ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

北山地区芨芨台子蛇绿岩地球化学特征及形成环境

武磊, 翟新伟, 王二腾, 王赟, 郭志昂, 宋高瑞, 王金荣, 杜君

武磊,翟新伟,王二腾,等. 北山地区芨芨台子蛇绿岩地球化学特征及形成环境[J]. 西北地质,2025,58(1):1−16. doi: 10.12401/j.nwg.2023038
引用本文: 武磊,翟新伟,王二腾,等. 北山地区芨芨台子蛇绿岩地球化学特征及形成环境[J]. 西北地质,2025,58(1):1−16. doi: 10.12401/j.nwg.2023038
WU Lei,ZHAI Xinwei,WANG Erteng,et al. Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area[J]. Northwestern Geology,2025,58(1):1−16. doi: 10.12401/j.nwg.2023038
Citation: WU Lei,ZHAI Xinwei,WANG Erteng,et al. Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area[J]. Northwestern Geology,2025,58(1):1−16. doi: 10.12401/j.nwg.2023038

北山地区芨芨台子蛇绿岩地球化学特征及形成环境

基金项目: 第二次青藏 高原综合科学考察研究(2019QZKK0901),中国地质调查局项目“中国北方(天山-北山-阴山以北)中段石炭纪—二叠纪构造演化研究”(121201011000161111-01)联合资助。
详细信息
    作者简介:

    武磊(1996−),男,博士研究生,岩石学、矿物学、矿床学专业。E−mail:wul20@lzu.edu.cn

    通讯作者:

    翟新伟(1976−),男,副教授,从事构造地质与成矿方面研究。E−mail:zhaixw926@lzu.edu.cn

  • 中图分类号: P584

Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area

  • 摘要:

    甘肃北山地区芨芨台子蛇绿岩是芨芨台子-小黄山蛇绿岩带重要组成部分,位于公婆泉单元和明水-旱山微陆块之间的北山造山带中部,主要由超基性岩、辉长岩和玄武岩组成。为揭示芨芨台子蛇绿岩带的形成环境,选择辉长岩、玄武岩展开岩石学及地球化学研究。辉长岩、玄武岩MgO为6.04%~6.73%、6.21%~9.66%,Mg#为32.33~37.03、27.58~46.27,SI固结指数27.66~31.55、24.96~42.20,Al2O3为15.82%~16.79%、13.38%~15.38%,Na2O高于K2O含量(Na2O/K2O=9.75~17.15、1.95~23.26),Na2O+K2O分别为4.48%~4.90%和3.37%~4.68%,P2O5分别为0.07%~0.09%和0.16%~0.27%,均具富集LREE和LILE,亏损HREE和HFSE,Eu无明显异常(δEu=0.98~1.09、0.88~1.06);(87Sr/86Sr)i0.7037000.704768,(143Nd/144Nd)i0.5122340.512361,εNd(t)为+4.18~ +6.66。这些特征指示芨芨台子蛇绿岩带属于SSZ型蛇绿岩带,玄武岩与辉长岩来源于亏损地幔部分熔融,并经历了一定程度的结晶分异及地壳混染作用。结合区域地质背景,芨芨台子蛇绿岩形成于弧后盆地,为红柳河-牛圈子-洗肠井洋盆北向俯冲引起弧后扩张所致。

    Abstract:

    The Jijitaizi ophiolite belt in the middle of the Beishan orogenic belt, between the Mingshui-Hanshan microcontinental block and the Gongpoquan unit is an important part of the Jijitaizi-Xiaohuangshan ophiolite belt, composed of ultrabasic rocks, gabbro and basalt. To reveal the tectonic setting of Jijitaizi ophiolite belt, gabbro and basalt are selected for petrological and geochemical studies. MgO of gabbro and basalt is 6.04%~6.73% and 6.21%~9.66%, Mg# values are 32.33~37.03, 27.58~46.27, respectively, SI consolidation index is 27.66~31.55 and 24.96~42.20, Al2O3 is 15.82%~16.79% and 13.38%~15.38%, Na2O higher than K2O content (Na2O/K2O=9.75~17.15, 1.95~23.26), Na2O+K2O is 4.48%~4.90% and 3.3%~4.68%, P2O5 is 0.07%~0.09% and 0.16%~0.27%. Both of gabbro and basalt enrichment of LILEs and LREE, depletion of HREE and HFSEs and Eu have no obvious anomalies (δEu=0.98~1.09、0.88~1.06). (87Sr/86Sr)i is 0.7037000.704768, (143Nd/144Nd)i is 0.5122340.512361, εNd(t) is +4.18~+6.66. These characteristics indicate Jijitaizi ophiolite belt belong to SSZ type ophiolite belt, basalt and gabbro originated from partial melting of the depleted mantle and experienced crystallization differentiation and crustal contamination. Combined with geological background, it can be concluded that the Jijitaizi ophiolite may form in a back-arc basin, resaulting from northward subduction of the Hongliuhe-Niujuanzi-Xichangjing ocean basin.

  • 中亚造山带(CAOB)地处西伯利亚、华北、塔里木和东欧克拉通之间(图1a),是世界上最大的增生型造山带,为古亚洲洋俯冲闭合形成的产物(Sengör et al., 1993; Badarch et al., 2002; Windley et al., 2007; 2020)。北山造山带地处中亚造山带南缘中段,西邻东天山造山带,向东与阿拉善地区隔巴丹吉林沙漠所相邻,作为中亚造山带重要组成部分,由大量小的构造单元、构造块体(微陆块、岛弧、蛇绿岩带、增生杂岩体等)所构成,反映了古亚洲洋中段俯冲闭合演化过程(何世平等,2002龚全胜等,20022003)。北山造山带内分布四条蛇绿岩带,从北向南依次为:红石山蛇绿岩带、芨芨台子-小黄山蛇绿岩带、红柳河-牛圈子-洗肠井蛇绿岩带和辉铜山-帐房山蛇绿岩带(图1b)。许多学者以这四条蛇绿岩带为研究对象,对蛇绿岩带所代表古洋盆构造属性、古亚洲洋在北山地区的起始俯冲以及闭合时限等问题展开研究(孟庆涛等,2021王国强等,2021),但由于北山造山带多期次多旋回构造演化特点、蛇绿岩带风化剥蚀强烈以及研究手段各异等,对于上述科学问题至目前仍存在较多的争议。

    图  1  中亚造山带大地构造位置简图(a)及北山造山带构造纲要图(b)(据Xiao et al., 2010
    1.红石山蛇绿岩带;2.芨芨台子-小黄山蛇绿岩带;3.红柳河-牛圈子-洗肠井蛇绿岩带;4.辉铜山-帐房山蛇绿岩带
    Figure  1.  (a) Sketched tectonic map of the CAOB and (b) simplified geological map of the Beishan orogenic belt

    芨芨台子-小黄山蛇绿岩带位于北山造山带中北部,向北为明水-旱山微陆块,向南则属于公婆泉单元,(图1b)。芨芨台子蛇绿岩作为芨芨台子-小黄山蛇绿岩带重要组成部分,其出露于芨芨台子-小黄山蛇绿岩带西端,向东间断性延伸至石板井、阿民乌素、小黄山等地(左国朝等,1990a宋泰忠等,2008Zheng et al., 2013孟庆涛等,2021)。由于北山造山带构造运动复杂且漫长,蛇绿岩带风化破碎严重,对该蛇绿岩带的研究相对较少,且缺乏高精度锆石U-Pb定年成果,因此对芨芨台子蛇绿岩形成构造背景及形成时代等问题仍存在争议,目前对其构造属性研究主要有以下两种不同认识:1. MOR型蛇绿岩,形成于洋中脊环境,代表了塔里木克拉通和哈萨克斯坦板块的缝合位置(左国朝等,1990b2003龚全胜等,2002Zhang et al., 2012)2. SSZ型蛇绿岩,形成于弧后扩张环境,属于南部红柳河-牛圈子-洗肠井古洋盆北向俯冲所形成的弧后盆地闭合的产物(任秉琛等,2001何世平等,2002Song et al., 2015)。笔者以芨芨台子蛇绿岩中辉长岩、玄武岩为研究对象,从岩石学、岩石地球化学展开研究,探讨该蛇绿岩带构造属性和形成背景,为北山造山带大地构造单元划分及构造演化历史提供依据。

    芨芨台子蛇绿岩带位于明水-旱山微陆块以南,公婆泉单元以北的北山中部地区(图1b),出露于芨芨台子山南约3 km处,蛇绿岩带地表出露面积较小,东西断续延伸约5~6 km,南北宽约1~2 km(图2a)。

    图  2  芨芨台子蛇绿岩带地质简图(a)、剖面图及采样位置(b)
    Figure  2.  (a) Geological sketch map, (b) section and sampling location of Jijitaizi ophiolite belt

    该蛇绿岩带主要由构造岩块和基质组成,构造岩块主要为玄武岩、辉长岩、辉石岩、变质橄榄岩等,基质则主要为前寒武系板岩、大理岩、混合岩等,受构造运动影响,构造岩块与基质混杂堆积,呈断层接触,并表现出一系列由北向南的逆冲推覆构造,断层倾角为52°~68°,构造岩块各组分之间也呈断层接触(图2b),玄武岩、辉长岩、辉石橄榄岩等呈团块状互相混杂堆积,原有接触关系遭到破坏,辉石岩与辉石橄榄岩呈构造岩块与大理岩、板岩等断层接触(图3a),但由于受构造及后期岩浆侵入作用等影响,辉石岩与辉石橄榄岩原有接触关系同样遭到破坏(图2b),致使其关系不清。在构造挤压作用下,蛇绿岩带各组分均发生不同程度的变质变形作用,片理产状与区域构造线方向一致,走向近东西向,同时蛇绿岩带局部受第四系覆盖程度较高。

