 Ma开始祁连山和柴北缘2个地区出现一系列具俯冲成因地球化学特征的花岗岩、O型埃达克岩和碱性花岗类与区内SSZ型蛇绿岩、弧/弧后性质火山岩,共同构成了区内弧盆系的火山–侵入岩建造。北祁连清水沟–百经寺一带形成于490~440 Ma的榴辉岩、蓝片岩,及榴辉岩中硬柱石和泥质片岩中镁纤柱石的发现也是早古生代祁连洋俯冲的证据(宋述光等,2019)。

      至452~444 Ma阶段,中南祁连地区广泛形成强过铝质S型花岗岩组合,与祁连山地区最晚的弧火山岩形成时代(~446 Ma)(夏林圻等,2016)和志留纪初期磨拉石建造所反映的碰撞造山机制相耦合。此外,柴北缘地区可能于463 Ma左右已经开始进入碰撞–后碰撞造山阶段,略早于祁连山地区。在早志留世初,中祁连东段乐都等地仍出露有形成于431 Ma的S型花岗岩组合(Yang et al.,2016),表明祁连山局部地区的碰撞造山事件仍持续至431 Ma。

      ②440~425 Ma阶段形成有大量高Mg中性侵入岩和具有正εNd(t)、正εHf(t)值的埃达克质岩类,且在430~420 Ma形成有系列的A型花岗岩。这些花岗岩与中祁连东段马衔山地区441 Ma和434 Ma的2期基性岩墙群,共同代表了后碰撞造山过程中祁连地块扩张作用的地质纪录(何世平等,2008)。同时,柴北缘绿梁山、锡铁山等地428 Ma左右的花岗岩浆作用与中低压麻粒岩相变质作用、深熔作用时代近一致 (张建新等,2015)。锡铁山碰撞成因白云母S型花岗岩(431 Ma)(Yang et al., 2020)和察汗河地区具A型花岗特征的二长闪长岩(427.5 Ma)(Niu et al.,2021),分别反映了柴北缘地区的碰撞造山、后碰撞造山事件。

      ③至泥盆纪,祁连山地区侵入岩浆活动趋于减弱,与柴北缘和宗务隆地区构造岩浆作用表现出了明显差异。

      祁连山地区仅北祁连、中祁连构造带有少量早泥盆世侵入岩发育。北祁连黄羊河、干沙河地区于409~402 Ma阶段仍持续形成有A型花岗岩(熊子良等,2012黄增保等,2018),在中祁连东段发育有板内环境形成的红土堡基性岩墙(385.7 Ma)(何世平等,2007),均为祁连山碰撞造山结束后持续伸展作用的体现。另外,在中泥盆世之后,祁连地区不整合覆盖于志留系之上的老君山组(D2-3l)所代表的造山后山间磨拉石沉积和羊虎沟组与华北太原组所具有的含煤碎屑岩建造(王永和等,2019),表明了祁连山地区于中泥盆世之后相继进入陆内造山阶段及与华北地区相似的准克拉通化进程。综合以上特征可以看出,祁连山地区早中泥盆世(409~386 Ma)的侵入岩仍为伸展环境下岩浆的体现,至中晚泥盆世以后全区进入陆内造山和准克拉通化阶段(王永和等,2019)。

      在晚志留世至早泥盆世,全吉地块的前寒武纪变质基底经柴达木–昆北地块向北的汇聚过程,卷入至造山带内部(张建新等,20152021)。柴北缘地区在402~366.7 Ma阶段发育有高Sr、低Y型花岗岩(吴才来等,2004Wang et al.,2014)并几乎形成有同期的碱性A型花岗岩(413~391 Ma)。前者与昆北–柴北缘榴辉岩峰期变质事件后折返陆壳物质在石榴子石稳定区的熔融作用有关,后者可能反映了俯冲陆壳沿构造窗拆离以致热物质上涌和减压熔融事件。因而,柴北缘泥盆纪岩体的形成可能与420~400 Ma阶段陆壳深俯冲物质折返(张贵宾等,2012)和构造窗地壳物质拆离多重机制有关。

      至泥盆纪,苦海–赛什塘地区的辉绿岩墙群(393.5 Ma)(孙延贵等,2004)及牦牛山组陆相紫红色粗碎屑沉积岩(张春宇等,2019)和裂谷系火山岩的相关研究工作(李建兵等,2017),说明柴北缘地区于中泥盆世已经处于大陆裂谷环境。随后,众多断续分布的晚泥盆世—石炭纪镁铁–超镁铁岩类(王秉璋等,2000张智勇等,2004),可能进一步表明晚泥盆世宗务隆地区裂谷及一系列小洋盆的相继开启(郭安林等,2009)。

      (3)中晚二叠世—三叠纪(271~210 Ma),祁连山全区花岗岩浆作用较为微弱,仅南祁连零星出露。与祁连山同期微弱岩浆活动显著不同的是,宗务隆地区在晚古生代形成有一定数量的的镁铁–超镁铁质岩石,且在中生代构成一期显著的侵入岩浆活动期(图2d)。

      青海天峻南山石炭纪果可山组中的蛇纹石化镁铁/超镁铁–镁铁质熔岩–硅质岩组合(郭安林等,2009)、隆务峡中晚二叠世镁铁–超镁铁岩(张克信等,2007)的发现,揭示青海湖南山断裂东延至秦祁结合部在石炭纪—二叠纪存有一期宗务隆洋的演化。以察汗诺和青海湖南山等地晚二叠世—早三叠世为代表的I型花岗岩(郭安林等,2009Wu et al.,2019),可能与宗务隆洋盆向南的俯冲活动相关。在240~220 Ma,宗务隆构造带集中形成的花岗岩类(Wu et al., 2019)与西秦岭地区碰撞–后碰撞阶段花岗岩(徐学义等,2014)表现出了相似的岩石地球化学特征。至晚三叠世,二郎洞A型花岗岩(215 Ma)(郭安林等,2009)以及呈弧形展布的三叠纪鄂拉山组中酸性陆相火山岩的形成,则反映了宗务隆构造带及邻区已全部进入了陆内造山阶段。而且,与此时代对应的秦岭环斑花岗岩的形成时代为214~217 Ma (卢欣祥等,1999王晓霞等,2002),也标志着秦–祁整个地区主造山期的结束并转入区域岩石圈构造伸展体制(张宏飞等,2006)。

      (4)三叠纪以后,祁连山和柴北缘地区仍有零星花岗岩类的出现,仅在北祁连牛心山复合岩体内的S型花岗岩中获得166.6 Ma的锆石U–Pb年龄,代表这一时期少有的岩浆活动(张越等,2018)。

      (1)祁连山及柴北缘的侵入岩浆活动主要可分为前寒武纪(2.47 Ga~0.56 Ga)、早古生代—泥盆纪(517~360 Ma)和中晚二叠世—三叠纪(271~210 Ma)3大期次。其中,祁连山、柴北缘2个相对独立的造山带在新元古代—泥盆纪初期表现出了相似的构造–岩浆演化进程,而宗务隆构造带在中生带存有一期显著而特有的花岗岩浆活动期。

      (2)前寒武纪侵入岩(2.47 Ga~0.56 Ga)的形成记录了区内古老大陆的聚合、离散过程及震旦纪北祁连洋的开启。

      (3)祁连山及邻区自517 Ma形成弧盆系岩浆活动相关的花岗岩,至晚奥陶世(452~444 Ma)和早志留世初(431Ma)广泛形成的强过铝质S型碰撞成因花岗岩表明祁连山地区洋盆于452~431 Ma闭合;而柴北缘地区可能于463Ma左右已经开始进入碰撞–后碰撞造山阶段,略早于祁连山地区。

      (4)440~425 Ma阶段,形成有大量高Mg中性侵入岩和具有正εNd(t)和εHf(t)值同位素特征的埃达克质岩类。这些岩体与430~420 Ma的A型花岗岩共同代表了后碰撞造山过程中祁连地块扩张作用。至早泥盆世祁连山地区花岗岩浆作用较为微弱,北祁连409~402 Ma阶段的A型花岗岩和385.7 Ma基性岩墙为祁连山碰撞造山结束后持续伸展作用的体现,中晚泥盆陆相沉积的出现表明全区进入了陆内造山阶段。

      (5)柴北缘地区在402~367 Ma阶段存有一期较为强烈的花岗岩浆事件,可能与柴北深俯冲陆壳物质折返机制或构造窗邻近的拆离减压熔融多重机制相关。此外,老君山组、牦牛山组陆相砾岩、泥盆纪裂谷系火山岩的大量出现表明自早—中泥盆世之后全区进入陆相拉伸过程。

      (6)石炭纪—中晚二叠世之前,整个祁连山–柴北缘地区为一个相对平静的花岗岩浆期。期间,宗务隆–尖扎、兴海–苦海–赛什塘等地断续出露的镁铁–超镁铁质岩石,可能反映了宗务隆洋的形成和演化。

      (7)中晚二叠世—三叠纪(271~210 Ma),宗务隆地区发育一期独有的印支期花岗岩浆活动。其中,晚二叠世—早三叠世花岗岩可能形成于宗务隆洋向南的俯冲环境,240~220 Ma乌兰等地的花岗岩则表现出与西秦岭碰撞–后碰撞花岗岩相近的地球化学特征,暗示与碰撞–后碰演化密切相关。至晚三叠世,215 Ma的A型花岗岩和鄂拉山中酸性陆相火山岩则标志着宗务隆造山带及邻区已全部进入了陆内造山阶段,标志着整个秦–祁地区基本进入主造山末期。

      (8)三叠纪以后(<201 Ma),祁连山和柴北缘地区岩浆活动微弱,预示了主造山期已基本结束。

      致谢:成文过程中西安地质调查中心王永和正高级工程师和西北大学张成立教授给予了许多有益指导,王涛研究员、李猛高级工程师也提供了部分建议,在此表示感谢。

    • 图  1   祁连山–柴北缘地区侵入岩地质简图(据徐学义等,2019王永和等,2019

      Figure  1.   Geological map of the intrusions in Qinlian mountains and northern margin of Qaidam

      图  2   祁连山–柴北缘地区不同构造单元侵入岩年龄分布特征图

      a.北祁连地区;b.中祁连地区;c.南祁连地区;d.宗务隆地区;e.柴北缘地区

      Figure  2.   Temporal distribution of the intrusions from different tectonic units in Qilian mountains and northern margin of Qaidam

      图  3   祁连山–柴北缘地区中酸性和基性侵入岩年代学统计图

      a.中酸性侵入岩;b.基性侵入岩

      Figure  3.   Chronological map of intermediate–acid and basic intrusive rocks in Qilian mountains and northern margin of Qaidam

      图  4   祁连山及邻区元古代侵入岩岩石类型图

      a. SO2–(Na2O+K2O)图(底图据Middlemost,1994Irvine et al.,1971);b. ANK–ACNK图(底图据Shand, 1943);c. SO2–K2O图(底图据Richwood, 1989);d. Y–Sr/Y图与(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO图(底图据Whalen et al., 1987);数据引自董国安等(2007)胡能高等(2007)秦海鹏等(2012)Tung等(2013)Wang(2015)李猛等(2015)Yang等(2016)陶刚等(2017)

      Figure  4.   The rock type diagrams of Proterozoic intruisons from Qilian and its adjacent regions

      图  5   祁连山及邻区元古代侵入岩同位素特征图

      a. 岩体age–εNd(t)图;b. 锆石age–εHf(t)和Hf同位素二阶段模式年龄分布图;数据引自胡能高等(2007)Tung等(2013)Wang (2015)Yang等(2016)

      Figure  5.   The diagrams of isotopic characteristics for the Proterozoic intruisons from Qilian and its adjacent regions

      图  6   祁连山及邻区元古代侵入岩稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b).

