ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

北山地区芨芨台子蛇绿岩地球化学特征及形成环境

武磊, 翟新伟, 王二腾, 王赟, 郭志昂, 宋高瑞, 王金荣, 杜君

武磊,翟新伟,王二腾,等. 北山地区芨芨台子蛇绿岩地球化学特征及形成环境[J]. 西北地质,2025,58(1):27−42. doi: 10.12401/j.nwg.2023038
引用本文: 武磊,翟新伟,王二腾,等. 北山地区芨芨台子蛇绿岩地球化学特征及形成环境[J]. 西北地质,2025,58(1):27−42. doi: 10.12401/j.nwg.2023038
WU Lei,ZHAI Xinwei,WANG Erteng,et al. Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area[J]. Northwestern Geology,2025,58(1):27−42. doi: 10.12401/j.nwg.2023038
Citation: WU Lei,ZHAI Xinwei,WANG Erteng,et al. Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area[J]. Northwestern Geology,2025,58(1):27−42. doi: 10.12401/j.nwg.2023038

北山地区芨芨台子蛇绿岩地球化学特征及形成环境

基金项目: 第二次青藏 高原综合科学考察研究(2019QZKK0901),中国地质调查局项目“中国北方(天山-北山-阴山以北)中段石炭纪—二叠纪构造演化研究”(121201011000161111-01)联合资助。
详细信息
    作者简介:

    武磊(1996−),男,博士研究生,岩石学、矿物学、矿床学专业。E−mail:wul20@lzu.edu.cn

    通讯作者:

    翟新伟(1976−),男,副教授,从事构造地质与成矿方面研究。E−mail:zhaixw926@lzu.edu.cn

  • 中图分类号: P584

Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area

  • 摘要:

    甘肃北山地区芨芨台子蛇绿岩是芨芨台子–小黄山蛇绿岩带重要组成部分,位于公婆泉单元和明水–旱山微陆块之间的北山造山带中部,主要由超基性岩、辉长岩和玄武岩组成。为揭示芨芨台子蛇绿岩带的形成环境,开展辉长岩、玄武岩岩石学及地球化学研究。辉长岩、玄武岩MgO为6.04%~6.73%、6.21%~9.66%,Mg#为32.33~37.03、27.58~46.27,SI固结指数27.66~31.55、24.96~42.20,Al2O3为15.82%~16.79%、13.38%~15.38%,Na2O高于K2O含量(Na2O/K2O=9.75~17.15、1.95~23.26),Na2O+K2O分别为4.48%~4.90%和3.37%~4.68%,P2O5分别为0.07%~0.09%和0.16%~0.27%,均具富集LREE和LILE,亏损HREE和HFSE,Eu无明显异常(δEu=0.98~1.09、0.88~1.06);(87Sr/86Sr)i0.7037000.704768,(143Nd/144Nd)i0.5122340.512361εNd(t)为+4.18~+6.66。这些特征指示芨芨台子蛇绿岩带属于SSZ型蛇绿岩带,玄武岩与辉长岩来源于亏损地幔部分熔融,并经历了一定程度的结晶分异及地壳混染作用。结合区域地质背景,芨芨台子蛇绿岩形成于弧后盆地,为红柳河–牛圈子–洗肠井洋盆北向俯冲引起弧后扩张所致。

    Abstract:

    The Jijitaizi ophiolite belt in the middle of the Beishan orogenic belt, between the Mingshui-Hanshan microcontinental block and the Gongpoquan unit is an important part of the Jijitaizi-Xiaohuangshan ophiolite belt, composed of ultrabasic rocks, gabbro and basalt. To reveal the tectonic setting of Jijitaizi ophiolite belt, gabbro and basalt are selected for petrological and geochemical studies. MgO of gabbro and basalt is 6.04%~6.73% and 6.21%~9.66%, Mg# values are 32.33~37.03, 27.58~46.27, respectively, SI consolidation index is 27.66~31.55 and 24.96~42.20, Al2O3 is 15.82%~16.79% and 13.38%~15.38%, Na2O higher than K2O content (Na2O/K2O=9.75~17.15, 1.95~23.26), Na2O+K2O is 4.48%~4.90% and 3.3%~4.68%, P2O5 is 0.07%~0.09% and 0.16%~0.27%. Both of gabbro and basalt enrichment of LILEs and LREE, depletion of HREE and HFSEs and Eu have no obvious anomalies (δEu=0.98~1.09、0.88~1.06). (87Sr/86Sr)i is 0.7037000.704768, (143Nd/144Nd)i is 0.5122340.512361, εNd(t) is +4.18~+6.66. These characteristics indicate Jijitaizi ophiolite belt belong to SSZ type ophiolite belt, basalt and gabbro originated from partial melting of the depleted mantle and experienced crystallization differentiation and crustal contamination. Combined with geological background, it can be concluded that the Jijitaizi ophiolite may form in a back-arc basin, resaulting from northward subduction of the Hongliuhe-Niujuanzi-Xichangjing ocean basin.

  • 实现“双碳”目标是国家根据世界发展新形势作出的重大战略决策。如何着眼地区经济实际和资源环境禀赋,统筹产业结构与发展布局,推动高质量发展,是地方政府助力“双碳”目标的重要举措。生态系统是地球系统正常运转的基础。《2030年前碳达峰行动方案》对生态系统碳汇能力巩固提升提出明确要求。对区域生态资源赋存状态与变化进行准确评估,是构建“双碳”目标下国土空间开发与生态环境保护新格局的基础。基于自然的资本属性,根据生态系统及其固碳功能服务衡量经济价值(Costanza et al.,1997)的区域生态系统价值评估,不仅可以为从国家层面探索自然资源资产负债表提供技术支持,也是地区可持续发展目标导向政策优化调整的基础。

    国内很多学者已对中国生态系统固碳服务价值开展评估研究。早期研究表明,中国陆地生态系统效益价值约为GDP的1.25倍(陈仲新等,2000),固碳服务价值约为773.5×109~3619.2×109元(欧阳志云等,1999)。后续研究进一步发现,生态系统的结构、状态和动态可以影响系统的功能和稳定性(Elmqvist et al.,2003Cortina et al.,2006),从而影响生态系统固碳服务价值,因而不同生态系统类型间差异很大(谢高地等,2015潘勇军等,2018)。然而,当前研究对于地区生态系统结构变化的影响考虑较少,而这却是生态脆弱与退化地区进行生态修复和国土空间规划布局的基础。基于地区生态系统结构进行固碳功能评估,对于脆弱生态的修复措施和经济建设的政策调整有重要意义。

    黄河流域的生态保护和高质量发展是重大国家战略。榆林地处黄河中游地区,丰富的资源储量使榆林具有明显的区位优势。然而,经济发展过程中的环境效应问题也逐渐成为限制榆林市经济与生态可持续发展的主要影响因素。生态系统的脆弱性加剧了环境保护难度,在当前全球变化背景下如何改善生态环境的同时增加应对环境压力和干扰的能力是榆林地区高质量发展的必然要求。笔者基于高分辨率遥感影像对榆林市生态系统固碳价值进行评估,分析环境变化和人类活动的影响,结合景观结构指数对固碳功能进行空间分析,尝试从系统的角度理解榆林市生态系统固碳功能变化特征,以期为榆林市生态建设和高质量发展提供科学依据。