    图  3  芨芨台子蛇绿岩野外照片
    Figure  3.  Field photos of Jijitaizi ophiolite

    本次工作在前人研究基础上,通过实测剖面,重点对芨芨台子蛇绿岩带中辉长岩和玄武岩进行采样分析。

    辉长岩风化面呈灰褐色,新鲜面呈灰绿色,受构造挤压作用的影响,发生强烈的劈理化(图3b)。块状构造,辉长结构,岩石主要由斜长石、辉石组成,副矿物有磷灰石、磁铁矿等。斜长石含量约55%,半自形板状-它形粒状,粒度一般为0.2~0.4 mm,发育聚片双晶,杂乱分布;辉石含量约35%,粒度一般为0.2~0.4 mm,呈柱状-它形粒状;角闪石含量约5%,主要呈它形粒状,粒径小于0.2 mm。副矿物为磷灰石、磁铁矿等,含量约5%(图4a)。

    图  4  芨芨台子蛇绿岩带辉长岩(a)、玄武岩(b)显微照片(正交偏光)
    Pl: 斜长石;Px: 辉石 a: 橄榄岩;b: 辉长岩;c: 玄武岩
    Figure  4.  Micrographs of gabbro (a) and basalt (b) in Jijitaizi ophiolite belt

    玄武岩风化面呈褐色-黄褐色,新鲜面呈暗灰色,多为块状构造,部分具有气孔杏仁构造,斑晶主要为斜长石和辉石,含量约5%,斜长石呈半自形板状,辉石呈粒状;基质为间粒间隐结构,主要由针状或细条状斜长石微晶、辉石及其他不透明矿物组成,含量约95%(图4b)。

    全岩主微量、稀土元素测试分析在天津上诺勘察技术服务有限公司完成。主梁元素分析采用熔融玻璃片法,使用X射线荧光光谱分析(XRF)仪器进行,所用仪器型号为RigakuRIX 2100,分析精度达1%;微量元素采用ICP-MS法,使用仪器型号为Agilent 7500a,分析精度达10%,实验过程中使用标准样品AGV-2、AGV-3、BHVO-2、GSR-1和GSR-3进行检测,具体实验流程见Govindaraju(1994)Li(1997)

    全岩Sr、Nd同位素在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,使用Termo Fisher Scientific公司制造的Neptune-plus多接受等离子体质谱仪(MC-ICP-MS)进行测试。使用标准物质BCR-2和BHVO-2为外标,NBS987对Sr同位素监控,实验精度高于0.004%,Jndi-1对Nd同位素进行监控,实验精度高于0.001%。

    续表1
    样品编号17JJTZ-
    HC-01
    17JJTZ-
    HC-02
    17JJTZ-
    HC-03
    17JJTZ-
    HC-04
    17JJTZ-
    XW-01
    17JJTZ-
    XW-02
    17JJTZ-
    XW-03
    17JJTZ-
    XW-04
    17JJTZ-
    XW-05
    17JJTZ-
    XW-06
    岩性辉长岩辉长岩辉长岩辉长岩玄武岩玄武岩玄武岩玄武安山岩玄武岩玄武安山岩
    Ce7.918.517.746.9222.7024.2025.5015.0524.8013.65
    Pr1.151.261.111.093.143.263.432.163.331.90
    Nd5.836.855.895.2913.9014.5014.9010.2014.609.00
    Sm2.182.061.741.763.403.613.652.903.532.49
    Eu0.800.900.750.671.231.171.190.951.300.93
    Gd2.753.072.832.483.783.963.903.753.983.24
    Tb0.490.520.490.460.610.640.620.650.650.58
    Dy3.404.043.283.273.834.193.964.444.383.89
    Ho0.730.800.740.680.790.910.810.990.950.89
    Er2.232.412.061.972.272.792.302.952.772.70
    Tm0.340.360.330.320.320.410.330.440.400.40
    Yb2.242.312.212.072.022.732.062.942.732.68
    Lu0.390.380.330.300.320.430.310.470.430.43
    (La/Yb)N0.991.001.100.933.272.573.621.542.731.53
    (La/Sm)N0.921.011.250.981.751.751.841.401.901.48
    (Gd/Yb)N1.021.101.060.991.551.201.571.061.211.00
    ∑REE33.5236.6832.8829.9567.5172.6073.3654.1974.2548.48
    ∑LREE20.9622.8020.6118.4053.5756.5459.0737.5657.9633.67
    ∑HREE12.5613.8812.2711.5613.9416.0614.2916.6316.2914.81
    LREE/HREE1.671.641.681.593.843.524.132.263.562.27
    δEu0.991.091.040.981.050.950.960.881.061.00
    δCe1.031.040.980.991.041.051.051.001.031.02
    下载: 导出CSV 
    | 显示表格

    辉长岩SiO2含量介于50.39%~51.66%,平均51.00%;MgO及Mg#分别为6.04%~6.73%和32.33~37.03,低于原始地幔Mg#,SI固结指数介于27.66~31.55,说明岩浆经历了一定程度的演化;Al2O3介于15.82%~16.79%,平均16.15%;全碱(Na2O+K2O)介于4.48%~4.90%,Na2O含量高于K2O(Na2O/K2O=9.75~17.15);K2O介于0.27%~0.44%,平均为0.32%;TiO2介于0.77%~0.95%,平均为0.85%;P2O5介于0.07%~0.09%,平均为0.08%(表1)。里特曼指数(σ)介于2.58~2.90,小于3.3,说明该辉长岩属于亚碱性系列,在SiO2-K2O图解(图5b)及SiO2-TFeO/MgO图解(图5c)中,样品落入拉斑系列区域内,并靠近钙碱性系列,同时在AFM图解(图5a)中,辉长岩靠近FM演化线分布,反映出明显的贫碱富镁铁的特征,指示该辉长岩属于低钾拉斑辉长岩。

    表  1  芨芨台子蛇绿岩主(%)、微量及稀土元素(×10−6)分析结果
    样品编号17JJTZ-
    HC-01
    17JJTZ-
    HC-02
    17JJTZ-
    HC-03
    17JJTZ-
    HC-04
    17JJTZ-
    XW-01
    17JJTZ-
    XW-02
    17JJTZ-
    XW-03
    17JJTZ-
    XW-04
    17JJTZ-
    XW-05
    17JJTZ-
    XW-06
    岩性辉长岩辉长岩辉长岩辉长岩玄武岩玄武岩玄武岩玄武安山岩玄武岩玄武安山岩
    SiO250.6451.2950.3951.6647.9750.9747.7152.7250.8854.96
    Al2O316.0815.9416.7915.8215.3814.5615.2913.7714.3813.38
    BaO0.020.020.020.020.030.020.040.010.020.01
    CaO9.388.9310.409.258.026.338.515.426.714.82
    Cr2O30.010.010.010.010.090.010.090.010.010.01
    TFe2O310.9010.9010.249.879.8614.259.2614.5214.2714.06
    K2O0.280.270.300.440.770.211.320.190.210.19
    MgO6.396.046.106.739.667.139.256.586.806.21
    MnO0.180.180.170.170.180.200.160.220.220.18
    Na2O4.374.634.184.292.604.412.584.454.474.42
    P2O50.080.090.080.070.190.270.190.170.250.16
    LOI0.950.991.021.304.011.384.331.301.060.65
    TiO20.860.950.810.771.250.961.230.980.980.93
    Total100.14100.24100.51100.40100.01100.7099.96100.34100.2699.98
    Mg#33.5832.3333.9337.0345.7930.1446.2728.1029.1227.58
    Na2O+K2O4.654.904.484.733.374.623.904.644.684.61
    Na2O/K2O15.6117.1513.939.753.3821.001.9523.4221.2923.26
    σ(里特曼指数)2.832.902.722.582.292.683.232.212.781.78
    SI固结指数29.1227.6629.3031.5542.2027.4241.2825.5626.4124.96
    Rb3.664.623.645.5813.503.0031.002.902.802.90
    Ba92.60385.0098.9045.30200.0040.00260.0040.0040.0030.00
    Th0.290.310.320.231.541.841.650.971.770.79
    Cs0.100.070.090.130.450.121.400.140.080.07
    Cr61.1041.2069.4062.00474.006.00464.0016.006.0016.00
    Co39.5033.1036.0035.2046.4047.5043.5056.0050.8047.90
    Ni33.2028.4035.4046.90195.0029.00178.0039.5033.0035.50
    K6392.141743.3110957.951577.286392.141743.3110957.951577.281743.311577.28
    P829.201178.34829.20741.92829.201178.34829.20741.921091.05698.27
    Nb2.062.261.931.804.4010.404.306.4010.404.70
    Pb1.080.772.030.288.101.105.801.101.001.70
    Sr197.00181.00158.00159.00323.00191.50299.00196.50219.00166.50
    Ta0.160.160.120.340.290.470.290.300.460.21
    Ti7491.795753.697371.925873.567491.795753.697371.925873.565873.565573.89
    U0.060.100.080.080.500.700.400.500.700.50
    Y21.2021.9019.9019.1021.4025.8022.5026.8025.9024.60
    Zr30.8037.8027.7027.00109.0032.90108.5025.6034.8023.00
    Hf0.971.130.800.882.801.103.000.901.300.80
    La3.093.223.382.679.209.8010.406.3010.405.70
    下载: 导出CSV 
    | 显示表格
    图  5  芨芨台子辉长岩、玄武岩AFM图解(a)(据Irvine et al, 1971)、和SiO2-K2O图解(b)(Peccerillo et al, 1976)和SiO2-TFeO/MgO图解(c)(据Miyashiro, 1974
    Figure  5.  (a) AFM diagram, (b) SiO2-K2O diagram and (c) SiO2-TFeO/MgO diagram of Jijitaizi gabbro and basalt

