ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

内蒙古东部钓鱼台地区火山岩年代学、地球化学特征及地质意义

王利, 梁天意

王利,梁天意. 内蒙古东部钓鱼台地区火山岩年代学、地球化学特征及地质意义[J]. 西北地质,2025,58(1):68−80. doi: 10.12401/j.nwg.2023036
引用本文: 王利,梁天意. 内蒙古东部钓鱼台地区火山岩年代学、地球化学特征及地质意义[J]. 西北地质,2025,58(1):68−80. doi: 10.12401/j.nwg.2023036
WANG Li,LIANG Tianyi. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks in the Diaoyutai Area, Eastern Inner Mongolia[J]. Northwestern Geology,2025,58(1):68−80. doi: 10.12401/j.nwg.2023036
Citation: WANG Li,LIANG Tianyi. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks in the Diaoyutai Area, Eastern Inner Mongolia[J]. Northwestern Geology,2025,58(1):68−80. doi: 10.12401/j.nwg.2023036

内蒙古东部钓鱼台地区火山岩年代学、地球化学特征及地质意义

基金项目: 中国地质调查局项目“内蒙古1∶5万钓鱼台等四幅区域地质调查”(DD20160201-07)资助。
详细信息
    作者简介:

    王利(1987−),男,高级工程师,主要从事基础及矿产地质研究。E−mail:373519089@qq.com

    通讯作者:

    梁天意(1988−),男,博士,高级工程师,主要从事基础地质、矿产地质方面的研究。E−mail:327251026@qq.com

  • 中图分类号: P595;P588.12

Geochronology, Geochemistry and Geological Significance of Volcanic Rocks in the Diaoyutai Area, Eastern Inner Mongolia

  • 摘要:

    笔者通过对内蒙古东部钓鱼台地区火山岩岩石学、年代学和地球化学等方面的研究,探讨该地区火山岩形成时代、岩浆来源及构造背景,为研究大兴安岭中段地区在中-晚侏罗世的岩浆活动和构造演化提供依据。笔者选取钓鱼台地区满克头鄂博组流纹质凝灰岩,系统地开展岩石学、LA-ICP-MS U-Pb测年和岩石地球化学等研究工作。根据研究结果显示,内蒙古东部钓鱼台地区的满克头鄂博组火山岩形成于中—晚侏罗世(160.3±2.2 )Ma,火山岩SiO2含量平均为74.98%,Al2O3含量平均为13.33%,CaO含量平均为0.82%,全碱(ALK)含量平均为6.96%,显示为高钾钙碱性系列岩石,稀土元素配分曲线为明显的右倾特征,轻稀土富集而重稀土亏损,轻重稀土分馏明显,Eu具有明显的负异常,岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),与A型花岗岩的地球化学特征相似。结合区域地质资料和前人研究成果,研究区内满克头鄂博组火山岩岩浆主要来源于地壳的部分熔融,可能有地幔物质参与,产生于伸展构造背景下,推断与蒙古-鄂霍茨克洋闭合后板块俯冲后撤作用导致的岩石圈伸展作用有关。

    Abstract:

    Through the study of the petrology, chronology and geochemistry of volcanic rocks in Diaoyutai area in Eastern Inner Mongolia, to discuss the formation age of volcanic rocks, the source of magma and the tectonic background in this area, and to provide a basis for studying the magmatic activity and tectonic evolution in the middle part of the Great Xing'an Range during the Mid-Late Jurassic. This paper selects rhyolite tuff from Manketouebo Formation in Diaoyutai area, Studies on petrology, LA-ICP-MS U-Pb dating and rock geochemistry have been carried out systematically. According to the research results, the volcanic rocks of the Manketouebo Formation in the Diaoyutai area of eastern Inner Mongolia were formed in the middle to Late Jurassic (160.3±2.2) Ma, The average SiO2 content of medium coarse monzogranite is 74.98%, the average Al2O3 content is 13.33%, the average CaO content is 13.33%, the average total alkali (ALK) content is 6.96%, it shows high potassium calc-alkaline series rocks. The distribution curve of rare earth elements is right-leaning, with enrichment of light rare earth and deficit of heavy rare earth, significant fractionation of light and light rare earth, and Eu has obvious negative anomaly, the rocks are enriched in Rb、Th、U、Nd (LILE), and depleted in Nb、 Sr、P、Ti (HFS), and the geochemical characteristics are similar to those of A-type granite. Combined with regional geological data and previous research results, the volcanic magma of the Manketouebo Formation in the study area is mainly derived from the partial melting of the crust, which may involve mantle material, and it should be generated in the extensional tectonic background. It is inferred that it is related to the lithosphere extension caused by the plate subduction and retraction after the closure of the Mongolian-Okhotsk Ocean.

  • 大兴安岭地区分布着面积十分巨大的岩浆岩带,其中三分之二由火山岩组成,规模如此之大的火山岩分布,其形成原因一直是众多地质学者研究的热点问题。大兴安岭作为兴蒙造山带重要组成部分,在晚古生代经历了古亚洲的闭合,随后在中生代发生了比较典型的隆起事件,在白垩纪该构造隆起达到高潮,众多学者认为该时期大兴安岭处于伸展构造环境下(葛文春等,2001孟恩等,2011Jahn et al., 2001邵济安等,2002林强等,2003Wang et al., 2006Zhang et al., 2008),但对于中-晚侏罗世构造环境研究还没有形成统一认识,主要包括挤压构造背景(赵书跃等,2004刘俊杰等,2006)和造山后伸展构造背景(陈志广等,2006孟恩等,2011程银行等,2013王杰等,2014李鹏川等,2016)等。近年来,随着研究的深入,在大兴安岭地区获得了大量的火山岩年龄数据,但研究大部分围绕大兴安岭北段,而对于中南段研究较少。钓鱼台地区位于内蒙古东部,大兴安岭中段,靠近兴安地块和松嫩地块的结合部位,其构造位置和地质特征均具有代表性。因此,笔者选取内蒙古东部钓鱼台地区的满克头鄂博组火山岩进行岩石学、年代学和地球化学等方面开展相关研究工作,以期厘定该地区火山岩的形成时代、岩浆来源和构造背景,结合前人的研究成果,为大兴安岭中段在中—晚侏罗世的地质演化提供新的证据。

    研究区位于内蒙古自治区乌兰浩特市西北部,南为乌兰浩特市,东为扎赉特旗,西为阿尔山市,研究区区域大地构造属于天山–兴蒙造山带,大兴安岭弧盆系,东乌旗-多宝山岛弧范围内,研究区靠近兴安地块和松嫩地块的结合部位,贺根山-嫩江-黑河板块缝合带位于研究区南部(图1a)。研究区主构造线方向为NE向,古生代与中生代构造线方向总体一致,均为NE向,主要缘于西伯利亚板块东南缘古生代主构造线在本区一改近EW向构造格局所致,因此构造特色显著。断裂构造为研究区主要的构造形迹,其次为褶皱构造。研究区地层出露主要以晚古生界和中生界为主,除了部分地层为碎屑岩沉积外,其余大部分为火山岩沉积,区内岩浆岩较发育,整体呈NE向展布,与区域内主构造线一致,侵入时代主要为白垩纪,以酸性岩类为主。地层单位由老至新划分为古生界石炭系格根敖包组(C2g),中生界侏罗系玛尼吐组(J3mn)、满克头鄂博组(J3m)(图1b)。

    图  1  钓鱼台地区地质简图(a据刘晨等,2017改编)
    1.第四系;2.晚侏罗系玛尼吐组;3.晚侏罗系满克头鄂博组;4.晚石炭系格根敖包组;5.花岗斑岩;6.流纹斑岩;7.正长花岗岩;8.锆石采集点;9.地球化学样品采集点;10.构造
    Figure  1.  Geological sketch of the Diaoyutai area