    榆林市位于黄河中游西岸,地理坐标为E 107º14′51″~111º14′31″,N36º48′58″~39º35′7″,包含1市2区9县,总面积为42920 km2。全市地势西北高、东西低,古长城以北的风沙草滩区占总面积的42%,风蚀沙化较严重,后备资源开发潜力大。南部黄土高原丘陵沟壑区占58%,地形破碎、水土流失严重。因为地处农牧交错区,榆林在相当长的时间一直以农牧业为主,从20世纪末开始发展轻重工业,到2006年开始以能化产业为主导,榆林经济进入了快速发展阶段。富集的能源矿产资源开发引发了对土地、植被资源的破坏,生态环境质量评价较差,局部地区甚至仍在恶化(陕西省生态环境状况公报,2021)。

    遥感数据采用MOD17A3HGF数据(https://ladsweb.modaps.eosdis.nasa.gov/),图像空间分辨率为500 m ×500 m,数据选用2000、2005、2010、2015和2020年。土地利用数据来源于资源环境科学与数据中心(https://www.resdc.cn/),空间分辨率为1 km×1 km,包括耕地、林地、草地、水域、建设用地和未利用土地6个一级分类和25个二级分类。

    MOD17A3HGF数据是基于BIOME-BGC模型通过Terra卫星遥感参数计算的全球植被净初级生产力年际遥感监测产品。将MOD17A3HGF数据转化为NPP值,利用Modis Reprojection Tool对数据进行投影转换,生成1 km×1 km的栅格数据。将生成数据与土地利用遥感监测数据和榆林市行政区划进行重采样、重分类、栅格计算等处理,得到2000~2020年榆林市6大类生产性土地的NPP统计数据。基于净生态系统生产力法对固碳功能量进行估算(国家市场监督管理总局,2020),采用市场价值法对固碳价值进行换算。CO2吸收价值根据2022年中国碳交易市场价格取58元/t。区县单位面积固碳价值通过各区县固碳价值量的总和与区划总面积换算得到,各区县面积加权平均得到全市单位面积固碳价值。

    基于遥感数据通过Fragstats对景观格局进行计算。分别在景观和类型水平下选取斑块面积(CA)、斑块所占景观面积比例(PLAND)、斑块数量(NP)、斑块密度(PD)、最大斑块占景观面积比(LPI)、景观形状指数(LSI)、平均斑块面积(AREA_MN)、蔓延度指数(CONTAG)、斑块内聚力指数(COHESION)、聚集度指数(AI)等指标,对各类土地利用类型的景观指数进行计算。对各区县森林景观计算结果标准化处理后通过熵权法确定指标权重,计算得到各区县林地综合指数。对各年份分别计算,得到各区县林地综合指数趋势变化。

    基于气象条件、土地利用及工业GDP占比对各区县固碳价值进行PCA分析(Principal Component Analysis),分析环境因素、生态系统结构和人类活动对固碳价值的影响。采矿是榆林地区最主要的重工业产业,由于缺乏直接的采矿数据,以工业GDP占比代表地区工业活动。数据分析使用R-software (version3.5.3)。

    榆林市2000年陆地生态系统固碳价值为5423万元, 2020年达到11449万元。西部的榆阳区、神木市、靖边县和定边县固碳价值总量最高,平均占全市10%以上。东南部的绥德县、米脂县、佳县、清涧县和子洲县固碳价值量占比较低,吴堡县最低仅约占1%。2020年榆林市固碳价值总量比2000年增加了111%,但各区县间增幅不同。西部的榆阳区、神木市、定边县增幅低于全市,分别增长了89%和96%,靖边县略高增加了114%。东南部增幅高于全市水平,增幅基本高于120%,清涧县增加了175%。

    从土地利用类型看,榆林全市范围以草地和耕地为主,面积占比82%。2000年至2020年间全市草地和耕地固碳价值量分别增加了116%和101%。林地在榆林地区占比较小,然而到2020年固碳价值量增加了176%。建设用地增长速率最快固碳价值变幅最大。全市范围未利用土地持续缓慢减少,固碳价值量增幅最小。

    榆林市固碳价值总量的空间分布西北高、东南低。因为价值总量估算是基于行政区划面积,对区划面积较小的区县会低估,笔者基于单位面积固碳价值对各区县生态系统固碳功能进行对比。榆林市单位面积固碳价值量多年平均21.25 元/ha,东南部区县单位面积固碳价值水平高于全市,多年平均为21.96~24.98 元/ha,西北部区县基本低于全市平均水平(图1)。文中估算结果低于已报道的陕北榆林地区结果(李晶等,2011封建民等,2018),可能与数据分辨率以及采用的市场交易价格低于造林成本价格有关。榆林市单位面积固碳价值从东南向西北递减的空间分布趋势,与陕北地区NPP从南向西北递减的趋势一致(李登科等,2022),显示出区域间土地利用类型的结构差异。

    图  1  榆林市生态系统固碳服务价值空间分布
    a. 多年平均固碳价值量(104元);b. 多年平均单位面积固碳价值量(元/ ha)
    Figure  1.  Spatial distribution of value of carbon sequestration service in Yulin ecosystem

    对12区县固碳价值的PCA运算显示东南部区县与西北部区县在PC1(贡献率为44.1%~57.5%)上表现出显著差异(图2a),西北部区县正向分布,东南部区县负向分布。20年间工业GDP占比对PC1的贡献率始终较高,建筑用地的相关性也逐渐增加,表明榆林市生态系统固碳价值主要依据工业活动形成东南部区县和西北部区县的分划,这与榆林市矿产资源集中分布在市域西北部吻合。西北部区县矿产资源富集,采矿活动等重工业发达,对地表的破坏可以直接影响生态系统固碳服务功能。神木市是榆林典型的采矿工业区,煤矿资源丰富,工业GDP占比在20年间从86%增加到98%,对PC1的负荷也从2.09增加到3.18,表明该区域生态系统固碳价值与工业、建设活动的相关性在逐渐增加。榆林市西北部区县如榆阳区、府谷县也都表现出受工业建设活动影响增加的相似趋势(图2b)。气象条件对PC2轴的贡献率较高。可能受退耕还林还草政策导致的土地利用结构调整影响,各区县没有表现出显著差异。

    图  2  榆林市12区县的PCA排序
    a.各区县2000、2005、2015与2020年的PCA排序,实心点为西北部区县分组,空心点为东南部区县分组;b.各区县2020年主分量分布
    Figure  2.  The PCA distribution figure of 12 counties of Yulin

