ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

秦岭造山带涝峪地区宽坪岩群变质作用温压条件及原位Rb–Sr年代学研究

田智博, 苟龙龙, 徐晓飞, 刘学锋, 毛振宇

田智博,苟龙龙,徐晓飞,等. 秦岭造山带涝峪地区宽坪岩群变质作用温压条件及原位Rb–Sr年代学研究[J]. 西北地质,2025,58(1):1−26. doi: 10.12401/j.nwg.2023046
引用本文: 田智博,苟龙龙,徐晓飞,等. 秦岭造山带涝峪地区宽坪岩群变质作用温压条件及原位Rb–Sr年代学研究[J]. 西北地质,2025,58(1):1−26. doi: 10.12401/j.nwg.2023046
TIAN Zhibo,GOU Longlong,XU Xiaofei,et al. Metamorphic P–T Conditions and In–situ Rb–Sr Geochronology of the Kuanping Group in the Laoyu Area of the Qinling Orogenic Belt[J]. Northwestern Geology,2025,58(1):1−26. doi: 10.12401/j.nwg.2023046
Citation: TIAN Zhibo,GOU Longlong,XU Xiaofei,et al. Metamorphic P–T Conditions and In–situ Rb–Sr Geochronology of the Kuanping Group in the Laoyu Area of the Qinling Orogenic Belt[J]. Northwestern Geology,2025,58(1):1−26. doi: 10.12401/j.nwg.2023046

秦岭造山带涝峪地区宽坪岩群变质作用温压条件及原位Rb–Sr年代学研究

基金项目: 国家自然科学基金面上项目“秦岭造山带喂子坪–宝鸡太白地区秦岭杂岩麻粒岩相变质作用及构造意义”(42172059)和大陆动力学国家重点实验室项目(SKLCD-04)联合资助。
详细信息
    作者简介:

    田智博(1996−),男,矿物学、岩石学、矿床学专业硕士研究生。E–mail:346428809@qq.com

    通讯作者:

    苟龙龙(1984−),男,教授,主要从事变质地质学工作。E–mail:LLgou@nwu.edu.cn

  • 中图分类号: P588.3

Metamorphic P–T Conditions and In–situ Rb–Sr Geochronology of the Kuanping Group in the Laoyu Area of the Qinling Orogenic Belt

  • 摘要:

    秦岭造山带涝峪地区发育宽坪岩群的典型剖面,是研究宽坪岩群变质变形、构造热历史的重要区域。然而,由于缺乏对该地区宽坪岩群变质温压条件和年代学的约束,导致区域变质与多期变形事件的关系及地质意义认识仍不清楚。笔者以该地区宽坪岩群SN向剖面中的二云母石英片岩、含石榴子石二云母石英片岩、绿片岩和大理岩为研究对象,开展了详细的岩相学研究。在此基础上,重点对二云母石英片岩和含石榴子石二云母石英片岩进行了黑云母Ti温度计、多硅白云母地质压力计、变质相平衡模拟和原位LA–ICP–MS黑云母和白云母Rb–Sr年代学研究,进而探讨了涝峪地区宽坪岩群经历多期构造热事件的意义。野外和岩相学观察发现二云母石英片岩和绿片岩发生了强烈的变形,金云母大理岩经历了强烈的糜棱岩化作用。黑云母Ti温度计和多硅白云母压力计限定得到二云母石英片岩样品KP-3和KP-4的变质温压条件为300~500 ℃、2.0~8.0 kbar,对应的平均值为440 ℃、4.0 kbar。黑云母Ti温度计限定得到含石榴子石二云母石英片岩样品KP2202的变质温度为652~683 ℃。变质相平衡模拟P–T视剖面图计算得到二云母石英片岩样品KP-3和KP-4的变质温压条件为400~480 ℃和2.0~10 kbar;而含石榴子石二云母石英片岩样品KP2202的变质温压条件为645~680 ℃、8.0~9.0 kbar。综合地质温压计和相平衡模拟的结果,可以确定二云母石英片岩为绿片岩相变质作用的产物,而含石榴子石二云母石英片岩经历了低角闪岩相变质作用。原位LA–ICP–MS黑云母和白云母Rb–Sr分析显示二云母石英片岩记录两期等时线年龄,分别为~290 Ma和~155 Ma,而含石榴子石二云母石英片岩记录的等时线年龄为~110 Ma。因此涝峪地区宽坪岩群中的二云母石英片岩记录了3期等时线年龄,分别为~290 Ma、~155 Ma和~110 Ma。结合前人的研究结果,3期等时线年龄均代表了后期构造热事件的时代,其中~290 Ma的等时线年龄与古特提斯洋向北俯冲作用相对应,而~155 Ma和~110 Ma的等时线年龄可能与中生代时期北秦岭构造带发生强烈的变形和花岗岩岩浆活动导致的热重置有关。

