ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

北山地区芨芨台子蛇绿岩地球化学特征及形成环境

武磊, 翟新伟, 王二腾, 王赟, 郭志昂, 宋高瑞, 王金荣, 杜君

武磊,翟新伟,王二腾,等. 北山地区芨芨台子蛇绿岩地球化学特征及形成环境[J]. 西北地质,2025,58(1):27−42. doi: 10.12401/j.nwg.2023038
引用本文: 武磊,翟新伟,王二腾,等. 北山地区芨芨台子蛇绿岩地球化学特征及形成环境[J]. 西北地质,2025,58(1):27−42. doi: 10.12401/j.nwg.2023038
WU Lei,ZHAI Xinwei,WANG Erteng,et al. Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area[J]. Northwestern Geology,2025,58(1):27−42. doi: 10.12401/j.nwg.2023038
Citation: WU Lei,ZHAI Xinwei,WANG Erteng,et al. Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area[J]. Northwestern Geology,2025,58(1):27−42. doi: 10.12401/j.nwg.2023038

北山地区芨芨台子蛇绿岩地球化学特征及形成环境

基金项目: 第二次青藏 高原综合科学考察研究(2019QZKK0901),中国地质调查局项目“中国北方(天山-北山-阴山以北)中段石炭纪—二叠纪构造演化研究”(121201011000161111-01)联合资助。
详细信息
    作者简介:

    武磊(1996−),男,博士研究生,岩石学、矿物学、矿床学专业。E−mail:wul20@lzu.edu.cn

    通讯作者:

    翟新伟(1976−),男,副教授,从事构造地质与成矿方面研究。E−mail:zhaixw926@lzu.edu.cn

  • 中图分类号: P584

Geochemical Characteristics and Tectonic Setting of the Jijitaizi Ophiolite in Beishan area

  • 摘要:

    甘肃北山地区芨芨台子蛇绿岩是芨芨台子–小黄山蛇绿岩带重要组成部分,位于公婆泉单元和明水–旱山微陆块之间的北山造山带中部,主要由超基性岩、辉长岩和玄武岩组成。为揭示芨芨台子蛇绿岩带的形成环境,开展辉长岩、玄武岩岩石学及地球化学研究。辉长岩、玄武岩MgO为6.04%~6.73%、6.21%~9.66%,Mg#为32.33~37.03、27.58~46.27,SI固结指数27.66~31.55、24.96~42.20,Al2O3为15.82%~16.79%、13.38%~15.38%,Na2O高于K2O含量(Na2O/K2O=9.75~17.15、1.95~23.26),Na2O+K2O分别为4.48%~4.90%和3.37%~4.68%,P2O5分别为0.07%~0.09%和0.16%~0.27%,均具富集LREE和LILE,亏损HREE和HFSE,Eu无明显异常(δEu=0.98~1.09、0.88~1.06);(87Sr/86Sr)i0.7037000.704768,(143Nd/144Nd)i0.5122340.512361εNd(t)为+4.18~+6.66。这些特征指示芨芨台子蛇绿岩带属于SSZ型蛇绿岩带,玄武岩与辉长岩来源于亏损地幔部分熔融,并经历了一定程度的结晶分异及地壳混染作用。结合区域地质背景,芨芨台子蛇绿岩形成于弧后盆地,为红柳河–牛圈子–洗肠井洋盆北向俯冲引起弧后扩张所致。

    Abstract:

    The Jijitaizi ophiolite belt in the middle of the Beishan orogenic belt, between the Mingshui-Hanshan microcontinental block and the Gongpoquan unit is an important part of the Jijitaizi-Xiaohuangshan ophiolite belt, composed of ultrabasic rocks, gabbro and basalt. To reveal the tectonic setting of Jijitaizi ophiolite belt, gabbro and basalt are selected for petrological and geochemical studies. MgO of gabbro and basalt is 6.04%~6.73% and 6.21%~9.66%, Mg# values are 32.33~37.03, 27.58~46.27, respectively, SI consolidation index is 27.66~31.55 and 24.96~42.20, Al2O3 is 15.82%~16.79% and 13.38%~15.38%, Na2O higher than K2O content (Na2O/K2O=9.75~17.15, 1.95~23.26), Na2O+K2O is 4.48%~4.90% and 3.3%~4.68%, P2O5 is 0.07%~0.09% and 0.16%~0.27%. Both of gabbro and basalt enrichment of LILEs and LREE, depletion of HREE and HFSEs and Eu have no obvious anomalies (δEu=0.98~1.09、0.88~1.06). (87Sr/86Sr)i is 0.7037000.704768, (143Nd/144Nd)i is 0.5122340.512361, εNd(t) is +4.18~+6.66. These characteristics indicate Jijitaizi ophiolite belt belong to SSZ type ophiolite belt, basalt and gabbro originated from partial melting of the depleted mantle and experienced crystallization differentiation and crustal contamination. Combined with geological background, it can be concluded that the Jijitaizi ophiolite may form in a back-arc basin, resaulting from northward subduction of the Hongliuhe-Niujuanzi-Xichangjing ocean basin.

  • 西安地区地裂缝发育,前期研究认为地裂缝发育原因主要包括断层活动应力释放伴生裂缝、地震产生地裂缝、盆地伸展引发地裂缝、城市抽水产生地表下沉伴生地裂缝等(彭建兵等,199220072012卢全中等,2005朱立峰等,2005张勤等,2007董英等,2019Lu et al.,20192020冯旻譞等,2023)。这些地裂缝在西安地区多发生在黄土地层与河湖相沉积层中,对西安市城镇建筑、道路、桥梁、管网产生重要影响,是西安地区重要的地质灾害类型之一(卢全中等,2021)。

    西安地区第四系分布广泛,黄土–古土壤序列之下发育第四纪河湖相沉积或新近纪红色黏土及河湖相沉积。通过地表露头及各种钻孔对揭示西安地区的第四系较为深入。西安凹陷沉积中心第四系达到700 m,黄土–古土壤序列大约为几米至百余米,古三门湖沉积可达到千米之上(彭建兵等,2012)。对西安凹陷清凉山地区400 m内的第四纪沉积的观测多是通过地表露头、探槽或钻井碎屑揭示,对地层的连续性及变化特征缺乏全面认识。

    长安大学承担的《西安市地面沉降和地裂缝监测分层标建设项目》在西安凹陷南缘清凉山地裂缝f12两侧钻取了两口超过400 m深的全取芯井,使笔者能够第一次直观的认识该区域地表之下400 m深度沉积特征。前期观测到的清凉山地裂缝f12总体走向约为北东向 40°,倾向东南,倾角为80°,发育带宽约为20 m,长度约为2000 m (彭建兵等,2012)。这次钻探的两口钻井位于西安地裂缝f12两侧,DZ1孔位于f12地裂缝东侧169 m,DZ2孔于f12地裂缝西侧32 m,用以揭示裂缝两侧沉积地层序列差异、地裂缝的特征和裂缝两侧相对沉降距离。

    笔者对DZ1井(420 m)和DZ2井(400.5 m)开展沉积学分析,进行古地磁测量、磁化率及粒度分析,研究地下400 m深度沉积学特征及地层年代,进行地裂缝两侧地层对比及计算地裂缝沉降幅度。该项研究对进一步认识西安凹陷沉积特征,地裂缝特征具有重要科学意义,同时对讨论关中盆地形成演化及气候响应提供基础资料,对西安地区防控地裂缝地质灾害亦具有重要意义。