    榆林市地貌类型南北不同,西北部是毛乌素沙漠南缘风沙草滩区,南部是黄土高原丘陵沟壑区。全市土地利用类型基本以草地和耕地为主,贡献了全市约83%的固碳价值。尽管耕草地比例在各区县不同,两种土地利用类型的固碳价值总量并不存在显著差异。东南部区县的林地面积比例较高,因而林地固碳贡献在东南部区县相应增加。西北部靖边县、榆阳区、神木市、府谷县、横山县、定边县3%~4%的林地固碳贡献,在东南部区县增加到10%以上,绥德县和清涧县可以达到17%,提升了东南部区县的单位面积固碳价值。单位面积固碳价值与林地比例的显著正相关(图3),以及与建设用地及工业活动的负相关表明,在采矿、工业建设等人类活动干扰会损害地区生态系统固碳功能,生态系统结构尤其是林地比例对固碳价值的提高有重要影响。

    图  3  榆林市固碳价值影响因素相关性分析结果
    图中数字为相关系数(p˂0.05);×代表无显著相关;固碳价值为单位面积固碳价值;土地类型比例为面积比例
    Figure  3.  Correlation analysis results of influencing factors of carbon sequestration value in Yulin

    全市范围看生态系统固碳价值的增长变化也表现出明显的空间差异。全市单位面积固碳价值在2000~2020年间持续增长,然而区域间增长速率不同(图4a)。2020年西北部6区县固碳价值总量增加了4357万元,平均增长率了107%,平均增长速率为0.67。东南部6区县虽然行政区划面积小,固碳价值总量仅增加1668万元,然而区域内林地系统的面积比例、平均斑块面积更高(图4b),增长速率也显著高于西北部区县(p<0.05)。林地系统较高的比例和增长率使东南部区县单位面积固碳价值平均增加了147%, 0.955的增速显著高于西北部区县(p<0.01)。

    图  4  榆林市生态系统固碳价值增长速率与森林系统景观结构综合指数
    a.圆代表榆林市森林类型综合指数,颜色代表单位面积固碳价值增长速率;b.圆代表森林景观类型面积比例,颜色代表森林类型平均斑块面积
    Figure  4.  The growth rate of carbon sequestration value in Yulin and forest ecosystem landscape structure comprehensive index

    榆林地处中国干旱半干旱地区,黄土高原与沙漠过渡地带,脆弱的生态条件导致植被生长敏感易变。全球变化背景下,榆林地区也表现出气候暖干化和水资源减少趋势(杨文峰等,2002王德丽等,2011),多坡地的地貌结构可能进一步加深地表干旱。矿产开发对土地资源的破坏如果不加以维护管理,容易受到人类活动干扰而退化,从而降低生态系统的稳定和功能。林地综合结构指数显示榆林市东南部区县相对较高(图4a)。这种差异不仅仅因为林地总面积比例在东南部区县相对较高,而是区域内林地类型密度、大小、形状、临近度、连通性等的综合表现,表明森林生态系统的结构性在东南部区县相对较好,合理的生态修复和管理措施必然能够更好的发挥系统功能性。西北部区县林地系统结构性相对较差,不仅受地理条件限制,也与地方产业有关。榆林市作为中国能源化工基地,大量的矿产资源集中分布在西北部区县,矿山开发挤占了资源并造成景观破碎化,不利于植被发展。神木市林地类型比例、平均面积大小、连通性在全市基本处于最低值,且在不断恶化,林地综合指数较低并具有较大波动。矿山开发对林地生态系统结构的破坏不仅影响了当前的固碳功能,而且可能会对系统的稳定性及水土保持等生态系统服务产生影响。由这种潜在影响得知,在易发生土壤侵蚀或地质灾害的黄土高原地区(孙萍萍等,2022仲原等,2022)的生态建设,应尽可能加强系统的整体性、结构性,协调好地区土地利用规划,避免景观的破碎化,加强水资源利用成效,从而实现地区长期的“双碳”目标。

    2000~2020年榆林市固碳价值持续稳定增长,然而2000~2010年增长速率显著高于2010~2020年(图5)。定边县和绥德县位于榆林市南部,两县都没有煤矿开采,工业GDP占比不高,2020年分别仅占全县GDP总值的10%和15%。两县均是以耕地为主的传统农业县,建筑用地很少,土地利用类型的差异主要是林地和未利用地(图5b)。林地较多的绥德县单位面积固碳价值更高(图5b),增长率也更高(图5a)。为了在更小尺度进行对比,分别在两县基于相似土地利用结构选取了10 km × 10 km样方,绥德县样方不仅固碳价值提高了27.5%,20年间固碳价值的增长率也提高了92%。

    图  5  榆林市生态系统单位面积固碳价值动态变化
    a.榆林市生态系统单位面积固碳价值随时间变化,虚线为12区县平均值,阴影为标准偏差,红线为绥德县,蓝线为定边县;b.定边县与绥德县土地利用结构
    Figure  5.  The dynamic change of value of carbon sequestration of Yulin

    1999年,陕西在全国率先开展了退耕还林还草试点,榆林市重点实施了建设工程,并从2006年起陆续出台了一系列土地利用规划,加强土地整治与生态环境建设。全市耕地面积在2000~2010年下降较快(p<0.01),2010~2020年下降速率减缓。20年间草地和林地整体呈上升趋势,然而草地面积在2010~2020年出现下降,只有林地始终保持增加。耕地和草地面积变化的年代差异达到显著水平,林地增长达到极显著水平(p<0.01)。土地整治政策的实施改善了榆林市的生态环境,自然植被的逐渐恢复有效促进了生态系统固碳功能的提高。2000~2010年榆林市林地固碳价值增加337.66万元,2010~2020年增加116.13万元。相应各区县固碳价值总量增加量和增长速率均表现出极显著年代差异(p<0.01)。西北部区县受采矿等工业建设活动影响,固碳价值增长速率普遍较低。加强全域统筹规划,因地制宜提高生态系统结构的协调性,对榆林市西北部地区的生态修复与建设有重要意义。

    (1)2000~2020年榆林市生态系统固碳服务价值持续增长,2000年代固碳价值年增长480万元/a,2010年代增速减缓年增长120万元/a。全市单位面积固碳价值空间分布呈现从东南向西北递减的趋势,东南部区县单位面积固碳价值增长速率也更快。

    (2)采矿工业活动是形成榆林市西北、东南各区县分划的主要因素,东南部工业活动少、林地占比较高,固碳价值主要受生态系统结构性变化的影响。

    (3)榆林地区长期的资源开发导致地表景观的破碎化,降低了系统的稳定性。长期来看,未来实施退耕还林还草与生态修复建设工程时,应尽可能扩大单个系统类型面积、避免分散,综合考虑生态系统的整体性,以改善林地系统的结构性与稳定性,实现提质增效。后续可进一步对生态系统服务价值总量进行核算,深入分析系统结构变化影响下的系统功能变化。

  • 图  1   中亚造山带大地构造位置简图(a)及北山造山带构造纲要图(b)(据Xiao et al., 2010

    1.红石山蛇绿岩带;2.芨芨台子–小黄山蛇绿岩带;3.红柳河–牛圈子–洗肠井蛇绿岩带;4.辉铜山–帐房山蛇绿岩带

    Figure  1.   (a) Sketched tectonic map of the CAOB and (b) simplified geological map of the Beishan orogenic belt

