ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    松辽盆地东部地区花岗岩地球化学特征及其地质意义

    刘昊, 崔军平, 金玮, 成科璋, 刘静静

    刘昊,崔军平,金玮,等. 松辽盆地东部地区花岗岩地球化学特征及其地质意义[J]. 西北地质,2024,57(2):46−58. doi: 10.12401/j.nwg.2023037
    引用本文: 刘昊,崔军平,金玮,等. 松辽盆地东部地区花岗岩地球化学特征及其地质意义[J]. 西北地质,2024,57(2):46−58. doi: 10.12401/j.nwg.2023037
    LIU Hao,CUI Junping,JIN Wei,et al. Geochemical Characteristics and Geological Significance of Granites in Eastern Songliao Basin[J]. Northwestern Geology,2024,57(2):46−58. doi: 10.12401/j.nwg.2023037
    Citation: LIU Hao,CUI Junping,JIN Wei,et al. Geochemical Characteristics and Geological Significance of Granites in Eastern Songliao Basin[J]. Northwestern Geology,2024,57(2):46−58. doi: 10.12401/j.nwg.2023037

    松辽盆地东部地区花岗岩地球化学特征及其地质意义

    基金项目: 国家自然科学基金面上项目“热年代学约束下的松辽盆地石炭-二叠系构造热演化史恢复”(41772121)资助。
    详细信息
      作者简介:

      刘昊(1999−),男,硕士,主要从事地球化学分析与油气成藏相关研究。E–mail:1808826487@qq.com

      通讯作者:

      崔军平(1978−),男,副教授,博士,主要从事盆地热演化史与油气成藏相关教学与科研工作。E–mail:cuijp@nwu.edu.cn。

    • 中图分类号: P619.22;P584

    Geochemical Characteristics and Geological Significance of Granites in Eastern Songliao Basin

    • 摘要:

      笔者对松辽盆地东部与张广才岭西部含黑云母花岗岩进行LA–ICP–MS 测年和微量稀土元素地球化学分析,探究其成岩时代与成岩环境。样品锆石振荡生长环带明显,Th/U值较大,揭示其属于岩浆成因。锆石U–Pb测年测得年龄分别为(179.3±1.5) Ma和(177.5±1.4) Ma,属于早侏罗世末期。轻稀土元素分馏明显,重稀土元素无明显分馏,Eu、Ce元素具有正异常。样品形成于板块俯冲聚敛环境。该地区花岗岩在形成过程中主要受控于部分熔融作用,岩脉有地壳和地幔双重性,可能有地幔混染现象。通过统计大兴安岭、松辽盆地与张广才岭花岗岩年龄,发现张广才岭处花岗岩形成时期早于松辽盆地花岗岩形成时期,进一步验证前人推测古太平洋板块和蒙古–鄂霍茨克洋板块发生双俯冲+拆沉作用。

      Abstract:

      LA–ICP–MS dating and trace REE geochemical analysis of biotite–bearing granites in the eastern part of Songliao basin and the western part of Zhangguangcai range are carried out to explore their diagenetic age and environment in this paper . The sample zircon oscillatory growth zone is obvious, and the Th/U ratio is big, indicating that it belongs to magmatic origin. The ages of zircon U–Pb dating are (179.3±1.5)Ma; (177.5±1.4)Ma, belonging to the end of Early Jurassic. Light rare earth elements have obvious fractionation, heavy rare earth elements have no obvious fractionation, and Eu and Ce elements have positive anomalies. The sample was formed in the subduction and accumulation environment of the plate. The formation of granites in the two regions is mainly controlled by partial melting. The two dikes have the duality of crust and mantle, may have mantle contamination. Based on the statistics of the ages of the granites in the Greater Khingan Mountains, Songliao basin and Zhangguangcai range, it is found that the granites in Zhangguangcai range were formed earlier than those in Songliao basin. Validate the previous speculation that the ancient Pacific plate and the Mongolia–Okhotsk ocean plate have double subduction and delamination.

    • 东昆仑造山带处于青藏高原东北缘,柴达木盆地南缘(王鸿祯等,1990孔会磊等,2021),是中国秦祁昆构造带的重要组成部分,区内中生代蚀变岩型金矿、斑岩型–矽卡岩型铜多金属矿等成矿作用显著,一直为研究的热门地区。东昆仑广泛出露奥陶纪—泥盆纪和二叠纪—三叠纪中酸性岩浆岩,分别是原特提斯和古特提斯的构造岩浆演化的产物(莫宣学等,2007Xiong et al., 2014孔会磊等,2019)。东昆仑成矿带是中国著名的金腰带,目前已发现阿斯哈、按纳格、果洛龙洼、瓦勒尕、五龙沟、大场、瑙木浑、巴隆、大水沟、白日其利等一系列金矿床(点)(李金超等,2015a孙非非等,2023),其中,阿斯哈、瓦勒尕、大水沟等金矿床(点)均赋存于中酸性侵入岩中(李金超等,20142015bChen et al., 2017陈加杰,2018)。近几年来,在东昆仑相继发现哈图、石灰沟、阿斯哈、按纳格、五龙沟、西藏大沟等多个金矿床(点)金矿化与煌斑岩、闪长玢岩类等脉岩的密切时空关系(钱壮志等,1999李碧乐等,2012孔会磊等,2014Zhang et al., 2017李金超等,2018)。金矿区出露的中基性脉岩对于矿区的地质构造演化及成矿作用具有重要意义。

      波洛尕熊金矿区位于青海东昆仑东段香日德镇以南,沟里金矿田的西北侧,是2014年青海省有色地矿局八队(现为青海省有色第三地质勘查院)进行水系沉积物异常检查时发现的。目前前人仅针对波洛尕熊金矿区进行过地质特征与找矿标志的研究(冶玉娟等,2017肖积福等,2018),其他研究还处于空白,对其矿床成因及形成时代的认识严重不足,制约了区带上金矿找矿的新突破。笔者在野外典型矿床调研时发现,矿区出露广泛的石英闪长玢岩脉与金矿化带在空间上关系密切,然而对其岩石源区、大地构造背景、形成时代等还缺乏系统研究。因而,笔者首次对波洛尕熊金矿区石英闪长玢岩脉进行了系统的岩石学、岩石地球化学及锆石U−Pb年代学研究,探讨其岩浆源区、岩石成因、大地构造意义、形成时代与找矿意义,为东昆仑区域构造–岩浆演化和金矿找矿勘查提供新的依据。

      东昆仑大地构造位置处于柴达木盆地与阿尼玛卿结合带之间(图1a),是中国著名的巨型构造–岩浆岩带(莫宣学等,2007孔会磊等,20152021)。东昆仑构造带由阿尔金走滑断裂向东延伸至温泉断裂,长可达1500 km(Dai et al., 2013张明东等,2018孔会磊等,2019田龙等,2023),经历了寒武纪—泥盆纪原特提斯与泥盆纪—侏罗纪古特提斯两期洋陆演化旋回(许志琴等,2007Yu et al., 2020),是一个典型的增生造山带(许志琴等,2013Dong et al., 2018)。东昆仑造山带从北往南依次发育东昆北、东昆中、东昆南3条岩石圈大断裂,以此为界可将东昆仑划分为昆北、昆中、昆南3个构造单元(Xia et al., 2017Dong et al., 2018韩建军等,2023)(图1a)。区域上古元古界金水口岩群变质岩及印支期中酸性侵入岩发育,已发现多处大中型金多金属矿床。

      图  1  波洛尕熊金矿区地质简图
      ① .柴达木北缘断裂;②.哇洪山-温泉断裂;③.东昆北断裂;④.东昆中断裂;⑤.东昆南断裂
      Figure  1.  The sketch geological map of the Boluogaxiong gold deposit

      波洛尕熊金矿区位于东昆仑造山带东段,处于昆中断裂北侧,属东昆中构造带(图1a)。矿区内地层不发育,仅有第四系沉积物发育,全区主要为大规模三叠纪花岗闪长岩出露(图1b),为香日德花岗闪长岩基的一部分。另外在矿区南部,还有少量闪长岩呈岩株状出露。断裂构造主要出露于矿区中南部,受昆中断裂影响制约,多呈近EW向、NEE向,其中EW向构造在区内出露规模相对较大,具延伸远、延续时间长、多期活动的特点,其性质多为压扭性(冶玉娟等,2017肖积福等,2018)。岩脉主要发育石英闪长玢岩脉,多以透镜状或岩墙产出(图2a图2b),宽0.3~5 m,延伸10~100 m。花岗闪长岩中还可见暗色包体(图2d),岩性为石英闪长玢岩,呈近圆状,直径3~50 cm不等。矿床类型为构造蚀变岩型,矿区共发现构造破碎蚀变带8条,其中含矿破碎蚀变带4条,金矿体3条(肖积福等,2018)。构造破碎蚀变带均产于三叠纪花岗闪长岩内,蚀变带长80~2200 m。金矿体主要产在构造破碎蚀变带与石英闪长玢岩脉同时出露地段(图2a),主要蚀变类型有硅化、碳酸盐化、高岭土化等,找矿标志明显,具有较好的找矿远景(冶玉娟等,2017肖积福等,2018)。硅化普遍呈脉状分布于构造破碎带中,常与硫化物形成含金硫化石英脉。矿区最重要的矿石为含黄铁矿的构造蚀变岩,呈灰白色,氧化面呈黄褐色,脉内黄铁矿呈团块状(肖积福等,2018)。