    黄土高原的黄土沉积为黄土–古土壤序列,地层包括全新世黄土,马兰黄土、离石黄土及午城黄土。黄土–古土壤序列记录了黄土高原第四纪气候变化以及对青藏高原隆升的响应(刘东生,1985吴锡浩等,1996安芷生等,1998)。渭河盆地(包括盆地南缘黄土台塬)同样堆积了黄土–古土壤沉积,沉积厚度最大达到135 m,地层包括马兰黄土、离石黄土及午城黄土(岳乐平,1989)。渭河盆地位于古三门湖和黄土高原接触或交叠的区域,堆积了深厚的第四纪黄土和三门湖沉积(贾兰坡,1966刘护军,2004冯希杰等,2008Liu et al.,2013王斌等,2013李智超等,2015Rits et al.,20162017鹿化煜等,2018Wang et al.,2020宋友桂等,2021)。

    西安市位于渭河盆地中部,受秦岭隆升影响区域形成一系列凹陷和隆起,包括固市凹陷、咸阳–礼泉隆起、西安凹陷、临潼–蓝田隆起、灞河凹陷(乔建伟等,2020)。西安凹陷夹持在咸阳隆起与临潼隆起之间,南深北浅呈簸萁状,南侧基底埋深约为5.6 km,北侧深为3.7 km。沉积地层包括始新统、渐新统、中新统、上新统、更新统、全新统(彭建兵等,2012)。

    渭河盆地黄土层之下通常有古三门湖沉积,三门湖沉积为一套交错层理发育的锈黄色细砂,夹粗砂及小砾石,以及灰绿色、灰白色细砂、砂质黏土。这套沉积物最早在三门峡一带发现,以后沿渭河盆地向西在潼关、渭南、西安甚至宝鸡一带都有发现。在中国地层典中(周慕林,2000),1923年最早将这套地层称为三门系,随后将三门系分为含锈黄色砂层及砾石层的上三门系和以灰绿色黏土、砂质黏土为主的下三门系,其后进一步将三门湖沉积含锈黄色砂层及砾石层的地层定义为上三门组,地层中含丽蚌 Lamprotula Antigua sp. 化石,时代为早更新世,下部含绿色及灰绿色的黏土与砂质黏土地层定义为下三门组(周慕林,2000)。其后人们根据黄色地层与绿色地层称为“黄三门”与“绿三门”上下两部分,不同学者对绿三门、黄三门的含义作出了不同解释(孙建中,1986王书兵等,2004)。薛祥煦(1981)在渭南游河附近绿三门组发现上新世游河象,因此将下三门组重新定义为游河组,时代为上新世。实际上所谓“黄三门”的锈黄色细砂沉积和“绿三门”的灰绿色沉积只不过是沉积物位于湖泊的不同位置而已,位于湖滨或浅湖沉积易接受粗颗粒沉积,并且受到氧化环境影响形成颗粒较粗的锈黄色细砂或砾石沉积,而位于湖泊中心水位较深的灰绿色、绿色砂质黏土或黏土沉积形成于还原环境。在研究不要求作精细地层划分的情况下统称三门湖沉积,时代可以根据古地磁年龄或化石时代确定。岳乐平(1996)讨论了黄土、红黏土及三门古湖沉积的关系,认为三门组可以和午城黄土、离石黄土同期异相,红黏土与三门古湖沉积的下部新近纪湖相地层同期异相。

    DZ1、DZ2钻孔位于西安凹陷西安市地裂缝f12两侧(图1),两孔钻遇的黄土地层为黄土–古土壤序列,包括中更新世黄土及早更新世黄土上部地层(图2a),钻遇的古三门湖沉积为三门组沉积(图2b)。黄土地层0.5 m间距采集古地磁样品,仅在S7、L8、S8区间作了加密取样。除去样品实验室加工破损与测试过程中的破损,根据样品磁性记录的优劣,最终DZ1孔采用古地磁数据223个,DZ2孔采用古地磁数据189个,满足第四纪磁性地层学分析。DZ1孔测试磁化率样品1302份、粒度样品761份,DZ2孔测试磁化率样品1412份、粒度样品736份。

    图  1  清凉山f12地裂缝钻孔位置图(a)和西安地区地裂缝分布示意图(b)(据王璐,2010
    Figure  1.  (a) Drilling locations of f12 fissure and (b) Distribution of ground fissures in Xi’an area
    图  2  DZ1孔岩心图
    a. 92.7 m以上黄土–古土壤序列;b. 100.5 m位置具层理的三门组上部锈黄色细砂岩;c. 含蚌壳化石的三门组下部灰绿色黏土质细砂岩;d. 373.6 m处的裂隙
    Figure  2.  Photos of the Core from DZ1

    通过钻井取样,对第四纪黄土地层和古湖沉积开展磁性地层学研究已较为成熟。在湖相沉积古地磁样品采集加工、实验室样品退磁及剩磁测量方面都给出了成熟的方案(Fu et al.,20132015)。古地磁测试分析在中国科学院地球环境研究所古地磁实验室完成,使用仪器为2G U-channel 755R超导磁力仪。由于关中地区黄土以及三门组古地磁测试工作已经非常成熟,剩磁载体比较清楚,因此笔者并未开展详细的岩石磁学研究工作,而是直接采用前期比较成熟的测试方法和程序,采用热退磁方法,NRM测完后退磁温分别为100 ℃、 200 ℃、300 ℃、400 ℃、 500 ℃、600 ℃。热退磁后显示出特征剩磁,经过矢量分析获得样品原生剩磁方向。关中盆地黄土与三门湖沉积一般在这个温度区间退磁后都能够获得特征剩磁(岳乐平,1989)。

    样品在西北大学大陆动力学国家重点实验室完成,磁化率测量仪器为MS-ZB型磁化率仪(英国Bartington公司生产的),实验过程为:将自然风干的样品用研钵研磨至2 μm以下,精确取10 g样品放入测试盒子中,然后放入磁化率仪中进行低频(0.47 Hz)磁化率测试。

    粒度测量在西北大学大陆动力学国家实验室完成,仪器为激光粒度仪,其测定范围为0.02~2 000 μm。此实验的操作步骤为:用电子天平称取大约为0.3 g,经过烘干箱烘干后,将所取样品放入的500 ml烧杯中,放置在电热板上,随后加入10 ml过氧化氢(浓度为10%)去除有机质并开始一直加热,期间添加少量蒸馏水以防蒸干,直至没有气泡冒出以后表明使其样品已经充分反应;有机质反应完全后再加入10 ml盐酸(浓度为10%)去除碳酸盐类并在加热板继续加热,等待反应完全气泡不再冒出;将烧杯取下并注满蒸馏水后静置12 h,颗粒完全沉淀后倒掉上部清水;上机测试前,加入10 ml 1 mol/L六偏磷酸钠分散颗粒,将样品放在超声波仪器内振荡10 mins,使样品颗粒保持分散,再用激光粒度仪对其进行测试。

    DZ1孔岩心磁性地层学研究结果显示:该孔岩心记录了布容正极性带(B)、松山负极性带(M)以及高斯正极性带(G)。B/M界线位于L8中部,孔深59 m处,年龄为0.78 Ma。松山负极性带中记录了J亚带(年龄为0.98~1.06 Ma),位于三门组上部,孔深约100~120 m位置。O亚带(1.75~1.98 Ma)位于三门组中部,孔深大约165~211 m处。R亚带(2.14~2.15 Ma)位于三门组下部,孔深约279~303 m处。M/G界线(2.60 Ma)位于404 m处(图3)。

    图  3  DZ1孔沉积–年代–指标综合柱状图
    Figure  3.  Sedimentation, chronology and proxies of DZ1

    DZ2孔岩心磁性地层学研究结果显示:该孔岩心记录了布容正极性带(B)、松山负极性带(M)以及高斯正极性带(G)。B/M界线位于孔深53 m处,年龄为0.78 Ma。松山负极性带中记录了J亚带(年龄0.98~1.06 Ma),位于三门组地层上部,深约87~98 m位置。O亚带(1.75~1.98 Ma)位于三门组中部,深度大约129~184 m处。R亚带(2.14~2.15 Ma)位于三门组下部,深度约218~251 m处。M/G界线(2.60 Ma)位于345 m处(图4)。