    图  2   芨芨台子蛇绿岩带地质简图(a)、剖面图及采样位置(b)

    Figure  2.   (a) Geological sketch map, (b) section and sampling location of Jijitaizi ophiolite belt

    图  3   芨芨台子蛇绿岩野外照片

    Figure  3.   Field photos of Jijitaizi ophiolite

    图  4   芨芨台子蛇绿岩带辉长岩(a)、玄武岩(b)显微照片(正交偏光)

    Pl. 斜长石;Px.辉石

    Figure  4.   (a) Micrographs of gabbro and (b) basalt in Jijitaizi ophiolite belt

    图  5   芨芨台子辉长岩、玄武岩AFM图解(a)(据Irvine et al., 1971)、和SiO2-K2O图解(b)(Peccerillo et al., 1976)和SiO2-TFeO/MgO图解(c)(据Miyashiro, 1974

    Figure  5.   (a) AFM diagram, (b) SiO2-K2O diagram and (c) SiO2-TFeO/MgO diagram of Jijitaizi gabbro and basalt

    图  6   芨芨台子蛇绿岩带稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)(据Sun et al., 1989

    Figure  6.   (a) Chondrite-normalized REE pattern and (b) primitive mantle-normalized trace element spidergram of Jijitaizi ophiolite

    图  7   芨芨台子蛇绿岩带(87Sr/86Sr)i-εNdt)图解(据DePaolo et al., 1979张国震等,2021

    Figure  7.   (87Sr/86Sr)i-εNd (t) diagram of Jijitaizi ophiolite

    图  8   芨芨台子辉长岩、玄武岩源区判别图解

    a. Zr/Nb-Y/Nb判别图解(据董朋生等,2018);b. Zr-Y判别图解(据Condie, 1989); c. Zr/Nb-La/Yb判别图解(据Zhao et al., 2007);d. La/Sm-Sm/Yb判别图解(据Dilek, 2011

    Figure  8.   Discrimination diagrams of source areas of the gabbro and basalt in Jijitaizi

    图  9   芨芨台子蛇绿岩Sr/Nd-Th/Yb图解(a) (Woodhead et al., 1998) 和Ba/Rb-Rb/Sr图解(b)(据董朋生等,2018

    Figure  9.   (a) Sr/Nd-Th/Yb diagram and (b) Ba/Rb-Rb/Sr diagram of Jijitaizi ophiolite

    图  10   芨芨台子蛇绿岩带地壳混染(a)和结晶分异图解(b)(据张国震等,2021

    Figure  10.   (a)Crustal contamination and (b) crystallization differentiation diagramof Jijitaizi ophiolite

    图  11   芨芨台子蛇绿岩构造判别图解(图a据Shervais, 1982;图b据Pearce, 1982

    Figure  11.   Tectonic discrimination diagram of Jijitaizi ophiolite

    图  12   北山造山带早古生代演化模式图(据杜雪亮,2019王怀涛,2019

    Figure  12.   The schematic map for the early Paleozoic evolution in Beishan orogenic belt

    续表1
    样品编号17JJTZ-
    HC-01
    17JJTZ-
    HC-02
    17JJTZ-
    HC-03
    17JJTZ-
    HC-04
    17JJTZ-
    XW-01
    17JJTZ-
    XW-02
    17JJTZ-
    XW-03
    17JJTZ-
    XW-04
    17JJTZ-
    XW-05
    17JJTZ-
    XW-06
    岩性辉长岩辉长岩辉长岩辉长岩玄武岩玄武岩玄武岩玄武安山岩玄武岩玄武安山岩
    Ce7.918.517.746.9222.7024.2025.5015.0524.8013.65
    Pr1.151.261.111.093.143.263.432.163.331.90
    Nd5.836.855.895.2913.9014.5014.9010.2014.609.00
    Sm2.182.061.741.763.403.613.652.903.532.49
    Eu0.800.900.750.671.231.171.190.951.300.93
    Gd2.753.072.832.483.783.963.903.753.983.24
    Tb0.490.520.490.460.610.640.620.650.650.58
    Dy3.404.043.283.273.834.193.964.444.383.89
    Ho0.730.800.740.680.790.910.810.990.950.89
    Er2.232.412.061.972.272.792.302.952.772.70
    Tm0.340.360.330.320.320.410.330.440.400.40
    Yb2.242.312.212.072.022.732.062.942.732.68
    Lu0.390.380.330.300.320.430.310.470.430.43
    (La/Yb)N0.991.001.100.933.272.573.621.542.731.53
    (La/Sm)N0.921.011.250.981.751.751.841.401.901.48
    (Gd/Yb)N1.021.101.060.991.551.201.571.061.211.00
    ∑REE33.5236.6832.8829.9567.5172.6073.3654.1974.2548.48
    ∑LREE20.9622.8020.6118.4053.5756.5459.0737.5657.9633.67
    ∑HREE12.5613.8812.2711.5613.9416.0614.2916.6316.2914.81
    LREE/HREE1.671.641.681.593.843.524.132.263.562.27
    δEu0.991.091.040.981.050.950.960.881.061.00
    δCe1.031.040.980.991.041.051.051.001.031.02
    下载: 导出CSV

    表  1   芨芨台子蛇绿岩主(%)、微量及稀土元素(10−6)分析结果

    Table  1   Major element (%) and trace element (10−6) composition of the Jijitaizi ophiolite