    本次工作主要对钓鱼台地区满克头鄂博组流纹质凝灰岩进行研究,该组主要分布于工作区西部的门德沟-托欣河一带,总体呈NE向展布,出露面积约为84.07 km2。该组为一套陆相酸性火山岩组合,其角度不整合于格根敖包组及晚三叠世中细粒二长花岗岩之上,与上覆玛尼吐组为整合接触。下部主要岩性为凝灰质含砾砂岩、沉火山角砾凝灰岩及少量复成分砾岩、流纹质火山角砾凝灰岩等,产井上大胎壳叶肢介(Magumbonia-jingshangensis)、蜂窝梁大胎壳叶肢介(Magumbonia-fengwolingensis)。上部主要岩性为流纹质火山角砾凝灰岩、流纹质晶屑凝灰岩、流纹质熔结凝灰岩及流纹岩等。其中锆石年代学样品编号为TW11,地球化学样品为工作区内新鲜的基岩中取得,排除了变质、蚀变等情况的影响,编号为DP7H01~06,同时对岩石样品进行岩石学鉴定。

    流纹质凝灰岩,晶屑玻屑凝灰结构,块状构造,部分具假流纹构造。岩石有晶屑、玻屑、岩屑等组成。晶屑为尖角状或不规则状,有的保留半自形,晶屑成分主要为斜长石、钾长石、石英和少部分的黑云母,钾长石晶屑遭泥化作用,斜长石遭绢云母化作用,有环带构造,多数石英晶屑保留熔蚀港湾状,黑云母晶屑为片状,多数黑云母遭脱铁作用,并有铁质析出,晶屑粒径为0.05~2.00 mm,少部分晶屑可达3.0 mm的角砾级的晶屑,含量约为25%。玻屑部分为粒径小于0.05 mm的火山尘质点,部分玻屑为尖角状、凹面棱角、蠕虫状或不规则状,玻屑集合体呈条纹状,微具有塑性,在刚性的晶屑周围形成绕流,假流纹构造,大部分玻屑遭脱玻化作用,有的略有偏光反应,有的重结晶成细小的长英质,不透明矿物及铁质少量,岩石遭到强烈的绢云母化作用,岩石有裂隙发育,裂隙被铁质充填,含量约为65%。岩屑主要成分为流纹岩、英安岩及安山岩,次棱角状,大小为0.20~2.00 mm,含量约为10%(图2a图2b)。

    图  2  钓鱼台地区火山岩野外(a)及镜下照片(b)
    Figure  2.  (a) Field and (b) microscopic photographs of volcanic rocks in the Diaoyutai area

    河北省廊坊市区域地质调查研究院承担锆石测年工作中单矿物分选工作。首先将每件样品破碎,并粉碎至适当粒径,通过清洗、烘干、筛选等程序,选出不同粒级的锆石晶体,镜下挑选出颗粒较好的锆石晶体进行制靶。锆石CL图像拍摄与LA-ICP-MS U-Pb定年在北京科荟测试技术有限公司完成,采用的激光剥蚀电感耦合等离子质谱仪是德国生产的Jena elite,激光器型号是美国生产的Newwave 193-UC。根据锆石的阴极发光图像、透射光图像选取无包裹体、没有裂隙的合适锆石位置,采用193 mm准分子激光器对锆石表面进行剥蚀,激光剥蚀直径是25 μm,剥蚀频率10 Hz。以He气作为剥蚀物质的载气,将剥蚀物质运送至质谱仪进行测试分析。ICPMS的高频发射器功率是1200 w,冷却气(Ar)流是9 L/min,分析的积分时间共40 s,空白采集时间30 s。样品数据处理以NIST 610和GJ-1作为内部锆石标准,软件使用ICPMSData程序(刘平华等,2010)和Isopolot程序(Ludwing, 2003)进行分析和作图。

    地球化学样品共计6件,进行主量、微量及稀土元素分析,测试由河北省区域地质矿产调查研究所实验室完成。首先对样品进行去风化壳工作,获得新鲜样品后进行粉碎,并用球磨仪研磨成粉末状,主量元素采用Axios max X射线荧光光谱仪进行测试,精度优于5%,微量元素采用电感耦合等离子体质谱仪进行测试,分析精度优于5%,技术方法满足要求,地球化学图解经过去掉烧失量重新计算作图。

    研究区流纹质凝灰岩锆石U-Pb同位素分析结果见表1。所选取锆石样品多成长柱状或方块状,透明度较好,锆石颗粒直径多为100~150 μm,锆石具有明显的岩浆成因的韵律环带(图3)。研究认为,锆石成因不同其相应的Th/U也不相同(Rubatto et al., 2000),一般岩浆锆石的Th/U大于0.4,而变质锆石的Th/U含量较低,Th/U常小于0.07。本次锆石TW11样品中的Th/U值为0.24~1.96,大部分锆石Th/U大于0.4,均表现出明显的岩浆锆石特点(王新雨等,2023代新宇等,2024)。在206Pb/238U-207Pb/235U谐和图上,部分锆石年龄谐和度差,因此不参与最后计算。其余测点年龄加权平均值为(160.3±2.2) Ma,MSWD=3.4,该年龄代表了流纹质凝灰岩形成的年龄(图4)。

    表  1  钓鱼台地区火山岩(TW11)锆石U-Pb测试结果
    Table  1.  Zircon U-Pb test results of volcanic rocks(TW11)in the Diaoyutai area
    编号含量(10−6Th/U207Pb/206Pb207Pb/235U206Pb/238U238U/232Th207Pb/206Pb207Pb/235U206Pb/238U
    PbThU比值比值比值比值年龄
    (Ma)
    年龄
    (Ma)
    年龄
    (Ma)
    TW11-0137.5162.9690.30.240.05330.0020.18780.00720.02560.00033.13342.789.8174.86.21632.1
    TW11-0244.8247.6452.10.550.05610.00290.19640.00990.02550.00031.37453.8110.2182.18.4162.32.2
    TW11-0342.6224.9609.20.370.05230.00220.17610.00760.02450.00032.16301.991.7164.76.51562
    TW11-0429.294.3139.30.680.06060.00360.39160.02360.04670.00081.12633.4123.9335.517.2294.25
    TW11-0582.2400.11221.70.330.05190.00160.17470.00530.02440.00022.4279.770.4163.54.6155.61.4
    TW11-0636.9155.2665.80.230.04930.00210.16830.00690.02490.00033.26164.9100157.96158.71.9
    TW11-0741.7148.4126.91.170.05470.00470.34620.02750.04670.00080.67466.7195.3301.820.7294.34.6
    TW11-0829.7128.9558.80.230.04830.0020.16850.00640.02550.00033.37122.396.3158.15.5162.42
    TW11-0951110.9157.70.70.06050.00320.58030.03240.06940.00121.14620.4114.8464.720.8432.37
    TW11-1061.2206.7257.20.80.05320.00310.33680.01870.04640.00070.97338.9126.8294.814.2292.44.1
    TW11-1131.3139.8495.70.280.05050.00250.17640.00850.02550.00032.8216.7112.91657.3162.42
    TW11-1220.3123.3141.90.870.05460.00440.19380.01540.02590.00050.91394.5178.7179.913.1164.83
    TW11-1338260176.41.470.04760.00470.15820.0140.02490.00050.5479.7218.5149.112.3158.63.5
    TW11-1427.492.3147.40.630.05640.00320.35240.02170.04540.00091.23477.8121.3306.516.3286.25.8
    TW11-1565.2465.6237.51.960.05450.00370.19120.01250.02590.00040.43390.8186.1177.610.71652.5
    TW11-1625.3150.5258.40.580.0480.00320.1620.01020.0250.00041.36101.9148.1152.58.9159.12.4
    TW11-1760.3278.2812.80.340.05140.0020.18780.00760.02650.00042.2257.590.7174.86.5168.52.5
    TW11-1823.7124.8289.30.430.0510.00310.18330.01130.02640.00051.72242.7144.4170.99.71682.9
    TW11-1942.1209.3649.60.320.05050.00270.17310.00940.02480.00032.59220.4119.4162.18.2158.22.1
    TW11-2092.4583801.80.730.05380.00220.18330.00740.02480.00031.43364.960.2170.96.31581.9
    下载: 导出CSV 
    | 显示表格
    图  3  钓鱼台地区火山岩部分锆石阴极发光(CL)图
    Figure  3.  CL images of partial zircon of volcanic rocks in the Diaoyutai area
    图  4  钓鱼台地区火山岩(TW11)锆石U-Pb年龄谐和图(a)及加权平均图(b)
    Figure  4.  (a) U-Pb age concordance and (b) weighted average of volcanic rocks(TW11)in the Diaoyutai area