      图  2  波洛尕熊石英闪长玢岩的野外露头(a~d)及显微照片(e、f)
      a.金矿化蚀变带产于花岗闪长岩与石英闪长玢岩脉之间的破碎带中;b.花岗闪长岩中的石英闪长玢岩脉;c.石英闪长玢岩野外露头;d.花岗闪长岩中的石英闪长玢岩包体;e.斜长石斑晶环带结构发育及基质中较强的阳起石化(正交偏光);f.石英闪长玢岩中的熔蚀状石英斑晶(正交偏光);Pl.斜长石;Q.石英;Ac.阳起石
      Figure  2.  (a~d) Outcrop photos and (e, f) microphotograghs of the Boluogaxiong quartz diorite porphyrite

      岩石地球化学及年龄样品均采自东昆仑波洛尕熊金矿区北部PfⅠ号矿化蚀变破碎带南侧的石英闪长玢岩中(图2a),尽量采集新鲜岩石,GPS坐标:N 35°57′07″,E 97°49′46″。石英闪长玢岩与金成矿关系密切,金矿体主要产在花岗闪长岩体与石英闪长玢岩接触部位的蚀变破碎带中,与石英闪长玢岩平行展布(图1b)。

      岩石颜色呈深灰色,块状构造,斑状结构。岩石中斑晶主要为斜长石(图2c),含量约占20%,少量石英。斜长石斑晶多为半自形板状,粒径大小为1~4 mm,晶体中环带结构普遍发育(图2e),斜长石类型为中长石。石英斑晶呈熔蚀状(图2f),粒径小于1 mm,零星分布。基质为显微粒状–细粒结构,主要由斜长石组成,有少量石英。斜长石为半自形板状,粒径大小为0.15~0.5 mm。石英晶体少量,呈细小粒状,粒径小于0.2 mm。岩石次生蚀变较强,基质普遍产生较强的阳起石化,也可称为青磐岩化(图2e图2f)。

      锆石的分选在河北省区域地质矿产调查研究所(现为河北省区域地质调查院)实验室完成。锆石制靶、反射光、透射光、阴极发光照相在西北大学大陆动力学国家重点实验室完成。在双目镜下仔细挑选表面平整光洁且具不同长宽比例、不同柱锥面特征、不同颜色的锆石颗粒,再将这些锆石粘在双面胶上,用无色透明环氧树脂固定,待环氧树脂固化之后对其表面抛光至锆石中心。在锆石打点之前,通过反射光和CL图像详细观察锆石的晶体形态和内部结构特征,选择无明显裂痕及包裹体的锆石进行测年。LA-ICP-MS锆石U-Pb测年在自然资源部岩浆作用成矿与找矿重点实验室完成,采用193 nm ArF准分子(excimer)激光器的Geo Las200M剥蚀系统,ICP−MS为Agilent7700,激光束斑直径24 μm,以91500为年龄标定标样,GJ−1为同位素监控标样,NIST610为元素含量标样进行校正,普通铅校正依据实测204Pb进行校正,所得锆石同位素比值和年龄数据采用Glitter(ver4·0, Mac QuarieUniversity)程序进行计算处理,加权平均年龄图及谐和图的绘制采用Ludwig(2003)编写的Isoplot 程序。

      岩石主量元素、微量元素、稀土元素分析在中国地质调查局西安地质调查中心实验测试中心完成,其中主元素采用荷兰帕纳科公司Axios 4.0kW顺序式X射线荧光光谱仪(XRF)进行分析,分析精度优于5%;微量和稀土元素利用美国热电公司Series Ⅱ型SX50型电感耦合等离子质谱仪(ICP–MS)进行测定,分析精度优于5%~10%。

      石英闪长玢岩样品(14BLUPb01)中锆石多为长柱状及短柱状(长150~350 μm),长宽比为1∶1~3∶1。锆石晶形较好,发育岩浆结晶锆石具有的震荡环带(图3)。27个有效分析点的结果显示Th含量为18.1×10−6~338.9×10−6,U含量为23.3×10−6~645.6×10−6,Th/U值为0.34~1.78(表1),也显示了岩浆成因特征。27个锆石206Pb/238U年龄范围为222.2~235.4 Ma,加权平均年龄(226.6±1.6) Ma(MSWD=0.41);谐和年龄值(225.0±2.9) Ma(MSWD=0.36),二者在误差范围内一致(图4)。(226.6±1.6) Ma的加权平均年龄代表了石英闪长玢岩的结晶年龄。

      图  3  波洛尕熊石英闪长玢岩锆石阴极发光照片(圈内数字代表U-Pb分析点,下面数字代表206Pb/238U年龄)
      Figure  3.  CL images of zircons from Boluogaxiong quartz diorite porphyrite
      表  1  波洛尕熊石英闪长玢岩锆石LA-ICP-MS测年结果
      Table  1.  LA-ICP-MS isotopic data of zircon from Boluogaxiong quartz diorite porphyrite
      样品
      编号
      含量(10−6 Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      Pb* Th U 比值 比值 比值 年龄
      (Ma)
      年龄
      (Ma)
      年龄(Ma)
      1 9.9 84.6 232.2 0.36 0.0512 0.0014 0.2534 0.0069 0.0359 0.0006 250.6 62.2 229.3 5.6 227.2 3.7
      2 7.4 76.6 169.3 0.45 0.0525 0.0015 0.2592 0.0073 0.0358 0.0006 307.6 64.7 234.0 5.9 226.7 3.9
      3 5.1 52.2 103.5 0.50 0.0502 0.0019 0.2483 0.0088 0.0359 0.0007 203.7 84.4 225.2 7.2 227.2 4.4
      4 11.9 116.9 260.1 0.45 0.0555 0.0012 0.2844 0.0062 0.0372 0.0006 430.1 46.8 254.1 4.9 235.4 3.6
      5 2.5 18.1 45.5 0.40 0.0517 0.0022 0.2547 0.0104 0.0357 0.0008 274.0 95.9 230.4 8.4 226.1 4.9
      6 15.0 138.1 328.4 0.42 0.0521 0.0023 0.2580 0.0107 0.0359 0.0008 288.1 98.1 233.1 8.7 227.6 5.1
      8 13.7 113.5 235.3 0.48 0.0526 0.0022 0.2611 0.0101 0.0360 0.0008 313.3 91.3 235.5 8.2 227.8 4.9
      9 11.2 116.2 249.6 0.47 0.0516 0.0012 0.2570 0.0060 0.0361 0.0006 269.7 53.0 232.3 4.9 228.6 3.6
      10 4.9 83.9 100.0 0.84 0.0529 0.0021 0.2603 0.0096 0.0357 0.0007 324.1 86.1 234.9 7.7 226.0 4.6
      11 7.6 72.7 172.5 0.42 0.0527 0.0015 0.2596 0.0072 0.0357 0.0006 315.6 62.8 234.4 5.8 226.3 3.8
      12 6.2 68.2 145.0 0.47 0.0559 0.0031 0.2745 0.0141 0.0356 0.0010 448.7 119.2 246.3 11.2 225.5 6.1
      13 9.7 97.3 231.2 0.42 0.0508 0.0026 0.2509 0.0122 0.0358 0.0009 230.3 115.3 227.3 9.9 227.0 5.5
      14 11.2 101.0 253.2 0.40 0.0549 0.0017 0.2723 0.0079 0.0360 0.0006 409.1 65.2 244.6 6.3 227.7 4.0
      15 17.5 171.2 412.6 0.42 0.0531 0.0014 0.2644 0.0069 0.0361 0.0006 333.0 59.6 238.2 5.6 228.7 3.8
      16 14.6 120.5 353.1 0.34 0.0528 0.0014 0.2604 0.0069 0.0358 0.0006 317.8 60.0 235.0 5.5 226.8 3.8
      17 1.3 41.5 23.3 1.78 0.0520 0.0075 0.2540 0.0344 0.0354 0.0020 285.5 300.7 229.8 27.8 224.4 12.4
      18 8.2 93.1 202.3 0.46 0.0523 0.0025 0.2574 0.0114 0.0357 0.0009 296.5 104.7 232.5 9.2 226.2 5.3
      19 12.3 139.3 284.8 0.49 0.0505 0.0012 0.2475 0.0059 0.0355 0.0006 219.9 53.8 224.6 4.8 225.0 3.5
      20 29.1 338.9 645.6 0.52 0.0541 0.0010 0.2641 0.0052 0.0354 0.0005 375.0 42.2 238.0 4.2 224.3 3.3
      21 1.2 26.1 24.8 1.05 0.0504 0.0057 0.2481 0.0266 0.0357 0.0015 212.1 243.5 225.1 21.7 226.3 9.4
      22 5.5 57.9 150.9 0.38 0.0510 0.0020 0.2506 0.0094 0.0356 0.0007 241.3 89.3 227.1 7.7 225.7 4.6
      23 10.8 148.9 244.1 0.61 0.0519 0.0015 0.2534 0.0071 0.0354 0.0006 281.0 64.0 229.3 5.7 224.3 3.8
      24 8.9 116.1 170.0 0.68 0.0531 0.0027 0.2568 0.0120 0.0351 0.0009 330.8 109.4 232.1 9.7 222.4 5.4
      25 10.5 92.7 222.5 0.42 0.0534 0.0013 0.2581 0.0064 0.0351 0.0006 344.7 55.4 233.1 5.1 222.2 3.5
      26 8.2 95.0 192.9 0.49 0.0513 0.0021 0.2512 0.0098 0.0355 0.0007 253.4 92.0 227.6 8.0 225.1 4.6
      27 5.8 63.5 164.5 0.39 0.0525 0.0030 0.2637 0.0140 0.0364 0.0010 308.9 124.9 237.6 11.3 230.5 6.2
      29 8.9 101.2 191.6 0.53 0.0533 0.0024 0.2620 0.0109 0.0357 0.0008 339.5 96.7 236.3 8.7 226.0 5.0
      下载: 导出CSV 
      | 显示表格
      图  4  波洛尕熊石英闪长玢岩锆石U-Pb年龄谐和图(a)和加权平均年龄图(b)
      Figure  4.  (a) Zircon U-Pb concordia diagram and (b) weighted mean ages diagramfrom Boluogaxiong quartz diorite porphyrite