    图  4  DZ2孔沉积-年代-指标综合柱状图
    Figure  4.  Sedimentation, chronology and proxies of DZ2

    DZ1孔岩心磁化率分析结果显示古土壤磁化率数值较高,达到15~30(SI)。黄土磁化率大约为5~15 (SI),三门组沉积的磁化率显示含粗砂砾地层的磁化率数值较高可以达到30(SI),细黏土层磁化率数值为5~10(SI)(图3)。

    DZ2孔岩心磁化率分析结果显示古土壤磁化率数值较高,达到20~30(SI)。黄土磁化率大约为10~15 (SI),磁化率数值可以很好的划分黄土与古土壤地层。L9砂质黄土显示了大段的低磁化率数值,和L9的沉积特征相符。三门组沉积的磁化率显示含粗砂砾地层的磁化率数值较高(图4)。

    DZ1孔与DZ2孔岩心粒度分析显示黄土样品中值粒径为30~60 μm,黄土之下的三门组湖相沉积的中值粒径达到200~400 μm,其间的粗砂层中值粒径可以达到600 μm,而黏土夹层中值粒径仅为5 μm。中值粒径对于地层划分起到了很好作用,DZ1孔93 m之上的黄土–古土壤中值粒径为30~60 μm,93 m之下的三门组湖相沉积达到200 μm。DZ2孔75 m之上的中值粒径为30~60 μm,75 m之下的三门组湖相沉积粒径达到600 μm。中值粒径能够清晰的划分黄土沉积与三门组沉积界线(图3图4)。

    磁化率和粒度数值可以很好的划分黄土与古土壤地层界线以及黄土与三门组砂层界线。根据DZ1孔井场的岩心岩性观察及室内磁化率、粒度测试数据综合分析认为:该孔地层包括0~93 m的黄土–古土壤序列沉积,钻遇地层包括L2、S2、L3、S3、L4、S4、L5、S5、L6、S6、L7、S7、L8、S8、L9、S9、L10、S10、L11和S11。由于顶面为填土层,上部缺失马兰黄土及S1,全部黄土地层为离石黄土(图2a)。黄土地层时代包括中更新世与早更新世晚期,底部未见午城黄土(与三门组同期异相)。该孔钻遇黄土地层年龄大约为0.13~0.90 Ma(图3)。93 m以下全部为古三门湖沉积(图2b),地层定位为三门组(时间为早更新世并穿时上新世末)。根据岩性特征可以分为上、中、下3部分。上部岩性主要为黄色、锈黄色、土黄色细砂层、中粗砂层,局部含砾;中部主要为灰色、绿灰色粉砂层、中粗砂层,局部含砾。下部主要为灰色、绿灰色粉砂层、中粗砂层与暗红色泥岩互层。373.6 m处见裂缝发育,裂缝高角度倾斜,倾角约为77°,裂缝断面可见光滑擦痕(图2d)。

    关于三门湖沉积的地层划分,《中国地层典》—第四系(周慕林,2000)将渭河流域下游的三门湖沉积下更新统地层归为三门组。由于岩石地层单位具有穿时性,所以三门组底部界限大致为2.60 Ma (更新世底部年龄)。DZ1孔M/G界限位于404 m,距井底位置420 m处仅有16 m深度。404~420 m岩性与上部地层约100 m处的地层基本相似,并且钻孔底部约420 m处的贝壳化石与296 m处的贝壳化石相同,因此将其下部16 m上新统归化为三门组穿时上新世顶部更合适一些。基于上述原因将93 m以下三门湖沉积统归三门组(图3)。

    DZ1孔钻遇的三门湖沉积与渭河盆地其他区域的三门湖沉积特征基本一致,均为上部以锈黄色细砂为主,下部为灰绿色为主,但该孔的锈黄色细砂沉积厚度较薄,仅为60余m,而灰绿色黏土质沉积厚度较大达到数百米且未见底。296 m与420 m处发现贝壳化石丽蚌 Lamprotula Antigua sp. (图2c),该化石在三门峡东坡沟、平陆县席坪、大荔县甜水沟、渭南赤水河及游河流域三门组中均有发现。

    DZ2孔黄土地层主要依据井场岩心岩性观测描述进行划分,并依据磁化率和中值粒径进行校正。该孔最下部黄土55~72 m颗粒较粗,为L9砂质黄土,年龄大约为0.85 Ma。DZ2孔标志层L9识别清楚,为划分黄土–古土壤地层单元的重要依据。75 m以下为三门湖沉积,地层定位为三门组(时间为早更新世及穿越上新世末)。DZ2孔三门组岩性与DZ1孔三门组岩性近似,也可以分为上、中、下3部分。三门组上部岩性主要为黄色、锈黄色、土黄色细砂层、中粗砂层,局部含砾;中部主要为灰色、绿灰色粉砂层、中粗砂层,局部含砾;下部主要为灰色、绿灰色粉砂层、中粗砂层与暗红色泥岩互层(图4)。DZ2钻孔揭示的西安凹陷清凉山一带黄土地层包括S1、L2、S2、L3、S3、L4、S4、L5、S5、L6、S6、L7、S7、L8、S8、L9和S9。黄土–古土壤厚度约为72 m,包括中更新世离石黄土上部及早更新世离石黄土下部,未见午城黄土。上部地层缺失黑垆土S0和马兰黄土L1。DZ1孔岩心和DZ2孔岩心的黄土地层层序基本一致。相比之下,DZ2孔的三门组位置更高一些,这可能是DZ2孔位置偏向湖泊深水一侧,DZ1孔位置偏向湖岸,DZ1孔位置较早脱离湖泊接受黄土沉积;DZ2孔岩心三门组特征与DZ1孔岩心基本相似。

    西安凹陷清凉山地裂缝f12总体走向约为NE 40°,倾向SE,倾角为80°。发育带宽约为20 m,长度约为2000 m。据彭建兵(2012)研究,地裂缝f12于2001年6月初露地表,雨后在农田出现10 cm宽裂缝,裂缝的SE盘相对NW盘下降,两者高差约为10 cm,其后不断发展;2010年前后观测两盘高差超过30 cm(彭建兵,2012)。地下几十米甚至几百米深度两盘相对运动距离始终没有测得。

    为了解f12地裂缝地下400 m范围内地裂缝发育状况及上下两盘相对运动幅度,并为未来监测安装孔内设备,长安大学在西安市自然资源和规划局委托的《西安市地面沉降和地裂缝监测分层标建设项目》支持下,在f12地裂缝两侧打了两口钻孔,用以揭示裂缝两侧地层序列差异,确定裂缝两侧地层相对落差。两口钻井位于西安地裂缝f12两侧,DZ1孔位于f12地裂缝东侧169 m,DZ2孔于f12地裂缝西侧32 m。

    两口井上部出露B/M界限,底部都打到M/G界限位置,且J、O、R亚极性事件清晰,为其地层对比提供重要依据。标志层粉砂质黄土L9高程差为5 m,古地磁B/M界线高程差为4 m,J亚带高程差为8~17 m,O亚带高程差为31~22 m,R亚带高程差为56~47 m,M/G界线高程差为54 m。总体看来,DZ1孔地层界线和古地磁界线都较DZ2孔高程低,并且越靠下层差距越大(表1图5图6)。两口井相距很近,仅为200余米,钻孔孔口高程现代地表高程相差约为5 m,井下地层高程的差异能够大致反映出地裂缝两侧垂向相对运动幅度。DZ1井373.6 m深处揭露断层面,断面陡倾,倾角为77°,倾向SE。前人研究认为f12地裂缝为正断型,SE盘(上盘)相对NW盘(下盘)下降,断面倾角为80° (彭建兵,2012)。笔者根据岩性和古地磁界线对比均发现,地裂缝f12的SE盘相对NW盘下降,产状与前人研究成果较一致。