    流纹质凝灰岩主量元素分析结果见表2,其SiO2含量为73.14%~76.64%,平均为74.98%,Al2O3含量为12.51%~14.41%,平均为13.33%,MgO含量为0.28%~1.15%,CaO含量为0.30%~2.33%,P2O5含量较低为0.03%~0.07%,全碱(ALK)含量较低为5.79%~9.04%,平均值为6.96%,同时Na2O/K2O为0.49~0.96,岩石表现为富钾特征,铝过饱和指数(A/CNK)为1.00~1.57,表现为钙碱性特征。根据火山岩TAS图解(图5a),样品全落入流纹岩范围内,根据SiO2-K2O图解(图5b),样品均显示为高钾钙碱性系列岩石。

    表  2  钓鱼台地区火山岩主量元素(%)、微量和稀土元素(10−6)分析结果
    Table  2.  Major (%), trace and REE element (10−6) analytical results of volcanic rocks in the Diaoyutai area
    样品编号DP7H01DP7H02DP7H03DP7H04DP7H05DP7H06
    岩石名称流纹质凝灰岩
    SiO275.3274.9273.147576.6474.88
    TiO20.060.060.140.230.190.29
    Al2O314.4113.6414.0412.5112.612.79
    Fe2O30.530.150.31.270.691.01
    FeO0.681.691.720.680.540.97
    MnO0.030.070.090.060.070.06
    MgO0.750.561.150.470.310.28
    CaO0.520.952.330.520.30.3
    Na2O2.682.561.92.52.184.42
    K2O3.564.43.894.874.24.62
    P2O50.040.060.070.050.030.05
    LOI1.71.071.031.182.160.71
    100.27100.1499.8199.3499.91100.4
    ALK6.246.965.797.376.389.04
    N/K0.750.580.490.510.520.96
    A/CNK1.571.281.211.211.451
    Mg#53.6135.3650.7431.4932.2520.99
    SI9.155.9812.834.813.922.48
    DI5.411.998.4918.9116.0426.17
    Li31.7334.0446.733.586.555.48
    Be3.442.2533.483.482.41
    V6.964.049.6312.0214.158.81
    Cr2.141.691.572.2714.672.52
    Co0.20.281.071.183.730.53
    Ni1.590.591.221.410.893.41
    Cu2.051.722.913.213.163.58
    Zn21.0742.3542.2980.5789.32131.63
    Ga22.9819.2216.722.4419.5918.85
    Rb148.93152.94102.92180.9199.38118.41
    Zr93.41126.5110.7251.16196.38242.26
    Nb12.4310.878.5419.6321.9913.69
    Mo1.171.820.320.533.270.36
    In0.160.030.020.030.020.02
    Ba741.571207.12595.11152.26103.65387.61
    Sr51.9205.21154.7273.0843.5354.27
    Hf3.573.13.638.438.046.74
    Ta0.980.70.61.381.680.88
    W0.450.250.261.041.562.11
    Pb2119.8811.4820.8937.0916.91
    Bi0.130.120.010.50.630.07
    下载: 导出CSV 
    | 显示表格
    续表2
    样品编号DP7H01DP7H02DP7H03DP7H04DP7H05DP7H06
    Th5.554.594.9619.421.658.77
    U1.741.571.444.056.052.1
    Au0.810.851.380.740.421.22
    Ag0.060.040.030.040.050.06
    B21.8313.2911.184.468.014.33
    F1536.74639.06880.52381.14465.67264.69
    Y1414.112.123.625.127.1
    La19.314.920.529.840.135.9
    Ce39.24237.170.664.163
    Pr3.963.254.26.528.648.84
    Nd13.911.614.622.727.134.8
    Sm2.772.482.544.074.626
    Eu0.460.530.660.360.310.79
    Gd2.512.142.223.824.265.13
    Tb0.410.360.350.610.690.78
    Dy2.362.161.983.884.44.47
    Ho0.430.390.380.80.850.84
    Er1.171.041.092.422.642.37
    Tm0.20.180.210.470.520.44
    Yb1.211.111.222.883.152.64
    Lu0.180.160.190.440.490.41
    ΣREE88.0682.387.24149.37161.87166.41
    LREE79.5974.7679.6134.05144.87149.33
    HREE8.477.547.6415.321717.08
    LREE/HREE9.49.9210.428.758.528.74
    (La/Yb)N11.449.6312.057.429.139.75
    δEu0.530.70.850.280.210.44
    δCe1.11.480.981.240.840.87
    下载: 导出CSV 
    | 显示表格
    图  5  钓鱼台地区火山岩TAS图解和SiO2-K2O图解(a据Irvine et al., 1971;b据Peccerillo et al., 1976
    Figure  5.  TAS diagram and SiO2-K2O diagram of volcanic rocks in the Diaoyutai area

    岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE)(图6a)。岩石稀土元素ΣREE=82.30×10−6~155.41×10−6,(La/Yb)N=7.42~11.44,轻重稀土分馏明显。轻稀土富集而重稀土亏损,LREE/HREE=8.52~10.42,根据稀土元素球粒陨石标准化配分图显示为明显的右倾特征(图6b),δEu=0.21~0.85,平均值为0.5,表现较为明显的负异常,其中稀土元素配分图与洋岛玄武岩(OIB)配分模式相近(Sun et al., 1989)。

    图  6  钓鱼台地区火山岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化REE图解(b)(标准化数据源自Sun等, 1989
    Figure  6.  Primitive mantle-normalized trace element spidergrams and chondrite-normalized REE distribution patterns of volcanic rocks in the Diaoyutai area

    大兴安岭地区的火山岩基本都来自于中生代,特别是中晚侏罗世和白垩纪,特别是随着锆石U-Pb测年技术的应用和日渐成熟,使该地区的火山岩的年龄特征进一步显现。郝彬等(2016)在赤峰地区厘定了晚侏罗世(160~147 Ma)和早白垩世(132~129 Ma)的火山岩,主要以中酸性火山岩为主,杨扬等(2012)同样在赤峰地区测得满克头鄂博组火山岩的U-Pb年龄分别为(156±2) Ma和(157±3) Ma,杜洋等(2017)在克一河地区测得满克头鄂博组流纹质火山岩为139 Ma,刘凯等在大兴安岭北段图里河地区测得满克头鄂博组火山岩的年龄为(156±1) Ma。同时也有大量学者获得了大兴安岭其他地区中晚侏罗世火山岩年龄,同样集中在150~170 Ma(Wang et al., 2006陈志广等,2006张吉衡, 2006张连昌等,2007苟军等,2010孙德有等,2011程银行等,2014)。本次在内蒙古中部钓鱼台地区满克头鄂博组流纹质凝灰岩采集的锆石加权平均年龄为(160.3±2.2) Ma,表明在晚侏罗世,该地区存在比较强烈的火山作用,形成了满克头鄂博组酸性的火山岩。