    Abstract:

    The laoyu area of the Qinling orogenic belt has a typical section of the Kuanping group, which is important for studying the metamorphism, deformation, and tectonothermal history of the Kuanping group. However, the metamorphic P–T conditions and chronology of the Kuanping group in this region are still lacking, which hinders our understanding of the relationship between its regional metamorphism and later deformation events, as well as their geological significances. In this study, detailed petrographic studies were carried out on two–mica quartz schist, garnet–bearing two–mica quartz schist, greenschist, and marble in the north–south section of the Kuanping group in this area. Based on this, the geological significances of multiple tectonothermal events that the Kuanping group in the Laoyu region underwent were examined with a focus on two-mica quartz schist and garnet–bearing two–mica quartz schist using Ti–in–biotite thermometry, phengite geobarometry, phase equilibrium modelling, and in situ LA–ICP–MS biotite and muscovite Rb–Sr dating. According to field and petrographic observations, two–mica quartz schist and greenschist were both significantly deformed, and phlogopite marble suffered strong mylonitization. The Ti–in–biotite thermometer and phengite geobarometer yielded the metamorphic PT conditions of 300~500 ℃ and 2.0~8.0 kbar (average values are 440 ℃ and 4.0 kbar) for the two–mica quartz schist samples KP-3 and KP-4. The Ti–in–biotite thermometry constrained the metamorphic temperature of the garnet–bearing two–mica quartz schist sample KP2202 to be 652~683 ℃. According to the PT pseudosection modeling, the metamorphic PT conditions of the two–mica quartz schists and and the garnet–bearing two–mica quartz schists are 400~480 ℃ and 2.0~10 kbar, and 645~680 ℃ and 8.0~9.0 kbar, respectively. On the basis of the results from the geothermobarometry and phase equilibrium modelling, the two–mica quartz schist is the consequence of greenschist–facies metamorphism, whereas the garnet–bearing two–mica quartz schist formed by low–amphibolite facies metamorphism. In–situ LA–ICP–MS biotite and muscovite Rb–Sr dating shows that the two–mica quartz schist records two isochron ages of ~290 Ma and ~155 Ma, while the garnet–bearing two–mica quartz schist records an isochron age of ~110 Ma. Consequently, the two–mica quartz schists in the Kuanping group of the Laoyu region record three isochron ages, which are ~290 Ma, ~155 Ma, and ~110 Ma. Combined with the results of previous studies, all three isochron ages represent the timings of late tectonothermal events, where the isochron age of ~290 Ma corresponds to the northward subduction of the paleo–Tethys Oceanic crust, while the isochron ages of ~155 Ma and ~110 Ma may be related to the intense deformation and thermal resetting caused by granitic magmatism in the North Qinling tectonic belt during the Mesozoic.