      标准化数据据Taylor等(1985)Sun等(1989);数据引自董国安等(2007)胡能高等(2007)秦海鹏等(2012)Tung等(2013)Wang(2015)李猛等(2015)Yang等(2016)陶刚等(2017)

      Figure  6.   (a) Chondrite–normalized REE distribution patterns and (b) Primitive mantle–normalized trace elements spider diagram for Proterozoic intruisons from Qilian and its adjacent regions

      图  7   祁连山及邻区元古代中酸性侵入岩构造环境判别图

      a.(Y+Nb)–Rb图;b.(Yb+Ta)–Rb图(底图据Pearce et al.,1984);数据引自董国安等(2007)胡能高等(2007)秦海鹏等(2012)Tung等(2013)Wang(2015)李猛等(2015)Yang等(2016)陶刚等(2017)

      Figure  7.   Tectonoc environment discrimination diagrams of Proterozoic intruisons from Qianlian and its adjacent regions

      图  8   祁连山及邻区寒武纪和奥陶纪侵入岩岩石类型判别图

      a. 寒武纪侵入岩SO2–(Na2O+K2O)图;b. 寒武纪侵入岩SO2–K2O图;c.奥陶纪侵入岩 SO2–(Na2O+K2O)图;d. 奥陶纪侵入岩SO2–K2O图;a、c底图据Middlemost(1994)Irvine等(1971);b、d.底图据Richwood(1989);寒武纪侵入岩数据引自吴才来等(20042010)秦海鹏等(2014a)黄增保等(2014)王建等(2018)Pan等(2020)Fu等(2020);奥陶纪侵入岩数据引自 毛景文等(2000)吴才来等(2004200620072008)苏建平等(2004)雍拥等(2008)陈隽璐等(2008)秦海鹏等(20122014b)齐瑞荣等(2012)黄增保等(2015)Yang等(2015)郭周平等(2015)崔加伟等(2016))、Yang等(2016)白赟等(2017))、Wang 等(2017)Wang等(2018)计波等(2019)Pan 等(2020)Niu等(2021))和Gao等(2022)

      Figure  8.   Rock type diagrams of the Cambrian and Ordovician intruisons from Qilian and its adjacent regions

      图  9   祁连山及邻区寒武纪侵入岩和奥陶纪侵入岩岩石成因类型图

      a. 寒武纪侵入岩ANK–ACNK图;b.寒武纪侵入岩(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO图 ;c.奥陶纪侵入岩 ANK–ACNK图;d.奥陶纪侵入岩(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO图 ;a、c.底图据Shand(1943);b、d.底图据Whalen等(1987);寒武纪侵入岩数据引自吴才来等(20042010)秦海鹏等(2014a)黄增保等(2014)王建等(2018)Pan等(2020)Fu等(2020);奥陶纪侵入岩数据引自 毛景文等(2000)吴才来等(2004200620072008)苏建平等(2004)雍拥等(2008)陈隽璐等(2008)秦海鹏等(20122014b)齐瑞荣等(2012)黄增保等(2015)Yang等(2015)郭周平等(2015)崔加伟等(2016))、Yang等(2016)白赟等(2017))、Wang 等(2017)Wang等(2018)计波等(2019)Pan 等(2020)Niu等(2021))和Gao等(2022)

      Figure  9.   Petrogenetic type diagrams of the Cambrian and Ordovician intruisons from Qilian and its adjacent regions

      图  10   祁连山及邻区寒武纪侵入岩和奥陶纪侵入岩稀土元素球粒陨石标准化图及微量元素原始地幔标准化图

      a、b.寒武纪侵入岩;c、d.奥陶纪侵入岩;标准化数据引自Taylor等 (1985)Sun等(1989);寒武纪侵入岩数据引自吴才来等(20042010)秦海鹏等(2014a)黄增保等(2014)王建等(2018)Pan等(2020)Fu等(2020);奥陶纪侵入岩数据引自 毛景文等(2000)吴才来等(2004200620072008)苏建平等(2004)雍拥等(2008)陈隽璐等(2008)秦海鹏等(20122014b)齐瑞荣等(2012)黄增保等(2015)Yang等(2015)郭周平等(2015)崔加伟等(2016))、Yang等(2016)白赟等(2017))、Wang 等(2017)Wang等(2018)计波等(2019)Pan 等(2020)Niu等(2021))和Gao等(2022)

      Figure  10.   Chondrite–normalized REE distribution patterns and Primitive mantle–normalized trace elements spider diagram for the Cambrian and Ordovician intruisons from Qilian and its adjacent regions

      图  11   祁连山及邻区寒武纪侵入岩和奥陶纪侵入岩构造环境判别图

      a. 寒武纪侵入岩(Y+Nb)–Rb图;b. 寒武纪侵入岩(Y+Ta)–Rb图;c. 奥陶纪侵入岩(Y+Nb)–Rb图;d. 奥陶纪侵入岩(Y+Ta)–Rb图;底图据Pearce等(1984); 寒武纪侵入岩数据引自吴才来等(20042010)秦海鹏等(2014a)黄增保等(2014)王建等(2018)Pan等(2020)Fu等(2020);奥陶纪侵入岩数据引自 毛景文等(2000)吴才来等(2004200620072008)苏建平等(2004)雍拥等(2008)陈隽璐等(2008)秦海鹏等(20122014b)齐瑞荣等(2012)黄增保等(2015)Yang等(2015)郭周平等(2015)崔加伟等(2016))、Yang等(2016)白赟等(2017))、Wang 等(2017)Wang等(2018)计波等(2019)Pan 等(2020)Niu等(2021))和Gao等(2022)

      Figure  11.   Tectonic environment discrimination diagrams of the Cambrian and Ordovician intruisons from Qilian and its adjacent regions

      图  12   祁连山及邻区寒武纪侵入岩和奥陶纪侵入岩同位素特征图

      a.寒武纪侵入岩age–εNd(t)图;b.寒武纪侵入岩Hf同位素二阶段模式年龄分布图;c.奥陶纪侵入岩age–εNd(t)图;d.奥陶纪侵入岩Hf同位素二阶段模式年龄分布图;寒武纪侵入岩数据自数据引自吴才来等(2010)秦海鹏等(20122014a)Fu等(2020)Pan等(2020);奥陶纪侵入岩数据引自吴才来等(2008)雍拥等(2008)秦海鹏等(20122014b)郭周平等(2015)Yang等(20152016)崔加伟等(2016)Wang等(2017)白赟等(2017)Wang等(2018)Pan等(2020)Gao等(2022)

      Figure  12.   Isotopic characteristic diagrams of the Cambrian and Ordovician intruisons from Qilian and its adjacent regions

      图  13   祁连山及邻区志留纪侵入岩岩石类型图

      a. SO2–(Na2O+K2O)图(底图据Middlemost,1994Irvine et al.,1971);b. ANK–ACNK图)(底图据Shand, 1943); c. SO2–K2O图 (底图据Richwood,1989) ;d. Y–Sr/Y图和(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO图(底图据Whalen et al.,1987);数据引自王金荣等(2008)吴才来等(2010)李建锋等(2010)赵国斌等(2013)Yang等(201520162020)师江朋等(2015)Wang等(20172018)Li等(2017)Zhao等(2017)张海瑞等(2019)Pan等(2020)Niu等(2021)李冰等(2022)

      Figure  13.   Rock type diagrams of the Silurian intruisons from Qilian and its adjacent regions

      图  14   祁连山及邻区志留纪侵入岩同位素特征图

      a. 岩体age–εNd(t)图;b. 锆石age–εHf(t)和Hf同位素二阶段模式年龄分布图;数据引自王金荣等(2008)吴才来等(2008)秦海鹏等(2012)Chen等(2012)熊子良等(2012)赵国斌等(2013)Yang等(20152016)Li等(2017)Zhao等(2017)Wang等(2017)张海瑞等(2019)Niu等(2021)

      Figure  14.   Isotopic characteristic diagrams of the Silurian intruisons from Qilian and its adjacent regions

      图  15   祁连山及邻区志留纪侵入岩稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b)

      标准化数据分别引自Taylor等(1985)Sun等(1989);数据引自王金荣等(2008)吴才来等(2010)李建锋等(2010)赵国斌等(2013)Yang等(201520162020)师江朋等(2015)Wang等(20172018)Li等(2017)Zhao等(2017)张海瑞等(2019)Pan等(2020)Niu等(2021)李冰等(2022)

      Figure  15.   (a) Chondrite–normalized REE distribution patterns, and (b) Primitive mantle–normalized trace elements spider diagram for the Silurian intruisons from Qilian and its adjacent regions

      图  16   祁连山及邻区志留纪中酸性侵入岩构造环境判别图

      a.(Y+Nb)–Rb图;b.(Yb+Ta)–Rb图;底图据Pearce等(1984);数据引自王金荣等(2008)吴才来等(2010)李建锋等(2010)赵国斌等(2013)Yang等(201520162020)师江朋等(2015)Wang等(20172018)Li等(2017)Zhao等(2017)张海瑞等(2019)Pan等(2020)Niu等(2021)李冰等(2022)

      Figure  16.   Tectonic environment discrimination diagrams of the Silurian intruisons from Qianlian and its adjacent region

      图  17   祁连山及邻区泥盆纪侵入岩岩石类型图

      a. SO2–(Na2O+K2O)图 (底图据Middlemost,1994Irvine et al.,1971);b. ANK–ACNK图(底图据Shand, 1943);c. SO2–K2O 图(底图据Richwood,1989);d. Y–Sr/Y图和(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO 图(底图据Whalen et al.,1987); 数据引自吴才来等(20042007200820102014)李建锋等(2010)Wang等(2014)罗志文等(2015)周争艳等(2015)黄增保等(2018)Sun等(2020).

      Figure  17.   Rock type diagrams of the Devonian intruisons from Qilian and its adjacent regions.

      图  18   祁连山及邻区泥盆纪侵入岩同位素特征图

      a. 岩体age–εNd(t)图;b. 锆石age–εHf(t)和Hf同位素二阶段模式年龄分布图;数据引自吴才来等(200720082014)李建锋等(2010)熊子良等(2012)Wang等(2014)黄增保等(2018)Sun等(2020)

      Figure  18.   Isotopic characteristic diagrams of the Devonian intrusions from Qilian and its adjacent regions

      图  19   祁连山及邻区泥盆纪侵入岩稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b)

      标准化数据引自Taylor等(1985)Sun等(1989) ; 数据引自吴才来等(20042007200820102014)李建锋等(2010)Wang等(2014)罗志文等(2015)周争艳等(2015)黄增保等(2018)Sun等(2020)

      Figure  19.   (a) Chondrite–normalized REE distribution patterns, and (b) Primitive mantle–normalized trace elements spider diagram for the Devonian intruisons from Qilian and its adjacent regions

      图  20   祁连山及邻区泥盆纪中酸性侵入岩构造环境判别图

      a.(Y+Nb)–Rb图;b.(Yb+Ta)–Rb图;底图据Pearce等(1984); 数据引自吴才来等(20042007200820102014)李建锋等(2010)Wang等(2014)罗志文等(2015)周争艳等(2015)黄增保等(2018)Sun等(2020)

      Figure  20.   Tectonic environment diagrams of the Devonian intruisons from Qianlian and its adjacent region

      图  21   祁连山及邻区二叠纪至侏罗纪侵入岩岩石类型图

      a. SO2–(Na2O+K2O)图(底图据Middlemost,1994Irvine et al.,1971);b. ANK–ACNK图(底图据Shand, 1943);c. SO2–K2O图 (底图据Richwood,1989);d. Y–Sr/Y图和(Zr+Nb+Ce+Y)–(K2O+Na2O)/CaO图(底图据Whalen et al.,1987); 数据引自张宏飞等(2006)吴才来等(2008)郭安林等(2009)周争艳等(2015)胡万龙等(2016)Li等(2017)张越等(2018)Wu等(2019)

      Figure  21.   Rock type diagrams of the Permian–Jurassic intruisons from Qilian and its adjacent regions.