    根据测试分析可知,满克头鄂博组流纹质凝灰岩SiO2含量平均为74.98%,全碱(ALK)含量平均为6.96%,Na2O/K2O平均为0.64,为偏钾质,A/NKC平均为1.29,属于高钾钙碱性系列岩石,表现为壳源岩浆的特点。同时岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),特别强烈亏损Sr、P、Ti,也表明岩浆由地壳熔融产生(葛文春等,2001)。

    研究表明,斜长石的分离结晶会导致Eu和Sr的强烈亏损,二者对斜长石是强相容元素,研究区的火山岩,表现出较为明显的Eu异常,平均值为0.50,同时Sr也表现为明显亏损,P的负异常则可能表现为磷灰石的结晶分离,Ti的亏损可能受控于钛铁矿的分离结晶作用。同时在研究区内并未发现该时期基性岩的分布,说明岩浆来源不应为基性岩浆结晶分离的产物,同时岩石的Cr含量平均为4.14×10−6,Ni的含量平均为3.18×10−6,同样表现为未有幔源物质的加入(邓晋福等, 1999)。

    火山岩的Nb/U平均值为5.83,相比于大陆地壳偏低(Rudinick et al., 2003)。Nb/Ta值平均值为14.22,稍高于大陆地壳的平均值(11~12)(Xiong et al., 2005)。Rb/Sr为0.67~4.58,平均为2.25,与OIB(0.047)、原始地幔(0.03)、E-MORB(0.033)相比明显偏高(Sun et al., 1989),与壳源岩浆的范围(>0.5)一致(Tischeendorf et al., 1985),Nd/Th值的平均值为2.39,接近壳源岩石的比值(≈3)(Bea et al., 2001Rudinick et al., 2003),Ti/Zr=5.45,也均分布在壳源岩浆的范围内(Ti/Zr<20)(Wilson, 1989),Ti/Y值的平均值为48.13(Ti/Y<100)(Tischeendorf et al., 1985),其比值也属于壳源岩浆的产物特征。

    Mg#值是区分岩浆来源比较理想的参数,研究表明,典型的大洋中脊拉斑玄武岩(MORB)的Mg#值约为60,下地壳来源的溶体Mg#值均比较低,与熔融程度相关性小,一般小于40,当有地幔物质参与时,才可能导致Mg#值大于40(Rapp et al., 1995)。本次火山岩的Mg#值20.99~53.61,平均为37.41,应主要为壳源岩浆的产物,暗示存在幔源物质的参与。

    根据岩石类型判别图解,流纹质凝灰岩大部分为类似A型花岗岩(图7a),而岩石本身也具有高Si,低Sr的特点,也属于A型花岗岩特征,而根据C/MF-A/MF图解(图7b)显示,流纹质凝灰岩主要来源于变质沉积岩的部分熔融,说明岩浆的原岩均为地壳物质的熔融作用所产生的。综合分析认为钓鱼台地区满克头鄂博组流纹质凝灰岩与A型花岗岩化学特征相似,由地壳物质部分熔融而形成,可能含有少量幔源物质的参与。

    图  7  钓鱼台地区火山岩类型判别图解(a据Whalen et al., 1987; b据Alther et al., 2000
    Figure  7.  Type discrimination diagram of volcanic rocks in the Diaoyutai area

    研究区内火山岩表现富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),具有高Si特点,且Sr含量为43.53×10−6~205.21×10−6,平均为97.12×10−6(小于400×10−6),Yb为1.11×10−6~3.15×10−6,平均为2.04×10−6(大于2×10−6),且具有明显的Eu负异常,具有A型花岗岩特征,相似于造山期后花岗岩的特征,根据构造判别图解Y+Nb-Rb(图8a),流纹质凝灰岩基本位于火山弧-后碰撞花岗岩范围内,而根据A型花岗岩类型判断,部分样品为A2型范围内,其余样品基本位于A2型花岗岩与A1型接触范围内,表现为逐步向伸展构造背景之下转变。

    图  8  钓鱼台地区火山岩构造判别图解(a据Pearce et al., 1984; b据Eby, 1990
    Figure  8.  Type discrimination diagram of volcanic rocks in the Diaoyutai area

    关于大兴安岭地区中生代火山岩的形成背景一致争议较大,一种观点认为是古太平洋构造域的影响,这种观念最直接的证据就是中国东部晚中生代岩浆活动具有统一性,表明它们可能的形成受控于东部的太平洋体系(Uyeda et al., 1974Hilde et al., 1977Takahashi et al., 1983邓晋福等,1996朱勤文等,1997)。日本海沟的太平洋板块俯冲带距离大兴安岭超过1800 km,即使认为日本海并未进行弧后扩张,那么大兴安岭距离俯冲带也超过1000 km,根据前人研究成果,当板块以26 °角俯冲到600 km以后,板块中心温度将超过1200 ℃,在这种高温作用下,板块早已经软化,不再产生弹性断层,而大兴安岭与俯冲作用有关的弧火山-侵入岩要远远小于这个数字,因此,古太平洋俯冲的影响边界应截止于东亚大陆边缘,俯冲作用不能完全解释大兴安岭的岩浆活动特征(张立敏等,1983邵济安等,2000)。基于岩石圈热演化过程分析,大兴安岭地区并没有发现与太平洋板块俯冲作用相关的晚中生代安第斯型弧岩浆带,也反映出晚侏罗、早白垩世东亚陆缘的岩浆岩与太平洋板块俯冲无关(上田诚也等,1979)。

    类似于超级地幔柱作用形成的深部熔融,在区域规模上,中国东北地区燕山期岩浆岩甚至可以与大火成岩省媲美。林强等(19981999)认为古亚洲域冷板块向地幔深部运动,从而引发了热地幔柱上升是大兴安岭中生代火山岩形成的重要控制因素。环状火山岩带是地幔柱模式最为显著的特点,然而中生代岩浆作用的时空分布特征不支持该模式,并且中生代火山岩时间跨度范围较大(185~105 Ma),而传统认为地幔柱产生的岩浆作用持续时间一般较短。而且大兴安岭中生代岩浆作用明显呈带状大陆边缘分布,这一点使用地幔柱作用模式很难解释。同时按照地幔柱最为基础的理论研究,地幔柱形成的直接产物是玄武质岩浆的大规模喷溢,而大兴安岭地区中生代基性岩浆活动非常贫乏(Fan et al., 2003张连昌等,2007),因此可能与太平洋构造域也没有直接影响。

    还有一种观点就是与蒙古–鄂霍茨克洋闭合的影响有关(郭锋等,2001Fan et al., 2003)。尹志刚等(2019)在大兴安岭南段东乌旗地区测定的满克头鄂博组流纹岩,其化学特征与A型花岗岩相似,推断形成于造山后伸展环境中。何鹏等(2022)在乌拉盖地区测得满克头鄂博组火山岩形成于154~164 Ma,主要来源于壳源,同样与蒙古–鄂霍茨克洋闭合后岩石圈伸展作用有关。在内蒙古莫合尔图、满洲里、扎鲁特旗、赤峰等地也都发现了该时期具有伸展构造背景的火山岩(陈志广等,2006孟恩等,2011程银行等,2013王杰等,2014)。