    表  1  地裂缝两侧古地磁界线高程对比表
    Table  1.  Correlations of boundary elevation at two sides of f12
    钻孔S5底位置(m)B/M(L8)界线(m)L9顶位置(m)黄土底界(m)J亚带界线(m)O亚带界线(m)R亚带界线(m)M/G界线(m)
    DZ1孔(上盘)414399393365358~338293~247179~15554
    DZ2孔(下盘)413403398381366~355324~269235-202108
    高差1−4−5−16−8~−17−31~−22−56~−47−54
     注:DZ1井口高程为458.44 m,DZ2井口高程为453.49 m。
    下载: 导出CSV 
    | 显示表格
    图  5  DZ1孔与DZ2孔磁性地层对比
    Figure  5.  Correlations of magnetic stratigraphy of DZ1 and DZ2
    图  6  井DZ1-DZ2钻遇发f12断裂面示意图
    点A. DZ1井次断裂面出露深度;点B. 主断裂带出露地面位置
    Figure  6.  Fracture plane of f12 at DZ1-DZ2

    DZ1井断面出露位置A点(图6)的下伏地层发育古地磁M/G界限,即M/G界限发育在正断层的下盘。假设通过点A的断面是f12地裂缝的主断裂面,那么下盘的M/G界限位置应该接近等高,但事实是DZ2井M/G界限比DZ1井的高出近60 m,说明A断面下盘方向还发育一级断面。根据南西距DZ2井32 m 处B点(图6)地面出露地裂缝推测,其向地下延伸很可能为主断裂面。按断裂面倾角80°推算,该主断裂面与DZ1井位交点的深度远大于420 m,结合断裂面发育规模,过A可能为次断裂面,过B应为主断裂面。通过DZ1和DZ2井观测到的f12地裂缝上盘相对下降约为4~54 m,深度越大错距越大。

    (1)西安凹陷南缘发育的清凉山f12地裂缝断裂带总体走向北东,呈正断层。断层上、下两盘地层包括黄土–古土壤序列和三门组湖湘沉积,三门组底部穿时第四纪与上新世界限。上盘位于f12地裂缝南东侧,于DZ1井373.6 m处出露裂缝面次级断面,倾向SE,倾角为77°。

    (2)主断裂面出露于地表两井间。两口井岩心上部都记录了古地磁B/M界限,底部都打到M/G界限位置,且J、O、R亚极性事件清晰,为其地层对比提供重要依据。两口井标志层粉砂质黄土L9位置高差为5 m,古地磁B/M界线位置高差为4 m,J亚带位置高差为8~17 m,O亚带位置高差为31~22 m,R亚带位置高差为56~47 m,M/G界线位置高差为54 m。上盘标志地层界线和古地磁界线高程普遍较下盘低,并且越靠下层,差距越大。

    (3)根据各层高程差及古地磁界线高程差判断,地裂缝f12断裂带上盘在第四系范围内相对下降幅度约为4~54 m。

    致谢:“西安市地面沉降和地裂缝监测分层标建设项目”提供了DZ1孔和DZ2孔岩心样品。古地磁测试得到了中科院西安地球环境研究所古地磁室强小科研究员、何占怀技师支持。西安地质矿产勘查开发院有限公司毛浓博高级工程师及长安大学研究生柯昌艳、王跃飞、毛欣宇、陈晓、张薇学、王鹏荣、李泽权、李聪、孙月敏、孟恒羽、亢佳乐、史少斌协助采集了样品,西北大学薛泽远同学协助测试粒度、磁化率。在此一并感谢。

  • 图  1   中亚造山带大地构造位置简图(a)及北山造山带构造纲要图(b)(据Xiao et al., 2010

    1.红石山蛇绿岩带;2.芨芨台子–小黄山蛇绿岩带;3.红柳河–牛圈子–洗肠井蛇绿岩带;4.辉铜山–帐房山蛇绿岩带

    Figure  1.   (a) Sketched tectonic map of the CAOB and (b) simplified geological map of the Beishan orogenic belt

    图  2   芨芨台子蛇绿岩带地质简图(a)、剖面图及采样位置(b)

    Figure  2.   (a) Geological sketch map, (b) section and sampling location of Jijitaizi ophiolite belt

    图  3   芨芨台子蛇绿岩野外照片

    Figure  3.   Field photos of Jijitaizi ophiolite

    图  4   芨芨台子蛇绿岩带辉长岩(a)、玄武岩(b)显微照片(正交偏光)

    Pl. 斜长石;Px.辉石

    Figure  4.   (a) Micrographs of gabbro and (b) basalt in Jijitaizi ophiolite belt

    图  5   芨芨台子辉长岩、玄武岩AFM图解(a)(据Irvine et al., 1971)、和SiO2-K2O图解(b)(Peccerillo et al., 1976)和SiO2-TFeO/MgO图解(c)(据Miyashiro, 1974

    Figure  5.   (a) AFM diagram, (b) SiO2-K2O diagram and (c) SiO2-TFeO/MgO diagram of Jijitaizi gabbro and basalt

    图  6   芨芨台子蛇绿岩带稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)(据Sun et al., 1989

    Figure  6.   (a) Chondrite-normalized REE pattern and (b) primitive mantle-normalized trace element spidergram of Jijitaizi ophiolite

    图  7   芨芨台子蛇绿岩带(87Sr/86Sr)i-εNdt)图解(据DePaolo et al., 1979张国震等,2021

    Figure  7.   (87Sr/86Sr)i-εNd (t) diagram of Jijitaizi ophiolite

    图  8   芨芨台子辉长岩、玄武岩源区判别图解

    a. Zr/Nb-Y/Nb判别图解(据董朋生等,2018);b. Zr-Y判别图解(据Condie, 1989); c. Zr/Nb-La/Yb判别图解(据Zhao et al., 2007);d. La/Sm-Sm/Yb判别图解(据Dilek, 2011

    Figure  8.   Discrimination diagrams of source areas of the gabbro and basalt in Jijitaizi

    图  9   芨芨台子蛇绿岩Sr/Nd-Th/Yb图解(a) (Woodhead et al., 1998) 和Ba/Rb-Rb/Sr图解(b)(据董朋生等,2018

    Figure  9.   (a) Sr/Nd-Th/Yb diagram and (b) Ba/Rb-Rb/Sr diagram of Jijitaizi ophiolite

    图  10   芨芨台子蛇绿岩带地壳混染(a)和结晶分异图解(b)(据张国震等,2021

    Figure  10.   (a)Crustal contamination and (b) crystallization differentiation diagramof Jijitaizi ophiolite

    图  11   芨芨台子蛇绿岩构造判别图解(图a据Shervais, 1982;图b据Pearce, 1982

    Figure  11.   Tectonic discrimination diagram of Jijitaizi ophiolite

    图  12   北山造山带早古生代演化模式图(据杜雪亮,2019王怀涛,2019

    Figure  12.   The schematic map for the early Paleozoic evolution in Beishan orogenic belt