      图  22   祁连山及邻区二叠纪—侏罗纪侵入岩同位素特征图.

      a. 岩体age–εNd(t)图;b. Nd同位素二阶段模式年龄分布图;数据引自张宏飞等(2006)Zhang等(2006)吴才来等(2008)胡万龙等(2016)Li等(2017)Wu等(2019)

      Figure  22.   Isotopic characteristic diagrams of the Permian–Jurassic intruisons from Qilian and its adjacent regions

      图  23   祁连山及邻区二叠纪—至三叠纪侵入岩稀土元素球粒陨石标准化图(a、c)和微量元素原始地幔标准化图(b、d)

      a、b. 二叠纪侵入岩;c、d. 三叠纪侵入岩;标准化数据分别引自Taylor等(1985)Sun等(1989); 数据引自张宏飞等(2006)吴才来等(2008)郭安林等(2009)周争艳等(2015)胡万龙等(2016)Li等(2017)张越等(2018)Wu等(2019)

      Figure  23.   (a, c) Chondrite–normalized REE distribution patterns, and (b, d) Primitive mantle–normalized trace elements spider diagram for the Permian–Triassic intruisons from Qilian and its adjacent regions

      图  24   祁连山及邻区中二叠纪—侏罗纪中酸性侵入岩构造环境判别图

      a.(Y+Nb)–Rb图;b.(Yb+Ta)–Rb图 ;底图据Pearce等(1984); 数据引自张宏飞等(2006)吴才来等(2008)郭安林等(2009)周争艳等(2015)胡万龙等(2016)Li等(2017)张越等(2018)Wu等(2019)

      Figure  24.   Tectonic environment discrimination diagrams of the Permian–Jurassic intruisons from Qianlian and its adjacent region

    • 白赟, 郭周平, 赵辛敏. 2017. 北祁连浪力克地区毛藏花岗闪长岩年代学、Hf同位素及地球化学特征[J]. 矿床地质, 36(1): 158-170 doi: 10.16111/j.0258-7106.2017.01.010

      BAI Yun, GUO Zhouping, ZHAO Xinmin. 2017. Geochronology, Hf isotopic and geochemical characteristics of Maozang granodiorite in Langlike area, North Qilian Mountain [J]. Mineral Deposits, 36(1): 158-170. doi: 10.16111/j.0258-7106.2017.01.010

      曾建元, 杨宏仪, 万渝生, 等. 2006. 北祁连山变质杂岩中新元古代(~775 Ma)岩浆活动纪录的发现: 来自SHRIMP锆石U-Pb定年的证据[J]. 科学通报, 51(5): 575-581 doi: 10.3321/j.issn:0023-074X.2006.05.012

      CENG Jianyuan, YANG Hongyi, WAN Yusheng, et al. 2006. Discovery of Neoproterozoic (~ 775 Ma) magmatism in the North Qilian metamorphic complex: Evidence from SHRIMP zircon U-Pb dating [J]. Chinese Science Bulletin, 51(5): 575-581. doi: 10.3321/j.issn:0023-074X.2006.05.012

      曾建元, 杨怀仁, 杨宏仪, 等. 2007. 北祁连东草河蛇绿岩: 一个早古生代的洋壳残片[J]. 科学通报, 52(7): 825-835 doi: 10.3321/j.issn:0023-074X.2007.07.017

      CENG Jianyuan, YANG Huairen, YANG Hongyi, et al. 2007. Dongcaohe ophiolite in north Qilian Mountains: A remnant of Early Paleozoic oceanic crust [J]. Chinese Science Bulletin, 52(7): 825-835. doi: 10.3321/j.issn:0023-074X.2007.07.017

      陈隽璐, 何世平, 王洪亮, 等. 2006. 秦岭-祁连造山带接合部位基性岩墙的LA-ICPMS锆石U-Pb年龄及地质意义[J]. 岩石矿物学杂志, 25(6): 455-462 doi: 10.3969/j.issn.1000-6524.2006.06.001

      CHEN Junlu, HE Shiping, WANG Hongliang, et al. 2006. Zircon LA-ICPMS U-Pb age of mafic dykes in the area between the Qinling and the Qilian orogenic belts and its geological implications [J]. Acta Petrologica et MIneralogica, 25(6): 455~462. doi: 10.3969/j.issn.1000-6524.2006.06.001

      陈隽璐, 徐学义, 曾佐勋, 等. 2008. 中祁连东段什川杂岩基的岩石化学特征及年代学研究[J]. 岩石学报, 24(4): 841-854

      CHEN Junlu, XU Xueyi, ZENG Zuoxun, et al. 2008. Geochemical characters and LA-ICPMS zircon U-Pb dating constraints on the petrogenesis and tectonic setting of the Shichuan intrusion, east segment of the Central Qilian, NW China[J]. Acta Petrologica Sinica, 24(4): 841-854.

      陈能松, 王勤燕, 陈强, 等. 2007b. 柴达木和欧龙布鲁克陆块基底的组成和变质作用及中国中西部古大陆演化关系初探. 地学前缘, 14(1): 43-55.

      CHEN Nengsong, WANG Qinyan, CHEN Qiang, et al. 2007b. Components and metamorphism of the basements of the Qaidam and Oulongbuluke micro-continental blocks, and a tentative interpretation of paleocontinental evolution in NW-Central China [J]. Earth Science Frontiers, 14(1): 43-5.

      陈能松, 王新宇, 张宏飞, 等. 2007a. 柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成: 基底性质和构造属性启示. 地球科学, 32(1): 7-21

      CHEN NengSong, WANG Xinyu, ZHANG Hongfei, et al. 2007a. Geochemistry and Nd-Sr-Pb Isotopic Compositions of Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constraints on Basement Nature and Tectonic Affinity [J]. Earth Science, 32(1): 7-21.

      陈宣华, 邵兆刚, 熊小松, 等. 2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 46(5): 995-1020 doi: 10.12029/gc20190504

      CHEN Xuanhua, SHAO Zhaogang, XIONG XiaoSong, et al. 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China [J]. Geology in China, 46(5): 995-1020. doi: 10.12029/gc20190504

      程婷婷, 牛漫兰, 吴齐, 等. 2015. 柴北缘察汗诺辉长岩成因: 岩石地球化学、锆石U-Pb年代学与Lu-Hf同位素制约[J]. 地质科学, 50(3): 741-755 doi: 10.3969/j.issn.0563-5020.2015.03.005

      CHENG Tingting, NIU Manlan, WU Qi, et al. 2015. Petrogenesis of the Chahannuo gabbro on the northern margin of Qaidam Basin: Constraint from geochemistry, zircon U-Pb dating and Lu-Hf isotopes [J]. Chinese Journal of Geology, 50(3): 741-755. doi: 10.3969/j.issn.0563-5020.2015.03.005

      崔加伟, 郑有业, 孙祥, 等. 2016. 青海省赛支寺花岗闪长岩及其暗色包体成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约[J]. 地球科学, 41(7): 1156-1170

      CUI Jiawei, ZHENG Youye, SUN Xiang, et al. 2016. Origin of granodiorite and mafic microgranular enclave in Saizhisi, Qinghai province: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic constraints [J]. Earth Science, 41(7): 1156-1170.

      董增产, 辜平阳, 焦和, 等. 2014. 柴北缘西端冷湖盐场北山辉长岩地球化学及年代学研究[J]. 地质科学, 49(4): 1132-1149 doi: 10.3969/j.issn.0563-5020.2014.04.007

      DONG Zengchan, GU Pingyang, JIAO He, et al. 2014. Geochemistry and chronology of Yanchangbeishan gabrro in Lenghu area at the west segment of the north margin of Qaidam [J]. Chinese Journal of Geology, 49(4): 1132-1149. doi: 10.3969/j.issn.0563-5020.2014.04.007

      董国安, 杨怀仁, 杨宏仪, 等. 祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义 [J].科学通报, 2007, 52(13): 1572–1585.

      DONG Guoan, YANG Huairen, YANG Hongyi, et al. SHRIMP U-Pb Geochronology of the Zircons from the Precambrian Basement of the Qilian Block and Its Geological Significances[J]. Chinese Science Bulletin, 2007, 52(19): 2687−2701.

      樊新祥, 孔维琼, 杨镇熙, 等. 2020. 北祁连造山带西段车路沟岩体U-Pb年代学、地球化学特征及岩石成因[J]. 中国地质, 47(3): 755-766 doi: 10.12029/gc20200314

      FAN Xinxiang, KONG Weiqiong, YANG Zhenxi, et al. 2020. U-Pb chronology, geochemical characteristics and petrogenesis of the Chelugou pluton in the western part of north Qilian orogenic belt [J]. Geology in China, 47(3): 755-766. doi: 10.12029/gc20200314

      冯益民, 何世平. 祁连山大地构造与造山作用[M]. 北京: 地质出版社, 1996

      FENG Yimin, HE Shiping. Geotectonics and orogeny of the Qilian Mountains [M]. Beijing: Geological Publishing House, 1996.

      冯益民, 李智佩, 陈隽璐, 等. 中国西北部大地构造图(1: 2000 000)[M]. 北京: 地质出版社, 2021

      FENG Yimin, LI Zhipei, CHEN Junlu, et al. Geotectonic map of Northwest China (scale: 1: 2000000)[M]. Beijing: Geological Publishing House, 2021.

      付长垒, 闫臻, 郭现轻, 等. 2014. 拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄[J]. 岩石学报, 30(6): 1695-1706

      FU Changlei, YAN Zhen, GUO Xianqing, et al. 2014. Geochemistry and SHRIMP zircon U-Pb age of diabases in the Lajishankou ophiolitic mélange, South Qilian terrane [J]. Acta Petrologica Sinica, 30(6): 1695-1706.

      付长垒, 闫臻, 王宗起, 等. 2018. 南祁连拉脊山口增生楔的结构与组成特征. 岩石学报, 34(7): 2049-2064

      FU Changlei, YAN Zhen, WANG Zongqi, et al. 2018. Texture and composition of the Lajishankou accretionary wedge of the South Qilian belt, NW China [J]. Acta Petrologica Sinica, 34(7): 2049-2064.

      郭安林, 张国伟, 强娟, 等. 2009. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报, 25(1): 1-12

      GUO Anlin, ZHANG Guowei, QIANG Juan, et al. 2009. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai-Tibet plateau[J]. Acta Petrologica Sinica, 25(1): 1-12.

      郭周平, 李文渊, 张照伟, 等. 2015. 南祁连化隆地区鲁满山花岗岩的岩石成因: 地球化学、锆石U-Pb年代学及Hf同位素约束[J]. 中国地质, 42(4): 864-880

      GUO Zouping, LI Wenyuan, ZHANG Zhaowei, et al. 2015a. Petrogenisis of Lumanshan granites in Hualong area of southern Qilian Mountain: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotope [J]. Geology in China, 42(4): 864-880.

      何世平, 王洪亮, 陈隽璐, 等. 中祁连马衔山岩群内基性岩墙群锆石LA-ICP-MS U-Pb年代学及其构造意义[J]. 地球科学—中国地质大学学报, 2008, 33(1): 35-45.

      HE Shiping. WANG Hongliang, CHEN Junlu, et al. LA-ICP-MS U-Pb Zircon geochronology of basic dikes within Maxianshan rock Group in the central Qilian orogenic belt and its tectonic implications [J]. Journal of China University of Geosciences, 2008, 33(1): 35-45.

      何世平, 王洪亮, 徐学义, 等. 2007. 北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb年代学及其地质意义[J]. 地球科学进展, 22(2): 143-151.

      HE Shiping, WANG Hongliang, XU Xueyi, et al. 2007. A LA-ICP-MS U-Pb chronological study of zircons from Hongtubu basic volcanic rocks and its geological significance in the east segment of north Qilian orogenic belt [J]. Advances in Earth Science, 22(2):143-151.

      侯荣娜, 王淑华, 张翔, 等. 2015. 中祁连西段花岗岩类的地球化学特征及构造意义[J]. 地球科学进展, 30(9): 1034 -1049. .

      HOU Rongna, WANG Shuhua, ZHANG Xiang, et al. 2015. Geochemical Characteristics and Tectonic Significance of the Granotoids in the Western Section of the Mid-Qilian [J]. Advances in Earth Science, 30(9): 1034 -1049

      胡能高, 王晓霞, 孙延贵, 等. 2007. 柴北缘元古宙鹰峰环斑花岗岩及其共生岩石的地球化学特征、成因及地质意义[J]. 地质论评, 53(4): 460-472

      HU Nenggao, WANG Xiaoxia, SUN Yangui, et al. 2007. The geochemistry features, origin of the Yingfeng rapakivi granite and its associated rocks in north Qaidam Basin and the geological significance [J]. Geological Review, 53(4): 460-472.