    晚古生代末期蒙古–鄂霍茨克洋部分开始俯冲,并在晚三叠世开始自西向东呈剪刀式闭合(莫申国等,2006黄始琪等,2014),在侏罗世早期完成了闭合(Tomurtogoo et al., 2005),但其深部板块的俯冲后撤作用并没有立刻结束,而是持续了一段时间,虽然中生代晚期的火山岩的构造线与其不一致,但是大兴安岭地区中—晚侏罗世的火山岩,特别是大面积分布的具有A型花岗岩特征的火山岩还应与蒙古-鄂霍茨克洋闭合后板块俯冲后撤所带来的伸展减薄环境有关。

    综合研究认为,研究区内晚侏罗世满克头鄂博组的火山岩具有A型花岗岩的地球化学特征,推测岩浆来源于地壳,形成于蒙古-鄂霍茨克洋闭合后板块俯冲后撤作用引起的地壳伸展减薄环境。

    (1)内蒙古东部钓鱼台地区满克头鄂博组火山岩年龄为(160.3±2.2) Ma,时代归属于晚侏罗世。

    (2)内蒙古东部钓鱼台地区满克头鄂博组火山岩具有A型花岗岩的地球化学特征,岩石表现为富集Rb、Th、U、Nd等大离子亲石元素(LILE),亏损Nb、Sr、P、Ti等高场强元素(HFSE),根据微量元素及其比值,火山岩的岩浆来源于地壳沉积岩的部分熔融,可能有地幔物质参与。

    (3)结合前人研究成果,推断研究区内满克头鄂博组火山岩主要形成于伸展构造背景下,与蒙古-鄂霍茨克洋闭合后板块俯冲后撤作用导致的岩石圈伸展作用有关。

  • 图  1   钓鱼台地区地质简图(a据刘晨等,2017改编)

    1.第四系;2.晚侏罗系玛尼吐组;3.晚侏罗系满克头鄂博组;4.晚石炭系格根敖包组;5.花岗斑岩;6.流纹斑岩;7.正长花岗岩;8.锆石采集点;9.地球化学样品采集点;10.构造

    Figure  1.   Geological sketch of the Diaoyutai area

    图  2   钓鱼台地区火山岩野外(a)及镜下照片(b)

    Figure  2.   (a) Field and (b) microscopic photographs of volcanic rocks in the Diaoyutai area

    图  3   钓鱼台地区火山岩部分锆石阴极发光(CL)图

    Figure  3.   CL images of partial zircon of volcanic rocks in the Diaoyutai area

    图  4   钓鱼台地区火山岩(TW11)锆石U-Pb年龄谐和图(a)及加权平均图(b)

    Figure  4.   (a) U-Pb age concordance and (b) weighted average of volcanic rocks(TW11)in the Diaoyutai area

    图  5   钓鱼台地区火山岩TAS图解和SiO2-K2O图解(a据Irvine et al., 1971;b据Peccerillo et al., 1976

    Figure  5.   TAS diagram and SiO2-K2O diagram of volcanic rocks in the Diaoyutai area

    图  6   钓鱼台地区火山岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化REE图解(b)(标准化数据源自Sun等, 1989

    Figure  6.   Primitive mantle-normalized trace element spidergrams and chondrite-normalized REE distribution patterns of volcanic rocks in the Diaoyutai area

    图  7   钓鱼台地区火山岩类型判别图解(a据Whalen et al., 1987; b据Alther et al., 2000

    Figure  7.   Type discrimination diagram of volcanic rocks in the Diaoyutai area

    图  8   钓鱼台地区火山岩构造判别图解(a据Pearce et al., 1984; b据Eby, 1990

    Figure  8.   Type discrimination diagram of volcanic rocks in the Diaoyutai area

    表  1   钓鱼台地区火山岩(TW11)锆石U-Pb测试结果

    Table  1   Zircon U-Pb test results of volcanic rocks(TW11)in the Diaoyutai area

    编号含量(10−6Th/U207Pb/206Pb207Pb/235U206Pb/238U238U/232Th207Pb/206Pb207Pb/235U206Pb/238U
    PbThU比值比值比值比值年龄
    (Ma)
    年龄
    (Ma)
    年龄
    (Ma)
    TW11-0137.5162.9690.30.240.05330.0020.18780.00720.02560.00033.13342.789.8174.86.21632.1
    TW11-0244.8247.6452.10.550.05610.00290.19640.00990.02550.00031.37453.8110.2182.18.4162.32.2
    TW11-0342.6224.9609.20.370.05230.00220.17610.00760.02450.00032.16301.991.7164.76.51562
    TW11-0429.294.3139.30.680.06060.00360.39160.02360.04670.00081.12633.4123.9335.517.2294.25
    TW11-0582.2400.11221.70.330.05190.00160.17470.00530.02440.00022.4279.770.4163.54.6155.61.4
    TW11-0636.9155.2665.80.230.04930.00210.16830.00690.02490.00033.26164.9100157.96158.71.9
    TW11-0741.7148.4126.91.170.05470.00470.34620.02750.04670.00080.67466.7195.3301.820.7294.34.6
    TW11-0829.7128.9558.80.230.04830.0020.16850.00640.02550.00033.37122.396.3158.15.5162.42
    TW11-0951110.9157.70.70.06050.00320.58030.03240.06940.00121.14620.4114.8464.720.8432.37
    TW11-1061.2206.7257.20.80.05320.00310.33680.01870.04640.00070.97338.9126.8294.814.2292.44.1
    TW11-1131.3139.8495.70.280.05050.00250.17640.00850.02550.00032.8216.7112.91657.3162.42
    TW11-1220.3123.3141.90.870.05460.00440.19380.01540.02590.00050.91394.5178.7179.913.1164.83
    TW11-1338260176.41.470.04760.00470.15820.0140.02490.00050.5479.7218.5149.112.3158.63.5
    TW11-1427.492.3147.40.630.05640.00320.35240.02170.04540.00091.23477.8121.3306.516.3286.25.8
    TW11-1565.2465.6237.51.960.05450.00370.19120.01250.02590.00040.43390.8186.1177.610.71652.5
    TW11-1625.3150.5258.40.580.0480.00320.1620.01020.0250.00041.36101.9148.1152.58.9159.12.4
    TW11-1760.3278.2812.80.340.05140.0020.18780.00760.02650.00042.2257.590.7174.86.5168.52.5
    TW11-1823.7124.8289.30.430.0510.00310.18330.01130.02640.00051.72242.7144.4170.99.71682.9
    TW11-1942.1209.3649.60.320.05050.00270.17310.00940.02480.00032.59220.4119.4162.18.2158.22.1
    TW11-2092.4583801.80.730.05380.00220.18330.00740.02480.00031.43364.960.2170.96.31581.9
    下载: 导出CSV

    表  2   钓鱼台地区火山岩主量元素(%)、微量和稀土元素(10−6)分析结果

    Table  2   Major (%), trace and REE element (10−6) analytical results of volcanic rocks in the Diaoyutai area