    玄武岩SiO2介于47.71%~54.96%,平均50.87%,其中17JJTZ-XW-04及17JJTZ-XW-06的SiO2含量分别为52.72%和54.96%,指示这两个样品属于玄武安山岩;MgO及Mg#分别为6.21%~9.66%和27.58~46.27,低于原始地幔Mg#,SI固结指数24.96~42.20,指示岩浆经历了一定程度的结晶分异作用;Al2O3介于13.38%~15.38%,平均14.46%;TiO2介于0.93%~1.25%,平均1.06%,低于N-MORB(1.15%)(Schilling et al., 1983);全碱(Na2O+K2O)介于3.37%~4.68%,Na2O高于K2O(Na2O/K2O=1.95~23.26);Na2O介于2.58%~4.47%,平均3.82%;K2O介于0.19%~1.32%,平均0.48%;P2O5介于0.16%~0.27%,平均0.21%。里特曼指数(σ)介于1.78~3.23,小于3.3,指示玄武岩-玄武安山岩属于亚碱性系列岩石,SiO2-TFeO/MgO图解(图5c)中,所有样品均落入拉斑系列区域,而在SiO2-K2O图解(图5b)中,虽多数样品落于拉斑系列中,但17JJTZ-XW-01和17JJIZ-XW-03分别落入钙碱性和高钾钙碱性系列,考虑到这两个样品具有相对较高的烧失量,指示相对其他岩石后期经历了一定程度的蚀变,提高了岩石中K2O含量,从而致使这里两个样品在SiO2-K2O图解(图5b)中落入钙碱性和高钾钙碱性区域内。玄武岩-玄武安山岩具有较低的全碱含量,并且在AFM图解中靠近FM演化线分布,反映出明显的贫碱富镁铁的特征,指示该玄武岩-玄武安山岩属于低钾拉斑系列岩石。

    芨芨台子蛇绿岩带稀土元素及微量元素显示(表1),辉长岩低稀土元素总量(29.95×10−6~36.68×10−6),轻稀土元素介于18.40×10−6~22.80×10−6,重稀土元素介于11.56×10−6~13.88×10−6,轻重稀土元素含量接近(LREE/HREE=1.59~1.68),轻稀土、重稀土及轻重稀土元素分馏较弱,(La/Sm)N、(Gd/Yb)N、(La/Yb)N分别为0.92~1.25、0.99~1.10、0.93~1.10,δEu介于0.98~1.09,在稀土元素配分图(图6a)平坦分布,介于N-MORB和E-MORB之间,Eu无明显异常或微弱正异常。

    图  6  芨芨台子蛇绿岩带稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)(据Sun et al., 1989
    Figure  6.  (a) Chondrite-normalized REE pattern and (b) primitive mantle-normalized trace element spidergram of Jijitaizi ophiolite

    玄武岩-玄武安山岩稀土元素总量(∑REE)介于48.48×10−6~74.25×10−6,轻稀土元素介于33.67×10−6~59.07×10−6,重稀土元素介于13.94×10−6~16.63×10−6,轻稀土元素含量高于重稀土元素(LREE/HREE=2.26~4.13),轻重稀土元素分馏明显((La/Yb)N=1.63~3.62),轻稀土及重稀土元素分馏较弱((La/Sm)N为1.40~1.90;(Gd/Yb)N为1.00~1.57),δEu介于0.88~1.06,稀土元素配分图(图6a)右缓倾型,Eu无明显异常。

    原始地幔蛛网图(图6b)中,辉长岩相对富集Rb、U、K、Sr、P等LILE,玄武岩-玄武安山岩相对富集U、K、P等LILE和Th;辉长岩及玄武岩-玄武安山岩均相对亏损Nb、Ta、Zr、Hf等HFSE。

    芨芨台子蛇绿岩Sr-Nd同位素分析数据显示(表2),样品87Sr/86Sr变化于0.7040670.705816,计算初始值(87Sr/86Sr)i 介于0.7037000.704829143Nd/144Nd变化于0.5126990.513102,计算初始值(143Nd/144Nd)i 介于0.5122340.512361εNdt)介于+4.18~+6.66。在(87Sr/86Sr)i-εNdt)图解(图7)中,所有均落于地幔演化线附近。

    表  2  芨芨台子蛇绿岩带Sr-Nd同位素组成
    样品号Rb (×10-6)Sr (×10-6)87Sr/86Sr87Rb/86Sr±2σ87Sr/86Sr)iSm (×10-6)
    17JJTZ-HC-013.661970.7040670.0537260.0000060.7037002.18
    17JJTZ-XW-0113.53230.7055940.1208840.0000070.7047683.4
    17JJTZ-XW-023191.50.7041910.0453030.0000030.7038813.61
    17JJTZ-XW-03312990.7058160.2998720.0000040.7037673.65
    样品号Nd (×10-6)147Sm/144Nd143Nd/144Nd±2σ143Nd/144Nd)iεNdtTDM2 (Ma)
    17JJTZ-HC-015.830.2259480.5130710.0000040.5123616.66669
    17JJTZ-XW-0113.90.1478030.5126990.0000060.5122344.18871
    17JJTZ-XW-0214.50.1504390.5127330.0000100.5122604.69830
    17JJTZ-XW-0314.90.1480220.5127140.0000090.5122494.46848
    下载: 导出CSV 
    | 显示表格
    图  7  芨芨台子蛇绿岩带(87Sr/86Sr)i-εNdt)图解(据DePaolo et al., 1979张国震等,2021
    Figure  7.  (87Sr/86Sr)i-εNd (t) diagram of Jijitaizi ophiolite

    实验岩石学表明下地壳镁铁质岩石部分熔融形成的岩石具有高SiO2特征(Michael et al., 1994),芨芨台子辉长岩、玄武岩-玄武安山岩具有低SiO2和高MgO的地球化学特征,Lu/Yb值0.16~0.17,介于幔源值(0.14~0.15)与壳源值(0.16~0.18)之间并靠近幔源端元,Ce/Pb比值2.80~24.44,介于幔源值(9.15)与壳源值(3.91)之间,整体更靠近与幔源端元(Sun et al, 1989),暗示其幔源岩浆的属性。Ce/Nb介于2.32~5.93,类似于N-MORB(Ce/Nb>2,Condie et al., 1989),Nb、Ta元素变化于1.80~10.40和0.12~0.47,介于N-MORB(2.33;0.132)于IAB(48.00;2.70)之间(Sun et al., 1989),蛇绿岩带εNd(t)介于4.18~6.66,显示出源区亏损特征,(87Sr/86Sr)i-εNdt)图解(图7)中所有样品位于亏损地幔演化线之上并靠近亏损地幔端元,暗示岩浆来源于亏损地幔端元部分熔融,在Zr-Y图解(图8b)中,除一件玄武岩样品(17JJTZ-XW-03)落于过渡地幔区域,其余样品均落于亏损地幔区域中,并且在Zr/Nb-Y/Nb图解(图8a),除两件玄武岩样品(17JJTZ-XW-01、17JJTZ-XW-03)落入富集地幔端元,其余样品均落入亏损地幔端元,指示其原始岩浆为亏损地幔部分熔融产物。

    图  8  芨芨台子辉长岩、玄武岩源区判别图解
    a. Zr/Nb-Y/Nb判别图解(据董朋生等,2018);b. Zr-Y判别图解(据Condie, 1989);b. c. Zr/Nb-La/Yb判别图解(据Zhao et al., 2007);d. La/Sm-Sm/Yb判别图解(据Dilek, 2011
    Figure  8.  Discrimination diagrams of source areas of the gabbro and basalt in Jijitaizi

    石榴子石二辉橄榄岩地幔部分熔融所残留的石榴子石会使Sm/Yb升高从而区别于尖晶石二辉橄榄岩地幔,并且石榴子石相部分熔融形成的熔体具有高Dy/Yb值(>2.5),尖晶石相所产生的熔体Dy/Yb值较低(<1.5),因此我们可以通过Dy/Yb值及Sm/Yb变化来判断其地幔组成(McKenzie et al., 1991; Duggen et al., 2005; Aldanmaz et al., 2000, 2008)。芨芨台子辉长岩、玄武岩-玄武安山岩Dy/Yb为1.45~1.92,介于石榴子石相与尖晶石相之间并靠近尖晶石相范围,在Zr/Nb-La/Yb图解(图8c)及La/Sm-Sm/Yb图解(图8d)中,样品落于尖晶石相及石榴子石相过渡区域,整体处于尖晶石相部分熔融趋势线附近,说明母岩浆以尖晶石二辉橄榄岩的部分熔融为主,含少量石榴子石二辉橄榄岩的部分熔融。石榴子石相与尖晶石相于70~80 km左右转化(McKenzie et al., 1991张国震等,2021),因此芨芨台子蛇绿岩带部分熔融深度约为70~80 km。