      胡万龙, 贾志磊, 王金荣, 等. 2016. 南祁连化石沟花岗岩年代学、地球化学特征及其构造意义[J]. 高校地质学报, 22(2): 242-253 doi: 10.16108/j.issn1006-7493.2015153

      HU Wanlong, JIA Zhilei, WANG Jinrong, et al. 2016. Geochronology and geochemistry characteristics of the granites from the Huashigou area, South Qilian and their tectonic significance [J]. Geological Journal of China Universities, 22(2): 242-253. doi: 10.16108/j.issn1006-7493.2015153

      黄增保, 郑建平, 李葆华, 等. 2014. 中祁连西段晚寒武世埃达克岩的发现及地质意义[J]. 岩石矿物学杂志, 33(6): 1008-1018 doi: 10.3969/j.issn.1000-6524.2014.06.002

      HUANG Zengbao, ZHENG Jianping, LI Baohua, et al. 2014. The discovery of Late Cambrian adakite in the western Central Qilian Mountain and its geological implications [J]. Acta Petrologica et Mineralogica, 33(6): 1008-1018. doi: 10.3969/j.issn.1000-6524.2014.06.002

      黄增保, 郑建平, 李葆华, 等. 2018. 北祁连干沙鄂博矿区碱性岩锆石U- Pb年龄、Hf同位素及岩石地球化学特征[J]. 地质学报, 92(12): 2420-2436 doi: 10.3969/j.issn.0001-5717.2018.12.004

      HUANG Zengbao, ZHENG Jianping, LI Baohua, et al. 2018. U- Pb Ages, Hf isotopic composition and geochemistry of alkaline complex from the Ganshaebo Ree deposit in north Qilian Mountains, China [J]. Acta Geologica Sinica, 92(12): 2420-2436. doi: 10.3969/j.issn.0001-5717.2018.12.004

      黄增保, 郑建平, 李葆华, 等.中祁连西段野马山岩基年代学、地球化学特征及地质意义[J]. 中国地质, 2015, 42(2): 406−420.

      HUANG Zengbao, ZHENG Jianping, LI Baohua, et al. Geochronology and geochemistry of Yemashan batholiths in western Central Qilian and its tectonic implications[J]. Geology in China, 2015, 42(2): 406−420.

      计波, 黄博涛, 李向民, 等. 2019. 南祁连西北缘肃北红庙沟地区早奥陶世花岗岩年代学、地球化学特征及其地质意义. 西北地质, 52(4): 63-75

      JI Bo, HUANG Botao, LI Xiangmin, et al. 2019. Geochronology and geochemical characteristics of the Early Ordovician granite from Hongmiaogou area in northwest margin of south Qilian and its geological significance [J]. Northwestern Geology, 52(4): 63-75.

      李冰, 陈宣华, 王增振, 等. 2022. 南祁连哈拉湖地区早古生代岩浆侵入事件及其构造热演化历史. 岩石学报, 38(3): 793-812

      LI Bing, CHEN Xuanhua, WANG Zengzhen, et al. 2022. The Early Paleozoic intrusive magmatism and tectonic thermal evolution in the Hala Lake area, southern Qilian, NW China [J]. Acta Petrologica Sinica, 38(3): 793-812.

      李建兵, 万世昌, 李镇宏. 2017. 柴北缘阿木尼克地区晚古生代牦牛山组火山岩地质地球化学特征及其地质意义[J]. 西北地质, 50(3): 47-53 doi: 10.3969/j.issn.1009-6248.2017.03.006

      LI Jianbing, WAN Shichang, LI Zhenhong. 2017. Geological and Geochemistry Characteristics of Volcanics in the Late Paleozoic Maoniushan Formation in Amunike Area of Northern Qaidam Basin[J]. Northwestern Geology, 50(3): 47-53. doi: 10.3969/j.issn.1009-6248.2017.03.006

      李建锋, 张志诚, 韩宝福. 2010. 中祁连西段肃北、石包城地区早古生代花岗岩年代学、地球化学特征及其地质意义[J]. 岩石学报, 26(8): 2431–2444

      Li Jianfeng, Zhang Zhicheng, Han Baofu. 2010. Geochronology and geochemistry of Early Paleozoic granitic plutons from Subei and Shibaocheng areas, the western segment of Central Qilian and their geological implications [J]. Acta Petrologica Sinica, 26(8): 2431-2444.

      李猛, 王超, 李荣社, 等. 2015. 祁连山西段新元古代晚期花岗质片麻岩成因及LA-ICP-MS锆石U-Pb定年[J]. 地质通报, 34(08): 1438-1446 doi: 10.3969/j.issn.1671-2552.2015.08.004

      LI Meng, WANG Chao, LI Rongshe, et al. 2015. Petrogenesis and LA-ICP-MS zircon U-Pb dating of Late Neoproterozoic granitic gneisses in western Qilian Mountain [J]. Geological Bulletin of China, 34(08): 1438-1446. doi: 10.3969/j.issn.1671-2552.2015.08.004

      李五福, 张新远, 曹锦山, 等. 2020. 南祁连哈拉湖地区中奥陶世花岗岩地球化学特征及年代学意义[J]. 地质通报, 39(2-3): 215-223

      LI Wufu, ZHANG Xinfu, CAO Jinshan, et al. 2020. Geochemical characteristics and chronological significance of Middle Ordovician granite in Halahu area of southern Qilian Mountain [J]. Geological Bulletin of China, 39(2-3): 215-223.

      李晓彦, 陈能松, 夏小平, 等. 2007. 莫河花岗岩的锆石U-Pb和Lu-Hf同位素研究: 柴北欧龙布鲁克微陆块始古元古代岩浆作用年龄和地壳演化约束[J]. 岩石学报, 23(2): 513-522 doi: 10.3969/j.issn.1000-0569.2007.02.027

      LI Xiaoyan, CHEN Nengsong, XIA Xiaoping, et al. 2007. Constraints on timing of the Early Paleoproterozoic magmatism and crustal evolution of the Oulongbuluke microcontinent: U-Pb and Lu-Hf isotope systematics of zircons from Mohe granitic pluton [J]. Acta Petrologica Sinica, 23(2): 513-522. doi: 10.3969/j.issn.1000-0569.2007.02.027

      廖华, 胡道功, 张绪教, 等. 2014. 南祁连奥陶纪花岗岩锆石U-Pb年龄及地质意义[J]. 地质力学学报, 20 (3): 292-298 doi: 10.3969/j.issn.1006-6616.2014.03.008

      LIAO Hua, HU Daogong, ZHANG XuJiao, et al. 2014. Zircon U-Pb age for granite of the Ordovician formation and its tectonic significance in the southern Qilian [J]. Journal of Geomechanics, 20 (3): 292-298. doi: 10.3969/j.issn.1006-6616.2014.03.008

      廖宇斌, 李碧乐, 孙永刚, 等. 2020. 柴达木盆地北缘锡铁山铅锌矿区辉长岩锆石U-Pb年代、岩石地球化学和Hf同位素特征[J]. 世界地质, 39(3): 495-508 doi: 10.3969/j.issn.1004-5589.2020.03.001

      LIAO Yubin, LI Bile, SUN Yonggang, et al. 2020. Zircon U-Pb age, petrochemistry and Hf isotope characteristics of gabbro in Xitieshan Pb-Zn mining area in northern margin of Qaidam Basin [J]. Global Geology, 39(3): 495-508. doi: 10.3969/j.issn.1004-5589.2020.03.001

      林慈銮, 孙勇, 陈丹玲, 等. 2006. 柴北缘鱼卡河花岗质片麻岩的地球化学特征和锆石LA-ICPMS定年[J]. 地球化学, 35(05): 489-505 doi: 10.3321/j.issn:0379-1726.2006.05.004

      LIN Ciluan, SUN Yong, CHEN Danling, et al. 2006. Geochemistry and zircon LA-ICPMS dating of Iqe River granitic gneiss, northern margin of Qaidam Basin [J]. Geochimica, 35(05): 489-505. doi: 10.3321/j.issn:0379-1726.2006.05.004

      刘建栋, 李五福, 王国良, 等. 2022. 北祁连东段柏木峡—门岗峡地区蛇绿岩的识别及其区域构造意义[J]. 现代地质, 36(01): 244-258 doi: 10.19657/j.geoscience.1000-8527.2020.047

      LIU Jiandong, LI Wufu, WANG Guoliang, et al. 2022. Identification of ophiolites in the Baimuxia-mengangxia area in the eastern part of the north Qilian Mountains and their regional tectonic significance [J]. Geoscience, 36(01): 244-258. doi: 10.19657/j.geoscience.1000-8527.2020.047

      刘晓涛, 董国强, 严镜, 等. 2014. 甘肃肃北三个洼塘岩体岩石地球化学特征及构造环境分析[J]. 新疆地质, 32(1): 118-124

      LIU Xiaotao, DONG Guoqiang, YAN Jing, et al. 2014. Tectonic Setting and Geochemical Characteristics of the Sangewatang Pluton in Subei County, Gansu [J]. XinJiang Geology, 32(1): 118-124.

      卢欣祥, 尉向东, 肖庆辉, 等. 1999. 秦岭环斑花岗岩的年代学研究及其意义[J]. 高校地质学报, 5(4): 372-377 doi: 10.16108/j.issn1006-7493.1999.04.002

      LU Xinxiang, WEI Xiangdong, XIAO Qinghui, et al. 1999. Geochronologlcal Studies of Rapakivi Granites in Qinling and its Geological Implications [J]. Geological Journal of China Universities, 5(4): 372-377. doi: 10.16108/j.issn1006-7493.1999.04.002

      罗志文, 张志诚, 李建锋, 等. 2015. 中南祁连西缘肃北三个洼塘地区古生代两类花岗质侵入岩年代学及其地质意义[J]. 岩石学报, 31(1): 176-188

      LUO Zhiwen, ZHANG Zhicheng, LI Jianfeng, et al. 2015. Geochronology of two kinds of Paleozoic granitic plutons from Sangewatang in Subei, the western margin of Central-South Qilian and their geological implications [J]. Acta Petrologica Sinica, 31(1): 176-188.

      毛景文, 张招崇. 2000. 甘肃肃北野牛滩含钨花岗质岩岩石学, 矿物学和地球化学研究[J]. 地质学报, 74(2): 142-155

      MAO Jingwen, ZHANG Zhaochong. 2000. The Study on Petrology, Mineralogy and Geochemistry of tungsten-bearing granitic rocks in the Yeniutan, Subei County, Gansu Province [J]. Acta Geologica Sinica, 74(2): 142-155.

      孟繁聪, 张建新, 郭春满, 等. 2010. 大岔大坂MOR型和SSZ型蛇绿岩对北祁连洋演化的制约[J]. 岩石矿物学杂志, 29(5): 453~466 doi: 10.3969/j.issn.1000-6524.2010.05.001

      MENG Fancong, ZHANG Jianxin, GUO Chunman, et al. 2010. Constraints on the evolution of the North Qilian ocean basin: MOR-type and SSZ-type ophiolites from Dachadaban [J]. Acta Petrologica et Mineralogica, 29(5): 453~466. doi: 10.3969/j.issn.1000-6524.2010.05.001

      齐瑞荣. 2012. 中祁连西段巴嘎德尔基岩体LA-ICP-MS锆石U-Pb年龄及地质意义[J]. 沉积与特提斯地质, 32(4): 86-93

      QI Ruirong. 2012. LA-ICP-MS zircon U-Pb ages and geological implications for the Bagadeerji granitic plutons in the central Qilian Mountains, Gansu. Sedimentary Geology and Tethyan Geology, 32(4): 86-93.

      钱兵. 2017. 柴达木北缘东段呼德生镁铁-超镁铁质岩体锆石U-Pb年代学、地球化学及成岩成矿分析[J]. 地质与勘探, 53(5): 838-854

      QIAN Bing. 2017. Zircon U-Pb geochronology, geochemistry and metallogensis of the Hudesheng mafic-ultramafic intrusion in the eastern section of Northern Qaidam Basin [J]. Geology and Exploration, 53(5): 838-854

      秦海鹏. 北祁连造山带早古生代花岗岩岩石学特征及其与构造演化的关系[D]. 北京: 中国地质科学院, 2012

      QIN Haipeng. Petrology of early Paleozoic granites and their relation to tectonic evolution of orogen in the North Qilian Orogenic Belt [D]. Beijing: Chinese Academy of Geological Sciences, 2012.

      秦海鹏, 吴才来, 王次松, 等. 2014a. 北祁连下古城花岗岩体LA ICP MS锆石U Pb年代学及岩石化学特征[J]. 地质学报, 88(10): 1832-1842

      QIN Haipeng, WU Cailai, WANG Cisong, et al. 2014a. LA-ICP-MS Zircon U-Pb Geochronology and Geochemical Characteristical of Xiagucheng Granite in North Qilian [J]. Acta Geologica Sinica, 88(10): 1832-1842.