      波洛尕熊石英闪长玢岩主量元素中(表2),样品的SiO2含量为55.68%~56.26%,属于中性-中偏基性岩石。MgO含量为5.23%~5.39%,Mg#为58.95~60.46。在硅-碱图(图5a)中,样品点全部位于亚碱性范围的闪长岩内,靠近辉长闪长岩边界。岩石的全碱含量为4.40%~5.70%,平均为4.88%。K2O/Na2O=0.40~0.87,属于钠质。在SiO2-K2O图(图5b)上,样品点均位于钙碱性–高钾钙碱性系列范围。岩石Al2O3含量为16.86%~17.17%,A/CNK为0.87~0.90,平均为0.89,A/NK为2.14~2.63,指示为准铝质岩石。

      表  2  波洛尕熊石英闪长玢岩主量元素(%)和微量元素含量(10−6
      Table  2.  Contents of major elements (%) and trace elements (10−6) of Boluogaxiong quartz diorite porphyrite
      样品号 14BLH04 14BLH05 14BLH06 14BLH07 14BLH08
      SiO2 56.03 56.24 56.26 55.70 55.68
      TiO2 0.96 0.86 0.88 0.92 0.90
      Al2O3 17.17 17.14 17.10 16.86 16.87
      Fe2O3 1.64 1.49 1.46 1.73 1.75
      FeO 5.08 4.96 5.03 5.02 4.97
      MnO 0.17 0.12 0.12 0.13 0.13
      MgO 5.23 5.33 5.39 5.36 5.28
      CaO 7.14 6.98 6.76 5.98 6.58
      Na2O 3.28 3.12 3.12 3.05 3.04
      K2O 1.32 1.28 1.46 2.65 2.10
      P2O5 0.24 0.22 0.21 0.21 0.24
      LOI 1.71 2.18 2.17 2.36 2.43
      H2O+ 0.79 1.34 1.33 1.40 1.29
      Total 99.97 99.92 99.96 99.97 99.97
      A/CNK 0.87 0.89 0.90 0.90 0.88
      Mg# 58.95 60.36 60.46 59.47 59.22
      Sc 18.9 17.2 18.7 18.1 17.6
      V 149 137 142 146 144
      Cr 217 202 228 230 226
      Ni 73.4 77.1 80.0 73.3 71.3
      Co 25.0 25.8 25.7 23.8 24.7
      Rb 79.2 69.0 87.5 181.0 140.0
      Ba 540 517 627 796 727
      Th 4.45 3.97 4.09 4.11 4.06
      U 1.13 1.05 1.06 1.39 1.34
      Ta 0.76 0.67 0.72 0.76 0.71
      Nb 9.95 9.14 9.31 9.61 9.18
      Pb 8.79 6.19 7.87 8.27 9.30
      Sr 654 638 666 598 619
      Zr 138 133 130 132 137
      Hf 3.96 3.76 3.89 3.81 3.88
      Y 13.8 13.0 13.2 13.8 13.6
      La 19.7 22.2 22.2 25.1 22.6
      Ce 40.3 47.4 45.0 49.2 46.1
      Pr 5.06 5.52 5.59 5.78 5.57
      Nd 19.90 20.50 22.50 21.30 21.60
      Sm 4.27 4.32 4.40 4.38 4.40
      Eu 1.16 1.27 1.36 1.40 1.37
      Gd 3.98 3.79 3.98 3.99 4.06
      Tb 0.58 0.56 0.60 0.62 0.60
      Dy 2.95 2.84 2.91 3.01 3.07
      Ho 0.56 0.54 0.54 0.57 0.58
      Er 1.50 1.44 1.45 1.48 1.55
      Tm 0.22 0.21 0.21 0.22 0.22
      Yb 1.44 1.31 1.32 1.39 1.32
      Lu 0.21 0.19 0.20 0.21 0.19
      ΣREE 101.83 112.09 112.26 118.65 113.23
      LREE/HREE 7.90 9.30 9.01 9.33 8.77
      (La/Yb)N 9.81 12.16 12.06 12.95 12.28
      δEu 0.86 0.96 0.99 1.02 0.99
      δCe 0.99 1.05 0.99 1.00 1.01
      (La/Sm)N 2.98 3.32 3.26 3.70 3.32
      (Gd/Yb)N 2.29 2.39 2.49 2.37 2.54
       注:Mg#=100MgO/(MgO+FeO+Fe2O3)。
      下载: 导出CSV 
      | 显示表格
      图  5  波洛尕熊石英闪长玢岩的(K2O+Na2O)- SiO2(a)(据Middlemost,1994)和K2O- SiO2图解(b)(实线据Peccerillo et al., 1976;虚线据Middlemost, 1985))
      Figure  5.  (a) (K2O+Na2O)- SiO2 and (b) K2O- SiO2 plots for the Boluogaxiong quartz diorite porphyrite

      原始地幔标准化微量元素蛛网图(图6a)显示,石英闪长玢岩样品的微量元素配分模式近一致。相比原始地幔,岩石明显富集大离子亲石元素、轻稀土和Pb;相对亏损高场强元素。Rb/Sr=0.108~0.303,Nb/Ta为12.64~13.64。

      图  6  波洛尕熊石英闪长玢岩的微量元素原始地幔标准化蛛网图(a)及稀土元素球粒陨石标准化配分模式图(b)(标准化数值据Sun et al., 1989
      Figure  6.  (a) Primitive mantle-normalized trace element patterns and (b) chondrite-normalized REE patternsfor the Boluogaxiong quartz diorite porphyrite

      样品稀土总量ΣREE为101.83×10−6~118.65×10−6,平均为111.61×10−6。在稀土元素球粒陨石标准化配分图上,各样品配分曲线几近一致(图6b),显示了同源岩浆演化的特征。轻重稀土比值LREE/HREE为7.90~9.33,平均为8.86,轻重稀土明显分异,(La/Yb)N为9.81~12.95,平均值为11.85,显示了轻稀土元素LREE强烈富集的右倾式稀土配分型式。(La/Sm)N为2.98~3.70,平均值为3.31,(Gd/Yb)N为2.29~2.54,平均值为2.42,说明轻稀土之间分异较强,而重稀土之间分异不明显,曲线相对平坦。δEu为0.86~1.02,平均值0.97,基本不显示Eu异常。

      波洛尕熊石英闪长玢岩具有较低的SiO2含量(55.68%~56.26%)、较高的Mg#值(58.95~60.46)和Cr含量(Cr=202×10−6~230×10−6),显示出一定程度幔源岩浆的源区特点,可排除下地壳镁铁质物质直接部分熔融形成。但样品的Sr含量为598×10−6~666×10−6,平均值635×10−6,显著高于地幔平均值(17.8×10−6,据Taylor et al.,1985),指示其原始岩浆也不太可能单一来源于地幔。样品的Nb/Ta值为(12.64~13.64),介于地壳平均值8.3(Rudnick et al.,2003)和地幔平均值17.5(Sun et al.,1989)之间;Rb/Sr值(0.108~0.303),介于地幔值0.034和地壳值0.35(Taylor et al.,1995)之间,因此,认为石英闪长玢岩的岩浆是由地壳和地幔物质混合形成的。另外,Zr/Hf值(33.42~35.37),介于上地幔(30.74)与地壳(44.68)之间,更接近于地幔平均值(Taylor et al.,1985),也反映出壳幔岩浆混合的特点。