    辉长岩、玄武岩-玄武安山岩稀土元素配分曲线介于N-MORB和E-MORB之间,并且在Zr/Nb-La/Yb图解及La/Sm-Sm/Yb图解中,样品显示出逐渐富集的趋势(图8c、图8d)。基性岩浆的富集受沉积物及流体的影响,在沉积物作用下,Th/Yb变化较大而Sr/Nd则变化较小,但流体作用下Th/Yb变化较小而Sr/Nd变化较大,芨芨台子样品Sr/Nd变化较大而Th/Yb几乎无变化,说明流体交代地幔源区富集趋势(图9a)。在交代地幔源区,金云母和角闪石为主要含LILE矿物,含金云母地幔源区部分熔融形成钾质岩浆并具有高Rb/Sr变化和低Ba/Rb变化,含角闪石地幔源区部分熔融则形成钠质岩浆和低Rb/Sr变化以及Ba/Rb变化特征,辉长岩、玄武岩-玄武安山岩均具有相对高Na低K特征,Ba/Rb变化大于Rb/Sr变化(图9b),说明地幔源区中角闪石的存在。

    图  9  芨芨台子蛇绿岩Sr/Nd-Th/Yb图解(a) (Woodhead et al., 1998) 和Ba/Rb-Rb/Sr图解(b)(据董朋生等,2018
    Figure  9.  (a) Sr/Nd-Th/Yb diagram and (b) Ba/Rb-Rb/Sr diagram of Jijitaizi ophiolite

    岩浆在上升过程中会经历不同程度的分离结晶和地壳混染作用。辉长岩及玄武岩-玄武安山岩具有较低Mg#(27.58~46.27)及SI固结指数(24.96~42.20),以及低Cr(6×10−6~474×10−6)和Ni(28.40×10−6~195.00×10−6),指示岩浆经历了一定程度的结晶分异作用,但Eu均无明显异常,Sr元素玄武岩无明显异常,辉长岩具有弱正异常,表明岩浆作用过程中斜长石未发生明显的分离结晶作用有限(刘懿馨等,2018张国震等,2021),同时在Mg#-SiO2图解(图10b)显示所有辉长岩及玄武岩-玄武安山岩演化趋势主要与单斜辉石和橄榄石分离结晶有关,因此辉长岩及玄武岩-玄武安山岩形成过程中主要经历了单斜辉石和橄榄石的分离结晶作用。芨芨台子蛇绿岩带所有样品均具有亏损Nb、Ta等HFSE和HREE,富集K、Pb等LILE和LREE的地球化学特征,这一特征被认为可由①岩浆上升过程中地壳物质的混染。②地幔岩浆源区受到因俯冲进入地幔的地壳物质组分的影响,即源区富集。辉长岩、玄武岩-玄武安山岩(La/Nb)PM和(Th/Ta)PM分别介于0.98~2.51和0.33~2.74,接近下地壳值((La/Nb)PM>1; (Th/Ta)PM接近1)(Sun et al., 1989代堰锫等,2021),Nb/La-Nb/Th图解(图10a)中所有样品呈正相关,说明地壳混染的存在,但Lu/Yb、Ce/Pb及Ce/Nb处于幔源和壳源范围之间但靠近幔源范围,La/Sm小于4.5(1.42~2.95)以及 (87Sr/86Sr)i接近原始地幔值(约0.704)指示岩浆上升过程中地壳混染作用较弱(Sun et al., 1989)。而俯冲流体所带入的不相容元素使亏损地幔发生富集(图8c、图8d),提高了岩浆源区中LREE及LILE的丰度,致使被交代的地幔发生部分熔融后形成相较于亏损地幔而言更为富集LREE和LILE的岩浆。因此芨芨台子辉长岩、玄武岩中LREE和LILE的弱富集受俯冲物质交代改造有关,这一点也就佐证了上文中岩浆源区受俯冲流体交代富集这一特征。

    图  10  芨芨台子蛇绿岩带地壳混染(a)和结晶分异图解(b)(据张国震等,2021
    Figure  10.  Crustal contamination (a) and crystallization differentiation diagram (b) of Jijitaizi ophiolite

    芨芨台子蛇绿岩位于芨芨台子-小黄山蛇绿岩带西侧,对于该蛇绿岩带的形成环境长期以来存在有争议,部分研究认为该蛇绿岩带属于早古生代北山洋壳残片,代表了板块缝合带位置,南侧的红柳河-牛圈子-洗肠井蛇绿岩带为芨芨台子-小黄山洋盆南向俯冲形成的弧后盆地俯冲消减的产物(左国朝等,1990a何国琦等,1993郑荣国等,2012),但也有研究认为该蛇绿岩带其实是南侧红柳河-牛圈子-洗肠井洋盆北向俯冲所形成的弧后盆地闭合产物(宋泰忠等,2008李敏等,2020孟庆涛等,2021董洪凯等,2022)。从区域地质特征上来看,芨芨台子-小黄山蛇绿岩带位于明水-旱山单元与公婆泉单元之间(图1),北侧的明水-旱山单元上地层沉积组合和变质程度与中天山具有相似的地层沉积组合和变质程度,同时侵入该地体的中酸性侵入岩表现出强烈富集的εNdt)和εHft)同位素特征,表明存在有前寒武系变质基底,及一套由低绿片岩相-高角闪岩相变质岩系组成的北山岩群(王鑫玉,2017何世平等,2002辛后田等,2020宋博等,2021),而南侧的公婆泉单元部分研究认为其不含前寒武系变质基底,仅由中—-上奥陶统中基性火山岩、浊积岩等,以及下志留统勒巴泉群、中—上志留系公婆泉群(Song et al., 2013, 2014, 2015, 2016; 王怀涛,2019),但在对阿民乌素、小黄山等地的研究中发现蛇绿岩带两侧均有北山岩群的出露,同时公婆泉单元和明水-旱山单元具有一致的航磁和重力异常(张正平等,2017辛后田等,2020),说明公婆泉单元和明水-旱山单元具有统一的基底,芨芨台子-小黄山蛇绿岩带不具有分割指示意义,暗示该蛇绿岩带为弧后盆地闭合产物。

    此外,从地球化学特征上来看,芨芨台子蛇绿岩样品稀土元素曲线分布平坦,介于N-MORB与E-MORB之间,总体类似于MORB型,微量元素上富集LILE,亏损Nb、Ta等HFSE,又类似于岛弧岩浆岩地球化学特征,暗示其属于SSZ型蛇绿岩带。Zr、Ta、Nb、Hf、Ti等元素及REE在岩浆作用过程中低活动性(夏林圻等,2003),因此可以使用以上元素及其元素对来判别构造背景,在Ti/1000-V图解(图11a)中样品主要分布于MORB区域并靠近IAT区域,而在Zr-Ti图解(图11b)中所有样品则主要分布于岛弧岩浆岩范围内并靠近MORB区域中,结合上文岩浆源区受俯冲流体交代富集这一特征,指示芨芨台子蛇绿岩形成于上俯冲带环境下,属于SSZ型蛇绿岩。

    图  11  芨芨台子蛇绿岩构造判别图解(图a据Shervais, 1982;图b据Pearce, 1982
    Figure  11.  Tectonic discrimination diagram of Jijitaizi ophiolite

    SSZ型蛇绿岩的形成环境可分为伸展的初始弧后-弧前环境(BA-FA)、弧前环境(FA)、大陆和大洋的弧后盆地(CBA和OBA)(Hawkins, 1977; Stern et al., 2003; Reagan et al., 2010; Dilek et al., 2010王国强,2015杜雪亮,2019)。因此芨芨台子蛇绿岩属于SSZ型蛇绿岩,也就指示其所代表的古洋盆形成于弧后盆地或弧前初始俯冲构造环境中。杨婧等(2016)统计了全球12332个弧后盆地玄武岩样品(BABB)并计算出其主微量及Sr-Nd-Pb同位素平均值和中位数,结果表明,BABB中Nb平均为2.38×10−6、Ta平均为0.16×10−687Sr/86Sr平均为0.703288,芨芨台子蛇绿岩Nb、Ta及87Sr/86Sr接近于上述值,同时辉长岩及玄武岩-玄武安山岩Y含量(19.10×10−6~26.80×10−6)、Th/Yb整体小于0.6,少数样品大于0.6(0.11~0.80)与弧后盆地玄武岩类似(Y>20; Th/Yb<0.6)(宋泰忠等,2008),指示芨芨台子蛇绿岩形成于弧后盆地构造环境中。