      秦海鹏, 吴才来, 王次松, 等. 2014b. 祁连东部西格拉高Sr/Y型花岗岩LA-ICP-MS锆石U-Pb定年及其地球化学特征[J]. 岩石学报, 30(12): 3759-3771

      QIN Haipeng, WU Cailai, WANG Cisong, et al. 2014b. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of high Sr/Y-type granite from Xigela, Eastern Qilian area [J]. Acta Petrologica Sinica, 30(12): 3759-3771.

      青海省地质调查院. 玉龙滩幅J48E018001、抓什究幅J48E018002、贺尔幅J48E019001和桥头幅J48E019002 1/5万区域地质调查报告及分幅说明书, 2014.
      师江朋, 韩效忠, 乔树岩, 等. 2017. 南祁连北缘东段晚奥陶世构造演化: 多藏角闪辉长岩U-Pb年代学、岩石地球化学和矿物化学证据[J]. 地学前缘, 24(6): 46-59

      SHI Jiangpeng, HAN Xiaozhong, QIAO Shuyan, et al. 2017. The Late Ordovician tectonic evolution of the eastern section of the northern margin of the South Qilian Block: evidences from geochronology, geochemistry and mineral chemistry of the Duozang hornblende gabbro [J]. Earth Science Frontiers, 24(6): 46-59.

      师江朋, 霍腾飞, 来强, 等. 2015. 南祁连北缘东段早志留世刚察大寺花岗岩的成因——锆石LA-ICP-MS U-Pb年代学和岩石地球化学制约[J]. 地球学报, 36(6): 781-789 doi: 10.3975/cagsb.2015.06.10

      SHI Jiangpeng, HUO Tengfei, LAI Qiang, et al. 2015. Petrogenesis of Early Silurian Gangchadasi granites in the eastern segment of the northern South Qilian Block: constraints from LA-ICP-MS zircon U-Pb geochronology and geochemistry [J]. Acta Geoscience Sinica, 36(6): 781-789. doi: 10.3975/cagsb.2015.06.10

      史仁灯, 杨经绥, 吴才来, 等. 2004. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据[J]. 地质学报, 78(5): 649-657 doi: 10.3321/j.issn:0001-5717.2004.05.009

      SHI Rendeng, YANG Jingsui, WU Cailai, et al. 2004. First Shrimp dating for the formation of the Late Sinian Yushigou ophiolite, north Qilian Mountains [J]. Acta Geologica Sinica, 78(5): 649-657. doi: 10.3321/j.issn:0001-5717.2004.05.009

      宋述光, 吴珍珠, 杨立明, 2019. 祁连山蛇绿岩带和原特提斯洋演化[J]. 岩石学报, 35(10): 2948-2970

      SONG Shuguang, WU Zhenzhu, YANG Liming, et al. 2019. Ophiolite belts and evolution of the Proto-Tethys Ocean in the Qilian Orogen [J]. Acta Petrologica Sinica, 35(10): 2948-2970.

      宋述光, 张聪, 李献华, 等. 2011. 柴北缘超高压带中锡铁山榴辉岩的变质时代[J]. 岩石学报, 27(4): 1191-1197

      SONG ShuGuang, ZHANG Cong, LI Xianhua, et al. 2011. HP/UHP metamorphic time of eclogite in the Xitieshan terrane, North Qaidam UHPM belt, NW China [J]. Acta Petrologica Sinica, 27(4): 1191-1197.

      宋泰忠, 刘建栋, 李杰, 等. 2016. 北祁连柏木峡地区辉长岩、玄武岩的LA-ICP-MS锆石U-Pb年龄及地质意义[J]. 西北地质, 2016, 49(4): 32-42

      SONG Taizhong, LIU Jiandong, LI Jie, et al. 2016. LA-ICP-MS Zircon U-Pb age of gabbro and basalt in the Baimuxia area of north Qilian and its geological significance [J]. Northwestern Geology, 49(4): 32-42.

      宋忠宝, 李文渊, 李怀坤, 等. 2007. 北祁连山石居里辉长岩的同位素年龄及其地质意义[J]. 地球学报, 28(1): 7-10 doi: 10.3321/j.issn:1006-3021.2007.01.002

      SONG Zhongbao, LI Wenyuan, LI Huaikun, et al. 2007. Isotopic age of Shijuli gabbro in north Qilian Mountain and its geological significance [J]. Acta Geoscience Sinica, 28(1): 7-10. doi: 10.3321/j.issn:1006-3021.2007.01.002

      苏建平, 胡能高, 张海峰, 等. 2004. 北祁连山西段吊大坂花岗片麻岩的锆石U-Pb年龄及地质意义[J]. 地质科技情报, 23(3): 11-14

      SU Jianping, HU Nenggao, ZHANG Haifu, et al. 2004. Single-zircon U-Pb dating and geological significance of the Diaodaban granitic gneiss in the western segment of north Qilian Mountains [J]. Geological Science and Technology Information, 23(3): 11-14.

      孙延贵, 张国伟, 王瑾, 等. 2004. 秦昆结合区两期基性岩墙群40Ar/39Ar定年及其构造意义[J]. 地质学报, 78(1): 65-71 doi: 10.3321/j.issn:0001-5717.2004.01.008

      SUN Yangui, ZHANG Guowei, WANG Jin, et al. 2004.40Ar/39Ar age of the basic sill swarms of two periods in the junction area of Qinling and Kunlun and its tectonic significance [J]. Acta Geologica Sinica, 78(1): 65-71. doi: 10.3321/j.issn:0001-5717.2004.01.008

      陶刚, 朱利东, 李智武, 等. 2017. 祁连地块西段硫磺矿北花岗闪长岩的岩石成因及其地质意义: 年代学、地球化学及Hf同位素证据[J]. 地球科学, 42(12): 2258-2275

      TAO Gang, ZHU Lidong, LI Zhiwu, et al. 2017. Petrogenesis and geological significance of the north Liuhuangkuang granodiorite in the west segment of the Qilian terrane: Evidences from geochronology, geochemistry, and Hf isotopes [J]. Earth Science, 42(12): 2258-2275.

      王秉璋, 张智勇, 张森琦, 等. 2000. 东昆仑东端苦海-赛什塘地区晚古生代蛇绿岩的地质特征[J]. 地球科学, 25(6): 592-598 doi: 10.3321/j.issn:1000-2383.2000.06.007

      WANG Bingzhang, ZHANG Zhiyong, ZHANG Senqi, et al. 2000. Geological features of lower paleozoic ophiolite in kuhai-saishitang region, eastern section of eastern Kunlun [J]. Earth Science, 25(6): 592-598. doi: 10.3321/j.issn:1000-2383.2000.06.007

      王国良, 叶占福, 祁生胜, 等. 2013. 北祁连龙王山晚志留世花岗岩LA-ICP-MS锆石U-Pb测年及其地球化学特征[J]. 矿产与地质, 27(6): 462-470 doi: 10.3969/j.issn.1001-5663.2013.06.006

      WANG Guoliang, YE Zhanfu, QI Shengsheng, et al. 2013. LA-ICPMS zircon U-Pb dating and geochemical characteristics of Late Silurian granite in Longwang Moutain of Northern Qilian [J]. Mineral Resources and Geology, 27(6): 462-470. doi: 10.3969/j.issn.1001-5663.2013.06.006

      王国强, 李向民, 余吉远, 等. 2018. 北祁连玉石沟蛇绿岩形成时代的上限——来自正长岩锆石U-Pb定年的证据. 地质通报, 37(4): 532-537

      WANG Guoqiang, LI Xiangmin, YU Jiyuan, et al. 2018. LA-ICP-MS zircon U-Pb dating of syenite from Yushigou in Northern QiLian Mountain. Geological Bulletin of China, 37(4): 532-537.

      王洪亮, 何世平, 陈隽璐, 等. 2007. 甘肃马衔山花岗岩杂岩体LA-ICPMS锆石U-Pb测年及其构造意义[J]. 地质学报, 81(1): 72-78 doi: 10.3321/j.issn:0001-5717.2007.01.009

      WANG Hongliang, HE Shiping, CHEN Junlu, et al. 2007. LA-ICPMS dating of zircon U-Pb and its tectonic significance of Maxianshan granitoid intrusive complex, Gansu Province [J]. Acta Geologica Sinica, 81(1): 72-78. doi: 10.3321/j.issn:0001-5717.2007.01.009

      王建, 谢亘, 施光海, 等. 2018. 北祁连川刺沟A型花岗岩的年代学及其意义[J]. 岩石学报, 34(6): 1657-1668

      WANG Jian, XIE Geng, SHI Guanghai, et al. 2018. Geochronology of the Chuancigou A-type granite in the north Qilian belt and its significances [J]. Acta Petrologica Sinica, 34(6): 1657-1668.

      王金荣, 吴继承, 贾志磊. 2008. 北祁连山东段苏家山高Mg埃达克岩: 地球动力学意义[J]. 兰州大学学报, 44(3): 16-23

      WANG Jinrong, WU Jicheng, JIA Zhilei. 2008. Sujiashan high-Mg adakite in the eastern section of North Qilian Mountains: implications for geodynamic [J]. Journal of Lanzhou University (Natural Science), 44(3): 16-23.

      王苏里, 周立发. 宗务隆山角闪辉长岩LA-ICP-MS锆石U_Pb定年、地球化学特征及其地质意义[J]. 2016. 西北大学学报(自然科学版), 46(5): 716-724

      WANG Suli, ZHOU Lifa. 2016. LA-ICP-MS zircon U-Pb dating, geochemistry and tectonic implication of the bojite in the Zongwulong Mountain [J]. Journal of Northwest University (Natural Science Edition), 46(5): 716-724.

      王晓霞, 王涛. 2002. 北秦岭老君山、秦岭梁环斑结构花岗岩岩浆混合的岩相学证据及其意义[J]. 地质通报, 21(8): 523-529 doi: 10.3969/j.issn.1671-2552.2002.08.011

      WANG Xiaoxia, WANG Tao. 2002. Petrographic evidence of hybridization of magmas of the Laojunshan and Qinlingliang rapakivi-textured granites in the North Qinling and its significance [J]. Geological Bulletin of China, 21(8): 523-529. doi: 10.3969/j.issn.1671-2552.2002.08.011

      王银川, 裴先治, 李佐臣, 等. 2012. 祁连造山带东端张家川地区长宁驿中元古代花岗质片麻岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 地质通报, 31(10): 1576-1587 doi: 10.3969/j.issn.1671-2552.2012.10.004

      WANG Yinchuan, PEI Xianzhi, LI Zuochen, et al. 2012. LA-ICP-MS zircon U-Pb dating of the Mcsoproterozoic granitic gneisses at Changningyi of Zhangjiachuan area on the eastern edge of the Qilian Orogenic belt [J]. Geological Bulletin of China, 31(10): 1576-1587. doi: 10.3969/j.issn.1671-2552.2012.10.004

      王永和, 高晓峰, 孙吉明, 等. 西北地区大地构造环境与成矿[M]. 武汉: 中国地质大学出版社, 2019

      WANG Yonghe, GAO Xiaofeng, SUN Jiming, et al. Geotectonic environment and mineralization in Northwest China [M]. Wuhan: China University of Geoscience Press, 2019.

      魏方辉, 裴先治, 李瑞保, 等. 2012. 甘肃天水地区早古生代黄门川花岗闪长岩体LA-ICP-MS锆石U-Pb定年及构造意义[J]. 地质通报, 31 (09): 1496-1509 doi: 10.3969/j.issn.1671-2552.2012.09.013

      WEI Fanghui, PEI Xianzhi, LI Ruibao, et al. 2012. LA-ICP-MS zircon U-Pb dating of Early Paleozoic Huangmenchuan granodiorite in Tianshui area of Gansu Province and its tectonic significance [J]. Geological Bulletin of China, 31 (09): 1496-1509. doi: 10.3969/j.issn.1671-2552.2012.09.013

      吴才来, 郜源红, 李兆丽, 等. 2014. 都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架[J]. 中国科学: 地球科学, 44(10): 2142–2159

      WU Cailai, GAO Yuanhong, LI Zhaoli, et al. 2014. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the north Qaidam UHP belt, NW China [J]. Science China: Earth Sciences D, 44(10): 2142–2159.