    样品编号DP7H01DP7H02DP7H03DP7H04DP7H05DP7H06
    岩石名称流纹质凝灰岩
    SiO275.3274.9273.147576.6474.88
    TiO20.060.060.140.230.190.29
    Al2O314.4113.6414.0412.5112.612.79
    Fe2O30.530.150.31.270.691.01
    FeO0.681.691.720.680.540.97
    MnO0.030.070.090.060.070.06
    MgO0.750.561.150.470.310.28
    CaO0.520.952.330.520.30.3
    Na2O2.682.561.92.52.184.42
    K2O3.564.43.894.874.24.62
    P2O50.040.060.070.050.030.05
    LOI1.71.071.031.182.160.71
    100.27100.1499.8199.3499.91100.4
    ALK6.246.965.797.376.389.04
    N/K0.750.580.490.510.520.96
    A/CNK1.571.281.211.211.451
    Mg#53.6135.3650.7431.4932.2520.99
    SI9.155.9812.834.813.922.48
    DI5.411.998.4918.9116.0426.17
    Li31.7334.0446.733.586.555.48
    Be3.442.2533.483.482.41
    V6.964.049.6312.0214.158.81
    Cr2.141.691.572.2714.672.52
    Co0.20.281.071.183.730.53
    Ni1.590.591.221.410.893.41
    Cu2.051.722.913.213.163.58
    Zn21.0742.3542.2980.5789.32131.63
    Ga22.9819.2216.722.4419.5918.85
    Rb148.93152.94102.92180.9199.38118.41
    Zr93.41126.5110.7251.16196.38242.26
    Nb12.4310.878.5419.6321.9913.69
    Mo1.171.820.320.533.270.36
    In0.160.030.020.030.020.02
    Ba741.571207.12595.11152.26103.65387.61
    Sr51.9205.21154.7273.0843.5354.27
    Hf3.573.13.638.438.046.74
    Ta0.980.70.61.381.680.88
    W0.450.250.261.041.562.11
    Pb2119.8811.4820.8937.0916.91
    Bi0.130.120.010.50.630.07
    下载: 导出CSV
    续表2
    样品编号DP7H01DP7H02DP7H03DP7H04DP7H05DP7H06
    Th5.554.594.9619.421.658.77
    U1.741.571.444.056.052.1
    Au0.810.851.380.740.421.22
    Ag0.060.040.030.040.050.06
    B21.8313.2911.184.468.014.33
    F1536.74639.06880.52381.14465.67264.69
    Y1414.112.123.625.127.1
    La19.314.920.529.840.135.9
    Ce39.24237.170.664.163
    Pr3.963.254.26.528.648.84
    Nd13.911.614.622.727.134.8
    Sm2.772.482.544.074.626
    Eu0.460.530.660.360.310.79
    Gd2.512.142.223.824.265.13
    Tb0.410.360.350.610.690.78
    Dy2.362.161.983.884.44.47
    Ho0.430.390.380.80.850.84
    Er1.171.041.092.422.642.37
    Tm0.20.180.210.470.520.44
    Yb1.211.111.222.883.152.64
    Lu0.180.160.190.440.490.41
    ΣREE88.0682.387.24149.37161.87166.41
    LREE79.5974.7679.6134.05144.87149.33
    HREE8.477.547.6415.321717.08
    LREE/HREE9.49.9210.428.758.528.74
    (La/Yb)N11.449.6312.057.429.139.75
    δEu0.530.70.850.280.210.44
    δCe1.11.480.981.240.840.87
    下载: 导出CSV
  • 陈志广, 张连昌, 周新华, 等. 满洲里新右旗火山岩剖面年代学和地球化学特征[J]. 岩石学报, 2006, 22(12): 2971-2986 doi: 10.3321/j.issn:1000-0569.2006.12.014

    CHEN Zhiguang, ZHANG Lianchang, ZHOU Xinhua, et al. Geochronology and geochemical characteristics of Mesozoic volcanic rocks section in Manzhouli Xinyouqi, Inner-Mongolia[J]. Acta Petrologica Sinica, 2006, 22(12): 2971-2986. doi: 10.3321/j.issn:1000-0569.2006.12.014

    程银行, 刘永顺, 滕学建, 等. 内蒙古莫合尔图中-晚侏罗世火山岩年代学、地球化学研究及其意义[J]. 地质学报, 2013, 87(7): 943-956 doi: 10.3969/j.issn.0001-5717.2013.07.004

    CHENG Yinhang, LIU Yongshun, TENG Xuejian, et al. Geochronology, geochemistry and geological significance of Medial-Late Jurassic volcanic rocks in Mohe' ertu area, Inner Mongolia[J]. Acta Geologica Sinica, 2013.87(7): 943-956. doi: 10.3969/j.issn.0001-5717.2013.07.004

    程银行, 滕学建, 李艳锋, 等. 内蒙古海莫赛格酸性火山岩锆石U-Pb年龄、地球化学特征及其意义[J]. 岩石矿物学杂志, 2014, 33(2): 211-225 doi: 10.3969/j.issn.1000-6524.2014.02.001

    CHENG Yinhang, TENG Xuejian, LI Yanfeng, et al. Geochronology, geochemistry and geological significance of felsic volcanic rocks in Haimosaige area, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 2014, 33(2): 211-225. doi: 10.3969/j.issn.1000-6524.2014.02.001

    代新宇, 周斌, 李新林, 等. 西昆仑奇台达坂北中新世石英二长岩侵入岩年代学、地球化学及其构造意义[J]. 西北地质, 2024, 57(4): 191−205.

    DAI Xinyu, ZHOU Bin, LI Xinlin, et al. Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun[J]. Northwestern Geology, 2024, 57(4): 191−205.

    杜洋, 刘正宏, 崔维龙, 等. 大兴安岭克一河地区满克头鄂博组火山岩形成时代、地球化学特征及地质意义[J]. 世界地质, 2017, 36(1): 54-65 doi: 10.3969/j.issn.1004-5589.2017.01.005

    DU Yang, LIU Zhenghong, CUI Weilong, et al. Formation age and geochemical characteristics of volcanic rocks from Manketouebo Formation in Keyihe area, Da Higgan Moutains and its tectonic implications[J]. Global Geology, 2017, 36(1): 54-65. doi: 10.3969/j.issn.1004-5589.2017.01.005

    邓晋福, 莫宣学, 罗照华, 等. 火成岩构造组合与壳-幔成矿系统[J]. 地学前缘, 1999, 6(2): 259-270 doi: 10.3321/j.issn:1005-2321.1999.02.005

    DENG Jinfu, MO Xuanxue, LUO Zhaohua, et al. Igneous petrotectonic assemblage and crust-mantle metallogenic system[J]. Earth Science Frontiers(China University of Geosciences, Beijing), 1999, 6(2): 259-270. doi: 10.3321/j.issn:1005-2321.1999.02.005

    郭锋, 范蔚茗, 王岳军, 等 . 大兴安岭南段晚中生代双峰式火山作用[J]. 岩石学报, 2001, 17(1): 161-168.

    GUO Feng, FAN Weiming, WANG Yuejun, et al. Petrogenesis of the late Mesozoic bimodal volcanic rocks in the southern Da Hinggan Mts, China[J]. Acta Petrologica Sinica, 2001, 17(1): 161- 168.

    葛文春, 李献华, 林强, 等. 呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J]. 地质科学, 2001, 36(2): 176-183 doi: 10.3321/j.issn:0563-5020.2001.02.005

    GE Wenchun, LI Xianhua, LIN Qiang, et al. Geochemistry of early cretaceous alkaline rhyolites from hulun lake, daxing'anling and its tectonic implications[J]. Chinese Journal of Geology, 2001, 36(2): 176-183. doi: 10.3321/j.issn:0563-5020.2001.02.005

    苟军, 孙德有, 赵忠华, 等. 满洲里南部白音高老组流纹岩锆石U-Pb定年及岩石成因[J]. 岩石学报, 2010, 26(1): 333-344

    GOU Jun, SUN Deyou, ZHAO Zhonghua, et al. Zircon LA-ICP-MS U-Pb dating and petrogenesis of rhyolites in Baiyingaolao Formation from the southern Manzhouli, Inner-Mongolia[J]. Acta Petrologica Sinica, 2010, 26(1): 333-344.