  • 各玛龙银多金属矿位于青海省海西州都兰县境内,矿区中心点坐标为35°42′00″N,98°42′00″E,位于那更康切尔大型银矿以南10 km处。自2016年以来,矿区开展了银多金属矿找矿工作,共圈出了8条含矿蚀变带,27条银多金属矿体,成因为浅成低温热液型,但成矿物质和热液来源一直未查明(张先超等,2017王婧等,2020)。以往通过1/1万地磁测量,在矿区东南角圈定一处正负相伴的椭圆状磁异常M1,含矿蚀变带围绕M1磁异常呈环状分布,但磁异常与成矿关系未查明(裴有生等,2021)。本文主要是结合地物化资料的综合分析,来分析M1磁异常起因及其找矿潜力。

    各玛龙银多金属矿地处青海都兰县热水乡西南约120 km处,处于东昆仑成矿带的东段(图1任家祺等,2019薛长军等,2019)。区域上分布着那更康切尔大型银矿床、坑德弄舍大型多金属矿床、以及尕芝麻金矿点、叶陇沟金矿点等,成矿地质条件优越(杨涛等,2017国显正等,2019徐崇文等,2020秦阳等,2020谢升浪等,2020a, 2020b谷子成等,2021)。

    图  1  各玛龙矿区大地构造位置图(薛长军等,2019
    1.主缝合带;2.次缝合带;3.新元古代-早古生代缝合带俯冲方向,一侧有齿者为单向俯冲,两侧有齿者为双向俯冲;4.晚古生代-早古生代缝合带俯冲方向;5.A型俯冲带;6.构造单元界线;7.一级构造单元编号;8.二-三级构造单元编号;9.研究区;10.河流、湖泊
    Figure  1.  Geotectonic location map of Gemalong mining area

    矿区出露地层较简单,主要为晚三叠统鄂拉山组(T3e)、第四系。鄂拉山组为一套陆相酸性火山碎屑岩建造夹少量正常沉积岩,为中酸性角砾熔岩、安山岩、英安岩、流纹岩、凝灰岩夹少量灰绿色、灰黄色细砂岩(图2图3)。

    图  2  各玛龙矿区地质简图(裴有生等,2021
    1.第四系;2.鄂拉山组砂岩;3.鄂拉山组英安岩;4.鄂拉山组流纹岩;5.鄂拉山组晶屑凝灰岩;6.鄂拉山组安山岩;7.鄂拉山组火山角砾岩;8.早三叠世二长花岗岩;9.早三叠世钾长花岗岩;10.早三叠世花岗闪长岩;11.早三叠世花岗斑岩;12.晚三叠世花岗闪长斑岩;13.矿(化)体类型及编号;14. 钻孔位置及编号;15.断层;16. 1∶1万地磁异常(M1)
    Figure  2.  Geological sketch map of Gemalong mining area
    图  3  各玛龙矿区主要岩性显微镜下照片
    a.安山岩;b.晶屑凝灰岩;c.流纹岩;d.花岗斑岩;e.二长花岗岩;f.花岗闪长斑岩(1.斜长石;2.石英;3.角闪石)
    Figure  3.  Micrograph of the main lithology in Gemalong mining area

    矿区主要发育近东西向、近南北向、北东向三组断裂构造,其中近南北向断裂为主要控矿和容矿构造。

    矿区岩浆活动强烈,发育三叠世火山岩和侵入岩,其中火山岩分布在矿区南部和东部,岩性为安山岩、火山角砾岩、流纹岩、英安岩,从基性向中性演变。侵入岩分布在矿区北部,主要以早三叠世-晚三叠世侵入岩为主,为浅成-超浅成花岗闪长岩、二长花岗岩、钾长花岗岩、花岗斑岩、花岗闪长斑岩,一般呈岩株或岩脉状产出(张志颖,2019)。

    矿区已圈出8条含矿蚀变带,其中Ⅰ-Pb、Ⅱ-AgAuPb、Ⅲ-AgAuCuPbZn、Ⅳ-PbZn、Ⅵ-AgAu位于M1磁异常西侧,Ⅴ-PbAgAu、Ⅶ-Cu、Ⅷ-AuAg位于M1磁异常内,围绕M1磁异常由外至内存在低中温-中高温的成矿分带性,其中Ⅶ-Cu矿带位于M1磁异常中心位置,其含矿岩性为花岗闪长斑岩,圈出1条厚14.4 m的Cu矿化体,Cu平均品位为0.15%,最高品位为0.36%;Ⅲ-AgAuCuPbZn矿带为本区银金主矿带,控制长达1.5 km,控制斜深达600 m,厚60 m,含矿岩性为构造角砾岩,围岩为二长花岗岩和花岗斑岩。