      吴才来, 郜源红, 吴锁平, 等. 2007. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J]. 岩石学报, 23(8): 1861-1875 doi: 10.3969/j.issn.1000-0569.2007.08.008

      WU Cailai, GAO Yuanhong, WU Suoping, et al. 2007. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidam basin, NW China[J]. Acta Petrologica Sinica, 23(8): 1861-1875. doi: 10.3969/j.issn.1000-0569.2007.08.008

      吴才来, 郜源红, 吴锁平, 等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学D辑: 地球科学, 2008, 38(8): 930-949.

      WU Cailai, GAO Yuanhong, WU Suoping, et al. Geochemistry andzircon SHRIMP U-Pb dating of granitoids from the west seg-ment of the North Qaidam[J]. Science in China: EarthSciences, 2008, 38(8): 930-949.

      吴才来, 雷敏, 吴迪, 等. 2016. 柴北缘乌兰地区花岗岩锆石SHRIMP定年及其成因[J]. 地球学报, 37(4): 493-516 doi: 10.3975/cagsb.2016.04.11

      WU Cailai, LEI Min, WU Di, et al. 2016. Zircon shrimp dating and genesis of granites in Wulan area of Northern Qaidam [J]. Acta Geoscience Sinica, 37(4): 493-516. doi: 10.3975/cagsb.2016.04.11

      吴才来, 徐学义, 高前明, 等. 2010. 北祁连早古生代花岗质岩浆作用及构造演化[J]. 岩石学报, 26(4): 1027-1044

      WU Cailai, XU Xueyi, GAO Qianming, et al. 2010. Early Palaezoic grranitoid magmatism and tectonic evolution in North Qilian, NW China [J]. Acta Petrologica Sinica, 26(4): 1027-1044.

      吴才来, 杨经绥, 杨宏仪, 等. 2004. 北祁连东部两类Ⅰ型花岗岩定年及其地质意义[J]. 岩石学报, 20(3): 425-432 doi: 10.3969/j.issn.1000-0569.2004.03.006

      WU Cailai, YANG Jingsui, YANG Hongyi, et al. 2004. Dating of two types of granite from north Qilian, China [J]. Acta Petrologica Sinica, 20(3): 425-432. doi: 10.3969/j.issn.1000-0569.2004.03.006

      吴才来, 姚尚志, 杨经绥, 等. 2006. 北祁连洋早古生代双向俯冲的花岗岩证据[J].中国地质, 33(6):1198-1 208.

      WU Cailai, YAO Shangzhi, YANG Jingsui, et al. 2006. Double subduction of the Early Paleozoic North Qilian oceanic plate: Evidence from granites in the central segment of North Qilian, NW China [J]. Geology in China, 33(6):1198-1 208.

      夏林圻, 李向民, 余吉远, 等. 2016. 祁连山新元古代中-晚期至早古生代火山作用与构造演化[J]. 中国地质, 43(4): 1087-1138

      XIA LinQi, LI Xiangmin, YU Jiyuan, et al. 2016. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain [J]. Geology in China, 43(4): 1087-1138.

      夏林圻, 夏祖春, 徐学义. 2003. 北祁连山奥陶纪弧后盆地火山岩浆成因[J]. 中国地质, 30(1): 48-60 doi: 10.3969/j.issn.1000-3657.2003.01.006

      XIA Linqi, XIA Zuchun, XU Xueyi. 2003. Magmagenesis of Ordovician back-arc basins in the Northern Qilian Mountains [J]. Geology in China, 30(1): 48-60. doi: 10.3969/j.issn.1000-3657.2003.01.006

      夏小洪, 宋述光. 2010. 北祁连山肃南九个泉蛇绿岩形成年龄和构造环境[J]. 科学通报, 55(15): 1465-1473 doi: 10.1360/csb2010-55-15-1465

      XIA Xiaohong, SONG Shuguang. 2010. Forming age and tectono-petrogenises of the Jiugequan ophiolite in the North Qilian Mountain, NW China [J]. Chinese Sci. Bull. , 55(15): 1465-1473. doi: 10.1360/csb2010-55-15-1465

      相振群, 陆松年, 李怀坤, 等. 2007. 北祁连西段熬油沟辉长岩的锆石SHRIMP U-Pb年龄及地质意义[J]. 地质通报, 26(12): 1686-1691 doi: 10.3969/j.issn.1671-2552.2007.12.023

      XIANG Zhenqun, LU Songnian, LI Huaikun, et al. 2007. SHRIMP U-Pb zircon age of gabbro in Aoyougou in the western segment of the North Qilian Mountains, China and its geological implications [J]. Geological Bulletin of China, 26(12): 1686-1691. doi: 10.3969/j.issn.1671-2552.2007.12.023

      谢其锋, 周立发, 刘羽. 2014. 青海刚察大寺地区花岗岩类LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 33(9): 2116-2123 doi: 10.3969/j.issn.1671-2552.2014.09.012

      XIE Qifeng, ZHOU Lifa, LIU Yu. 2014. LA-ICP-MS zircon U-Pb ages of Gangchadasi granite in Qinghai Province and their geological significance [J]. Geological Bulletin of China, 33(9): 2116-2123. doi: 10.3969/j.issn.1671-2552.2014.09.012

      熊子良, 张宏飞, 张杰. 2012. 北祁连东段冷龙岭地区毛藏寺岩体和黄羊河岩体的岩石成因及其构造意义[J]. 地学前缘, 19(3): 214-227

      XIONG Ziliang, ZHANG Hongfei, ZHANG Jie. 2012. Petrogenesis and tectonic implications of the Maozangsi and Huangyanghe granitic intrusions in Lenglongling area, the eastern part of North Qilian Mountains, NW China [J]. Earth Science Frontiers, 19(3): 214-227.

      徐学义, 陈隽璐, 高婷, 等. 2014. 西秦岭北缘花岗质岩浆作用及构造演化[J]. 岩石学报, 30(2): 371-389

      XU Xueyi, CHEN Junlu, GAO Ting, et al. 2014. Granitoid magmatism and tectonic evolution in northern edge of the Western Qinling terrane, NW China [J]. Acta Petrologica Sinica, 30(2): 371-389.

      徐学义, 何世平, 王洪亮, 等. 中国西北部地质概论——秦岭、祁连、天山地区[M]. 北京: 科学出版社, 2008a

      XU Xueyi, HE Shiping, WANG Hongliang, et al. Geology in Northwest China: Qinling, Qilian and Tianshan Mountains [M]. Beijing: Science Press, 2008a.

      徐学义, 李向民, 王洪亮, 等. 祁连山及邻区成矿地质背景图(1: 1000000)及说明书[M]. 北京: 地质出版社, 2008b

      XU Xueyi, LI Xiangmin, WANG Hongliang, et al. Metallogenic geological background map of Qilian Mountains and adjacent areas (scale 1: 1000000), and instructions [M]. Beijing: Geological Publish House, 2008b.

      徐学义, 王洪亮, 陈隽璐, 等. 祁连山及邻区地质图(1: 1000000)及说明书[M]. 北京: 地质出版社, 2019

      XU Xueyi, WANG Hongliang, CHEN Junlu, et al. Geological map of Qilian Mountains and its adjacent area (scale 1: 1000000), and instructions [M]. Beijing: Geological Publishing House, 2019.

      许志琴, 杨经绥, 李海兵, 等. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 80(12): 1793-1806 doi: 10.3321/j.issn:0001-5717.2006.12.002

      XU Zhiqin, YANG Jingsui, LI Haibing, et al. 2006. The Early Palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB) [J]. Acta Geologica Sinica, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002

      杨建国, 杨林海, 任有祥, 等. 2005. 北祁连山寒山金矿床成矿作用同位素地质年代学[J]. 地球学报, 26(4): 315-320 doi: 10.3321/j.issn:1006-3021.2005.04.004

      YANG Jianguo, YANG Linhai, REN Youxiang, et al. 2005. Isotopic geochronology of the ore-forming process in the Hanshan gold deposit of the north Qilian Mountains [J]. Acta Geoscience Sinica, 26(4): 315-320. doi: 10.3321/j.issn:1006-3021.2005.04.004

      杨明慧, 宋建军. 2002. 柴达木盆地冷湖花岗岩体岩石学初步研究[J]. 西北地质, 35(3): 94-98 doi: 10.3969/j.issn.1009-6248.2002.03.014

      YANG Minghui, SONG Jianjun. 2002. Petrology of the Lenghu granite mass, Northwestern Qaidam Basin, China [J]. Northwestern Geology, 35(3): 94-98. doi: 10.3969/j.issn.1009-6248.2002.03.014

      雍拥, 肖文交, 袁超, 等. 2008. 中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义[J]. 岩石学报, 24(4): 855-866

      YONG Yong, XIAO Wenjiao, YUAN Chao, et al. 2008. Geochronology and geochemistry of Paleozoic granitic plutons friom the eastern Central Qilian and their tectonic implications [J]. Acta Petrologica Sinica, 24(4): 855-866.

      余吉远, 李向民, 计波, 等. 2021. 鹰峰岩体时代对柴北缘滩间山地区万洞沟群时代的制约[J]. 西北地质, 54(3): 1-9 doi: 10.19751/j.cnki.61-1149/p.2021.03.001

      YU Jiyuan, LI Xiangmin, JI Bo, et al. 2021. Constraints of the age of Yingfeng rock mass on the age of Wandonggou Group in Tanjianshan area of the northern margin of Qaidam [J]. Northwestern Geology, 2021, 54(3): 1-9. doi: 10.19751/j.cnki.61-1149/p.2021.03.001

      余吉远, 李向民, 马中平, 等. 2012. 南祁连乙什春基性-超基性岩体LA–ICP-MS锆石U-Pb年龄及其地质意义[J]. 高校地质学报, 18(1): 158-163 doi: 10.3969/j.issn.1006-7493.2012.01.014

      YU Jiyuan, LI Xiangmin, MA Zhongping, et al. 2012. Zircon U-Pb dating of the Yishichun mafic-ultra mafic complex from Southern Qilian and its geological significance [J]. Geological Journal of China Universities, 18(1): 158-163. doi: 10.3969/j.issn.1006-7493.2012.01.014

      袁桂邦, 王惠初, 李惠民, 等. 2002. 柴北缘绿梁山地区辉长岩的锆石U—Pb年龄及意义[J]. 前寒武纪研究进展, 25(01): 36-40

      YUAN Guibang, WANG Huichu, LI Huimin, et al. 2002. Zircon U-Pb age of the gabbros in Luliangshan area on the northern margin of Qaidam Basin and its geological implication [J]. Progress In Precambrian Research, 25(01): 36-40

      岳悦, 孙德有, 侯可军, 等. 2021. 柴北缘乌兰北部二叠纪辉长岩的年代学和地球化学特征[J]. 吉林大学学报(地球科学版), 51(1): 154-168

      YUE Yue, SUN Deyou, HOU Kejun, et al. 2021. Geochronology and geochemistry of Triassic gabbro in northern Wulan, northern margin of Qaidam Basin [J]. Journal of Jilin University (Earth Science Edition), 51 (1): 154-168.

      张春宇, 赵越, 刘金, 等. 2019. 柴达木盆地北缘牦牛山组物源分析及其构造意义[J]. 地质学报, 93(3): 712-723 doi: 10.3969/j.issn.0001-5717.2019.03.015

      ZHANG Chunyu, ZHAO Yue, LIU Jin, et al. 2019. Provenance analysis of the Maoniushan Formation in the North Qaidam basin and its tectonic significance [J]. Acta Geologica Sinica, 93(3): 712-723. doi: 10.3969/j.issn.0001-5717.2019.03.015

      张贵宾, 宋述光, 张立飞, 等. 柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义[J]. 岩石学报, 2005, 21(4): 1049-1058

      ZHANG Guibin, SONG Shuguang, ZHANG Lifei, et al. Ophiolite-type mantle peridotite from Shaliuhe, North Qaidam UHPM belt, NW China and its tectonic implications[J]. Acta Petrologica Sinica, 2005, 21(4): 1049-1058.