    北山造山带内蛇绿岩带分布广泛,但由于不同学者研究手段、研究对象的差异导致对于这些蛇绿岩带认识出入较大,从而对北山造山带古生代构造演化过程产生很多不同的模型,目前总的来说可分为以下3种:1.两陆夹一洋模式(Zuo et al., 1991)2.统一陆块-俯冲增生模式(刘雪亚等,1995He et al., 2018)3.岛弧拼贴模式(Xiao et al., 2010, 2018; Song et al., 2016)。对于分布于北山造山带的四条蛇绿岩带,红石山蛇绿岩带和辉铜山-帐房山蛇绿岩带通过其蛇绿岩地球化学特征、蛇绿岩带两侧构造单元区域地质特征等,被认为于晚古生代形成于弧后扩张环境中(左国朝等,1990aShi et al., 2017牛文超等,2019王怀涛,2019王国强等,20142021张正平等,2020);红柳河-牛圈子-洗肠井蛇绿岩带南侧断续分布的前寒武纪沉积地层为塔里木板块标志性稳定沉积盖层(胡新茁等,2015),北侧公婆泉单元基底为北山岩群,并且主体由奥陶系-志留系地层组成(丁嘉鑫等,2015王鑫玉,2017Wang et al., 2018),蛇绿岩带两侧沉积地层不同,表明红柳河-牛圈子-洗肠井蛇绿岩带具有缝合带意义,此外,红柳河-牛圈子-洗肠井蛇绿岩带所代表古洋盆具有双向俯冲闭合特征,公婆泉单元内岩浆岩地球化学特征与构造变形特征,指示属于红柳河-牛圈子-洗肠井洋盆北向俯冲所形成的陆缘弧,并被认为最早形成于晚寒武世-早奥陶世(Song et al., 2015Ao et al., 2016宋东方等,2018王鑫玉等,2018王怀涛,2019李敏等,2020辛后田等,2020),该时代晚于红柳河-牛圈子-洗肠井蛇绿岩形成时代,并早于芨芨台子-小黄山蛇绿岩形成年龄(左国朝等,1996宋泰忠等,2008张元元等,2008Wu et al., 2011李向民等,2012王国强,2015孟庆涛等,2021),结合上文,我们可以认为芨芨台子-小黄山蛇绿岩形成于弧后盆地构造环境,所代表古洋盆不具有板块分割意义,而南侧红柳河-牛圈子-洗肠井蛇绿岩带具有分割指示意义,塔里木板块和哈萨克斯坦板块所夹的古洋盆应指红柳河-牛圈子-洗肠井古洋盆,北山造山带古生代构造演化模型应该为“两陆夹一洋”模式。综上所述,于早寒武世开始发生南向俯冲的红柳河-牛圈子-洗肠井洋盆在最晚早奥陶世时发生北向俯冲,形成公婆泉岩浆弧,并在公婆泉岩浆弧后发生裂解形成芨芨台子-小黄山弧后盆地,红柳河-牛圈子-洗肠井洋盆、公婆泉岩浆弧和芨芨台子-小黄山弧后盆地构成沟-弧-盆体系(图12)。

    图  12  北山造山带早古生代演化模式图(据杜雪亮,2019王怀涛,2019
    Figure  12.  The schematic map for the early Paleozoic evolution in Beishan orogenic belt

    (1)芨芨台子蛇绿岩位于明水-旱山微陆块以南,公婆泉单元以北,地球化学表现出SSZ型(上俯冲带型)蛇绿岩特征。

    (2)岩浆起源于亏损地幔含角闪石的尖晶石相二辉橄榄岩和少量石榴石相二辉橄榄岩的部分熔融,并且岩浆源区受南部红柳河-牛圈子-洗肠井洋盆北向俯冲所带入俯冲流体交代发生一定程度富集,岩浆上升过程中经历了一定程度的结晶分异和地壳混染作用。

    (3)芨芨台子-小黄山蛇绿岩带所代表古洋盆为早古生代红柳河-牛圈子-洗肠井洋盆北向俯冲引起弧后扩张产物,属于弧后盆地。

  • 图  1   中亚造山带大地构造位置简图(a)及北山造山带构造纲要图(b)(据Xiao et al., 2010

    1.红石山蛇绿岩带;2.芨芨台子-小黄山蛇绿岩带;3.红柳河-牛圈子-洗肠井蛇绿岩带;4.辉铜山-帐房山蛇绿岩带

    Figure  1.   (a) Sketched tectonic map of the CAOB and (b) simplified geological map of the Beishan orogenic belt

    图  2   芨芨台子蛇绿岩带地质简图(a)、剖面图及采样位置(b)

    Figure  2.   (a) Geological sketch map, (b) section and sampling location of Jijitaizi ophiolite belt

    图  3   芨芨台子蛇绿岩野外照片

    Figure  3.   Field photos of Jijitaizi ophiolite

    图  4   芨芨台子蛇绿岩带辉长岩(a)、玄武岩(b)显微照片(正交偏光)

    Pl: 斜长石;Px: 辉石 a: 橄榄岩;b: 辉长岩;c: 玄武岩

    Figure  4.   Micrographs of gabbro (a) and basalt (b) in Jijitaizi ophiolite belt

    图  5   芨芨台子辉长岩、玄武岩AFM图解(a)(据Irvine et al, 1971)、和SiO2-K2O图解(b)(Peccerillo et al, 1976)和SiO2-TFeO/MgO图解(c)(据Miyashiro, 1974

    Figure  5.   (a) AFM diagram, (b) SiO2-K2O diagram and (c) SiO2-TFeO/MgO diagram of Jijitaizi gabbro and basalt

    图  6   芨芨台子蛇绿岩带稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)(据Sun et al., 1989

    Figure  6.   (a) Chondrite-normalized REE pattern and (b) primitive mantle-normalized trace element spidergram of Jijitaizi ophiolite

    图  7   芨芨台子蛇绿岩带(87Sr/86Sr)i-εNdt)图解(据DePaolo et al., 1979张国震等,2021

    Figure  7.   (87Sr/86Sr)i-εNd (t) diagram of Jijitaizi ophiolite

    图  8   芨芨台子辉长岩、玄武岩源区判别图解

    a. Zr/Nb-Y/Nb判别图解(据董朋生等,2018);b. Zr-Y判别图解(据Condie, 1989);b. c. Zr/Nb-La/Yb判别图解(据Zhao et al., 2007);d. La/Sm-Sm/Yb判别图解(据Dilek, 2011

    Figure  8.   Discrimination diagrams of source areas of the gabbro and basalt in Jijitaizi

    图  9   芨芨台子蛇绿岩Sr/Nd-Th/Yb图解(a) (Woodhead et al., 1998) 和Ba/Rb-Rb/Sr图解(b)(据董朋生等,2018

    Figure  9.   (a) Sr/Nd-Th/Yb diagram and (b) Ba/Rb-Rb/Sr diagram of Jijitaizi ophiolite

    图  10   芨芨台子蛇绿岩带地壳混染(a)和结晶分异图解(b)(据张国震等,2021

    Figure  10.   Crustal contamination (a) and crystallization differentiation diagram (b) of Jijitaizi ophiolite

    图  11   芨芨台子蛇绿岩构造判别图解(图a据Shervais, 1982;图b据Pearce, 1982

    Figure  11.   Tectonic discrimination diagram of Jijitaizi ophiolite

    图  12   北山造山带早古生代演化模式图(据杜雪亮,2019王怀涛,2019

    Figure  12.   The schematic map for the early Paleozoic evolution in Beishan orogenic belt

    续表1
    样品编号17JJTZ-
    HC-01
    17JJTZ-
    HC-02
    17JJTZ-
    HC-03
    17JJTZ-
    HC-04
    17JJTZ-
    XW-01
    17JJTZ-
    XW-02
    17JJTZ-
    XW-03
    17JJTZ-
    XW-04
    17JJTZ-
    XW-05
    17JJTZ-
    XW-06
    岩性辉长岩辉长岩辉长岩辉长岩玄武岩玄武岩玄武岩玄武安山岩玄武岩玄武安山岩
    Ce7.918.517.746.9222.7024.2025.5015.0524.8013.65
    Pr1.151.261.111.093.143.263.432.163.331.90
    Nd5.836.855.895.2913.9014.5014.9010.2014.609.00
    Sm2.182.061.741.763.403.613.652.903.532.49
    Eu0.800.900.750.671.231.171.190.951.300.93
    Gd2.753.072.832.483.783.963.903.753.983.24
    Tb0.490.520.490.460.610.640.620.650.650.58
    Dy3.404.043.283.273.834.193.964.444.383.89
    Ho0.730.800.740.680.790.910.810.990.950.89
    Er2.232.412.061.972.272.792.302.952.772.70
    Tm0.340.360.330.320.320.410.330.440.400.40
    Yb2.242.312.212.072.022.732.062.942.732.68
    Lu0.390.380.330.300.320.430.310.470.430.43
    (La/Yb)N0.991.001.100.933.272.573.621.542.731.53
    (La/Sm)N0.921.011.250.981.751.751.841.401.901.48
    (Gd/Yb)N1.021.101.060.991.551.201.571.061.211.00
    ∑REE33.5236.6832.8829.9567.5172.6073.3654.1974.2548.48
    ∑LREE20.9622.8020.6118.4053.5756.5459.0737.5657.9633.67
    ∑HREE12.5613.8812.2711.5613.9416.0614.2916.6316.2914.81
    LREE/HREE1.671.641.681.593.843.524.132.263.562.27
    δEu0.991.091.040.981.050.950.960.881.061.00
    δCe1.031.040.980.991.041.051.051.001.031.02
    下载: 导出CSV