      结合东昆仑区域上研究,东昆仑地区在晚二叠世—晚三叠世发生了大规模的幔源岩浆底侵作用和壳幔混合作用,尤其是东昆仑香日德–香加–加鲁河一带广泛发育富含暗色微粒包体的花岗闪长岩类(谌宏伟等,2005莫宣学等,2007Xia et al.,2014Xiong et al.,2014陈国超等,20172018秦拯纬等,2018)。同时野外可看到波洛尕熊地区大片的花岗闪长岩中发育暗色微粒包体,岩性与本次研究的石英闪长玢岩一致。综上所述,认为波洛尕熊石英闪长玢岩为壳幔岩浆混合的产物。

      波洛尕熊石英闪长玢岩亏损高场强元素,富集大离子亲石元素,显示出明显的弧岩浆岩特点。样品的TiO2含量为0.86%~0.96%,与岛弧型玄武岩的含量0.98%非常接近(Pearce,1982);样品的微量元素比值La/Ta=25.92~33.13(>15),Nb/La=0.38~0.51(<1),Th/Nb=0.43~0.45(>0.07),Zr/Y=9.57~10.43(4~12),Th/Yb=2.96~3.10(>0.1),也显示出岛弧或大陆边缘弧的特征(Condie,1989)。在FeOT−MgO−Al2O3图解(图7a)中,样品均落在岛弧及活动大陆边缘范围;在R1−R2判别图(图7b)中,样品均落在板块碰撞前的俯冲消减区域。

      图  7  波洛尕熊石英闪长玢岩构造环境判别图解(a据Pearce et al., 1977;b据Batchelor et al., 1985
      Figure  7.  Tectonic discrimination diagrams for Boluogaxiong quartz diorite porphyrite

      在后碰撞阶段会产生大量具有壳幔混合特征的中酸性岩浆岩。由于后碰撞花岗岩的源区主要为早期洋壳俯冲形成的地壳物质,使得它们与岛弧岩浆岩具有十分相近的地球化学特征(孔会磊等,2019)。故而简单地运用微量元素图解来判别构造环境可能得到错误的结论,故结合区域构造演化来探讨其形成的构造背景十分必要(孔会磊等,2015)。

      与俯冲−碰撞相关的中酸性岩浆岩在东昆仑分布广泛,也是不同学者研究的热点。然而,对于古特提斯洋闭合的时限一直存在争议。多数研究者认为古特提斯洋在晚二叠世开始俯冲,闭合于中三叠世,260~238 Ma为俯冲阶段,237~230 Ma为同碰撞阶段(Zhang et al., 2012李瑞保等,2012Xiong et al., 20122013罗明非等,2015孔会磊等,20152019陈国超等,2020)。近年来,众多研究者相继发现了俯冲晚期阶段的岩浆岩记录,形成时代介于245~238 Ma(熊富浩,2014Li et al.,2015aXia et al.,2015a李金超等,2015b栗亚芝等,2015陈功等,2016国显正等,2016邓文兵等,2016董亮琼等,2016张玉等,2017菅坤坤等,2017李积清等,2021曾闰灵等,2021王巍等,2021吴树宽等,2023)。还有一些学者认为古特提斯俯冲作用一直持续至晚三叠世,所有的三叠纪中酸性侵入岩都是俯冲阶段的产物(Yuan et al.,2009Wang et al.,2011Ding et al.,2014)。

      李瑞保等(2012)从沉积学的角度探讨了东昆仑古特提斯的构造演化,认为阿尼玛卿古特提斯洋晚二叠世开始向北俯冲,中三叠世晚期—晚三叠世早期为东昆仑陆(弧)陆全面碰撞造山阶段。Xia等(2014)通过小诺木洪花岗闪长岩及其中的暗色微粒包体研究,认为东昆仑240~232 Ma为陆陆碰撞与板片断离阶段,232~220 Ma为后碰撞下地壳增厚阶段。Xiong等(2014)获得巴隆地区三道湾似斑状花岗闪长岩及其中的暗色微粒包体结晶年龄分别为(223.6±1.1) Ma和(225.4±1.3) Ma,认为东昆仑古特提斯洋230~223 Ma为后碰撞下地壳增厚阶段。228~204 Ma部分岩浆岩具A型花岗岩和埃达克质岩浆岩特征也反映了东昆仑地区已处于加厚下地壳拆沉导致的伸展构造背景(陈国超等,2013Xiong et al.,2014Xia et al.,2014Hu et al.,2016)。综上,笔者认为东昆仑成矿带在晚三叠世约228 Ma已开始进入后碰撞构造演化阶段。

      本研究获得波洛尕熊石英闪长玢岩的加权平均年龄为(226.6±1.6) Ma(MSWD=0.41),表明岩体形成时代为晚三叠世,已处于后碰撞伸展阶段。东昆仑区域上与波洛尕熊石英闪长玢岩同时代约227 Ma岩浆岩出露众多,前人均认为形成于后碰撞伸展阶段(表3)。后碰撞阶段地壳增厚使下地壳物质部分熔融,“相对松弛”的应力背景使下地壳发生拆沉。下地壳物质熔融形成了大量的花岗质岩浆,同时有地幔物质的混染,最终形成了波洛尕熊石英闪长玢岩。

      表  3  东昆仑~227 Ma岩浆岩的高精度同位素年龄
      Table  3.  Isotopic dating results of the intrusions and volcanic rocks about 227 Ma in the East Kunlun
      序号 位置 岩石名称 测试方法 年龄(Ma) 资料来源
      1 小尖山 辉长岩 锆石LA-MC-ICP-MS 227.8±0.9 奥琮等,2015
      2 热水 流纹斑岩 锆石LA-ICP-MS 227.5±1.5 Hu et al.,2016
      3 卡而却卡 似斑状二长花岗岩 锆石SHRIMP 227.3±1.8 丰成友等,2012
      4 双庆 斜长花岗岩 锆石LA-ICP-MS 227.2±1.0 Xia et al.,2015b
      5 加当根 花岗闪长斑岩 锆石LA-ICP-MS 227.0±1.0 Li et al.,2015b
      6 拉陵高里沟脑 似斑状花岗闪长岩 锆石LA-ICP-MS 226.9±2.3 王秉璋等,2014
      7 波洛尕熊 石英闪长玢岩 锆石LA-ICP-MS 226.6±1.6 本文数据
      8 双庆 斜长花岗岩 锆石LA-ICP-MS 226.54±0.97 Xia et al.,2015b
      9 冰沟 富闪深成岩脉 锆石LA-ICP-MS 226.4±3.5 Liu et al.,2017
      10 冰沟 富闪深成岩脉 锆石SHRIMP 226.1±1.9 Liu et al.,2017
      11 野马泉 花岗闪长岩 锆石LA-ICP-MS 226±2 宋忠宝等,2016
      12 和勒冈希里克特 花岗闪长岩 锆石LA-ICP-MS 225±5 陈国超等,2013
      13 和勒冈希里克特 闪长质包体 锆石LA-ICP-MS 224.9±4.1 陈国超等,2013
      下载: 导出CSV 
      | 显示表格

      东昆仑古特提斯构造域内目前已发现瓦勒尕、阿斯哈、五龙沟、大场、瑙木浑等一系列金矿床(点)(李金超等,2015a,2017),区域上金成矿作用及相关中酸性侵入岩时代多集中于印支期。张德全等(2005)获得五龙沟黄铁绢英岩化糜棱岩金矿石的绢云母Ar-Ar坪年龄为(236.5±0.8) Ma。陈柏林(2019)获得五龙沟金矿石英流体包裹体的Rb-Sr等时线年龄为(237±3) Ma。陈加杰(2018)获得阿斯哈金矿绢云母Ar-Ar坪年龄为(234.63±1.22) Ma。另外,前人获得阿斯哈金矿与成矿有关的石英闪长岩锆石U-Pb年龄为232.6~242 Ma(李金超等,2014Chen et al., 2017岳维好等,2019)。李金超等(2017)获得瑙木浑金矿区绢云母Ar-Ar坪年龄为(227.84±1.13) Ma,获得与金成矿关系密切的石英闪长岩锆石U–Pb年龄为(235.8±0.8) Ma。Zhang等(2017)通过对五龙沟地区水闸东沟–黄龙沟金矿成岩成矿年代学研究,厘定出237 Ma、231 Ma、220 Ma三期金矿化事件。李金超等(2018)获得西藏大沟金矿与金成矿关系密切的花岗闪长斑岩锆石U–Pb年龄为(225.0±1.2) Ma。