    矿区共圈出27条银多金属矿体,主要矿种为银,伴生矿种主要有金、铜、铅、锌。矿体呈脉状,长为68~1050 m,厚为0.65~5.69 m,控制斜深120~600 m,Au品位为0.86×10−6~3.79 ×10−6,平均品位为0.86×10−6;Ag品位为45.3×10−61120×10−6,平均品位为326×10−6;Pb品位0.3%~3.52%,平均品位为0.42%;Zn品位为0.53%~2.86%,平均品位为0.65%;Cu品位为0.21%~1.72%,平均品位为0.37%。

    矿石结构主要为自形-半自形粒状结构、交代残留结构、乳滴状结构(图4),构造主要为细脉状构造,偶见稀疏浸染状构造。矿石矿物主要有黄铜矿、黄铁矿、方铅矿、闪锌矿、白铁矿、毒砂等,脉石矿物主要有石英、冰长石、方解石、绢云母、绿泥石、绿帘石等。

    图  4  各玛龙矿区主要矿石显微镜下照片
    a.黄铜矿呈团块状分布于毒砂间;b.方铅矿中呈乳滴状的辉银矿;c.黄铜矿与黄铁矿、白铁矿一起分布;d.方铅矿、黄铁矿、黄铜矿分布于石英颗粒间
    Figure  4.  Microscopic photographs of the main ores in Gemalong mining area

    矿区发育一套斑岩型-浅成低温热液成矿系统的叠加热液蚀变,M1磁异常西侧的Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅵ矿带发育以硅化、高岭土化、冰长石化、绿泥石化为主的典型低硫型浅成低温热液蚀变(图5a图5b);M1磁异常内的Ⅴ、Ⅶ、Ⅷ矿带地表发育面状的泥化,浅部钻孔内发育黄铁绢英岩化(图5c图5d)。

    图  5  各玛龙矿区围岩蚀变照片
    a.Ⅲ矿带硅化、高岭土化;b.Ⅲ矿带围岩绿泥石、绿帘石化;c.Ⅴ矿带黄铁绢英岩化;d.M1磁异常地表泥化
    Figure  5.  Photographs of wall rock alteration in Gemalong mining area

    经吉林大学孙丰月团队等学者对M1磁异常西侧Ⅲ-AgAuCuPbZn矿带分析研究,认为矿床成因为浅成低温热液型,矿床形成主要受近南北向构造控制,成矿以Ag、Au、Cu、Pb、Zn为主,主成矿温度分布在134.2~204.3 ℃,成矿深度为1.34~2.28 km,成矿热液以岩浆热液为主并伴随有大气降水的参与,其物质来源于晚三叠世陆相火山-岩浆作用(张先超等,2017王婧等,2020)。

    M1磁异常内的Ⅶ-Cu矿带与构造关系不大,含矿岩性为花岗闪长斑岩,黄铜矿、黄铁矿呈稀疏浸染状分布,与斑岩型铜矿特征类似。

    矿区的大部分岩石磁性都较弱,其中鄂拉山组的凝灰岩、流纹岩、安山岩、火山角砾岩和早三叠世的花岗岩、二长花岗岩、花岗岩闪长岩、闪长玢岩等岩体磁性整体不高,磁化率均值在11.54×10−6×4πSI~105.13×10−6×4πSI,最高值为1127.13×10−6×4πSI,其剩余磁化强度在6.28×10−3~301.09×10−3A/m(表1)。但变化梯度大,推测与构造、热液等活动影响着磁性矿物的形成有关(孙忠实等,2005冯军等,2022)。