    表  1   芨芨台子蛇绿岩主(%)、微量及稀土元素(×10−6)分析结果

    样品编号17JJTZ-
    HC-01
    17JJTZ-
    HC-02
    17JJTZ-
    HC-03
    17JJTZ-
    HC-04
    17JJTZ-
    XW-01
    17JJTZ-
    XW-02
    17JJTZ-
    XW-03
    17JJTZ-
    XW-04
    17JJTZ-
    XW-05
    17JJTZ-
    XW-06
    岩性辉长岩辉长岩辉长岩辉长岩玄武岩玄武岩玄武岩玄武安山岩玄武岩玄武安山岩
    SiO250.6451.2950.3951.6647.9750.9747.7152.7250.8854.96
    Al2O316.0815.9416.7915.8215.3814.5615.2913.7714.3813.38
    BaO0.020.020.020.020.030.020.040.010.020.01
    CaO9.388.9310.409.258.026.338.515.426.714.82
    Cr2O30.010.010.010.010.090.010.090.010.010.01
    TFe2O310.9010.9010.249.879.8614.259.2614.5214.2714.06
    K2O0.280.270.300.440.770.211.320.190.210.19
    MgO6.396.046.106.739.667.139.256.586.806.21
    MnO0.180.180.170.170.180.200.160.220.220.18
    Na2O4.374.634.184.292.604.412.584.454.474.42
    P2O50.080.090.080.070.190.270.190.170.250.16
    LOI0.950.991.021.304.011.384.331.301.060.65
    TiO20.860.950.810.771.250.961.230.980.980.93
    Total100.14100.24100.51100.40100.01100.7099.96100.34100.2699.98
    Mg#33.5832.3333.9337.0345.7930.1446.2728.1029.1227.58
    Na2O+K2O4.654.904.484.733.374.623.904.644.684.61
    Na2O/K2O15.6117.1513.939.753.3821.001.9523.4221.2923.26
    σ(里特曼指数)2.832.902.722.582.292.683.232.212.781.78
    SI固结指数29.1227.6629.3031.5542.2027.4241.2825.5626.4124.96
    Rb3.664.623.645.5813.503.0031.002.902.802.90
    Ba92.60385.0098.9045.30200.0040.00260.0040.0040.0030.00
    Th0.290.310.320.231.541.841.650.971.770.79
    Cs0.100.070.090.130.450.121.400.140.080.07
    Cr61.1041.2069.4062.00474.006.00464.0016.006.0016.00
    Co39.5033.1036.0035.2046.4047.5043.5056.0050.8047.90
    Ni33.2028.4035.4046.90195.0029.00178.0039.5033.0035.50
    K6392.141743.3110957.951577.286392.141743.3110957.951577.281743.311577.28
    P829.201178.34829.20741.92829.201178.34829.20741.921091.05698.27
    Nb2.062.261.931.804.4010.404.306.4010.404.70
    Pb1.080.772.030.288.101.105.801.101.001.70
    Sr197.00181.00158.00159.00323.00191.50299.00196.50219.00166.50
    Ta0.160.160.120.340.290.470.290.300.460.21
    Ti7491.795753.697371.925873.567491.795753.697371.925873.565873.565573.89
    U0.060.100.080.080.500.700.400.500.700.50
    Y21.2021.9019.9019.1021.4025.8022.5026.8025.9024.60
    Zr30.8037.8027.7027.00109.0032.90108.5025.6034.8023.00
    Hf0.971.130.800.882.801.103.000.901.300.80
    La3.093.223.382.679.209.8010.406.3010.405.70
    下载: 导出CSV

    表  2   芨芨台子蛇绿岩带Sr-Nd同位素组成

    样品号Rb (×10-6)Sr (×10-6)87Sr/86Sr87Rb/86Sr±2σ87Sr/86Sr)iSm (×10-6)
    17JJTZ-HC-013.661970.7040670.0537260.0000060.7037002.18
    17JJTZ-XW-0113.53230.7055940.1208840.0000070.7047683.4
    17JJTZ-XW-023191.50.7041910.0453030.0000030.7038813.61
    17JJTZ-XW-03312990.7058160.2998720.0000040.7037673.65
    样品号Nd (×10-6)147Sm/144Nd143Nd/144Nd±2σ143Nd/144Nd)iεNdtTDM2 (Ma)
    17JJTZ-HC-015.830.2259480.5130710.0000040.5123616.66669
    17JJTZ-XW-0113.90.1478030.5126990.0000060.5122344.18871
    17JJTZ-XW-0214.50.1504390.5127330.0000100.5122604.69830
    17JJTZ-XW-0314.90.1480220.5127140.0000090.5122494.46848
    下载: 导出CSV
  • 代堰锫, 李同柱, 张惠华, 等. , 扬子陆块西缘江浪穹窿超基性岩的成因: 锆石U-Pb定年、岩石地球化学及Sr-Nd同位素[J]. 沉积与特提斯地质, 2021, 41(04): 573-584.10.19826/j.cnki.1009-3850.2021.01002. doi: 10.19826/j.cnki.1009-3850.2021.01002

    DAI Yanpei, LI Tongzhu, ZHANG Huihua, et al. , Petrogenesis of the ultramafic pluton in the Jianglangdome, western margin of the Yangtze block: ZirconU-Pbdating, geochemistry and Sr-Nd isotopes[J]. Sedimentary Geology and Tethyan Geolog, 2021. 41(04): 573-584.10. 19826/j. cnki. 1009-3850.2021. 01002. doi: 10.19826/j.cnki.1009-3850.2021.01002

    丁嘉鑫, 韩春明, 肖文交, 等. 北山造山带花牛山岛弧东段钨矿床成矿时代和成矿动力学过程[J]. 岩石学报, 2015, 31(2): 594-616

    DING Jiaxing, Han Chunming, Xiao Wenjiao. , et al. , Geochemistry and U-Pb geochronology of tungsten deposit of Huaniushan island arc in the Beishan Orogenic Belt, and its geodynamic background[J]. Acta Petrologica Sinica, 2015, 31(2): 594-616

    董洪凯, 薛鹏远, 刘广, 刘思林, 于龙. 内蒙古北山地区芨芨台子-小黄山蛇绿岩构造属性及与成矿关系: 来自阿民乌素地幔橄榄岩印证[J]. 地质与勘探, 2022, 58(04): 767-777

    DONG Hongkai, XUE Pengyuan, LIU Guang, et al. , Tectonic Attributes of the Jijitaizi-Xiaohuangshan Ophiolite in the Beishan Area, Inner Mongolia and in Relationship to Metallogenesis: Evidence from the Aminwusu Mantle Peridotite[J]. Geology and Exploration, 2022, 58(04): 767-777

    董朋生, 董国臣, 孙转荣, 等. 冀北五凤楼煌斑岩年代学、地球化学特征及其成因[J]. 现代地质, 2018, 32(02): 305-315. DOI: 10.19657/j. geoscience. 1000-8527.2018. 02.09.

    DONG Pensheng, Dong Guocheng, Sun Zhuangrong, et al. , Chronology, Geochemistry Characteristics and Petrogenesis of Wufenglou Lamprophyres in Northern Hebei, China[J]. Geoscience, 2018, 32(02): 305-315. DOI: 10.19657/j.geoscience.1000-8527.2018.02.09.

    杜雪亮, 中亚造山带南缘北山红柳河蛇绿岩带成因及构造意义研究[D]. 兰州:兰州大学, 2019.

    DU Xueliang. Origin and Tectonic Sigificance of Hongliuhe Ophiolite Belt in Beishan, Southern Margin of Central Asian Orogenic Belt[D]. Lanzhou:Lanzhou University, 2019

    龚全胜, 刘明强, 李海林, 等. 甘肃北山造山带类型及基本特征[J]. 西北地质. 2002, (03): 28-34

    GONG Quansheng, LIU Mingqiang, LI Hailing, et al. , The type and basic characteristics of Beishan orogenic belt, Gansu[J]. Northwest Geology, 2002, (03): 28-34.

    龚全胜, 刘明强, 梁明宏, 等, 北山造山带大地构造相及构造演化[J]. 西北地质, 2003.36(1): 11-17.

    GONG Quansheng, Liu Mingqiang, Liang Minghong, et al. , The tectonic facies and tectonic evolution of Beishan orogenic belt, Gansu[J]. Northwest Geology, 2003. 35( 4) : 30-40

    何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 35( 4) : 30-40

    HE Shiping, Ren Bingcheng, Yao Wenguang, et al. , 2002. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwest Geology, 35( 4) : 30-40

    何国琦, 李茂松. 中国兴蒙-北疆蛇绿岩地质的若干问题[J]. 地学研究, 1993, 2: 3~12

    HE Guoqi, Li Maosong Some Problems of Ophiolite Geology in Northern China[J]. Dixue Yanjiu, 1993, 2: 3~12

    胡新茁, 赵国春, 胡新悦, 等. 内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J]. 地质通报, 2015, 34(Z1): 425-436

    HU Xingzhuo, Zhao Guochun, Hu Xingyue, et al. Geological characteristics, formation epoch and geotectonic significance of the Yueyashan ophiolitic tectonic mélange in Beishan area, Inner Mongolia[J]. Geological Bulletin of China, 2015, 34(Z1): 425-436.