    郝彬, 宋江, 李朝柱, 等. 赤峰地区晚中生代火山岩锆石U-Pb年代学及地球化学特征[J]. 大地构造与成矿学, 2016, 40(06): 1261-1274 doi: 10.16539/j.ddgzyckx.2016.06.013

    HAO Bin, SONG Jiang, LI Chaozhu, et al. Zircon U-Pb Age and Geochemical Characteristics of the Late Mesozoic Volcanic Rocks in Chifeng area[J]. Geotectonica et Metallogenia, 2016, 40(06): 1261-1274. doi: 10.16539/j.ddgzyckx.2016.06.013

    何鹏, 郭硕, 张天福, 等. 大兴安岭南部乌拉盖地区满克头鄂博组火山岩年代学、地球化学研究及构造环境分析[J]. 中国地质, 2022, 49(02): 601-619

    HE Peng, GUO Shuo, ZHANG Tianfu, et al. Geochronology, geochemistry and tectonic setting of volcanic rocks from Manketouebo Formation in Wulagai area, southern Great Xing'an Range[J]. Geology in China, 2022, 49(2): 601-619.

    黄始琪, 董树文, 张福勤, 等. 蒙古-鄂霍茨克构造带中段构造变形及动力学特征[J]. 地球学报, 2014, 35(4): 415-424 doi: 10.3975/cagsb.2014.04.03

    HUANG Shiqi, DONG Shuwen, ZHANG Fuqin, et al. Tectonic Deformation and Dynamic Characteristics of the Middle Part of the Mongolia–Okhotsk Collisional Belt, Mongolia[J]. Acta Geoscientica Sinica, 2014, 35(4): 415-424. doi: 10.3975/cagsb.2014.04.03

    林强, 葛文春, 孙德有, 等. 中国东北地区中生代火山岩的大地构造意义[J]. 地质科学, 1998, 33(2): 129-139

    LIN Qiang, GE Wenchun, SUN Deyou, et al. Tectonic significance of mesozoic volcanic rocks in northeastern China [J]. Scientia Geologica Sinica, 1998, 33(2): 129-139.

    林强, 葛文春, 孙德有, 等. 东北亚中生代火山岩的地球动力学意义[J]. 地球物理学报, 1999, 42(S1): 75-84

    LIN Qiang, GE Wenchun, SUN Deyou, et al. Geomechanical significance of the Mesozoic volcanics in northeast asia [J]. Chinese Journal of Geophysics, 1999, 42(S1): 75-84.

    林强, 葛文春, 曹林, 等 . 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 2003, 32(3): 208-222.

    LIN Qiang, GE Wenchun, CAO Lin, et al. Geochemistry of Mesozoic volcanic rocks in Da Hinggan Ling: the bimodal volcanic rocks[J]. Geochimica, 2003, 32(3): 208- 222.

    刘晨, 孙景贵, 邱殿明, 等. 大兴安岭北段东坡小莫尔可地区中生代火山岩成因及其地质意义: 元素、Hf同位素地球化学与锆石U-Pb同位素定年[J]. 吉林大学学报(地球科学版), 2017, 47(04): 1138-1158

    LIU Chen, SUN Jinggui, QIU Dianming, et al. Genesis and Geological Significance of Mesozoic Volcanic Rocks in Xiaomoerke, Northern Slope of Greater Khingan Range: Hf Isotopic Geochemistry and Zircon U-Pb Chronology[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(04): 1138-1158.

    刘平华, 刘福来, 王舫, 等 . 山东半岛基性高压麻粒岩的成因矿物学及变质演化[J]. 岩石学报, 2010, 26(07): 2039-2056.

    LIU Pinghua, LIU Fulai, WANG Fang, et al. Genetic mineralogy and metamorphic evolution of mafic high pressure (HP) granulites from the Shandong Peninsula, China[J]. Acta Petrologica Sinica, 2010, 26(7): 2039 -2056.

    刘俊杰, 鞠文信, 赵九峰, 等. 大兴安岭根河岩区晚侏罗世火山岩特征及构造环境探讨[J]. 华南地质与矿产, 2006, 1: 38-46

    LIU Junjie, JU Wenxin, ZHAO Jiufeng, et al. Discussion on the characteristic and structural environmental of the Late Jurassic volcanic rock in Genhe terrain, Daxinganling[J]. Geology and Mineral Resources of South China, 2006, 1: 38-46.

    李鹏川, 李世超, 刘正宏, 等. 内蒙古林西地区满克头鄂博组火山岩形成时代及构造环境[J]. 世界地质, 2016, 35(1): 77-88 doi: 10.3969/j.issn.1004-5589.2016.01.008

    LI Pengchuan, LI Shichao, LIU Zhenghong, et al. Formation age and environment of the volcanic rocks from the Manketouebo Formation in Linxi area, Inner Mongolia[J]. Global Geology, 2016, 35(1): 77-88. doi: 10.3969/j.issn.1004-5589.2016.01.008

    孟恩, 许文良, 杨德彬, 等. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2011, 27(4): 1209-1226

    MENG En, XU Wenliang, YANG Debin, et al. Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications[J]. Acta Petrologica Sinica, 2011, 27(4): 1209-1226.

    莫申国, 韩美莲, 李锦轶. 蒙古-鄂霍茨克造山带的组成及造山过程[J]. 山东科技大学学报(自然科学版), 2006, 24(3): 50-52 doi: 10.16452/j.cnki.sdkjzk.2005.03.014

    MO Shenguo, HAN Meilian, LI Jinyi. Compositions and Orogenic Processes of Mongolia-Okhotsk Orogen[J]. Journal of Shandong University of Science and Technology(Natural Science), 2006, 24(3): 50-52. doi: 10.16452/j.cnki.sdkjzk.2005.03.014

    邵济安, 张履桥. 华北北部中生代岩墙群[J]. 岩石学报, 2002, 18(3): 312-318 doi: 10.3969/j.issn.1000-0569.2002.03.005

    SHAO Jian, ZHANG Lvqiao. Mesozoic dyke swarms in the north of North China[J]. Acta Petrologica Sinica, 2002, 18(3): 312-318. doi: 10.3969/j.issn.1000-0569.2002.03.005

    邵济安, 刘福田, 陈辉. 从西太平洋地震层析剖面中得到的启示[J]. 自然科学进展, 2000, 10(8): 757-760 doi: 10.3321/j.issn:1002-008X.2000.08.014

    SHAO Jian, LIU Futian, CHEN Hui. Inspiration from Seismic Tomographic Profiles in the Western Pacific [J]. Progress in Natural Science, 2000, 10(8): 757-760. doi: 10.3321/j.issn:1002-008X.2000.08.014

    孙德有, 苟军, 任云生, 等. 满洲里南部玛尼吐组火山岩锆石U-Pb年龄与地球化学研究[J]. 岩石学报, 2011, 27(10): 3083-3094

    SUN Deyou, GOU Jun, REN Yunsheng, et al. Zircon U-Pb dating and study on geochemistry of volcanic rocks in Manitu Formation from southern Manchuria, Inner Mongolia[J]. Acta Petrologic Sinica, 2011, 27(10): 3083-3094.

    王杰, 姚玉来, 丁秋红, 等. 内蒙古扎鲁特旗地区晚侏罗世火山岩岩石学及地球化学特征[J]. 地质科技情报, 2014, 33(06): 18-27

    WANG Jie, YAO Yulai, DING Qiuhong, et al. Petrological and Geochemical Characteristics of Late Jurassic Volcanic Rocks in Zhalute Area, Eastern Inner Mongolia[J]. Geological Science and Technology Information, 2014, 33(06): 18-27.

    王新雨, 王书来, 吴锦荣, 等. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 2023, 56(6): 71–81.

    WANG Xinyu, WANG Shulai, WU Jinrong, et al. Mineralization Age and Ore forming–Source of Niukutou Pb–Zn Deposit, Qinghai: Evidence from Geochronology of Ore–forming Rock Bodies and Re–Os Geochemistry of Pyrite[J]. Northwestern Geology, 2023, 56(6): 71–81.