      张贵宾, 张立飞, 宋述光. 2012. 柴北缘超高压变质带: 从大洋到大陆的深俯冲过程[J]. 高校地质学报, 18(1): 28-40 doi: 10.3969/j.issn.1006-7493.2012.01.003

      ZHANG Guibin, ZHANG Lifei, SONG Shuguang. 2012. An Overview of the Tectonic Evolution of North Qaidam UHPM Belt: from Oceanic Subduction to Continental Collision[J]. Geological Journal of China Universities, 18(1): 28-40. . doi: 10.3969/j.issn.1006-7493.2012.01.003

      张国栋, 徐争启, 龚骏, 等. 2016. 青海刚察泉吉地区中酸性侵入岩年代学特征及其意义[J]. 高校地质学报, 22(1): 113-126

      ZHANG Guodong, XU Zhengqi, GONG Jun, et al. 2016. Geochronology and significance of intermediate-acid intrusive rocks in Quanji area, Gangcha, Qinghai [J]. Geological Journal of China Universities, 22(1): 113-126

      张海瑞, 赵姣龙, 于汇洋. 2019. 北祁连造山带东段老虎山石英闪长岩成因及其地质意义[J]. 高校地质学报, 25 (5): 641-653

      ZHANG Hairui, ZHAO Jiaolong, YU Huiyang. 2019. Petrogenesis and tectonic implications of the Laohushan quartz diorite from the eastern part of north Qilian orogen, NW China [J]. Acta Metallurgica Sinica. Geological Journal of China Universities, 25(5): 641-653

      张克信, 朱云海, 林启祥, 等. 青海同仁县隆务峡地区首次发现镁铁质—超镁铁质岩带洋壳残片[J]. 地质通报, 2007, 26(6): 661–667.

      ZHANG Kexin, ZHU Yunhai, LIN Qixiang, et al. Discovery of a mafic-ultramafic belt in the Rongwoxia area,Tongren,Qinghai,China[J]. Geological Bulletin of China, 2007, 26(6): 661–667.

      张宏飞, 陈岳龙, 徐旺春, 等. 2006. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义[J]. 岩石学报, 22(12): 2910-2922 doi: 10.3321/j.issn:1000-0569.2006.12.009

      ZHANG Hongfei, CHEN Yuelong, XU Wangchun, et al. 2006. Granitoids around Gonghe basin in Qinghai province: petrogenesis and tectonic implications [J]. Acta Petrologica Sinica, 22(12): 2910-2922. doi: 10.3321/j.issn:1000-0569.2006.12.009

      张建新, 路增龙, 毛小红, 等. 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源[J]. 岩石学报, 37(1): 74-94 doi: 10.18654/1000-0569/2021.01.06

      ZHANG Jianxin, LU Zenglong, MAO Xiaohong, et al. 2021. Revisiting the Precambrian micro-continental blocks within the Early Paleozoic orogenic system of the northeastern Qinghai-Tibet Plateau: Insight into the origin of Proto-Tethyan Ocean [J]. Acta Petrologica Sinica, 37(1): 74-94 doi: 10.18654/1000-0569/2021.01.06

      张建新, 于胜尧, 李云帅, 等. 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 31(12): 3531-3554

      ZHANG JianXin, YU ShengYao, LI YunShuai, et al. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system[J]. Acta Petrologica Sinica, 31(12): 3531-3554.

      张莉莉, 戴霜, 张翔, 等.南祁连党河南山地区鸡叫沟复式岩体岩石地球化学特征及构造环境[J]. 兰州大学学报: 自然科学版, 2013, 49(6): 733–740.

      ZHANG Lili, DAI Shuangi, ZHANG Xiang, et al. Lithogeochemistry of Jijiaogou intrusive complex in the Danghenanshan area, South Qilian Mountain and its tectonic implications[J]. Journal of Lanzhou University (Nature Sciences), 2013, 49(6):733–740.

      张金明, 才航加, 陈光庭, 等. 2020. 中祁连苏里地区新元古代辉绿岩墙群LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 岩石矿物学杂志, 39(6): 769~779 doi: 10.3969/j.issn.1000-6524.2020.06.007

      ZHANG Jinming, CAI Hangjia, CHEN Guangting, et al. 2020. The zircon LA-ICP-MS U-Pb age of the Late Proterozoic diabase dyke in the Suli area of middle Qilian and its geological significance [J]. Acta Petrologica et Mineralogica, 39(6): 769~779. doi: 10.3969/j.issn.1000-6524.2020.06.007

      张永明, 裴先治, 李佐臣, 等. 2017. 青海南山沟后岩浆杂岩体锆石U-Pb年代学、岩石成因及其地质意义[J]. 大地构造与成矿学, 41(05): 908-932 doi: 10.16539/j.ddgzyckx.2017.05.009

      ZHANG Yongming, PEI Xianzhi, LI Zuochen, et al. 2017. LA-ICP-MS zircon u-pb dating, petrogensis of the Gouhou complex in the Qinghai Nanshan tectonic zone, and its geological implications [J]. Geotectonica et Metallogenia, 41(05): 908-932. doi: 10.16539/j.ddgzyckx.2017.05.009

      张越, 李向民, 潘峰, 等. 2018. 北祁连牛心山似斑状正长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 37(4): 724-733

      ZHANG Yue, LI Xiangmin, PAN Feng, et al. 2018. LA-ICP-MS zircon U-Pb dating of the porphyaceous syenogranite in Niuxinshan along the central segment of North Qilian orogenic belt and its geological significance [J]. Geological Bulletin of China, 37(4): 724-733.

      张招崇, 毛景文, 杨建民, 等. 1998. 北祁连熬油沟蛇绿岩岩石成因的地球化学证据[J]. 地质学报, 72(1): 42-51 doi: 10.19762/j.cnki.dizhixuebao.1998.01.005

      ZHANG Zhaochong, MAO Jingwen, YANG Jianmin, et al. 1998. Geochemical Evidences on the Petrogenesis of the Aoyougou Ophiolite in North Qilian Mountains [J]. Acta Geologica Sinica, 72(1): 42-51. doi: 10.19762/j.cnki.dizhixuebao.1998.01.005

      张照伟, 李文渊, 高永宝, 等. 2012a. 南祁连亚曲含镍铜矿基性杂岩体形成年龄及机制探讨[J]. 地球学报, 33(6): 925-935.

      ZHANG Zhaowei, LI Wenyuan, GAO Yongbao, et al. 2012a. The formation age of the Yaqu Ni-Cu bearing basic complex in Southern Qilian Mountain and a discussion on its mechanism [J]. Acta Geoscience Sinica, 35(1): 59-66.

      张照伟, 李文渊, 高永宝, 等. 2012b. 南祁连裕龙沟岩体 ID-TIMS 锆石U-Pb 年龄及地质意义. 地质通报, 31(2/3): 455-462

      ZHANG Zhaowei, LI Wenyuan, GAO Yongbao, et al. 2012b. ID-TIMS zircon U-Pb age of Yulonggou intrusive rocks in southern Qilian Mountain and its geological significance [J]. Geological Bulletin of China, 31(2/3): 455-462.

      张照伟, 李文渊, 郭周平, 等. 2014. 青海省阿什贡含镍矿镁铁-超镁铁岩体形成时代及其对成矿机制的启示[J]. 地球学报, 35(1): 59-66 doi: 10.3975/cagsb.2014.01.08

      ZHANG Zhaowei, LI Wenyuan, GUO Zhouping, et al. 2014. Formation age of Agong Ni-bearing mafic-ultramafic intrusion in Qinghai province and its enlightenment to metallogenic mechanism [J]. Acta Geoscientica Sinica, 35(1): 59-66. doi: 10.3975/cagsb.2014.01.08

      张照伟, 王亚磊, 钱兵, 等. 2015. 青海省化隆地区镁铁-超镁铁质侵入岩含矿特点与成矿规律[J]. 中国地质, 42(3): 724-736 doi: 10.3969/j.issn.1000-3657.2015.03.024

      ZHANG Zhaowei, WANG Yalei, QIAN Bing, et al. 2015. Mineralization characteristics and metallogenic regularity of mafic-ultramafic intrusions in Hualong area, Qinghai Province [J]. Geology in China, 42(3): 724-736. doi: 10.3969/j.issn.1000-3657.2015.03.024

      张智勇, 殷鸿福, 王秉璋, 等, 2004. 昆秦接合部海西期苦海—赛什塘分支洋的存在及其证据[J]. 地球科学, 2004, 29(6): 691-696

      ZHANG Zhiyong, YIN Hongfu, WANG Bingzhang, et al. Presence and Evidence of Kuhai-Saishitang Branching Ocean in Copulae between Kunlun-Qinling Mountains [J]. Earth Science,2004, 29(6): 691-696.

      赵国斌, 杨合群, 任华宁, 等. 2013. 北祁连黑石山花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 32(11): 1845-1854 doi: 10.3969/j.issn.1671-2552.2013.11.017

      ZHAO Guobin, YANG Hequn, REN Huaning, et al. 2013. LA-ICP-MS zircon U-Pb ages of Heishishan granite bodies in north Qilian and their geological significance [J]. Geological Bulletin of China, 32(11): 1845-1854. doi: 10.3969/j.issn.1671-2552.2013.11.017

      赵辛敏, 张作衡, 刘敏, 等. 2014. 北祁连西段小柳沟矿区花岗质岩石锆石U-Pb年代学、地球化学及成因研究[J]. 岩石学报, 30(1): 16-34

      ZHAO Xinmin, ZHANG Zuoheng, LIU Min, et al. 2014. Zircon U-Pb geochronology, geochemistry and petrogenesis of the granites from the Xiaoliugou deposit in the western of the North Qilian [J]. Acta Petrologica Sinica, 30(1): 16-34.

      周伟, 夏明哲, 伍学恒, 等. 2015b. 柴北缘尕秀雅平东和红柳沟北镁铁-超镁铁质岩体锆石U-Pb年龄及其找矿意义[J]. 地质通报, 34(10): 1861-1868.

      ZHOU Wei, XIA Mingzhe, WU Xueheng, et al. 2015b. U-Pb dating of zircons from Gaxiuyapingdong and Hongliugoubei mafic—ultramafic intrusions on the northern margin of Qaidam Basin and its geological and prospecting significance [J]. Geological Bulletin of China, 34(10): 1860-1868

      周伟, 夏昭德, 杜玮, 等. 2015a. 青海省欧龙布鲁克微陆块东北缘红柳沟北镁铁—超镁铁质岩体形成时代及成因探讨[J]. 地质论评, 61(6): 1293-1303

      ZHOU Wei, XIA Zhaode, DU Wei, et al. 2015a. Study on the formation age and petrogenesis of Hongliugoubei mafic—ultramafic intrusion, Northeastern margin of Olongbuluck Micro Block in Qinghai [J]. Geological Review, 61(6): 1293-1303.

      周争艳, 杨家喜, 徐涛, 等. 2015. 西秦岭天水地区早中生代草川铺花岗岩年代学、地球化学特征及其地质意义[J]. 地球科学与环境学报, 37(02): 11-20 doi: 10.3969/j.issn.1672-6561.2015.02.003

      ZHOU Zhengyan, YANG Jiaxi, XU Tao, et al. 2015. Geochronological and geochemical characteristics of Early Mesozoic Caochuanpu granitoids in Tianshui area of West Qinling and their geological significance [J]. Journal of Earth Sciences and Environment, 37(02): 11-20. doi: 10.3969/j.issn.1672-6561.2015.02.003

      朱小辉, 陈丹玲, 冯益民, 等. 2022. 祁连山地区花岗质岩浆作用及构造演化[J]. 地学前缘, 29(2): 241-260 doi: 10.13745/j.esf.sf.2021.10.39

      ZHU Xiaohui, CHEN Danling, FENG Yimin, et al. 2022. Granitic magmatism and tectonic evolution in the Qilian Mountain Range in NW China: A review [J]. Earth Science Frontiers, 29(2): 241-260. doi: 10.13745/j.esf.sf.2021.10.39

      朱小辉, 陈丹玲, 刘良, 等. 2014. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义[J]. 岩石学报, 30(3): 822-834

      ZHU Xiaohui, CHEN Danling, LIU Liang, et al. 2014. Geochronology, geochemistry and significance of the Early Paleozoic back-arc type ophiolite in Lvliangshan area, North Qaidam[J]. Acta Petrologica Sinica, 30(3): 822-834.