    样品编号17JJTZ-
    HC-01
    17JJTZ-
    HC-02
    17JJTZ-
    HC-03
    17JJTZ-
    HC-04
    17JJTZ-
    XW-01
    17JJTZ-
    XW-02
    17JJTZ-
    XW-03
    17JJTZ-
    XW-04
    17JJTZ-
    XW-05
    17JJTZ-
    XW-06
    岩性辉长岩辉长岩辉长岩辉长岩玄武岩玄武岩玄武岩玄武安山岩玄武岩玄武安山岩
    SiO250.6451.2950.3951.6647.9750.9747.7152.7250.8854.96
    Al2O316.0815.9416.7915.8215.3814.5615.2913.7714.3813.38
    BaO0.020.020.020.020.030.020.040.010.020.01
    CaO9.388.9310.409.258.026.338.515.426.714.82
    Cr2O30.010.010.010.010.090.010.090.010.010.01
    TFe2O310.9010.9010.249.879.8614.259.2614.5214.2714.06
    K2O0.280.270.300.440.770.211.320.190.210.19
    MgO6.396.046.106.739.667.139.256.586.806.21
    MnO0.180.180.170.170.180.200.160.220.220.18
    Na2O4.374.634.184.292.604.412.584.454.474.42
    P2O50.080.090.080.070.190.270.190.170.250.16
    LOI0.950.991.021.304.011.384.331.301.060.65
    TiO20.860.950.810.771.250.961.230.980.980.93
    Total100.14100.24100.51100.40100.01100.7099.96100.34100.2699.98
    Mg#33.5832.3333.9337.0345.7930.1446.2728.1029.1227.58
    Na2O+K2O4.654.904.484.733.374.623.904.644.684.61
    Na2O/K2O15.6117.1513.939.753.3821.001.9523.4221.2923.26
    σ(里特曼指数)2.832.902.722.582.292.683.232.212.781.78
    SI固结指数29.1227.6629.3031.5542.2027.4241.2825.5626.4124.96
    Rb3.664.623.645.5813.503.0031.002.902.802.90
    Ba92.60385.0098.9045.30200.0040.00260.0040.0040.0030.00
    Th0.290.310.320.231.541.841.650.971.770.79
    Cs0.100.070.090.130.450.121.400.140.080.07
    Cr61.1041.2069.4062.00474.006.00464.0016.006.0016.00
    Co39.5033.1036.0035.2046.4047.5043.5056.0050.8047.90
    Ni33.2028.4035.4046.90195.0029.00178.0039.5033.0035.50
    K6392.141743.3110957.951577.286392.141743.3110957.951577.281743.311577.28
    P829.201178.34829.20741.92829.201178.34829.20741.921091.05698.27
    Nb2.062.261.931.804.4010.404.306.4010.404.70
    Pb1.080.772.030.288.101.105.801.101.001.70
    Sr197.00181.00158.00159.00323.00191.50299.00196.50219.00166.50
    Ta0.160.160.120.340.290.470.290.300.460.21
    Ti7491.795753.697371.925873.567491.795753.697371.925873.565873.565573.89
    U0.060.100.080.080.500.700.400.500.700.50
    Y21.2021.9019.9019.1021.4025.8022.5026.8025.9024.60
    Zr30.8037.8027.7027.00109.0032.90108.5025.6034.8023.00
    Hf0.971.130.800.882.801.103.000.901.300.80
    La3.093.223.382.679.209.8010.406.3010.405.70
    下载: 导出CSV

    表  2   芨芨台子蛇绿岩带Sr-Nd同位素组成

    Table  2   Sr-Nd isotopic compositions of the Jijitaizi ophiolite

    样品号Rb (10-6)Sr (10-6)87Sr/86Sr87Rb/86Sr±2σ87Sr/86Sr)iSm (10-6)
    17JJTZ-HC-013.661970.7040670.0537260.0000060.7037002.18
    17JJTZ-XW-0113.53230.7055940.1208840.0000070.7047683.4
    17JJTZ-XW-023191.50.7041910.0453030.0000030.7038813.61
    17JJTZ-XW-03312990.7058160.2998720.0000040.7037673.65
    样品号Nd (10-6)147Sm/144Nd143Nd/144Nd±2σ143Nd/144Nd)iεNdtTDM2 (Ma)
    17JJTZ-HC-015.830.2259480.5130710.0000040.5123616.66669
    17JJTZ-XW-0113.90.1478030.5126990.0000060.5122344.18871
    17JJTZ-XW-0214.50.1504390.5127330.0000100.5122604.69830
    17JJTZ-XW-0314.90.1480220.5127140.0000090.5122494.46848
    下载: 导出CSV
  • 代堰锫, 李同柱, 张惠华, 等. , 扬子陆块西缘江浪穹窿超基性岩的成因: 锆石U-Pb定年、岩石地球化学及Sr-Nd同位素[J]. 沉积与特提斯地质, 2021, 41(04): 573-584.10.19826/j.cnki.1009-3850.2021.01002. doi: 10.19826/j.cnki.1009-3850.2021.01002

    DAI Yanpei, LI Tongzhu, ZHANG Huihua, et al. , Petrogenesis of the ultramafic pluton in the Jianglangdome, western margin of the Yangtze block: ZirconU-Pbdating, geochemistry and Sr-Nd isotopes[J]. Sedimentary Geology and Tethyan Geolog, 2021. 41(04): 573-584.10. 19826/j. cnki. 1009-3850.2021. 01002. doi: 10.19826/j.cnki.1009-3850.2021.01002

    丁嘉鑫, 韩春明, 肖文交, 等. 北山造山带花牛山岛弧东段钨矿床成矿时代和成矿动力学过程[J]. 岩石学报, 2015, 31(2): 594-616

    DING Jiaxing, Han Chunming, Xiao Wenjiao. , et al. , Geochemistry and U-Pb geochronology of tungsten deposit of Huaniushan island arc in the Beishan Orogenic Belt, and its geodynamic background[J]. Acta Petrologica Sinica, 2015, 31(2): 594-616

    董洪凯, 薛鹏远, 刘广, 刘思林, 于龙. 内蒙古北山地区芨芨台子-小黄山蛇绿岩构造属性及与成矿关系: 来自阿民乌素地幔橄榄岩印证[J]. 地质与勘探, 2022, 58(04): 767-777

    DONG Hongkai, XUE Pengyuan, LIU Guang, et al. , Tectonic Attributes of the Jijitaizi-Xiaohuangshan Ophiolite in the Beishan Area, Inner Mongolia and in Relationship to Metallogenesis: Evidence from the Aminwusu Mantle Peridotite[J]. Geology and Exploration, 2022, 58(04): 767-777

    董朋生, 董国臣, 孙转荣, 等. 冀北五凤楼煌斑岩年代学、地球化学特征及其成因[J]. 现代地质, 2018, 32(02): 305-315. DOI: 10.19657/j. geoscience. 1000-8527.2018. 02.09.

    DONG Pensheng, Dong Guocheng, Sun Zhuangrong, et al. , Chronology, Geochemistry Characteristics and Petrogenesis of Wufenglou Lamprophyres in Northern Hebei, China[J]. Geoscience, 2018, 32(02): 305-315. DOI: 10.19657/j.geoscience.1000-8527.2018.02.09.

    杜雪亮.中亚造山带南缘北山红柳河蛇绿岩带成因及构造意义研究[D]. 兰州: 兰州大学, 2019.

    DU Xueliang. Origin and Tectonic Sigificance of Hongliuhe Ophiolite Belt in Beishan, Southern Margin of Central Asian Orogenic Belt[D]. Lanzhou: Lanzhou University, 2019

    龚全胜, 刘明强, 李海林, 等. 甘肃北山造山带类型及基本特征[J]. 西北地质. 2002, (03): 28-34

    GONG Quansheng, LIU Mingqiang, LI Hailing, et al. , The type and basic characteristics of Beishan orogenic belt, Gansu[J]. Northwest Geology, 2002, (03): 28-34.

    龚全胜, 刘明强, 梁明宏, 等, 北山造山带大地构造相及构造演化[J]. 西北地质, 2003.36(1): 11-17.