    尹志刚, 郝科, 刘成龙, 等. 内蒙古东乌旗地区满克头鄂博组流纹岩年代学、地球化学特征及其地质意义[J]. 地质通报, 2019, 38(11): 1825-1835 doi: 10.12097/j.issn.1671-2552.2019.11.006

    YIN Zhigang, HAO Ke, LIU Chenglong, et al. Geochronological and geochemical characteristics of rhyolite in the Manketou'ebo Formation of Dong Ujimqin Banner, Inner Mongolia, and its geological implications[J]. Geological Bulletin of China, 2019, 38(11): 1825-1835. doi: 10.12097/j.issn.1671-2552.2019.11.006

    杨扬, 高福红, 陈井胜, 等. 赤峰地区中生代火山岩锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2012, 42(S2): 257-268 doi: 10.13278/j.cnki.jjuese.2012.s2.042

    YANG Yang, GAO Fuhong, CHEN Jingsheng, et al. Zircon U-Pb ages of Mesozoic volcanic rocks in Chifeng area[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(2): 257-268. doi: 10.13278/j.cnki.jjuese.2012.s2.042

    赵书跃, 韩彦东, 朱春燕, 等 . 大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义[J]. 地质力学报, 2004, 10(3): 276-287.

    ZHAO Shuyue, HAN Yandong, ZHU Chunyan, et al. Geochemical characteristics and geological significance of intermediate and intermediate-acid volcanic rocks in the northern sector of the Da Hinggan volcanic eruption zone[J]. Journal of Geomechanics, 2004, 10(3): 276- 287.

    张连昌, 陈志广, 周新华, 等. 大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化: Sr-Nd-Pb-Hf同位素地球化学制约[J]. 岩石学报, 2007, 23(11): 2823-2835 doi: 10.3969/j.issn.1000-0569.2007.11.013

    ZHANG Lianchang, CHEN Zhiguang, ZHOU Xinhua, et al. Characteristics of deep sources and tectonic-magmatic evolution of the Early Cretaceous volcanics in Genhe area, Da-Hinggan Mountains: constraints of Sr-Nd-Pb-Hf isotopic geochemistries[J]. Acta Petrol Sinica, 2007, 23(11): 2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013

    张吉衡. 大兴安岭中生代火山岩年代学格架[D]. 吉林: 吉林大学, 2006

    ZANG Jiheng. Geochronological framework of the Mesozoic volcanic rocks in the Great Xingan Range, NE China. Master degree dissertation[D]. Changchun: Jilin University, 2006.

    朱勤文, 路凤香, 谢意红, 等. 大陆边缘扩张型活动带火山岩组合-松辽盆地周边中生代火山岩研究[J]. 岩石学报, 1997, 13(4): 551-562 doi: 10.3321/j.issn:1000-0569.1997.04.009

    ZHU Qinwen, LU Fengxiang, XIE Yihong, et al. Volcanic Rocks Assemblages in Active Belt of Spreading Type in Continental Margin: Study on Mesozoic Volcanic Rocks around Songl iao Basin[J]. Acta Petrologica Sinica, 1997, 13(4): 551-562. doi: 10.3321/j.issn:1000-0569.1997.04.009

    张立敏, 唐晓明. 西太平洋板块俯冲运动与中国东北深震带[J]. 地球物理学报, 1983, 26(4): 331-340 doi: 10.3321/j.issn:0001-5733.1983.04.004

    ZHANG Limin, TANG Xiaoming. The Underthrusting Movement of the Western Pacific Plate and the deep focus earthquake zone of northeast China[J]. Acta Geophysica Sinica, 1983, 26(4): 331-340. doi: 10.3321/j.issn:0001-5733.1983.04.004

    上田诚也, 衫村新著 . 谢鸣谦, 谢鸣一译. 岛弧[M]. 北京: 地质出版社, 1979.
    邓晋福, 赵海玲, 莫宣学, 等 . 中国大陆根-柱构造-大陆动力学的钥匙[M]. 北京: 地质出版社, 1996.

    Alther R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 2000, 50(1): 51-73.

    Bea F, Arzamastsev A, Montero P, et al. Anomalous alkaline rocks of Soustov, Kola: Evidence of mantle-derived metasomatic fluids affecting crustal materials[J]. Contributions to Mineralogy and Petrology, 2001, 140(5): 554-556. doi: 10.1007/s004100000211

    Eby G N. The A- type granitoids: A revies of their occurrence and chemical characteristics and speculations on their ptrogenesis[J]. Lithos, 1990, 26: 115-134. doi: 10.1016/0024-4937(90)90043-Z

    FAN Weiming, GUO Feng, WANG Yuejun, et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology & Geothermal Research, 2003, 121: 115-135.

    Hilde T W C, Uyeda S, Kroenke L. Evolution of the western Pacific and its margin[J]. Tectonophysics, 1977, 38: 145-165. doi: 10.1016/0040-1951(77)90205-0

    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic Rocks[J]. Canadian journal of earth sciences , 1971, 8(5): 523-548. doi: 10.1139/e71-055

    Jahn B M, WU Fuyuan, Capdevila R, et al. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China[J]. Lithos, 2001, 59(4): 171-198. doi: 10.1016/S0024-4937(01)00066-4

    Ludwing K R. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley CA: Berkeley Geochronology Center[J]. Special Publication, 2003, 4: 1-70.

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    Rudinick R L, Gao S. Composition of the Continental Crust[M]// Rudnick R L. (ed). The Crust, Treatise on Geochemistry, 2003, 3: 1-64.

    Rubatto Daniela, Gebauer Dieter. Use of cathodoluminescence for U-Pb zircon dating by ion Microprobe: Some examples from the western Alps[J]. Cathodoluminescence in Geosciences, 2000, 19: 373-400.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Tischeendorf G, Paelchen W. Zur Klassifikation von Granitoiden/Classification of granitoids[J]. Zeitschrift fuer Geologische Wissenschaften, 1985, 13(5): 615-627.

    Takahashi M. Space-time distribution of late Mesozoic to early Cenozoic magmatism in East Asia and its tectonic implications[M]. Terrapub, 1983.

    Tomurtogoo O, Windley B F, Kroner A, et al. Zircon age and occurrence of the adaatsag ophiolite and muron shear zone, central mongolia: Constraints on the evolution of the mongol-okhotsk ocean, suture and orogen[J]. Journal of the Geological Society, 2005, 162(1), 197-229.

    Uyeda S, Miyashiro A. Plate tectonics and the Japanese islands: a synthesis[J]. Geol. Soc. Am. Bul, 1974, 85: 1159-1170. doi: 10.1130/0016-7606(1974)85<1159:PTATJI>2.0.CO;2

    WANG Fei, ZHOU Xinhua, ZHANG Lianchang, et al. Late Mesozoic volcanism in the Great Xing’an Range(NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251: 179-198. doi: 10.1016/j.jpgl.2006.09.007

    Wilson M. Igneous Petrogenesis[J]. London: Unwin Hyman, 1989: 1-25.

    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discriminatuon and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202

    Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis[J]. Chemical Geology, 2005, 218(3-4): 339-359. doi: 10.1016/j.chemgeo.2005.01.014

    ZHANG Jiheng, GE Wenchun, WU Fuyuan, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, Northeastern China[J]. Lithos, 2008, 102(1-2): 138-157. doi: 10.1016/j.lithos.2007.08.011

图(8)  /  表(3)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  26
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2022-12-26
  • 录用日期:  2023-01-25
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2025-02-19

目录

/

返回文章
返回