    表  1  各玛龙地区磁性参数特征一览表
    Table  1.  List of magnetic parameter characteristics in Gemalong mining area
    岩性 磁化率κ范围 (10−6×4π·SI) 磁化率κ平均值 (10−6×4π·SI) 剩磁范围Jr (10−3A/m) 剩磁Jr平均值 (10−3A/m)
    英安岩 32.71~1061.65 261.48 5.85~350.42 85.2
    安山岩 2.17~112.31 43.26 1.33~439.35 84.18
    二长花岗岩 6.77~31.50 31.50 4.49~67.19 16.19
    流纹岩 0.22~48.73 23.09 3.73~16.25 7.45
    闪长岩 13.57~86.26 13.57 4.39~22.23 8.09
    火山角砾岩(岩芯) 2.87~24.71 11.54 1.70~12.52 6.28
    晶屑凝灰岩 13.03~81.39 39.21 3.53~16.95 9.35
    花岗斑岩 5.2~41.19 22.01 4.88~12.09 8.90
    银金矿石 0.12~33.76 18.69 4.43~15.55 9.56
    花岗闪长斑岩 384.36~931.06 512.48 1.63~27.81 11.63
    下载: 导出CSV 
    | 显示表格
    表  2  钻孔岩芯磁性参数特征一览表
    Table  2.  List of magnetic parameter characteristics in Drill
    岩性 位置 标本数(块) 磁化率κ范围 (10−6×4π·SI)
    最小值 最大值 平均值
    黄铜矿化、磁黄铁矿化
    花岗闪长斑岩
    QZ003钻孔34.35~96.3 m 11 302.39 1209.58 621.79
    碎裂岩 QZ003钻孔96.3~103.65 m 7 177.46 651.74 322.4
    晶屑凝灰岩 QZ003 11.74~14.45, 103.65~140 m 17 28.57 473.49 207.39
    火山角砾岩 QZ002 20.35~80 m 32 177.46 651.74 322.4
    下载: 导出CSV 
    | 显示表格

    M1磁异常为一椭圆状磁异常,长轴轴向为近东西向,长约1500 m,宽约1300 m。异常正值区基本上在南部,负值区在北部,ΔTmax为490 nT,ΔTmin为−275 nT(图6)。磁异常北部负值区地表岩性为鄂拉山组晶屑凝灰岩、二长花岗岩、黑云母花岗岩,正值区地表岩性为鄂拉山组安山岩、流纹岩,此两种岩性的磁性均较弱,均不足以引起如此规模异常,推测磁性体有一定的埋深和规模。

    图  6  各玛龙矿区M1磁异常ΔT等值线图
    Figure  6.  The ΔT isogram of M1 Magnetic Anomaly in Gemalong mining area

    根据已知磁性参数数据,对CP01磁法剖面进行二度半人机交互反演圈出6个磁性体(图7)。通过对1号和4号磁性体工程验证,1号反应Ⅴ-PbAuAg矿带,在黄铁绢英岩化带内圈定一铅矿体,含矿岩性及围岩为火山角砾岩(图8);4号反应Ⅶ-Cu矿带,在黄铁绢英岩化与泥化的混合带中圈定Cu矿化体,含矿岩性为花岗闪长斑岩,圈出5条铜(金)矿化体,总厚为14.4 m,Cu平均品位为0.15%,最高品位为0.36%(图9)。其余磁性体均未验证,其中2号磁性体规模、埋深较大,形态上呈一岩体状,截面积为66185 m2,长度为400 m,体积为26474082 m3,埋深>500 m,朝东陡倾,推测为隐伏岩体。