      在热液型金矿分布区,往往有煌斑岩、辉绿岩、辉绿玢岩、闪长岩或闪长玢岩等暗色脉岩相伴产出(钱壮志等,1999)。在东昆仑中带,已发现的阿斯哈、按纳格、哈图、石灰沟等多个金矿床(点)中,一般都显示了金矿化与煌斑岩、闪长玢岩类等脉岩的密切时空关系(钱壮志等,1999李碧乐等,2012孔会磊等,2014)。钱壮志等(1999)获得石灰沟金矿床闪长玢岩脉成岩与金矿化年龄十分接近,根据闪长玢岩脉Au的高含量背景、相近的S同位素组成及稀土含量变化特征,揭示了闪长玢岩脉与金矿化具有密切的成因联系。Zhang等(2017)获得五龙沟地区水闸东沟–黄龙沟金矿金成矿关系密切的石英闪长玢岩锆石U–Pb年龄为(219.6±3.5) Ma,这与波洛尕熊石英闪长玢岩年龄接近。波洛尕熊金矿体主要产在花岗闪长岩体内构造破碎带与石英闪长玢岩接触部位,已成为明显的找矿标志,体现出密切的时空联系(肖积福等,2018)。

      文中获得波洛尕熊金矿区与矿化带密切相关的石英闪长玢岩脉锆石U-Pb年龄为(226.6±1.6) Ma,形成于晚三叠世,为印支期东昆仑大规模岩浆活动的产物。进一步证明东昆仑金成矿作用集中形成于印支期,为古特提斯构造岩浆演化的产物。金矿区出露的印支期中基性岩脉尤其是闪长玢岩脉经常与金矿化关系密切,在今后金矿找矿勘查中应高度重视。

      (1)波洛尕熊矿区石英闪长玢岩为准铝质钙碱性-高钾钙碱性系列岩石,富集大离子亲石元素和轻稀土,亏损高场强元素。Rb/Sr、Nb/Ta、Zr/Hf等特征反映出岩石为壳幔混合成因。

      (2)笔者首次获得波洛尕熊金矿区与成矿关系密切的石英闪长玢岩锆石LA−ICP−MS U−Pb年龄为(226.6±1.6) Ma,形成时代为晚三叠世,为东昆仑古特提斯构造岩浆演化的产物。

      (3)通过探讨东昆仑区域构造岩浆演化过程,认为波洛尕熊石英闪长玢岩为后碰撞伸展阶段地壳重熔的产物,东昆仑造山带在约228 Ma开始进入后碰撞阶段。

      (4)印支期中基性岩脉尤其是闪长玢岩脉经常与东昆仑地区金矿化具有密切的时空和成因关系,在今后金矿找矿勘查中应高度重视。

      致谢:野外工作得到青海有色地矿局八队波洛尕熊项目组的大力支持,锆石U-Pb年龄测试及数据处理得到自然资源部岩浆作用成矿与找矿重点实验室李艳广高级工程师、汪双双高级工程师的热心帮助,文稿修改过程中审稿专家提出了宝贵的修改意见,在此一并致以衷心的感谢。

    • 图  1   中国东北部构造简图(a)、松辽盆地东部–张广才岭中生代岩浆岩分布图(b)(据任永健,2019修)

      Figure  1.   (a) Structural diagram of northeast China and (b) distribution of mesozoic magmatic rocks in Zhangguangcai range, Eastern Songliao basin

      图  2   绥化村花岗岩(S-SH-1)手标本照片(a)和含黑云母中细粒花岗岩镜下特征(b)

      1、2、3.单偏光;4、5、6.正交偏光;Bt. 黑云母,褐色–深褐色极明显多色性;Q. 石英,表面干净,呈他形粒状;Pl. 斜长石,聚片双晶发育;Pth. 条纹长石

      Figure  2.   (a) Hand specimen photo of Suihuacun granite (S-SH-1) and (b) microscopic characteristics of medium–grained granite containing biotite

      图  3   阿城区花岗岩(H-D-3)含黑云母花岗岩镜下特征

      a、c、e.单偏光;b、d、f.正交偏光;Pth.条纹长石,表面可见明显条纹,与长石交生构成文象结构;Q.他形粒状石英颗粒,表面干净,干涉色一级灰白,黑云母多色性明显,可见一组完全解理;Pl.斜长石表面浑浊发生了泥化及绢云母化,可见聚片双晶以及卡式双晶发育;Bt.黑云母;Ser.绢云母

      Figure  3.   Microscopic characteristics of biotite granite (H-D-3) in Acheng district

      图  4   绥化村花岗岩(S-SH-1)样品锆石CL图

      红色圆圈代表年龄分析点;数字代表分析点号;白色数字代表年龄(Ma)

      Figure  4.   Zircon CL map of Suihuacun granite (S-SH-1) sample

      图  5   阿城区花岗岩(H-D-3)样品锆石CL图

      红色圆圈代表年龄分析点;数字代表分析点号;白色数字代表年龄(Ma)

      Figure  5.   Zircon CL map of Acheng granite (H-D-3) sample

      图  6   绥化村花岗岩(S-SH-1)锆石U-Pb年龄谐和图(a)和加权平均年龄图(b)

      Figure  6.   (a) U–Pb age harmonics and (b) weighted mean age maps of Suihuacun Granite (S-SH-1)

      图  7   阿城区花岗岩(H-D-3)锆石U-Pb年龄谐和图(a)和加权平均年龄图(b)

      Figure  7.   (a) U–Pb age harmonics and (b) weighted mean age maps of the Acheng granite (H-D-3)

      图  8   绥化村花岗岩(S-SH-1)与阿城区花岗岩(H-D-3)花岗岩稀土元素球粒陨石标准化配分图

      Figure  8.   Chondrite–normalized REE patterns for Suihuacun granite (S-SH-1) and Acheng granite (H-D-3)

      图  9   Nb–Y构造环境判别图(据Pearce et al.,1984

      Figure  9.   Discrimination map of Nb–Y tectonic environment

      图  10   La/Sm–La相关性图解

      Figure  10.   La /Sm–La correlation diagram

      图  11   东北地区花岗岩年龄分布直方图(数据来自中国同位素地质年代学数据库)

      Figure  11.   Age distribution histogram of granites in northeast China (Data from China isotope geochronology database)

      图  12   古太平洋板块俯冲和蒙古-鄂霍茨克洋版块俯冲、拆沉作用模式图(据杨雅军等,2022修)

      Figure  12.   Models of subduction of the Paleo-Pacific plate and subduction and subsidence in the Mongolia-Okhotsk ocean plate

      表  1   绥化村花岗岩(S-SH-1)样品锆石测年结果表

      Table  1   Zircon dating results of Suihuacun granite (S-SH-1) sample

      点号UThPbTh/U同位素比值年龄(Ma)谐和度
      (10–6207Pb/206Pb± 1σ207Pb/235U± 1σ206Pb/238U± 1σ207Pb/206Pb± 1σ207Pb/235U± 1σ206Pb/238U± 1σ
      S-SH-1-001787.25424.8026.990.540.05070.00170.19370.00660.02770.0006229.076.4179.85.6176.13.998%
      S-SH-1-002610.16332.2421.390.540.04960.00150.19400.00600.02830.0006178.369.0180.05.1180.23.9100%
      S-SH-1-003580.54263.1120.330.450.04750.00140.18990.00570.02900.000673.269.3176.54.9184.34.096%
      S-SH-1-004693.84366.3724.100.530.05090.00140.19800.00570.02820.0006235.163.0183.44.8179.43.998%
      S-SH-1-006565.66289.2319.660.510.05260.00150.20420.00610.02810.0006312.764.6188.75.1178.93.995%
      S-SH-1-007773.82869.8630.921.120.04990.00140.19380.00540.02820.0006188.061.8179.94.6179.33.8100%
      S-SH-1-008622.87324.9721.320.520.05130.00160.19560.00600.02770.0006252.567.9181.45.1176.03.897%
      S-SH-1-009774.11380.4327.580.490.04770.00190.19280.00770.02930.000785.692.8179.06.6186.04.196%
      S-SH-1-010853.63384.0328.680.450.04980.00130.19070.00510.02780.0006187.258.7177.24.3176.43.8100%
      S-SH-1-012696.59405.5224.140.580.05180.00160.19690.00610.02760.0006277.068.4182.55.2175.23.896%
      S-SH-1-013778.72385.4527.030.490.05140.00140.20090.00550.02830.0006259.160.3185.94.7180.23.997%
      S-SH-1-014573.68313.0119.270.550.04960.00180.18510.00680.02710.0006177.683.3172.45.9172.03.8100%
      S-SH-1-015689.19347.6423.770.500.04870.00140.18820.00550.02800.0006132.365.9175.14.7178.23.898%
      S-SH-1-016739.51448.7126.930.610.04970.00140.19750.00560.02880.0006182.063.1183.04.7183.13.9100%
      S-SH-1-017755.55375.1225.370.500.05180.00180.19500.00680.02730.0006276.476.7180.95.7173.63.896%
      S-SH-1-018647.84378.0923.370.580.05030.00150.19790.00600.02860.0006207.167.1183.45.1181.53.999%
      S-SH-1-021358.56151.3612.040.420.05370.00220.20430.00820.02760.0006358.888.3188.76.9175.43.993%
      S-SH-1-022420.38229.1114.750.550.05130.00170.19870.00680.02810.0006253.276.1184.15.8178.73.997%
      S-SH-1-023665.75352.9323.820.530.05280.00150.20800.00600.02860.0006321.163.2191.85.1181.53.994%
      S-SH-1-024504.33254.6718.240.500.05060.00160.20410.00640.02930.0006221.470.2188.65.4186.04.099%
      S-SH-1-026760.81399.4626.730.530.04900.00140.19120.00550.02830.0006148.164.3177.74.7179.93.999%
      S-SH-1-027961.29525.0133.850.550.05140.00140.19830.00540.02800.0006260.559.4183.74.6177.83.897%
      S-SH-1-028821.54599.2830.680.730.05030.00140.19860.00560.02870.0006206.562.3184.04.7182.23.999%
      S-SH-1-029657.00262.1722.560.400.05170.00150.20250.00600.02840.0006273.564.7187.35.0180.53.996%
      S-SH-1-030675.37361.0724.490.530.05220.00160.20810.00650.02890.0006293.868.7192.05.5183.84.096%
      下载: 导出CSV