    续表1
    样品编号17JJTZ-
    HC-01
    17JJTZ-
    HC-02
    17JJTZ-
    HC-03
    17JJTZ-
    HC-04
    17JJTZ-
    XW-01
    17JJTZ-
    XW-02
    17JJTZ-
    XW-03
    17JJTZ-
    XW-04
    17JJTZ-
    XW-05
    17JJTZ-
    XW-06
    岩性辉长岩辉长岩辉长岩辉长岩玄武岩玄武岩玄武岩玄武安山岩玄武岩玄武安山岩
    Ce7.918.517.746.9222.7024.2025.5015.0524.8013.65
    Pr1.151.261.111.093.143.263.432.163.331.90
    Nd5.836.855.895.2913.9014.5014.9010.2014.609.00
    Sm2.182.061.741.763.403.613.652.903.532.49
    Eu0.800.900.750.671.231.171.190.951.300.93
    Gd2.753.072.832.483.783.963.903.753.983.24
    Tb0.490.520.490.460.610.640.620.650.650.58
    Dy3.404.043.283.273.834.193.964.444.383.89
    Ho0.730.800.740.680.790.910.810.990.950.89
    Er2.232.412.061.972.272.792.302.952.772.70
    Tm0.340.360.330.320.320.410.330.440.400.40
    Yb2.242.312.212.072.022.732.062.942.732.68
    Lu0.390.380.330.300.320.430.310.470.430.43
    (La/Yb)N0.991.001.100.933.272.573.621.542.731.53
    (La/Sm)N0.921.011.250.981.751.751.841.401.901.48
    (Gd/Yb)N1.021.101.060.991.551.201.571.061.211.00
    ∑REE33.5236.6832.8829.9567.5172.6073.3654.1974.2548.48
    ∑LREE20.9622.8020.6118.4053.5756.5459.0737.5657.9633.67
    ∑HREE12.5613.8812.2711.5613.9416.0614.2916.6316.2914.81
    LREE/HREE1.671.641.681.593.843.524.132.263.562.27
    δEu0.991.091.040.981.050.950.960.881.061.00
    δCe1.031.040.980.991.041.051.051.001.031.02
    下载: 导出CSV

    表  1   芨芨台子蛇绿岩主(%)、微量及稀土元素(10−6)分析结果

    Table  1   Major element (%) and trace element (10−6) composition of the Jijitaizi ophiolite

    样品编号17JJTZ-
    HC-01
    17JJTZ-
    HC-02
    17JJTZ-
    HC-03
    17JJTZ-
    HC-04
    17JJTZ-
    XW-01
    17JJTZ-
    XW-02
    17JJTZ-
    XW-03
    17JJTZ-
    XW-04
    17JJTZ-
    XW-05
    17JJTZ-
    XW-06
    岩性辉长岩辉长岩辉长岩辉长岩玄武岩玄武岩玄武岩玄武安山岩玄武岩玄武安山岩
    SiO250.6451.2950.3951.6647.9750.9747.7152.7250.8854.96
    Al2O316.0815.9416.7915.8215.3814.5615.2913.7714.3813.38
    BaO0.020.020.020.020.030.020.040.010.020.01
    CaO9.388.9310.409.258.026.338.515.426.714.82
    Cr2O30.010.010.010.010.090.010.090.010.010.01
    TFe2O310.9010.9010.249.879.8614.259.2614.5214.2714.06
    K2O0.280.270.300.440.770.211.320.190.210.19
    MgO6.396.046.106.739.667.139.256.586.806.21
    MnO0.180.180.170.170.180.200.160.220.220.18
    Na2O4.374.634.184.292.604.412.584.454.474.42
    P2O50.080.090.080.070.190.270.190.170.250.16
    LOI0.950.991.021.304.011.384.331.301.060.65
    TiO20.860.950.810.771.250.961.230.980.980.93
    Total100.14100.24100.51100.40100.01100.7099.96100.34100.2699.98
    Mg#33.5832.3333.9337.0345.7930.1446.2728.1029.1227.58
    Na2O+K2O4.654.904.484.733.374.623.904.644.684.61
    Na2O/K2O15.6117.1513.939.753.3821.001.9523.4221.2923.26
    σ(里特曼指数)2.832.902.722.582.292.683.232.212.781.78
    SI固结指数29.1227.6629.3031.5542.2027.4241.2825.5626.4124.96
    Rb3.664.623.645.5813.503.0031.002.902.802.90
    Ba92.60385.0098.9045.30200.0040.00260.0040.0040.0030.00
    Th0.290.310.320.231.541.841.650.971.770.79
    Cs0.100.070.090.130.450.121.400.140.080.07
    Cr61.1041.2069.4062.00474.006.00464.0016.006.0016.00
    Co39.5033.1036.0035.2046.4047.5043.5056.0050.8047.90
    Ni33.2028.4035.4046.90195.0029.00178.0039.5033.0035.50
    K6392.141743.3110957.951577.286392.141743.3110957.951577.281743.311577.28
    P829.201178.34829.20741.92829.201178.34829.20741.921091.05698.27
    Nb2.062.261.931.804.4010.404.306.4010.404.70
    Pb1.080.772.030.288.101.105.801.101.001.70
    Sr197.00181.00158.00159.00323.00191.50299.00196.50219.00166.50
    Ta0.160.160.120.340.290.470.290.300.460.21
    Ti7491.795753.697371.925873.567491.795753.697371.925873.565873.565573.89
    U0.060.100.080.080.500.700.400.500.700.50
    Y21.2021.9019.9019.1021.4025.8022.5026.8025.9024.60
    Zr30.8037.8027.7027.00109.0032.90108.5025.6034.8023.00
    Hf0.971.130.800.882.801.103.000.901.300.80
    La3.093.223.382.679.209.8010.406.3010.405.70
    下载: 导出CSV

    表  2   芨芨台子蛇绿岩带Sr-Nd同位素组成

    Table  2   Sr-Nd isotopic compositions of the Jijitaizi ophiolite

    样品号Rb (10-6)Sr (10-6)87Sr/86Sr87Rb/86Sr±2σ87Sr/86Sr)iSm (10-6)
    17JJTZ-HC-013.661970.7040670.0537260.0000060.7037002.18
    17JJTZ-XW-0113.53230.7055940.1208840.0000070.7047683.4
    17JJTZ-XW-023191.50.7041910.0453030.0000030.7038813.61
    17JJTZ-XW-03312990.7058160.2998720.0000040.7037673.65
    样品号Nd (10-6)147Sm/144Nd143Nd/144Nd±2σ143Nd/144Nd)iεNdtTDM2 (Ma)
    17JJTZ-HC-015.830.2259480.5130710.0000040.5123616.66669
    17JJTZ-XW-0113.90.1478030.5126990.0000060.5122344.18871
    17JJTZ-XW-0214.50.1504390.5127330.0000100.5122604.69830
    17JJTZ-XW-0314.90.1480220.5127140.0000090.5122494.46848
    下载: 导出CSV
  • 代堰锫, 李同柱, 张惠华, 等. , 扬子陆块西缘江浪穹窿超基性岩的成因: 锆石U-Pb定年、岩石地球化学及Sr-Nd同位素[J]. 沉积与特提斯地质, 2021, 41(04): 573-584.10.19826/j.cnki.1009-3850.2021.01002. doi: 10.19826/j.cnki.1009-3850.2021.01002

    DAI Yanpei, LI Tongzhu, ZHANG Huihua, et al. , Petrogenesis of the ultramafic pluton in the Jianglangdome, western margin of the Yangtze block: ZirconU-Pbdating, geochemistry and Sr-Nd isotopes[J]. Sedimentary Geology and Tethyan Geolog, 2021. 41(04): 573-584.10. 19826/j. cnki. 1009-3850.2021. 01002. doi: 10.19826/j.cnki.1009-3850.2021.01002

    丁嘉鑫, 韩春明, 肖文交, 等. 北山造山带花牛山岛弧东段钨矿床成矿时代和成矿动力学过程[J]. 岩石学报, 2015, 31(2): 594-616

    DING Jiaxing, Han Chunming, Xiao Wenjiao. , et al. , Geochemistry and U-Pb geochronology of tungsten deposit of Huaniushan island arc in the Beishan Orogenic Belt, and its geodynamic background[J]. Acta Petrologica Sinica, 2015, 31(2): 594-616

    董洪凯, 薛鹏远, 刘广, 刘思林, 于龙. 内蒙古北山地区芨芨台子-小黄山蛇绿岩构造属性及与成矿关系: 来自阿民乌素地幔橄榄岩印证[J]. 地质与勘探, 2022, 58(04): 767-777

    DONG Hongkai, XUE Pengyuan, LIU Guang, et al. , Tectonic Attributes of the Jijitaizi-Xiaohuangshan Ophiolite in the Beishan Area, Inner Mongolia and in Relationship to Metallogenesis: Evidence from the Aminwusu Mantle Peridotite[J]. Geology and Exploration, 2022, 58(04): 767-777

    董朋生, 董国臣, 孙转荣, 等. 冀北五凤楼煌斑岩年代学、地球化学特征及其成因[J]. 现代地质, 2018, 32(02): 305-315. DOI: 10.19657/j. geoscience. 1000-8527.2018. 02.09.