      朱小辉, 陈丹玲, 王超, 等. 2015. 柴达木盆地北缘新元古代-早古生代大洋的形成、发展和消亡[J]. 地质学报, 89(2): 234-251 doi: 10.19762/j.cnki.dizhixuebao.2015.02.003

      ZHU Xiaohui, CHEN Danling, WANG Chao, et al. 2015. The initiation development and termination of the Neoproterozoic-Early Paleozoic ocean in the northern margin of Qaidam Basin [J]. Acta Geologica Sinica, 89(2): 234-251. doi: 10.19762/j.cnki.dizhixuebao.2015.02.003

      朱小辉, 王洪亮, 杨猛. 2016. 祁连南缘柴达木山复式花岗岩体中部二长花岗岩锆石U-Pb定年及其地质意义[J]. 中国地质, 43(3): 751-767 doi: 10.12029/gc20160305

      ZHU Xiaohui, WANG Hongliang, YANG Meng. 2016. Zircon U-Pb age of the monzogranite from the middle segment of the Qaidam Mountain composite granite on the south margin of the Qilian Mountain [J]. Geology in China, 43(3): 751-767. doi: 10.12029/gc20160305

      庄玉军, 辜平阳, 高永伟, 等. 2020. 柴北缘赛什腾中二叠世辉长岩成因及其对宗务隆洋盆俯冲时限的制约[J]. 岩石矿物学杂志, 39(6): 718~734 doi: 10.3969/j.issn.1000-6524.2020.06.004

      ZHUANG Yujun, GU Pingyang, GAO Yongwei, et al. 2020. Petrogenesis of Middle Permian gabbro in Saishiteng Mountain of the northern Qaidam Basin and its constraint to the time of Zongwulong Ocean subduction [J]. Acta Petrologica et Mineralogica, 39(6): 718~734. doi: 10.3969/j.issn.1000-6524.2020.06.004

      庄玉军, 辜平阳, 李培庆, 等. 2019. 柴北缘构造带欧龙布鲁克地块西北缘辉长岩脉地球化学,年代学及Hf同位素特征[J]. 地质通报, 38(11): 1801-1812.

      ZHUANG Yujun, GU Pingyang, LI Peiqing, et al. 2019. Geochemistry, geochronology and Hf isotopic compositions of metagabbro dykes on the northwestern margin of Oulongbuluke micro- block on the northern margin of Qaidam Basin [J]. Geological Bulletin of China, 38(11): 1801-1812.

      CHEN DL, LIU L, SUN Y, et al. 2009. Geochemistry and zircon U-Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China [J]. Journal of Asian Earth Sciences, 35: 259~272. doi: 10.1016/j.jseaes.2008.12.001

      CHEN YX, XIA XH, SONG SG. 2012. Petrogenesis of Aoyougou high-silica adakite in the North Qilian orogen, NW China: Evidence for decompression melting of oceanic slab [J]. Chinese Science Bulletin, 27(18): 2289-2301.

      FU CL, YAN Z, AITCHISON JC, et al. 2020. Multiple subduction processes of the Proto-Tethyan Ocean: Implication from Cambrian intrusions along the North Qilian suture zone [J]. Gondwana Research, 87: 207-223. doi: 10.1016/j.gr.2020.06.007

      Fu CL, Yan Z, Wang ZQ, et al. 2018. Lajishankou ophiolite complex: Implications for Paleozoic multiple accretionary and collisional events in the South Qilian belt [J]. Tectonics, 37: 1321-1346. doi: 10.1029/2017TC004740

      Gao X Y, Yu S Y, Li S Z, et al. Syn-collisional I-type granitoids linked to lateral lithospheric heterogeneity: A case study from the North Qaidam orogen, NW China [J]. Journal of Asian Earth Sciences, 2022, 237: 105363.

      IRVINE TN, BARAGAR WRA. 1971. A guide to the chemical classification of the common volcanic rocks [J]. Canad. J. Earth Sci. , 8: 523-548. doi: 10.1139/e71-055

      LI JY, NIU YL, CHEN S, et al. 2017. Petrogenesis of granitoids in the eastern section of the Central Qilian Block: Evidence from geochemistry and zircon U-Pb geochronology [J]. Miner Petrol. , 111: 23–41. doi: 10.1007/s00710-016-0461-3

      Liao FX, Zhang L, Chen NS, et al. 2014. Geochronology and geochemistry of meta-mafic dykes in the Quanji massif, NV China: Paleoproterozoic evolution of the Tarim Craton and implications for the assembly of the Columbia supercontinent [J]. Precambrian Research, 249(4): 33-56.

      MIDDLEMOST EAH. 1994. Naming materials in magma-igneous rock system [J]. Earth Sci. Rev. , 7: 215-224.

      NIU ML, CAI QR, LI XC, et al. 2021. Early Paleozoic tectonic transition from oceanic to continental subduction in the North Qaidam tectonic belt: Constraints from geochronology and geochemistry of syncollisional magmatic rocks [J]. Gondwana Research, 91: 58-80. doi: 10.1016/j.gr.2020.10.018

      Pan F, Dong Y P, Li X M, et al. Petrogenesis and tectonic setting of Early Paleozoic granites and high-Mg diorites in the Northern Qilian Orogen, China. Journal of Asian Earth Sciences, 2020, 191: 104250.

      PEARCE JA, HARRIS NBW, TINDLE AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Journal of Petrology, 25: 956-983. doi: 10.1093/petrology/25.4.956

      RICHWOOD PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos, 22: 247-263. doi: 10.1016/0024-4937(89)90028-5

      Shand S J. The Eruptive Rocks (2nd edition) [M]. New York: John Wiley, 1943.

      SONG SG, NIU YL, SU L, et al. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China [J]. Earth-Science Reviews, 129: 59–84. doi: 10.1016/j.earscirev.2013.11.010

      SONG SG, NIU YL, SU L, et al. 2013. Tectonics of the North Qilian orogen, NW China [J]. Gondwana Research, 23(4): 1378-1401 doi: 10.1016/j.gr.2012.02.004

      Sun G C, Gao P, Zhao Z F, et al. Syn-exhumation melting of the subducted continental crust: Geochemical evidence from early Paleozoic granitoids in North Qaidam, northern Tibet [J]. Lithos, 2020, 374–375: 105707

      Sun S S, Mcdonough W F. Chemical and isotope systematics of oceanic basalts implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313-345.

      Taylor S R, Mclennan S M. The continental crusts: Its Composition and evolution [M]. Oxford: Blackwell Scientific Publications, 1985.

      Tung KA, Yang HY, Liu DY, et al. 2013. The Neoproterozoic granitoids from the Qilian block, NW China: Evidence for a link between the Qilian and South China blocks [J]. Precambrian Research, 235: 163-189. doi: 10.1016/j.precamres.2013.06.016

      WANG C, LI RS, SMITHIES RH, et al. 2017. Early Paleozoic felsic magmatic evolution of the western Central Qilian belt, northwestern China, and constraints on convergent margin processes [J]. Gondwana Research, 41: 301-324. doi: 10.1016/j.gr.2015.12.009

      WANG C, LI RS, SMITHIES RH, et al. 2016. Early Paleozoic felsic magmatic evolution of the western Central Qilian belt, Northwestern China, and constraints on convergent margin processes [J]. Gondwana Research, 41: 301-324.

      Wang M J, Song S G, Niu Y L, et al. Post-collisionalmagmatism: consequences of UHP mterrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China [J]. Lithos, 2014, 210–211: 18-198.

      WANG N, WU C L, LEI M, et al. 2018. Petrogenesis and tectonic implications of the Early Paleozoic granites in the western segment of the North Qilian orogenic belt, China [J]. Lithos, 312-313: 89-107. doi: 10.1016/j.lithos.2018.04.023

      Wang XX. 2015. Recognition of Proterozoic Rapakivi granites from the Paleozoic north Qaidam orogen, Central China and its implications [J]. Gondwana Research, 28: 1516–1529. doi: 10.1016/j.gr.2014.09.018

      WHALEN JB, CURRIE KL, CHAPPELL BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis [J]. Contributions to Mineralogy and Petrology, 95: 407-419. doi: 10.1007/BF00402202

      WU CL, GAO YH, Frost RB, et al. 2011. An early Palaeozoic double-subduction model for the North Qilian oceanic plate: Evidence from zircon SHRIMP dating of granites [J]. International Geology Review, 53(2): 157-181. doi: 10.1080/00206810902965346

      WU CL, Wu D, Mattinson C, et al. 2019. Petrogenesis of granitoids in the Wulan area: Magmatic activity and tectonic evolution in the North Qaidam, NW China [J]. Gondwana Research, 67: 147-171. doi: 10.1016/j.gr.2018.09.010

      XIA XH, SONG SG, NIU YL. 2012. Tholeiite-boninite terrane in the North Qilian suture zoneImplications for subduction initiation and back-arc basin development [J]. Chemical Geology, 328: 259-277. doi: 10.1016/j.chemgeo.2011.12.001

      Xiao Q H, Lu X X, Wang F, et al. Age of Yingfeng rapakivi granite pluton on the north flank of Qaidam and its geological significance [J]. Science in China (Series D), 2004, 47: 357–365.

      Yang H, Zhang H F, Luo B J, et al. Early Paleozoic intrusive rocks from the eastern Qilian orogen, NE Tibetan Plateau: Petrogenesis and tectonic significance [J]. Lithos, 2015, 224–225: 13–31.

      YANG H, ZHANG HF, LUO BJ, et al. 2016. Generation of peraluminous graniticmagma in a post-collisional setting: A case study from the eastern Qilian orogen, NE Tibetan Plateau [J]. Gondwana Research, 36: 28–45. doi: 10.1016/j.gr.2016.04.006

      Yang S X, Su L, Song S G, et al. Melting of subducted continental crust during collision and exhumation: Insights from granitic rocks from the North Qaidam UHP metamorphic belt, NW China [J]. Lithos, 2020, 378–379: 105794

      ZHANG GB, SONG SG, ZHANG LF. 2008. The subducted oceanic crust within continental-type UHP metamorphic beltin the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology [J]. Lithos, 104: 99–118. doi: 10.1016/j.lithos.2007.12.001

      Zhang GB, Zhang LF, Song SG. 2009. UHP metamorphic evolution and SHRIMP geochronology of acoesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China [J]. Journal of Asian Earth Sciences, 35: 310-322. doi: 10.1016/j.jseaes.2008.11.013

      ZHANG HF, ZHANG BR, HARRIS N, et al. 2006. U-Pb zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt, China: Constraints on petrogenesis and tectonic affinity [J]. Journal of Asian Earth Sciences, 27: 751–764. doi: 10.1016/j.jseaes.2005.07.008

      Zhao Z X, Wei J H, Fu L B, et al. The Early Paleozoic Xitieshan syn-collisional granite in the North Qaidam ultrahigh-pressure metamorphic belt, NWChina: Petrogenesis and implications for continental crust growth [J]. Lithos, 2017, 278–281: 140–152

    • 期刊类型引用(4)

      1. 孟勇,张欣,陈奋宁,李佐臣,冯益民,祁尧刚,郑若蕾. 古亚洲洋构造域中西段新元古代晚期至晚泥盆世的构造运动. 地质学报. 2025(01): 58-77 . 百度学术
      2. 马立,杨静,张峰. 腾格里沙漠表沙常量元素地球化学特征及其空间分布. 第四纪研究. 2025(01): 91-104 . 百度学术
      3. 王波,宋光永,张荣虎,曾庆鲁,王艳清,孙秀建,吴志雄,李森明,李雅楠,宫清顺. 柴达木盆地超深层基岩气藏勘探发现及启示. 海相油气地质. 2025(01): 59-70 . 百度学术
      4. 李东,李铁笔,郑月,孙中行,姜克楠,潘建. 青海省南祁连阳康地区水系沉积物地球化学特征及成矿远景. 地质与资源. 2024(06): 747-758 . 百度学术

      其他类型引用(0)

    图(24)
    计量
    • 文章访问数:  170
    • HTML全文浏览量:  13
    • PDF下载量:  68
    • 被引次数: 4
    出版历程
    • 收稿日期:  2023-02-07
    • 修回日期:  2023-03-20
    • 网络出版日期:  2023-07-23
    • 刊出日期:  2023-08-19

    目录

    /

    返回文章
    返回