    李敏, 辛后田, 田健, 等. 北山造山带公婆泉岩浆弧的组成、时代及其大地构造意义[J]. 地球科学, 2020, 45(07): 2393-2412

    LI Ming, XING Houtian, TIAN Jian, et al. , Composition, Age and Polarity of Gongpoquan Arc and Its Tectonic Significance in Beishan Orogen[J]. Earth Science. 2020, 45(07): 2393-2412.

    李向民, 余吉远, 王国强, 等. 甘肃北山地区芨芨台子蛇绿岩年代学研究及其意义[J]. 地质通报, 2012, 31( 12) : 2025-2031 LI Xiangming, YU Jiyuan, WANG Guoqiang, et al. Geochronology of Jijitaizi ophiolite in Beishan area, Gansu Province, and its geological significance[J], 2012. 31(12): 2025-2031.
    刘雪亚, 王荃, 中国西部北山造山带的大地构造及其演化[J]. 地学研究, 1995. (28): 7–48

    LIU Xueya, WANG Quan, Tectonic of Orogenic belts in Beishan MTS. , Western China and Their evolution[J]. Dixue Yanjiu, 1995, (28): 7–48.

    刘懿馨, 沙鑫, 马蓁, 等. 北祁连西段双龙镁铁质-超镁铁质岩地球化学特征及构造意义[J]. 岩石学报, 2018, 34(02): 383-397.

    LIU Yixin, SHA Xin, MA Zheng, et al. , Geochemical characteristics and tectonic implication of the Shuanglong mafic-ultramafic rocks in western section of the North Qilian[J]. Acta Petrologica Sinica, 2018, 34(2) : 383 -397

    孟庆涛, 张正平, 董洪凯. 内蒙古北山地区阿民乌素蛇绿岩的年代学、地球化学特征及大地构造意义[J]. 地质与勘探, 2021.57(01): 122-135

    MENG Qingtao, Zhang Zhengping, Dong Hongkai, Chronology, geochemical characteristics and tectonic significance of Aminwusu ophiolite in the Beishan area, Inner Mongolia[J]. Geology and Exploration, 2021.57(01): 122-135.

    牛文超, 辛后田, 段连峰, 等. , 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性---基于1: 5万清河沟幅地质图的新认识[J]. 中国地质, 2019.46(5): 977-994

    NIU Wenchao, Xin Houtian, Duan Lianfeng, et al. , The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia—New understanding based on the geological map of Qinghegou Sheet (1: 50000)[J]. Geology in China, 2019.46(5): 977-994

    任秉琛, 何世平, 姚文光, 等. , 甘肃北山牛圈子蛇绿岩铷-锶同位素年龄及其大地构造意义[J]. 西北地质, 2001.34( 2): 21-27 doi: 10.3969/j.issn.1009-6248.2001.02.004

    REN Bingchen, He Shiping, Yao Wenguang, et al. , Rb-Sr isotope age of Niuquanzi ophiolite and its tectonic significance in Beishan district, Gansu[J]. Northwest Geology, 2001.34( 2): 21-27. doi: 10.3969/j.issn.1009-6248.2001.02.004

    宋博, 张慧元, 魏东涛, 等. 中亚造山带南缘中—新元古代地壳的揭示——来自北山—阿拉善北部钻遇碱性花岗岩的年代学和Hf同位素示踪研究[J]. 地球学报, 2021, 42(01): 9-20

    SONG Bo, ZHANG Huiyuan, WEI Dongtao, et al. , Revelation of the Meso–Neoproterozoic Crust on the Southern Margin of the Central Asian Orogenic Belt: Chronology and Hf Isotope Tracer from Drilling-intersected Alkaline Granites, Northern Beishan–Alxa[J]. Acta Geoscience Sinica, 2021, 42(01): 9-20

    宋东方, 肖文交, 韩春明, 等. , 北山中部增生造山过程: 构造变形和40Ar-39Ar 年代学制约[J]. 岩石学报, 2018. 34( 7) : 2087-2098

    SONG Dongfang, Xiao Wenjiao, Han Chunming, et al. , Accretionary processes of the central segment of Beishan: Constraints from structural deformation and40Ar-39Ar geochronology[J]. gy. Acta Petrologica Sinica, 2018, 34(7) : 2087 -209.

    宋泰忠, 王瑾, 林海, 等. , 内蒙古北山地区小黄山蛇绿岩地质特征[J]. 西北地质, 2008.41 (03): 55-63

    SONG Taizhong, Wang Jing, Lin Hai, et al. , The Geological Features of Ophiolites of Xiaohuangshanin Beishan Area, Inner Mongolia[J]. Northwest Geology, 2008,41 (03): 55-63.

    王国强. 北山古生代蛇绿岩、火山岩研究与构造演化[D]. 长安大学. 2015. WANG Guoqiang, The Research of the Paleozoic Ophiolites and Volcanic Rocks and the Tectonic Evolution in the Beishan area (Northwest China)[D]. Changan University, 2015.
    王国强, 李向民, 徐学义, 等. , 甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J]. 岩石学报, 2014, 30(6): 1685-1694

    WANG Guoqiang, Li Xiangming, Xu Xueyi, et al. , Ziron U-Pb chronological study of the Hongshishan ophiolite in the Beishan area and their tectonic significance[J]. Acta Petrologica Sinica, 2014. 30(6): 1685-1694

    王国强, 李向民, 徐学义, 等. , 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 2021, 40(01): 71-81

    WANG Guoqiang, Li Xiangming, Xu Xueyi, et al. , Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 2021.40(1): 71-81

    王怀涛. 中亚造山带南段北山构造-岩浆作用及其地质意义的研究[D]. 兰州大学. 2019.

    WANG Huaitao, Tectono-magmatism and its geological significance in the beishan area of the southern part of the Central Asian Orogenic Belt[D]. Lanzhou University 2019.

    王鑫玉. 北山公婆泉岛弧岩石组合、岩浆时空演变及其构造意义[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所). 2017.

    WANG Xinyu. The rock assemblages, spatial and temporal variations in the Gongpoquan arc, Beishan and their implications for tectonic setting[D]. Guangzhou :Guangzhou Institute of Geochemistry, CAS 2017.

    王鑫玉, 袁超, 龙晓平, 等. , 北山造山带尖山和石板井花岗岩年代学、地球化学研究及其地质意义[J]. 地球化学, 2018.47(1): 63-78 doi: 10.3969/j.issn.0379-1726.2018.01.005

    WANG Xinyu, Yuan Chao, Long Xiaoping, et al. , Geochronological, geochemical, and geological significance of Jianshan and Shibanjing granites in the Gongpoquan Arc, Beishan Orogenic Belt[J]. Geochemical, 2018.47(1): 63-78. doi: 10.3969/j.issn.0379-1726.2018.01.005

    夏林圻, 夏祖春, 徐学义. 北祁连山奥陶纪弧后盆地火山岩浆成因[J]. 中国地质. 2003, 30(1): 48-60

    XIA Linqi, Xia Zuchun, Xu Xueyi. Magmagenesis of Ordovician back-arc basins in the Northern Qilian Mountains[J]. Geology in China, 2003.30(1): 48-60.

    辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 39(09): 1297-1316

    XIN Houtian, NIU Wenchao, TIAN Jian, et al. , Spatio-temporal structure of Beishan orogenic belt and evolution of Paleo-Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(9): 1297-1316

    张国震, 辛后田, 段连峰, 牛文超, 田健, 张永. 内蒙古北山造山带北部早二叠世末期高镁辉长岩地球化学特征及构造意义[J/OL]. 地球科学: 1-14[2021-11-20]. http://kns.cnki.net/kcms/detail/42.1874.p.20211118.2126.028.html.

    ZHANG Guozheng, XIN Houtian, DUAN Lianfeng, et al. Geochemical characteristics and tectonic implications of the end Early Permian high magnesium gabbro from northern Beishan orogenic belt, Inner Mongolia[J/OL]. Earth Science, 2021. 1-14, http://kns.cnki.net/kcms/detail/42.1874.p.20211118.2126.028.html.

    张元元, 郭召杰. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J]. 岩石学报, 2008, 24(4): 803-809

    ZHANG Yuanyuan, Guo Zhaojie. Accurate constraint on formation and emplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu Provinces and its tectonic implications[J]. Acta Petrologica Sinica, 2008.21(4): 803-809.

    张正平, 段炳鑫, 孟庆涛, 等. 内蒙古北山地区北山岩群斜长角闪岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 地质与勘探, 2017, 53(06): 1129-1139. DOI: 10.13712/j. cnki. dzykt. 2017.06. 008.

    ZHANG Zhengpin, DUAN Bingxin, MENG Qintao, et al. , LA-ICP-MS Zircon U-Pb Dating of Amphibolites of the Beishan Group in the Beishan Area, Inner Monolia and its Geological Significance[J]. Geology and Exploration, 2017, 53(06): 1129-1139. DOI: 10.13712/j.cnki.dzykt.2017.06.008.

    张正平, 辛后田, 程海峰, 等. 内蒙古北山造山带发现额勒根蛇绿岩——红石山-百合山蛇绿岩带东延的证据[J]. 地质通报, 2020, 39(9): 1389-1403

    ZHANG Zhengpin, XIN Houtian, CHEN Haifeng, et al. , The discovery of the Elegen ophiolite in Beishan orogenic belt, Inner Mongolia: Evidence for the east extension of the Hongshishan-Baiheshan ophiolite belt[J]. Geological Bulletin of China. 2020.39(9): 1389-1403.