    DONG Pensheng, Dong Guocheng, Sun Zhuangrong, et al. , Chronology, Geochemistry Characteristics and Petrogenesis of Wufenglou Lamprophyres in Northern Hebei, China[J]. Geoscience, 2018, 32(02): 305-315. DOI: 10.19657/j.geoscience.1000-8527.2018.02.09.

    杜雪亮.中亚造山带南缘北山红柳河蛇绿岩带成因及构造意义研究[D]. 兰州: 兰州大学, 2019.

    DU Xueliang. Origin and Tectonic Sigificance of Hongliuhe Ophiolite Belt in Beishan, Southern Margin of Central Asian Orogenic Belt[D]. Lanzhou: Lanzhou University, 2019

    龚全胜, 刘明强, 李海林, 等. 甘肃北山造山带类型及基本特征[J]. 西北地质. 2002, (03): 28-34

    GONG Quansheng, LIU Mingqiang, LI Hailing, et al. , The type and basic characteristics of Beishan orogenic belt, Gansu[J]. Northwest Geology, 2002, (03): 28-34.

    龚全胜, 刘明强, 梁明宏, 等, 北山造山带大地构造相及构造演化[J]. 西北地质, 2003.36(1): 11-17.

    GONG Quansheng, Liu Mingqiang, Liang Minghong, et al. , The tectonic facies and tectonic evolution of Beishan orogenic belt, Gansu[J]. Northwest Geology, 2003. 35( 4) : 30-40

    何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 35( 4) : 30-40

    HE Shiping, Ren Bingcheng, Yao Wenguang, et al. , 2002. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwest Geology, 35( 4) : 30-40

    何国琦, 李茂松. 中国兴蒙-北疆蛇绿岩地质的若干问题[J]. 地学研究, 1993, 2: 3~12

    HE Guoqi, Li Maosong Some Problems of Ophiolite Geology in Northern China[J]. Dixue Yanjiu, 1993, 2: 3~12

    胡新茁, 赵国春, 胡新悦, 等. 内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J]. 地质通报, 2015, 34(Z1): 425-436

    HU Xingzhuo, Zhao Guochun, Hu Xingyue, et al. Geological characteristics, formation epoch and geotectonic significance of the Yueyashan ophiolitic tectonic mélange in Beishan area, Inner Mongolia[J]. Geological Bulletin of China, 2015, 34(Z1): 425-436.

    黄河, 王涛, 童英, 等. 中国西天山古生代岩浆岩时空架构、源区特征及构造背景[J]. 西北地质, 2024, 57(6): 25−43.

    HUANG He, WANG Tao, TONG Ying, et al. Spatial and Temporal Framework, Evolution of Magma Sources, and Tectonic Settings of Paleozoic Magmatic Rocks in West Tianshan, China[J]. Northwestern Geology, 2024, 57(6): 25−43.

    李敏, 辛后田, 田健, 等. 北山造山带公婆泉岩浆弧的组成、时代及其大地构造意义[J]. 地球科学, 2020, 45(07): 2393-2412

    LI Ming, XING Houtian, TIAN Jian, et al. , Composition, Age and Polarity of Gongpoquan Arc and Its Tectonic Significance in Beishan Orogen[J]. Earth Science. 2020, 45(07): 2393-2412.

    李向民, 余吉远, 王国强, 等. 甘肃北山地区芨芨台子蛇绿岩年代学研究及其意义[J]. 地质通报, 2012, 31( 12) : 2025-2031.

    LI Xiangming, YU Jiyuan, WANG Guoqiang, et al. Geochronology of Jijitaizi ophiolite in Beishan area, Gansu Province, and its geological significance[J], Geological Bulletin of China,2012, 31(12): 2025-2031.

    刘雪亚, 王荃.中国西部北山造山带的大地构造及其演化[J]. 地学研究, 1995. (28): 7–48

    LIU Xueya, WANG Quan. Tectonic of Orogenic belts in Beishan MTS. , Western China and Their evolution[J]. Dixue Yanjiu, 1995, (28): 7–48.

    刘懿馨, 沙鑫, 马蓁, 等. 北祁连西段双龙镁铁质-超镁铁质岩地球化学特征及构造意义[J]. 岩石学报, 2018, 34(02): 383-397.

    LIU Yixin, SHA Xin, MA Zheng, et al. , Geochemical characteristics and tectonic implication of the Shuanglong mafic-ultramafic rocks in western section of the North Qilian[J]. Acta Petrologica Sinica, 2018, 34(2) : 383 -397

    孟庆涛, 张正平, 董洪凯. 内蒙古北山地区阿民乌素蛇绿岩的年代学、地球化学特征及大地构造意义[J]. 地质与勘探, 2021.57(01): 122-135

    MENG Qingtao, Zhang Zhengping, Dong Hongkai, Chronology, geochemical characteristics and tectonic significance of Aminwusu ophiolite in the Beishan area, Inner Mongolia[J]. Geology and Exploration, 2021.57(01): 122-135.

    牛文超, 辛后田, 段连峰, 等. , 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性---基于1: 5万清河沟幅地质图的新认识[J]. 中国地质, 2019.46(5): 977-994

    NIU Wenchao, Xin Houtian, Duan Lianfeng, et al. , The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia—New understanding based on the geological map of Qinghegou Sheet (1: 50000)[J]. Geology in China, 2019.46(5): 977-994

    任秉琛, 何世平, 姚文光, 等. , 甘肃北山牛圈子蛇绿岩铷-锶同位素年龄及其大地构造意义[J]. 西北地质, 2001.34( 2): 21-27 doi: 10.3969/j.issn.1009-6248.2001.02.004

    REN Bingchen, He Shiping, Yao Wenguang, et al. , Rb-Sr isotope age of Niuquanzi ophiolite and its tectonic significance in Beishan district, Gansu[J]. Northwest Geology, 2001.34( 2): 21-27. doi: 10.3969/j.issn.1009-6248.2001.02.004

    宋博, 张慧元, 魏东涛, 等. 中亚造山带南缘中—新元古代地壳的揭示——来自北山—阿拉善北部钻遇碱性花岗岩的年代学和Hf同位素示踪研究[J]. 地球学报, 2021, 42(01): 9-20

    SONG Bo, ZHANG Huiyuan, WEI Dongtao, et al. , Revelation of the Meso–Neoproterozoic Crust on the Southern Margin of the Central Asian Orogenic Belt: Chronology and Hf Isotope Tracer from Drilling-intersected Alkaline Granites, Northern Beishan–Alxa[J]. Acta Geoscience Sinica, 2021, 42(01): 9-20

    宋东方, 肖文交, 韩春明, 等. , 北山中部增生造山过程: 构造变形和40Ar-39Ar 年代学制约[J]. 岩石学报, 2018. 34( 7) : 2087-2098

    SONG Dongfang, Xiao Wenjiao, Han Chunming, et al. , Accretionary processes of the central segment of Beishan: Constraints from structural deformation and40Ar-39Ar geochronology[J]. gy. Acta Petrologica Sinica, 2018, 34(7) : 2087 -209.