      表  2   阿城区花岗岩(H-D-3)样品锆石测年结果表

      Table  2   Zircon dating results of Acheng granite (H-D-3) samples

      点号UThPbTh/U同位素比值年龄(Ma)谐和度
      (10–6207Pb/206Pb± 1σ207Pb/235U± 1σ206Pb/238U± 1σ207Pb/206Pb± 1σ207Pb/235U± 1σ206Pb/238U± 1σ
      H-D-3-001646.04389.2523.400.600.04940.00140.19430.00580.02850.0006166.466.9180.34.9181.33.999%
      H-D-3-0021111.211061.4742.110.960.04960.00120.18630.00480.02730.0006175.357.4173.54.1173.33.7100%
      H-D-3-003928.60557.4133.190.600.04880.00130.18990.00510.02820.0006139.059.9176.64.3179.43.898%
      H-D-3-004362.17310.0813.710.860.05130.00170.19770.00670.02800.0006253.375.5183.25.7177.83.997%
      H-D-3-005550.99343.5119.960.620.04920.00150.19160.00600.02830.0006156.170.0178.05.1179.73.999%
      H-D-3-0061028.471121.3441.041.090.04970.00130.19150.00500.02800.0006180.157.8177.94.3177.73.8100%
      H-D-3-007356.46203.7712.610.570.04960.00170.19300.00670.02820.0006174.678.8179.25.7179.53.9100%
      H-D-3-008274.01207.3610.250.760.05510.00200.21430.00800.02820.0006415.180.2197.16.7179.43.991%
      H-D-3-009239.30232.469.270.970.05570.00210.21320.00820.02780.0006439.183.6196.36.9176.63.989%
      H-D-3-010891.02865.6333.060.970.04950.00130.18340.00500.02690.0006169.260.5171.04.3171.13.7100%
      H-D-3-0111172.31603.7240.810.510.04970.00130.19240.00510.02810.0006179.359.0178.74.4178.63.8100%
      H-D-3-012843.67543.1230.290.640.04900.00130.18870.00520.02790.0006148.661.7175.54.4177.53.899%
      H-D-3-013557.34511.2821.260.920.04860.00150.18720.00580.02790.0006128.169.9174.24.9177.63.898%
      H-D-3-014239.55206.649.190.860.04940.00200.19280.00780.02830.0006165.891.6179.06.6180.04.099%
      H-D-3-015282.14220.9710.090.780.05060.00200.18740.00730.02690.0006223.887.0174.46.2170.83.898%
      H-D-3-016907.67725.0533.380.800.04930.00130.18760.00500.02760.0006161.659.9174.64.3175.63.799%
      H-D-3-0171217.891012.2545.950.830.04940.00120.19110.00500.02800.0006168.057.8177.64.2178.33.8100%
      H-D-3-018397.75307.8914.570.770.04980.00170.18930.00640.02760.0006184.076.2176.05.5175.43.8100%
      H-D-3-019544.42578.2921.871.060.04880.00150.19030.00580.02830.0006136.369.0176.95.0179.93.998%
      H-D-3-020469.44305.1216.520.650.05050.00160.19040.00610.02730.0006218.071.1176.95.2173.93.898%
      H-D-3-0211057.08420.8535.810.400.04960.00130.19170.00510.02800.0006175.259.7178.04.4178.33.8100%
      H-D-3-0221015.52724.5337.340.710.04830.00130.18580.00490.02790.0006115.159.7173.14.2177.33.898%
      H-D-3-023586.65407.7421.280.700.04880.00140.18760.00560.02790.0006139.667.6174.54.8177.13.899%
      H-D-3-024249.08206.939.640.830.04720.00210.18580.00820.02860.000757.9102.5173.07.0181.54.195%
      H-D-3-025542.70423.4420.140.780.05060.00150.19460.00590.02790.0006223.167.2180.55.0177.33.898%
      H-D-3-026384.09364.2415.020.950.05130.00170.19980.00680.02820.0006255.575.6184.95.7179.43.997%
      H-D-3-027427.61348.4116.210.810.05180.00170.19920.00660.02790.0006276.572.9184.55.6177.43.896%
      H-D-3-0281109.09648.6139.080.580.04950.00130.18870.00490.02760.0006171.658.0175.54.2175.83.7100%
      H-D-3-029130.6173.884.720.570.04670.00300.18320.01150.02840.000735.4144.9170.89.9180.74.294%
      H-D-3-030707.68276.0524.240.390.05070.00140.19790.00570.02830.0006227.763.8183.34.8179.93.998%
      下载: 导出CSV

      表  3   绥化村花岗岩(S-SH-1)与阿城区花岗岩(H-D-3)花岗岩微量与稀土元素(10–6

      Table  3   Trace and rare earth elements of Suihuacun granite (S-SH-1) and Acheng granite (H-D-3) (10–6)

      元素 SH1SH2SH3SH4SH5SH平H1H2H3H4H5H平
      Ti2.523.232.785.151.753.099.945.852.955.529.926.84
      Fe10.1713.5841.8417.7217.5620.173.654.122.122.692.292.97
      Zr4898.004898.004898.004898.004898.004898.004898.004898.004898.004898.004898.004898.00
      Nb4.314.524.194.284.854.431.164.295.891.002.492.97
      Hf139.88146.23142.79143.53147.32143.95109.15129.19142.22116.40118.78123.15
      Ta1.911.941.701.992.241.960.441.371.930.350.901.00
      Pb21.3924.1019.6621.3226.9322.689.2733.0630.299.6416.2119.70
      Th332.24366.37289.23324.97448.71352.30232.46865.63543.12206.93348.41439.31
      U610.16693.84565.66622.87739.51646.41239.30891.02843.67249.08427.61530.14
      Y9.419.649.009.6410.379.6110.6818.0019.4310.9713.5814.53
      La13.8711.9627.799.5517.3916.115.8011.1215.822.322.187.45
      Ce77.3559.2495.8858.6082.0974.6328.4358.0866.5127.3630.6242.20
      Pr4.073.289.022.945.114.881.783.372.280.810.731.79
      Nd15.5814.3734.5513.1720.0319.549.7417.128.046.115.239.25
      Sm4.754.757.834.706.335.676.189.715.535.825.826.61
      Eu0.410.340.550.480.610.481.671.821.071.531.461.51
      Gd0.160.160.170.150.180.160.260.400.320.280.280.31
      Tb0.050.050.050.050.060.050.080.130.120.080.090.10
      Dy0.710.730.690.720.780.730.941.521.520.951.131.21
      Ho0.280.300.280.290.320.290.350.560.600.350.430.46
      Er1.541.561.471.561.691.561.692.713.011.732.122.25
      Tm0.360.350.340.360.390.360.360.570.650.370.470.48
      Yb3.553.453.303.583.893.563.565.216.213.604.534.62
      Lu0.740.730.700.760.830.750.771.081.290.760.940.97
      ∑REE123.42101.28182.6396.92139.70128.7961.59113.38112.9552.0856.0279.21
      LREE116.0393.94175.6289.44131.56121.3253.60101.2299.2543.9546.0468.81
      HREE7.397.347.017.488.147.477.9912.1613.708.139.9910.40
      LREE/HREE15.7012.8025.0711.9616.1616.346.718.327.245.414.616.46
      δEu1.461.181.461.751.761.524.032.842.453.643.493.29
      δCe2.522.321.482.712.142.232.172.332.724.905.973.62
      La/Yb2.802.486.031.913.213.291.171.531.830.460.351.07
      La/Sm1.891.632.291.311.771.780.610.741.850.260.240.74
      Gd/Yb0.040.040.040.030.040.040.060.060.040.070.050.06
      下载: 导出CSV
    • 曹怀仁, 胡建芳, 彭平安, 等. 松辽盆地青山口组二段下部湖泊水体环境变化[J]. 地学前缘, 2017, 24(01): 205-215

      CAO Huairen, HU Jianfang, PENG Ping’an, et al. Environmental change of lake water in the lower part of Qingshankou Formation II in Songliao Basin [J]. Geoscience Front, 2017, 24 (01): 205-215.