    GONG Quansheng, Liu Mingqiang, Liang Minghong, et al. , The tectonic facies and tectonic evolution of Beishan orogenic belt, Gansu[J]. Northwest Geology, 2003. 35( 4) : 30-40

    何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 35( 4) : 30-40

    HE Shiping, Ren Bingcheng, Yao Wenguang, et al. , 2002. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwest Geology, 35( 4) : 30-40

    何国琦, 李茂松. 中国兴蒙-北疆蛇绿岩地质的若干问题[J]. 地学研究, 1993, 2: 3~12

    HE Guoqi, Li Maosong Some Problems of Ophiolite Geology in Northern China[J]. Dixue Yanjiu, 1993, 2: 3~12

    胡新茁, 赵国春, 胡新悦, 等. 内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J]. 地质通报, 2015, 34(Z1): 425-436

    HU Xingzhuo, Zhao Guochun, Hu Xingyue, et al. Geological characteristics, formation epoch and geotectonic significance of the Yueyashan ophiolitic tectonic mélange in Beishan area, Inner Mongolia[J]. Geological Bulletin of China, 2015, 34(Z1): 425-436.

    黄河, 王涛, 童英, 等. 中国西天山古生代岩浆岩时空架构、源区特征及构造背景[J]. 西北地质, 2024, 57(6): 25−43.

    HUANG He, WANG Tao, TONG Ying, et al. Spatial and Temporal Framework, Evolution of Magma Sources, and Tectonic Settings of Paleozoic Magmatic Rocks in West Tianshan, China[J]. Northwestern Geology, 2024, 57(6): 25−43.

    李敏, 辛后田, 田健, 等. 北山造山带公婆泉岩浆弧的组成、时代及其大地构造意义[J]. 地球科学, 2020, 45(07): 2393-2412

    LI Ming, XING Houtian, TIAN Jian, et al. , Composition, Age and Polarity of Gongpoquan Arc and Its Tectonic Significance in Beishan Orogen[J]. Earth Science. 2020, 45(07): 2393-2412.

    李向民, 余吉远, 王国强, 等. 甘肃北山地区芨芨台子蛇绿岩年代学研究及其意义[J]. 地质通报, 2012, 31( 12) : 2025-2031.

    LI Xiangming, YU Jiyuan, WANG Guoqiang, et al. Geochronology of Jijitaizi ophiolite in Beishan area, Gansu Province, and its geological significance[J], Geological Bulletin of China,2012, 31(12): 2025-2031.

    刘雪亚, 王荃.中国西部北山造山带的大地构造及其演化[J]. 地学研究, 1995. (28): 7–48

    LIU Xueya, WANG Quan. Tectonic of Orogenic belts in Beishan MTS. , Western China and Their evolution[J]. Dixue Yanjiu, 1995, (28): 7–48.

    刘懿馨, 沙鑫, 马蓁, 等. 北祁连西段双龙镁铁质-超镁铁质岩地球化学特征及构造意义[J]. 岩石学报, 2018, 34(02): 383-397.

    LIU Yixin, SHA Xin, MA Zheng, et al. , Geochemical characteristics and tectonic implication of the Shuanglong mafic-ultramafic rocks in western section of the North Qilian[J]. Acta Petrologica Sinica, 2018, 34(2) : 383 -397

    孟庆涛, 张正平, 董洪凯. 内蒙古北山地区阿民乌素蛇绿岩的年代学、地球化学特征及大地构造意义[J]. 地质与勘探, 2021.57(01): 122-135

    MENG Qingtao, Zhang Zhengping, Dong Hongkai, Chronology, geochemical characteristics and tectonic significance of Aminwusu ophiolite in the Beishan area, Inner Mongolia[J]. Geology and Exploration, 2021.57(01): 122-135.

    牛文超, 辛后田, 段连峰, 等. , 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性---基于1: 5万清河沟幅地质图的新认识[J]. 中国地质, 2019.46(5): 977-994

    NIU Wenchao, Xin Houtian, Duan Lianfeng, et al. , The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia—New understanding based on the geological map of Qinghegou Sheet (1: 50000)[J]. Geology in China, 2019.46(5): 977-994

    任秉琛, 何世平, 姚文光, 等. , 甘肃北山牛圈子蛇绿岩铷-锶同位素年龄及其大地构造意义[J]. 西北地质, 2001.34( 2): 21-27 doi: 10.3969/j.issn.1009-6248.2001.02.004

    REN Bingchen, He Shiping, Yao Wenguang, et al. , Rb-Sr isotope age of Niuquanzi ophiolite and its tectonic significance in Beishan district, Gansu[J]. Northwest Geology, 2001.34( 2): 21-27. doi: 10.3969/j.issn.1009-6248.2001.02.004

    宋博, 张慧元, 魏东涛, 等. 中亚造山带南缘中—新元古代地壳的揭示——来自北山—阿拉善北部钻遇碱性花岗岩的年代学和Hf同位素示踪研究[J]. 地球学报, 2021, 42(01): 9-20

    SONG Bo, ZHANG Huiyuan, WEI Dongtao, et al. , Revelation of the Meso–Neoproterozoic Crust on the Southern Margin of the Central Asian Orogenic Belt: Chronology and Hf Isotope Tracer from Drilling-intersected Alkaline Granites, Northern Beishan–Alxa[J]. Acta Geoscience Sinica, 2021, 42(01): 9-20

    宋东方, 肖文交, 韩春明, 等. , 北山中部增生造山过程: 构造变形和40Ar-39Ar 年代学制约[J]. 岩石学报, 2018. 34( 7) : 2087-2098

    SONG Dongfang, Xiao Wenjiao, Han Chunming, et al. , Accretionary processes of the central segment of Beishan: Constraints from structural deformation and40Ar-39Ar geochronology[J]. gy. Acta Petrologica Sinica, 2018, 34(7) : 2087 -209.

    宋泰忠, 王瑾, 林海, 等. , 内蒙古北山地区小黄山蛇绿岩地质特征[J]. 西北地质, 2008.41 (03): 55-63

    SONG Taizhong, Wang Jing, Lin Hai, et al. , The Geological Features of Ophiolites of Xiaohuangshanin Beishan Area, Inner Mongolia[J]. Northwest Geology, 2008,41 (03): 55-63.

    王国强. 北山古生代蛇绿岩、火山岩研究与构造演化[D]. 西安:长安大学. 2015.

    WANG Guoqiang, The Research of the Paleozoic Ophiolites and Volcanic Rocks and the Tectonic Evolution in the Beishan area (Northwest China)[D]. Xi’an Changan University, 2015.

    王国强, 李向民, 徐学义, 等. , 甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J]. 岩石学报, 2014, 30(6): 1685-1694

    WANG Guoqiang, Li Xiangming, Xu Xueyi, et al. , Ziron U-Pb chronological study of the Hongshishan ophiolite in the Beishan area and their tectonic significance[J]. Acta Petrologica Sinica, 2014. 30(6): 1685-1694

    王国强, 李向民, 徐学义, 等. , 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 2021, 40(01): 71-81

    WANG Guoqiang, Li Xiangming, Xu Xueyi, et al. , Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 2021.40(1): 71-81

    王怀涛. 中亚造山带南段北山构造-岩浆作用及其地质意义的研究[D].兰州: 兰州大学, 2019.