    宋泰忠, 王瑾, 林海, 等. , 内蒙古北山地区小黄山蛇绿岩地质特征[J]. 西北地质, 2008.41 (03): 55-63

    SONG Taizhong, Wang Jing, Lin Hai, et al. , The Geological Features of Ophiolites of Xiaohuangshanin Beishan Area, Inner Mongolia[J]. Northwest Geology, 2008,41 (03): 55-63.

    王国强. 北山古生代蛇绿岩、火山岩研究与构造演化[D]. 西安:长安大学. 2015.

    WANG Guoqiang, The Research of the Paleozoic Ophiolites and Volcanic Rocks and the Tectonic Evolution in the Beishan area (Northwest China)[D]. Xi’an Changan University, 2015.

    王国强, 李向民, 徐学义, 等. , 甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J]. 岩石学报, 2014, 30(6): 1685-1694

    WANG Guoqiang, Li Xiangming, Xu Xueyi, et al. , Ziron U-Pb chronological study of the Hongshishan ophiolite in the Beishan area and their tectonic significance[J]. Acta Petrologica Sinica, 2014. 30(6): 1685-1694

    王国强, 李向民, 徐学义, 等. , 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 2021, 40(01): 71-81

    WANG Guoqiang, Li Xiangming, Xu Xueyi, et al. , Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 2021.40(1): 71-81

    王怀涛. 中亚造山带南段北山构造-岩浆作用及其地质意义的研究[D].兰州: 兰州大学, 2019.

    WANG Huaitao, Tectono-magmatism and its geological significance in the beishan area of the southern part of the Central Asian Orogenic Belt[D]. Lanzhou: Lanzhou University, 2019.

    王鑫玉. 北山公婆泉岛弧岩石组合、岩浆时空演变及其构造意义[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所), 2017.

    WANG Xinyu. The rock assemblages, spatial and temporal variations in the Gongpoquan arc, Beishan and their implications for tectonic setting[D]. Guangzhou :Guangzhou Institute of Geochemistry, CAS 2017.

    王鑫玉, 袁超, 龙晓平, 等. , 北山造山带尖山和石板井花岗岩年代学、地球化学研究及其地质意义[J]. 地球化学, 2018.47(1): 63-78 doi: 10.3969/j.issn.0379-1726.2018.01.005

    WANG Xinyu, Yuan Chao, Long Xiaoping, et al. , Geochronological, geochemical, and geological significance of Jianshan and Shibanjing granites in the Gongpoquan Arc, Beishan Orogenic Belt[J]. Geochemical, 2018.47(1): 63-78. doi: 10.3969/j.issn.0379-1726.2018.01.005

    吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 57(3): 11−28.

    WU Yanrong, ZHOU Hai, ZHAO Guochun, et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 11−28.

    夏林圻, 夏祖春, 徐学义. 北祁连山奥陶纪弧后盆地火山岩浆成因[J]. 中国地质. 2003, 30(1): 48-60

    XIA Linqi, Xia Zuchun, Xu Xueyi. Magmagenesis of Ordovician back-arc basins in the Northern Qilian Mountains[J]. Geology in China, 2003.30(1): 48-60.

    辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 39(09): 1297-1316

    XIN Houtian, NIU Wenchao, TIAN Jian, et al. , Spatio-temporal structure of Beishan orogenic belt and evolution of Paleo-Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(9): 1297-1316

    杨高学, 刘晓宇, 朱钊, 等. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质, 2024, 57(3): 1−10.

    YANG Gaoxue, LIU Xiaoyu, ZHU Zhao, et al. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 1−10.

    张国震, 辛后田, 段连峰, 等. 内蒙古北山造山带北部早二叠世末期高镁辉长岩地球化学特征及构造意义[J/OL]. 地球科学, 2021: 1−14. http://kns.cnki.net/kcms/detail/42.1874.p.20211118.2126.028.html.

    ZHANG Guozheng, XIN Houtian, DUAN Lianfeng, et al. Geochemical characteristics and tectonic implications of the end Early Permian high magnesium gabbro from northern Beishan orogenic belt, Inner Mongolia[J/OL]. Earth Science, 2021: 1−14, http://kns.cnki.net/kcms/detail/42.1874.p.20211118.2126.028.html.

    张元元, 郭召杰. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J]. 岩石学报, 2008, 24(4): 803-809

    ZHANG Yuanyuan, Guo Zhaojie. Accurate constraint on formation and emplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu Provinces and its tectonic implications[J]. Acta Petrologica Sinica, 2008.21(4): 803-809.

    张正平, 段炳鑫, 孟庆涛, 等. 内蒙古北山地区北山岩群斜长角闪岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 地质与勘探, 2017, 53(06): 1129-1139. DOI: 10.13712/j. cnki. dzykt. 2017.06. 008.

    ZHANG Zhengpin, DUAN Bingxin, MENG Qintao, et al. , LA-ICP-MS Zircon U-Pb Dating of Amphibolites of the Beishan Group in the Beishan Area, Inner Monolia and its Geological Significance[J]. Geology and Exploration, 2017, 53(06): 1129-1139. DOI: 10.13712/j.cnki.dzykt.2017.06.008.

    张正平, 辛后田, 程海峰, 等. 内蒙古北山造山带发现额勒根蛇绿岩——红石山-百合山蛇绿岩带东延的证据[J]. 地质通报, 2020, 39(9): 1389-1403

    ZHANG Zhengpin, XIN Houtian, CHEN Haifeng, et al. , The discovery of the Elegen ophiolite in Beishan orogenic belt, Inner Mongolia: Evidence for the east extension of the Hongshishan-Baiheshan ophiolite belt[J]. Geological Bulletin of China. 2020.39(9): 1389-1403.

    郑荣国, 吴泰然, 张文, 等. 北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境[J]. 地质学报, 2012, 86(6): 961-971

    ZHENG Rongguo, Wu Tairan, Zhang Wen, et al. , Geochemical Characteristics and Tectonic Setting and of the Yueyashan-Xichangjing Ophiolite in the Beishan Area[J]. Scientia Geological Sinica 2012.86(6): 961-971.

    左国朝, 何国琦, 李红诚. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990a: 1−226.

    ZUO Guochao, HE Guoqi, LI Hongcheng. Plate tectonics and metallogenic regularity of Beishan[M]. Beijing: Peking University Press, 1990a: 1−226.

    左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990b, 04: 305-314+411

    ZUO Guochao, Zhang Shulin, He Guoqi, et al. , Early Paleozoic Plate Tectonics in Beishan Area[J]. Scientia Geological Sinica, 1990b. 04: 305-314+411.

    左国朝, 李茂松. 甘肃北山地区早古生代岩石圈形成与演化[M]. 兰州: 甘肃科学技术出版社, 1996: 1−92

    ZUO Guochao, LI Maosong. Formation and evolution of early Paleozoic lithosphere in Beishan area, Gansu Province[M]. Lanzhou: Gansu Science and Technology Press, 1996: 1−92.

    左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 2003(01): 1-15

    ZUO Guochao, Liu Yike, Liu Chunyan. Tectonic framework and evolution of Mengbei Mountain area in Gansu and Xinjiang[J]. Acta Geological Gansu, 2003. (01): 1-15.