      程顺波, 付建明, 徐德明, 等. 湖南雪花顶花岗岩及其包体的地质地球化学特征和成因分析[J]. 大地构造与成矿学, 2009, 33(04): 588-597 doi: 10.3969/j.issn.1001-1552.2009.04.013

      CHENG Shunbo, FU Jianming, XU Deming, et al. Geological and geochemical characteristics and genetic analysis of Xuehuading granite and its xenoliths in Hunan [J]. Geotectonics and Metallogeny, 2009, 33 (04): 588-597. doi: 10.3969/j.issn.1001-1552.2009.04.013

      冯光英, 牛晓露, 刘飞, 等. 张广才岭地块早侏罗世晚期花岗闪长岩及其闪长质包体的岩石成因及构造意义[J]. 地质学报, 2019, 93(10): 2598-2616 doi: 10.3969/j.issn.0001-5717.2019.10.014

      FENG Guangying, NIU Xiaolu, LIU Fei, et al. Petrogenesis and tectonic significance of late Early Jurassic granodiorites and dioritic inclusions in the Zhangguangcailing block [J]. Journal of Geology, 2019, 93 (10): 2598-2616. doi: 10.3969/j.issn.0001-5717.2019.10.014

      付秀丽, 蒙启安, 文政, 等. 松辽盆地白云岩沉积环境及成因机理[J]. 沉积学报, 2024, 42(1): 113−129.

      FU Xiuli, MENG Qi’an, WEN Zheng, et al. Sedimentary environment and genetic mechanism of dolomite in Songliao Basin [J]. Acta Sedimentologica Sinica, 2024, 42(1):113−129

      句高, 梁一鸿, 孙晓, 等. 张广才岭南段两个侏罗纪花岗岩体的地球化学特征及其地质意义[J]. 世界地质, 2018, 37(02): 374-384

      GU Gao, LIANG Yihong, SUN Xiao, et al. Geochemical characteristics and geological significance of two Jurassic granites in the southern section of the Zhangguangcai Ridge [J]. World Geology, 2018, 37 (02): 374-384

      李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005.
      李蓉, 孙德有, 苟军, 等. 张广才岭北部苇河花岗岩基的地球化学特征与岩石成因[J]. 世界地质, 2012, 31(03): 462-470

      LI Rong, SUN Deyou, GOU Jun, et al. Geochemical characteristics and petrogenesis of the Weihe granite batholith in the north of Zhang Guangcai Ling [J]. World Geology, 2012, 31 (03): 462-470

      李宗怀, 韩宝福, 李辛子, 等. 新疆准噶尔地区花岗岩中微粒闪长质包体特征及后碰撞花岗质岩浆起源和演化[J]. 岩石矿物学杂志, 2004,24(3): 214-226 doi: 10.3969/j.issn.1000-6524.2004.03.003

      LI Zonghuai, HAN Baofu, LI Xinzi, et al. Characteristics of micro-diorite xenoliths and origin and evolution of post-collisional granitic magma in granites in Junggar, Xinjiang [J]. Journal of Rock Mineralogy, 2004,23 (3): 214-226 doi: 10.3969/j.issn.1000-6524.2004.03.003

      刘大明, 肖渊甫, 李宁, 等. 松潘—甘孜造山带北部达日泽龙花岗岩体地球化学、年代学及构造意义[J]. 矿物学报, 2022, 42(03): 270-284.

      LIU Daming, XIAO Yuanfu, LI Ning, et al. Geochemistry, chronology and tectonic significance of the Darizelong granite body in the northern Songpan-Ganzi orogenic belt [J]. Journal of Minerals, 2022, 42 (03): 270-284.

      刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996(06): 552-558 doi: 10.3321/j.issn:0379-1726.1996.06.004

      LIU Ying, LIU Haichen, LI Xianhua. Accurate determination of more than 40 trace elements in rock samples by ICP-MS [J]. Geochemistry, 1996 (06): 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004

      骆念岗, 高莲凤, 张璟, 等. 大兴安岭北段宜里地区早侏罗世二长花岗岩U-Pb年龄、地球化学特征及其构造意义[J]. 地质论评, 2021, 67(06): 1649-1669

      LUO Niangang, GAO Lianfeng, ZHANG Jing, et al. U-Pb age, geochemical characteristics and tectonic significance of the early Jurassic monzogranite in the Yili area of the northern section of the Great Hinggan Mountains [J]. Geological Review, 2021, 67 (06): 1649-1669.

      孟恩, 许文良, 杨德彬, 等. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2011, 27(04): 1209-1226

      MENG En, XU Wenliang, YANG Debin, et al. Zircon U-Pb chronology, geochemistry and geological significance of the Mesozoic volcanic rocks in the Lingquan Basin in the Manzhouli region [J]. Acta Petrologica Sinica, 2011, 27 (04): 1209-1226

      钱烨, 赵昌吉, 张涛, 等. 吉林中部早侏罗世A型花岗岩的地球化学特征及地质意义[J]. 黑龙江科技大学学报, 2021, 31(05): 562-568+577 doi: 10.3969/j.issn.2095-7262.2021.05.005

      QIAN Ye, ZHAO Changji, ZHANG Tao, et al. Geochemical characteristics and geological significance of the early Jurassic A-type granite in central Jilin [J]. Journal of Heilongjiang University of Science and Technology, 2021, 31 (05): 562-568+577 doi: 10.3969/j.issn.2095-7262.2021.05.005

      任永健, 程烁, 张明明, 等. 黑龙江张家湾地区中侏罗世A型花岗岩地球化学特征及构造环境分析[J]. 现代地质, 2020, 34(05): 1067-1076

      REN Yongjian, CHENG Shuo, ZHANG Mingming, et al. Geochemical characteristics and tectonic environment analysis of the Middle Jurassic A-type granite in Zhangjiawan area, Heilongjiang Province [J]. Modern Geology, 2020, 34 (05): 1067-1076.

      任永健. 张广才岭南部早—中侏罗世花岗质岩浆作用及构造演化[J]. 地质学报, 2019, 93(11): 2813-2831

      REN Yongjian. Early to Middle Jurassic granitic magmatism and tectonic evolution in the south of Zhang Guangcai Ling [J]. Journal of Geology, 2019, 93 (11): 2813-2831.

      邵济安, 刘福田, 陈辉, 等. 大兴安岭—燕山晚中生代岩浆活动与俯冲作用关系[J]. 地质学报, 2001(01): 56-63

      SHAO Ji'an, LIU Futian, CHEN Hui, et al. The relationship between late Mesozoic magmatism and subduction in the Greater Khingan-Yanshan Mountains [J]. Journal of Geology, 2001 (01): 56-63

      舒良树. 普通地质学(第三版)[M]. 北京: 地质出版社, 2010.
      隋振民, 葛文春, 吴福元, 等. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J]. 岩石学报, 2007(02): 461-480

      SUI Zhenmin, GE Wenchun, WU Fuyuan, et al. Zircon U-Pb age, geochemical characteristics and genesis of Jurassic granitic rocks in the northeast of the Great Hinggan Mountains [J]. Acta Petrologica Sinica, 2007 (02): 461-480

      孙德有, 吴福元, 高山, 等. 吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J]. 地学前缘, 2005(02): 263-275

      SUN Deyou, WU Fuyuan, GAO Shan, et al. Determination of the late Triassic and early Jurassic aluminous A-type granites in central Jilin and their constraints on the tectonic framework in the eastern part of Jilin and Heihe [J]. Geologic Front, 2005 (02): 263-275

      唐杰, 许文良, 王枫, 等. 古太平洋板块在欧亚大陆下的俯冲历史: 东北亚陆缘中生代-古近纪岩浆记录[J]. 中国科学: 地球科学, 2018, 48(05): 549-583

      TANG Jie, XU Wenliang, WANG Feng, et al. The subduction history of the ancient Pacific plate under the Eurasian continent: the Mesozoic-Paleogene magmatic record of the northeastern Asian continental margin [J]. Chinese Science: Earth Science, 2018, 48 (05): 549-583

      王得权, 王建国, 杨帅, 等. 陕西秋树坪金矿似斑状奥长花岗岩脉锆石U-Pb年龄、地球化学特征及地质意义[J]. 矿物岩石, 2022, 42(01): 90-97

      WANG Dequan, WANG Jianguo, YANG Shuai, et al. Zircon U-Pb age, geochemical characteristics and geological significance of porphyry anorthite vein in Qiushuping gold deposit, Shaanxi [J]. Mineral and Rock, 2022, 42 (01): 90-97.

      吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004(16): 1589-1604 doi: 10.1360/csb2004-49-16-1589

      WU Yuanbao, ZHENG Yongfei. Zircon genetic mineralogy and its constraints on U-Pb age interpretation [J]. Science Bulletin, 2004 (16): 1589-1604 doi: 10.1360/csb2004-49-16-1589

      肖庆辉, 邱瑞照, 邢作云, 等. 花岗岩成因研究前沿的认识[J]. 地质论评, 2007(S1): 17-27

      XIAO Qinghui, QIU Ruizhao, XING Zuoyun, et al. Understanding of the frontier of granite genesis research [J]. Geological Review, 2007 (S1): 17-27.

      杨雅军, 杨晓平, 江斌, 等. 大兴安岭中生代火山岩地层时空分布与蒙古—鄂霍茨克洋、古太平洋板块俯冲作用响应[J]. 地学前缘, 2022, 29(02): 115-131

      YANG Yajun, YANG Xiaoping, JIANG Bin, et al. The spatial and temporal distribution of Mesozoic volcanic rock strata in the Great Khingan Mountains and the response to the subduction of the Mongolia-Okhotsk Ocean and the Paleo-Pacific Plate [J]. Geologic Front, 2022, 29 (02): 115-131.

      杨长江, 王亚春. 小兴安岭东南部伊春中生代花岗岩的锆石U-Pb测年及其地质意义[J]. 吉林地质, 2010, 29(04): 1-5+31 doi: 10.3969/j.issn.1001-2427.2010.04.001

      YANG Changjiang, WANG Yachun. Zircon U-Pb dating of the Yichun Mesozoic granite in the southeast of the Xiaoxing'an Mountains and its geological significance [J]. Jilin Geology, 2010, 29 (04): 1-5+31 doi: 10.3969/j.issn.1001-2427.2010.04.001

      俞胜, 贾轩, 姚皓骞, 等. 西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究[J]. 西北地质, 2023, 56(5): 245−261.

      YU Sheng, JIA Xuan, YAO Haoqian, et al. Geochemistry Characteristics and Detrital Zircon In–Site U–Pb Geochronology of Silurian Diebu Formation in Bailongjiang Area, West Qinling Mountains[J]. Northwestern Geology, 2023, 56(5): 245−261.

      袁洪林, 吴福元, 高山, 等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003(14): 1511-1520 doi: 10.3321/j.issn:0023-074X.2003.14.008

      YUAN Honglin, WU Fuyuan, GAO Shan, et al. Zircon laser probe U-Pb dating and rare earth element composition analysis of Cenozoic intrusions in Northeast China [J]. Science Bulletin, 2003 (14): 1511-1520 doi: 10.3321/j.issn:0023-074X.2003.14.008

      张健, 张海华, 贺君玲, 等. 东北地区氦气成藏条件与资源前景分析[J]. 西北地质, 2023, 56(1): 117−128.

      ZHANG Jian, ZHANG Haihua, HE Junling, et al. Analysis of Helium Accumulation Conditions and Resource Prospect in Northeast China[J]. Northwestern Geology, 2023, 56(1): 117−128.

      张旗, 金惟俊, 王元龙, 等. 大洋岩石圈拆沉与大陆下地壳拆沉: 不同的机制及意义——兼评“下地壳+岩石圈地幔拆沉模式”[J]. 岩石学报, 2006(11): 2631-2638 doi: 10.3321/j.issn:1000-0569.2006.11.002

      ZHANG Qi, JIN Weijun, WANG Yuanlong, et al. Ocean lithospheric delamination and continental lower crust delamination: different mechanisms and significance-also comment on "lower crust+lithospheric mantle delamination model" [J]. Journal of Rock, 2006 (11): 2631-2638 doi: 10.3321/j.issn:1000-0569.2006.11.002

      赵越, 刘敬党, 张国宾, 等. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(04): 1098-1118

      ZHAO Yue, LIU Jingdang, ZHANG Guobin, et al. Chronology, geochemical characteristics and tectonic significance of the monzogranite of the Maoershan pluton in the southern part of Zhang Guangcai Ling [J]. Journal of Jilin University (Earth Science Edition), 2021, 51 (04): 1098-1118.

      Allègre C. J., Minster J. F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1). doi: 10.1016/0012-821X(78)90123-1

      Champion D C, Chappell B W. Petrogenesis of felsic I-ype granites: An example from northern Queensland[J]. Transactions of the Royal Society of Edinburgh Earth Science, 1992, 83: 115- 126. doi: 10.1017/S026359330000780X

      Defant M J, Drummond M S. Derivation of some morden arc magmas by of young subducted lithosphere[J]. Nature, 1990, 47: 62-665

      Dong Yu, Ge Wenchun, Yang Hao. Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing’an Range, NE China, and its tectonic implications[J]. Lithos, 2014, 205: 168-184. doi: 10.1016/j.lithos.2014.07.004

      Fan Weiming, Guo Feng, Wang Yuejun, et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology & Geothermal Rsearch, 2003, 121(1): 115-135.

      Feng Zhiqiang, Jia Jie, Liu Yongjiang, et al. Geochronology and geochemistry of the Carboniferous magmatism in the northern Great Xing’an Rang, NE China: Constraints on the timing of amalgamation of Xing’an and Songnen blocks[J]. Journal of Asian Earth Sciences, 2015, 113: 411-426. doi: 10.1016/j.jseaes.2014.12.017

      Kravchinsky V A, Cogne J P, Harbert W P. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 2002, 148(1): 34-57. doi: 10.1046/j.1365-246x.2002.01557.x

      Meng Qingren. What drove late Mesozoic extension of the northern China-Mongolia tract[J]. Tectonophysics, 2003, 369(3): 155-174.

      Möller A, O’Brien P J, Kennedy A, et al. Linking growth epi‐sodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland(SW Norway) [J]. Geological Society, London, SpecialPublications, 2003, 220: 65-82. doi: 10.1144/GSL.SP.2003.220.01.04

      Paterno R, Castillo. An Overview Of Adakite Petrogenesis[J]. Chinese Science Bulletin, 2006(03): 258-268.

      Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

      Richards J P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40(1): 1-26. doi: 10.1016/j.oregeorev.2011.05.006

      Daniela Rubatto, Dieter Gebauer. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: some Examples from the Western Alps[J]. Cathodoluminescence in Geosciences, 2000, 373-400

      Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 33: 1-64.

      Rudnick R L. Making continental crust[J]. Nature, 1995, 378(6557): 571-578. doi: 10.1038/378571a0

      Sengor A M C, Natalin B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364( 6435): 299-307. doi: 10.1038/364299a0

      Shi Lu, Zheng Changqing, Yao Wengui, et al. Geochronological framework and tectonic setting of the granitic magmatism in the Chaihe-Moguqi region, central Great Xing’an Range, China[J]. Journal of Asian Earth Sciences, 2015, 113: 443-453. doi: 10.1016/j.jseaes.2014.12.013

      Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D and Norry M J(eds). Magmatism in ocean basins[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

      Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[D]. Oxford: Blackwell Scientific Publications, 1985, 1−312.

      Tomurtogoo O, Windley B F, Kroner A. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen[J]. Journal of the Geological Society, 2005, 162(1): 125-134. doi: 10.1144/0016-764903-146

      Valley J W, Lackey J S, Cavosie A J. Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatie Zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150(6): 561-580. doi: 10.1007/s00410-005-0025-8

      Wang Fei, Zhou Xinhua, Zhang Lianchang, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251(1): 179-198.

      Wu Fu Y, Sun De Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41: 1-30. doi: 10.1016/j.jseaes.2010.11.014

      Wu Fuyuan, Yang Jinhui, Lo Chinghua. The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China[J]. Island Arc, 2010, 16 (1): 156-172.

      Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 2013, 29(2): 339-353.

      Ying Jiheng, Zhou Xinhua, Zhang Lianchang, et al. Geochronological framework of Mesozoic volcanic rocks in the Great Xing’an Range, NE China, and their geodynamic implications[J]. Journal of Asian Earth Sciences, 2010, 39(6): 786-793. doi: 10.1016/j.jseaes.2010.04.035

      Zhang Jiheng, Ge Wenchun, Wu Fuyuan, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, Northeastern China[J]. Lithos, 2008, 102(1-2): 138-157. doi: 10.1016/j.lithos.2007.08.011

      Zhou Jianbo, Wilde S A, Zhang Xingzhou. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang highpressure metamorphic belt[J]. Tectonophysics, 2009, 478 (3): 230-246.

    图(12)  /  表(3)
    计量
    • 文章访问数:  239
    • HTML全文浏览量:  55
    • PDF下载量:  67
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-07
    • 修回日期:  2023-02-19
    • 录用日期:  2023-02-27
    • 网络出版日期:  2023-03-16
    • 刊出日期:  2024-04-19

    目录

    /

    返回文章
    返回