    郑荣国, 吴泰然, 张文, 等. 北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境[J]. 地质学报, 2012, 86(6): 961-971

    ZHENG Rongguo, Wu Tairan, Zhang Wen, et al. , Geochemical Characteristics and Tectonic Setting and of the Yueyashan-Xichangjing Ophiolite in the Beishan Area[J]. Scientia Geological Sinica 2012.86(6): 961-971.

    左国朝, 何国琦, 李红诚. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990a: 1−226.

    ZUO Guochao, HE Guoqi, LI Hongchen. Plate tectonics and metallogenic regularity of Beishan[M]. Beijing: Peking University Press, 1990a, 1−226.

    左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990b, 04: 305-314+411

    ZUO Guochao, Zhang Shulin, He Guoqi, et al. , Early Paleozoic Plate Tectonics in Beishan Area[J]. Scientia Geological Sinica, 1990b. 04: 305-314+411.

    左国朝, 李茂松. 甘肃北山地区早古生代岩石圈形成与演化[M]. 兰州: 甘肃科学技术出版社, 1996: 1−92

    ZUO Guochao, LI Maosong. Formation and evolution of early Paleozoic lithosphere in Beishan area, Gansu Province[M]. Lanzhou: Gansu Science and Technology Press, 1996. 1−2.

    左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 2003(01): 1-15

    ZUO Guochao, Liu Yike, Liu Chunyan. Tectonic framework and evolution of Mengbei Mountain area in Gansu and Xinjiang[J]. Acta Geological Gansu, 2003. (01): 1-15.

    Aldanmaz E. , Pearce J A. , Thirlwall M F. , et al. , Petrogenetic Evolution of late Cenozoic, Post-collision Volcanism in Western Anatolia, Turkey[J]. Journal of volcanology and geothermal research, 2000, 102(1–2): 67–95. https://doi.org/10.1016/S0377-0273(00)00182-7

    Aldanmaz E, Yaliniz M K, Güctekin A, et al. Geochemical Characteristics of Mafic Lavas from the Neotethyan Ophiolites in Western Turkey: Implications for Heterogeneous Source Contribution During Variable Stages of Ocean Crust Generation[J]. Geological Magazine, 2008, 145: 37–54. https://doi.org/10.1017/S0016756807003986

    Ao S J, Xiao W J, Windley B F, et al. , Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zirconU-Pb and 40Ar /39Ar geochronology [J]. Gondwana Research, 2016. 30: 224-235. doi: 10.1016/j.gr.2015.03.004

    Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J], Journal of Asian Earth Sciences, 2002 21(1): 0-110.

    Condie K C. Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary: Identification and significance[J]. Lithos, 1989, 23(1): 1-18.

    DePaolo D J. , Wasserburg G J. , Neodymium Isotopes in Flood Basalts From the Siberian Platform and Inferences about Their Mantle Sources[J]. Proceedings of the National Academy of Sciences, 1979, 76(7): 3056-3060. doi: 10.1073/pnas.76.7.3056

    Dilek Y. , Spontaneous subduction initiation and forearc magmatism as revealed by Phanerozoic suprasubduction zone ophiolites[J]. Geological Society of America Abstracts with Programs, 2010, 42(5): 575.

    Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Bulletin. 2011, 123(3-4): 387-411.

    Duggen S, Hoernle K, Van D B P, et al. Post-Collisional Transition from Subduction- to Intraplate-type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere[J]. Journal of Petrology, 2005(6): 1155-1201.

    GovindarajuK. , Compilation of working values and samples description for 383 Geostandards[J]. Geostandards Newsletter, 1994, 18(2): 331.

    Hawkins J W. Petrologic and geochemical characteristics of marginal basin basalts[J]. Island Arcs, Deep-Sea Trenches, and Back-Arc Basins Am Geophys Union, Washington, DC, 1977. 1: 355-365.

    He Z Y, Klemd R, Yan L L, et al. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2018, 185: 1–14. doi: 10.1016/j.earscirev.2018.05.012.

    Irvine TN, Baragar WRA. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences. 1971, 8, 523-548

    Li XH. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze craton, SE China[J]. Geochemical Journal, 1997, 31: 323-327. doi: 10.2343/geochemj.31.323

    McKenzie D. , O'Nions R K. , Partial Melt Distribution From Inversion of Rare Earth Element Concentrations[J]. Journal of Petrology, 1991. 32: 1021–1091. doi: 10.1093/petrology/32.5.1021

    Michael B. Wolf, Peter J. Wyllie. , Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time[J]. Contributions to Mineralogy and Petrology, 1994, 115(4) : 369-383 doi: 10.1007/BF00320972

    Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355. doi: 10.2475/ajs.274.4.321

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[A]. In: Thorpe RS (ed). Andesites: Orogenic Andesites and Related Rocks[M]. John Wiley & Sons, 1982: 525−548.

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1): 63-81.

    Reagan M K, Ishizuka O, Stern R J, et al. , Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): 1-17.

    Schilling J G, Zajac M, Evans R, et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N[J]. American Journal of Science. 1983. 283(6): 510-586.

    Şengör, A. , Natal'in, B. , Burtman, V. , Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature, 1993. 364: 299-307. Doi: 10.1038/364299a0

    Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982. 59(1) : 101 -118 doi: 10.1016/0012-821X(82)90120-0

    Shi Y, Li L, Kroner A, et al. , Carboniferous Alaskan-type complex along the Sino-Mongolian boundary, southern margin of the Central Asian Orogenic Belt[J]. Acta Geochim, 2017, 36(2): 276-290. doi: 10.1007/s11631-017-0145-7

    Song D F, Xiao W J, Han C M, Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids[J]. International Geology Review, 2013. 55, 1705-1727

    Song D F, Xiao W J, Han C M, et al. Polyphase deformation of a Paleozoic forearc–arc complex in the Beishan orogen, NW China[J]. Tectonophysics, 2014, 632: 224-243. doi: 10.1016/j.tecto.2014.06.030

    Song D F, Xiao W J, Windley B F, et al. , A Paleozoic Japan- type subduction- accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos, 2015 224/225: 195-213. doi: 10.1016/j.lithos.2015.03.005

    Song D F, Xiao W J, Windley B F. , et al. Metamorphic Complexes in Accretionary Orogens: Insights from the Beishan Collage, Southern Central Asian Orogenic Belt[J]. Tectonophysics, 2016. 688: 135–147. doi: 10.1016/j.tecto.2016.09.012.

    Stern C R, De Wit MJ, Rocas Verdes ophiolites, southernmost South America: remnants of progressive stages of development of oceanic-type crust in a continental margin back-arc basin[J]. Geological Society, London, Special Publications, 2003,218(1): 665-683.

    Sun S, Mcdonough W F. , Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications. 1989. 42(1): 313-345.

    Windley B F, Alexeiev D, Xiao W, et al. , Tectonic models for accretion of the Central Asian Orogenic Belt[J]. J. geol. soc, 2007, 164(12): 31-47

    S. Wang, K Zhang, B. Song, et al. , Geochronology and geochemistry of the Niujuanzi ophiolitic melange, Gansu Province, NW China: implications for tectonic evolution of the Beishan Orogenic Collage[J]. International Journal of Earth Sciences, 2018, 107(1): 269-289. doi: 10.1007/s00531-017-1489-2

    Woodhead J D, Eggins S M, Johnson R W. Magma genesis in the New Britain Island Arc: Further insights into melting and mass transfer processes. Journal of Petrology, 1998. 39(9): 1641-1668DOI: 10.1093/petroj/39.9.1641

    Wu T, Zheng R, Zhang W, et al. Tectonic framework of Beishan Mountain—Northern Alxa Area and the time constraints for the closing of the Paleo-Asian Ocean: proceedings of the Proceedings of the Fifth Workshop on 1: 5M International Geological Map of Asia [C], 2011

    Xiao W, Song D, Windley B F. , Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives[J]. Science China Earth Sciences, 2020. 63: 329–361, https://doi.org/10.1007/s11430-019-9524-6

    Xiao W J , Mao Q G , Windley B F , Paleozoic multiple accretionary andcollisional processes of the Beishan orogenic collage[J]. Am. J. Sci. 2010. 310, 1553–1594. https://doi.org/10.2475/10.2010.12.

    Xiao W J. , Windley B F. , Han C M. , et al. Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia[J]. Earth-Science Reviews, 2018. 186: 94–128. doi: 10.1016/j.earscirev.2017.09.020.

    Zhang W, Pease V, Wu T R, et al . Discovery of an adakite-like pluton near Dongqiyishan ( Beishan, NW China ) : Its age and tectonic significance[J]. Lithos, 2012,142 /143: 148-160.

    Zhao J, Zhou M. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research. 2007. 152(1-2): 27-47.

    Zheng R G, Wu T R, Zhang W, et al, 2013. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt: Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt[J]. Journal of Asian Earth Sciences, 62: 463-475

    Zuo G C, Zhang S L, He G Q, et al. , Plate Tectonic Characteristics During the Early Paleozoic in Beishan Near the Sino Mongolian Border Region, China[J]. Tectonophysics, 1991, 188(3–4): 385–392. doi: 10.1016/0040-1951(91)90466-6.

图(12)  /  表(3)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  7
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-11
  • 录用日期:  2023-09-11
  • 网络出版日期:  2024-12-18

目录

/

返回文章
返回