    Aldanmaz E. , Pearce J A. , Thirlwall M F. , et al. , Petrogenetic Evolution of late Cenozoic, Post-collision Volcanism in Western Anatolia, Turkey[J]. Journal of volcanology and geothermal research, 2000, 102(1–2): 67–95. https://doi.org/10.1016/S0377-0273(00)00182-7

    Aldanmaz E, Yaliniz M K, Güctekin A, et al. Geochemical Characteristics of Mafic Lavas from the Neotethyan Ophiolites in Western Turkey: Implications for Heterogeneous Source Contribution During Variable Stages of Ocean Crust Generation[J]. Geological Magazine, 2008, 145: 37–54. https://doi.org/10.1017/S0016756807003986

    Ao S J, Xiao W J, Windley B F, et al. , Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zirconU-Pb and 40Ar /39Ar geochronology [J]. Gondwana Research, 2016. 30: 224-235. doi: 10.1016/j.gr.2015.03.004

    Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J], Journal of Asian Earth Sciences, 2002 21(1): 0-110.

    Condie K C. Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary: Identification and significance[J]. Lithos, 1989, 23(1): 1-18.

    DePaolo D J. , Wasserburg G J. , Neodymium Isotopes in Flood Basalts From the Siberian Platform and Inferences about Their Mantle Sources[J]. Proceedings of the National Academy of Sciences, 1979, 76(7): 3056-3060. doi: 10.1073/pnas.76.7.3056

    Dilek Y. , Spontaneous subduction initiation and forearc magmatism as revealed by Phanerozoic suprasubduction zone ophiolites[J]. Geological Society of America Abstracts with Programs, 2010, 42(5): 575.

    Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Bulletin. 2011, 123(3-4): 387-411.

    Duggen S, Hoernle K, Van D B P, et al. Post-Collisional Transition from Subduction- to Intraplate-type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere[J]. Journal of Petrology, 2005(6): 1155-1201.

    GovindarajuK. , Compilation of working values and samples description for 383 Geostandards[J]. Geostandards Newsletter, 1994, 18(2): 331.

    Hawkins J W. Petrologic and geochemical characteristics of marginal basin basalts[J]. Island Arcs, Deep-Sea Trenches, and Back-Arc Basins Am Geophys Union, Washington, DC, 1977. 1: 355-365.

    He Z Y, Klemd R, Yan L L, et al. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2018, 185: 1–14. doi: 10.1016/j.earscirev.2018.05.012.

    Irvine TN, Baragar WRA. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences. 1971, 8, 523-548

    Li XH. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze craton, SE China[J]. Geochemical Journal, 1997, 31: 323-327. doi: 10.2343/geochemj.31.323

    McKenzie D. , O'Nions R K. , Partial Melt Distribution From Inversion of Rare Earth Element Concentrations[J]. Journal of Petrology, 1991. 32: 1021–1091. doi: 10.1093/petrology/32.5.1021

    Michael B. Wolf, Peter J. Wyllie. , Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time[J]. Contributions to Mineralogy and Petrology, 1994, 115(4) : 369-383 doi: 10.1007/BF00320972

    Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355. doi: 10.2475/ajs.274.4.321

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[A]. In: Thorpe RS (ed). Andesites: Orogenic Andesites and Related Rocks[M]. John Wiley & Sons, 1982: 525−548.

    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1): 63-81.

    Reagan M K, Ishizuka O, Stern R J, et al. , Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): 1-17.

    Schilling J G, Zajac M, Evans R, et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N[J]. American Journal of Science. 1983. 283(6): 510-586.

    Şengör, A. , Natal'in, B. , Burtman, V. , Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature, 1993. 364: 299-307. Doi: 10.1038/364299a0

    Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982. 59(1) : 101 -118 doi: 10.1016/0012-821X(82)90120-0

    Shi Y, Li L, Kroner A, et al. , Carboniferous Alaskan-type complex along the Sino-Mongolian boundary, southern margin of the Central Asian Orogenic Belt[J]. Acta Geochim, 2017, 36(2): 276-290. doi: 10.1007/s11631-017-0145-7

    Song D F, Xiao W J, Han C M, Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids[J]. International Geology Review, 2013. 55, 1705-1727

    Song D F, Xiao W J, Han C M, et al. Polyphase deformation of a Paleozoic forearc–arc complex in the Beishan orogen, NW China[J]. Tectonophysics, 2014, 632: 224-243. doi: 10.1016/j.tecto.2014.06.030

    Song D F, Xiao W J, Windley B F, et al. , A Paleozoic Japan- type subduction- accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos, 2015 224/225: 195-213. doi: 10.1016/j.lithos.2015.03.005

    Song D F, Xiao W J, Windley B F. , et al. Metamorphic Complexes in Accretionary Orogens: Insights from the Beishan Collage, Southern Central Asian Orogenic Belt[J]. Tectonophysics, 2016. 688: 135–147. doi: 10.1016/j.tecto.2016.09.012.

    Stern C R, De Wit MJ, Rocas Verdes ophiolites, southernmost South America: remnants of progressive stages of development of oceanic-type crust in a continental margin back-arc basin[J]. Geological Society, London, Special Publications, 2003,218(1): 665-683.

    Sun S, Mcdonough W F. , Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications. 1989. 42(1): 313-345.

    Windley B F, Alexeiev D, Xiao W, et al. , Tectonic models for accretion of the Central Asian Orogenic Belt[J]. J. geol. soc, 2007, 164(12): 31-47

    S. Wang, K Zhang, B. Song, et al. , Geochronology and geochemistry of the Niujuanzi ophiolitic melange, Gansu Province, NW China: implications for tectonic evolution of the Beishan Orogenic Collage[J]. International Journal of Earth Sciences, 2018, 107(1): 269-289. doi: 10.1007/s00531-017-1489-2

    Woodhead J D, Eggins S M, Johnson R W. Magma genesis in the New Britain Island Arc: Further insights into melting and mass transfer processes. Journal of Petrology, 1998. 39(9): 1641-1668DOI: 10.1093/petroj/39.9.1641

    Wu T, Zheng R, Zhang W, et al. Tectonic framework of Beishan Mountain—Northern Alxa Area and the time constraints for the closing of the Paleo-Asian Ocean: proceedings of the Proceedings of the Fifth Workshop on 1: 5m International Geological Map of Asia [C]. 2011

    Xiao W, Song D, Windley B F. , Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives[J]. Science China Earth Sciences, 2020. 63: 329–361, https://doi.org/10.1007/s11430-019-9524-6

    Xiao W J , Mao Q G , Windley B F , Paleozoic multiple accretionary andcollisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2010, 310:1553–1594. https://doi.org/10.2475/10.2010.12.

    Xiao W J. , Windley B F. , Han C M. , et al. Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia[J]. Earth-Science Reviews, 2018. 186: 94–128. doi: 10.1016/j.earscirev.2017.09.020.

    Zhang W, Pease V, Wu T R, et al . Discovery of an adakite-like pluton near Dongqiyishan ( Beishan, NW China ) : Its age and tectonic significance[J]. Lithos, 2012,142/143: 148-160.

    Zhao J, Zhou M. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research. 2007. 152(1-2): 27-47.

    Zheng R G, Wu T R, Zhang W, et al, 2013. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt: Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt[J]. Journal of Asian Earth Sciences, 62: 463-475

    Zuo G C, Zhang S L, He G Q, et al. , Plate Tectonic Characteristics During the Early Paleozoic in Beishan Near the Sino Mongolian Border Region, China[J]. Tectonophysics, 1991, 188(3–4): 385–392. doi: 10.1016/0040-1951(91)90466-6.

图(12)  /  表(3)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  7
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-09
  • 修回日期:  2023-02-23
  • 录用日期:  2023-09-11
  • 网络出版日期:  2024-12-18
  • 刊出日期:  2025-02-19

目录

/

返回文章
返回