    WANG Huaitao, Tectono-magmatism and its geological significance in the beishan area of the southern part of the Central Asian Orogenic Belt[D]. Lanzhou: Lanzhou University, 2019.

    王鑫玉. 北山公婆泉岛弧岩石组合、岩浆时空演变及其构造意义[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所), 2017.

    WANG Xinyu. The rock assemblages, spatial and temporal variations in the Gongpoquan arc, Beishan and their implications for tectonic setting[D]. Guangzhou :Guangzhou Institute of Geochemistry, CAS 2017.

    王鑫玉, 袁超, 龙晓平, 等. , 北山造山带尖山和石板井花岗岩年代学、地球化学研究及其地质意义[J]. 地球化学, 2018.47(1): 63-78 doi: 10.3969/j.issn.0379-1726.2018.01.005

    WANG Xinyu, Yuan Chao, Long Xiaoping, et al. , Geochronological, geochemical, and geological significance of Jianshan and Shibanjing granites in the Gongpoquan Arc, Beishan Orogenic Belt[J]. Geochemical, 2018.47(1): 63-78. doi: 10.3969/j.issn.0379-1726.2018.01.005

    吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 57(3): 11−28.

    WU Yanrong, ZHOU Hai, ZHAO Guochun, et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 11−28.

    夏林圻, 夏祖春, 徐学义. 北祁连山奥陶纪弧后盆地火山岩浆成因[J]. 中国地质. 2003, 30(1): 48-60

    XIA Linqi, Xia Zuchun, Xu Xueyi. Magmagenesis of Ordovician back-arc basins in the Northern Qilian Mountains[J]. Geology in China, 2003.30(1): 48-60.

    辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 39(09): 1297-1316

    XIN Houtian, NIU Wenchao, TIAN Jian, et al. , Spatio-temporal structure of Beishan orogenic belt and evolution of Paleo-Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(9): 1297-1316

    杨高学, 刘晓宇, 朱钊, 等. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质, 2024, 57(3): 1−10.

    YANG Gaoxue, LIU Xiaoyu, ZHU Zhao, et al. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 1−10.

    张国震, 辛后田, 段连峰, 等. 内蒙古北山造山带北部早二叠世末期高镁辉长岩地球化学特征及构造意义[J/OL]. 地球科学, 2021: 1−14. http://kns.cnki.net/kcms/detail/42.1874.p.20211118.2126.028.html.

    ZHANG Guozheng, XIN Houtian, DUAN Lianfeng, et al. Geochemical characteristics and tectonic implications of the end Early Permian high magnesium gabbro from northern Beishan orogenic belt, Inner Mongolia[J/OL]. Earth Science, 2021: 1−14, http://kns.cnki.net/kcms/detail/42.1874.p.20211118.2126.028.html.

    张元元, 郭召杰. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J]. 岩石学报, 2008, 24(4): 803-809

    ZHANG Yuanyuan, Guo Zhaojie. Accurate constraint on formation and emplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu Provinces and its tectonic implications[J]. Acta Petrologica Sinica, 2008.21(4): 803-809.

    张正平, 段炳鑫, 孟庆涛, 等. 内蒙古北山地区北山岩群斜长角闪岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 地质与勘探, 2017, 53(06): 1129-1139. DOI: 10.13712/j. cnki. dzykt. 2017.06. 008.

    ZHANG Zhengpin, DUAN Bingxin, MENG Qintao, et al. , LA-ICP-MS Zircon U-Pb Dating of Amphibolites of the Beishan Group in the Beishan Area, Inner Monolia and its Geological Significance[J]. Geology and Exploration, 2017, 53(06): 1129-1139. DOI: 10.13712/j.cnki.dzykt.2017.06.008.

    张正平, 辛后田, 程海峰, 等. 内蒙古北山造山带发现额勒根蛇绿岩——红石山-百合山蛇绿岩带东延的证据[J]. 地质通报, 2020, 39(9): 1389-1403

    ZHANG Zhengpin, XIN Houtian, CHEN Haifeng, et al. , The discovery of the Elegen ophiolite in Beishan orogenic belt, Inner Mongolia: Evidence for the east extension of the Hongshishan-Baiheshan ophiolite belt[J]. Geological Bulletin of China. 2020.39(9): 1389-1403.

    郑荣国, 吴泰然, 张文, 等. 北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境[J]. 地质学报, 2012, 86(6): 961-971

    ZHENG Rongguo, Wu Tairan, Zhang Wen, et al. , Geochemical Characteristics and Tectonic Setting and of the Yueyashan-Xichangjing Ophiolite in the Beishan Area[J]. Scientia Geological Sinica 2012.86(6): 961-971.

    左国朝, 何国琦, 李红诚. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990a: 1−226.

    ZUO Guochao, HE Guoqi, LI Hongcheng. Plate tectonics and metallogenic regularity of Beishan[M]. Beijing: Peking University Press, 1990a: 1−226.

    左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990b, 04: 305-314+411

    ZUO Guochao, Zhang Shulin, He Guoqi, et al. , Early Paleozoic Plate Tectonics in Beishan Area[J]. Scientia Geological Sinica, 1990b. 04: 305-314+411.

    左国朝, 李茂松. 甘肃北山地区早古生代岩石圈形成与演化[M]. 兰州: 甘肃科学技术出版社, 1996: 1−92

    ZUO Guochao, LI Maosong. Formation and evolution of early Paleozoic lithosphere in Beishan area, Gansu Province[M]. Lanzhou: Gansu Science and Technology Press, 1996: 1−92.

    左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 2003(01): 1-15

    ZUO Guochao, Liu Yike, Liu Chunyan. Tectonic framework and evolution of Mengbei Mountain area in Gansu and Xinjiang[J]. Acta Geological Gansu, 2003. (01): 1-15.

    Aldanmaz E. , Pearce J A. , Thirlwall M F. , et al. , Petrogenetic Evolution of late Cenozoic, Post-collision Volcanism in Western Anatolia, Turkey[J]. Journal of volcanology and geothermal research, 2000, 102(1–2): 67–95. https://doi.org/10.1016/S0377-0273(00)00182-7

    Aldanmaz E, Yaliniz M K, Güctekin A, et al. Geochemical Characteristics of Mafic Lavas from the Neotethyan Ophiolites in Western Turkey: Implications for Heterogeneous Source Contribution During Variable Stages of Ocean Crust Generation[J]. Geological Magazine, 2008, 145: 37–54. https://doi.org/10.1017/S0016756807003986

    Ao S J, Xiao W J, Windley B F, et al. , Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zirconU-Pb and 40Ar /39Ar geochronology [J]. Gondwana Research, 2016. 30: 224-235. doi: 10.1016/j.gr.2015.03.004

    Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J], Journal of Asian Earth Sciences, 2002 21(1): 0-110.

    Condie K C. Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary: Identification and significance[J]. Lithos, 1989, 23(1): 1-18.

    DePaolo D J. , Wasserburg G J. , Neodymium Isotopes in Flood Basalts From the Siberian Platform and Inferences about Their Mantle Sources[J]. Proceedings of the National Academy of Sciences, 1979, 76(7): 3056-3060. doi: 10.1073/pnas.76.7.3056

    Dilek Y. , Spontaneous subduction initiation and forearc magmatism as revealed by Phanerozoic suprasubduction zone ophiolites[J]. Geological Society of America Abstracts with Programs, 2010, 42(5): 575.

    Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Bulletin. 2011, 123(3-4): 387-411.

    Duggen S, Hoernle K, Van D B P, et al. Post-Collisional Transition from Subduction- to Intraplate-type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere[J]. Journal of Petrology, 2005(6): 1155-1201.

    GovindarajuK. , Compilation of working values and samples description for 383 Geostandards[J]. Geostandards Newsletter, 1994, 18(2): 331.

    Hawkins J W. Petrologic and geochemical characteristics of marginal basin basalts[J]. Island Arcs, Deep-Sea Trenches, and Back-Arc Basins Am Geophys Union, Washington, DC, 1977. 1: 355-365.

    He Z Y, Klemd R, Yan L L, et al. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2018, 185: 1–14. doi: 10.1016/j.earscirev.2018.05.012.

    Irvine TN, Baragar WRA. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences. 1971, 8, 523-548

    Li XH. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze craton, SE China[J]. Geochemical Journal, 1997, 31: 323-327. doi: 10.2343/geochemj.31.323

    McKenzie D. , O'Nions R K. , Partial Melt Distribution From Inversion of Rare Earth Element Concentrations[J]. Journal of Petrology, 1991. 32: 1021–1091. doi: 10.1093/petrology/32.5.1021

    Michael B. Wolf, Peter J. Wyllie. , Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time[J]. Contributions to Mineralogy and Petrology, 1994, 115(4) : 369-383 doi: 10.1007/BF00320972

    Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355. doi: 10.2475/ajs.274.4.321

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[A]. In: Thorpe RS (ed). Andesites: Orogenic Andesites and Related Rocks[M]. John Wiley & Sons, 1982: 525−548.

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1): 63-81.

    Reagan M K, Ishizuka O, Stern R J, et al. , Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): 1-17.

    Schilling J G, Zajac M, Evans R, et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N[J]. American Journal of Science. 1983. 283(6): 510-586.

    Şengör, A. , Natal'in, B. , Burtman, V. , Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature, 1993. 364: 299-307. Doi: 10.1038/364299a0

    Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982. 59(1) : 101 -118 doi: 10.1016/0012-821X(82)90120-0

    Shi Y, Li L, Kroner A, et al. , Carboniferous Alaskan-type complex along the Sino-Mongolian boundary, southern margin of the Central Asian Orogenic Belt[J]. Acta Geochim, 2017, 36(2): 276-290. doi: 10.1007/s11631-017-0145-7

    Song D F, Xiao W J, Han C M, Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids[J]. International Geology Review, 2013. 55, 1705-1727

    Song D F, Xiao W J, Han C M, et al. Polyphase deformation of a Paleozoic forearc–arc complex in the Beishan orogen, NW China[J]. Tectonophysics, 2014, 632: 224-243. doi: 10.1016/j.tecto.2014.06.030

    Song D F, Xiao W J, Windley B F, et al. , A Paleozoic Japan- type subduction- accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos, 2015 224/225: 195-213. doi: 10.1016/j.lithos.2015.03.005

    Song D F, Xiao W J, Windley B F. , et al. Metamorphic Complexes in Accretionary Orogens: Insights from the Beishan Collage, Southern Central Asian Orogenic Belt[J]. Tectonophysics, 2016. 688: 135–147. doi: 10.1016/j.tecto.2016.09.012.

    Stern C R, De Wit MJ, Rocas Verdes ophiolites, southernmost South America: remnants of progressive stages of development of oceanic-type crust in a continental margin back-arc basin[J]. Geological Society, London, Special Publications, 2003,218(1): 665-683.

    Sun S, Mcdonough W F. , Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications. 1989. 42(1): 313-345.

    Windley B F, Alexeiev D, Xiao W, et al. , Tectonic models for accretion of the Central Asian Orogenic Belt[J]. J. geol. soc, 2007, 164(12): 31-47

    S. Wang, K Zhang, B. Song, et al. , Geochronology and geochemistry of the Niujuanzi ophiolitic melange, Gansu Province, NW China: implications for tectonic evolution of the Beishan Orogenic Collage[J]. International Journal of Earth Sciences, 2018, 107(1): 269-289. doi: 10.1007/s00531-017-1489-2

    Woodhead J D, Eggins S M, Johnson R W. Magma genesis in the New Britain Island Arc: Further insights into melting and mass transfer processes. Journal of Petrology, 1998. 39(9): 1641-1668DOI: 10.1093/petroj/39.9.1641

    Wu T, Zheng R, Zhang W, et al. Tectonic framework of Beishan Mountain—Northern Alxa Area and the time constraints for the closing of the Paleo-Asian Ocean: proceedings of the Proceedings of the Fifth Workshop on 1: 5m International Geological Map of Asia [C]. 2011

    Xiao W, Song D, Windley B F. , Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives[J]. Science China Earth Sciences, 2020. 63: 329–361, https://doi.org/10.1007/s11430-019-9524-6

    Xiao W J , Mao Q G , Windley B F , Paleozoic multiple accretionary andcollisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2010, 310:1553–1594. https://doi.org/10.2475/10.2010.12.

    Xiao W J. , Windley B F. , Han C M. , et al. Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia[J]. Earth-Science Reviews, 2018. 186: 94–128. doi: 10.1016/j.earscirev.2017.09.020.

    Zhang W, Pease V, Wu T R, et al . Discovery of an adakite-like pluton near Dongqiyishan ( Beishan, NW China ) : Its age and tectonic significance[J]. Lithos, 2012,142/143: 148-160.

    Zhao J, Zhou M. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research. 2007. 152(1-2): 27-47.

    Zheng R G, Wu T R, Zhang W, et al, 2013. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt: Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt[J]. Journal of Asian Earth Sciences, 62: 463-475

    Zuo G C, Zhang S L, He G Q, et al. , Plate Tectonic Characteristics During the Early Paleozoic in Beishan Near the Sino Mongolian Border Region, China[J]. Tectonophysics, 1991, 188(3–4): 385–392. doi: 10.1016/0040-1951(91)90466-6.

  • 期刊类型引用(2)

    1. 徐永,聂浩刚,冀显坤,乔冈. 陕北榆林地区植被好转背景下面临的生态环境新挑战. 西北地质. 2024(05): 308-318 . 本站查看
    2. 马红梅,杨焕霞. 榆林市森林生态系统恢复现状问题及对策. 南方农业. 2024(20): 107-109 . 百度学术

    其他类型引用(1)

图(12)  /  表(3)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  7
  • PDF下载量:  13
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-10-09
  • 修回日期:  2023-02-23
  • 录用日期:  2023-09-11
  • 网络出版日期:  2024-12-18
  • 刊出日期:  2025-02-19

目录

/

返回文章
返回