    图  7  CP01号磁测剖面拟合反演图
    1.流纹岩;2.晶屑凝灰岩;3.二长花岗岩;4.Pb矿化体;5.Cu矿化体;6.流纹质火山角砾岩;7.安山岩;8.磁异常;9.钻孔位置及编号
    Figure  7.  Magnetic profile fitting inversion map of CP01.
    图  8  Ⅴ-Pb含矿蚀变带QZ002钻孔(a)和Ⅶ-Cu含矿蚀变带QZ003钻孔(b)剖面图
    1.第四系残坡积物;2.流纹质火山角砾岩;3.流纹岩;4.晶屑凝灰岩;5.安山岩;6.石英斑岩;7.花岗闪长斑岩;8.Pb矿(化)体;9.破碎蚀变带;10.Cu矿(化)体;11.Au矿(化)体;12.钻孔位置及编号;13.实测及推测地质界线;14.平均品位/厚度;15.样品及采样位置
    Figure  8.  (a)The section of QZ002in the V-PbOre-bearing alteration zone and (b)the section of QZ003in the VII-Cu Ore-bearing alteration zone
    图  9  1∶5000激电中梯等值线图
    Figure  9.  The isogram of 1∶5000 Ip intermediate gradient

    从激电异常看,M1磁异常区内1∶5000激电异常整体呈为低阻高极化的面状异常特征,东侧未封闭,电阻率平均500 Ω·m,极化率平均6.8%,激电异常规模、形态均与磁异常套合,推测激电异常是隐伏岩体浅部的黄铁矿绢英岩化带的反映(图9)。

    从测深异常看,M1磁异常区经测量两条激电、可控源大地音频电磁测深综合剖面(DPM-1、DPM-2),激电异常均显示为低阻高极化,电阻率平均为500 Ω·m,极化率平均为6.8%,最高为11.2%;可控源大地音频电磁测深反应,深部隐伏一长为600 m,宽为400 m,深10001500 m的低阻体,形态上呈一岩体,现认为测深异常反应的是黄铁绢英岩化带,从低阻异常中心位置看,两条剖面低阻异常区对应较好,隐伏岩体向东埋深逐渐增大(图10)。

    图  10  DPM-1(a)、DPM-3地物(b)(激电中梯、可控源大地音频电磁测深)综合剖面图
    1.晶屑凝灰岩;2.流纹岩;3.安山岩;4.可控源大地音频电磁测深电阻率等值线图;5.激电中梯剖面视电阻率曲线;6.激电中梯剖面视极化率曲线;7.地磁剖面ΔT曲线
    Figure  10.  (a) The Composite profile of DPM-1 and (b) DPM-3 (Ip intermediate gradient\Controlled source magnetotelluric sounding)

    从化探异常看,围绕M1磁异常1∶10000土壤剖面具分带性,具体为Cu、Sn、Bi等中高温元素异常集中分布于M1磁异常区,Ag、Au、Pb等中低温元素异常扩散范围较远,推测M1磁异常深部隐伏岩体为本区成矿物质和热液来源(图11)。

    图  11  1∶5000土壤异常等值线图
    Figure  11.  The isogram of 1∶5000 Soil anomalies

    从地质特征看,围绕M1磁异常自外而内类似斑岩型的青盘岩化、黄铁绢英岩化、泥化蚀变分带;垂向上M1磁异常区地表为面状泥化,再往下为黄铁绢英岩化,深部测深高阻与低阻过度带推测是钾化,也具斑岩型蚀变分带。平面上成矿元素从从Ⅰ含矿蚀变带Pb、Ⅲ含矿蚀变带AgAu、Ⅳ含矿蚀变带PbZn、Ⅴ含矿蚀变带AgAuPb,再到CuⅡ含矿蚀变带、AuⅠ含矿蚀变带,围绕磁异常自外而内具低温-中高温的元素组合分带性(图12a),通过综合分析建立了M1磁异常预测找矿模型(图12b),磁异常区发现的Ⅶ-Cu矿带含矿岩性为花岗闪长斑岩,黄铜矿化呈稀疏浸染状分布,与斑岩型铜矿特征类似,现认为Ⅶ-Cu矿带为M1磁异常深部隐伏岩体的一个小岩脉,推测隐伏岩体岩性为花岗闪长斑岩,M1磁异常具备寻找斑岩型铜矿的潜力(李保平等,2011)。因此,综上认为各玛龙银多金属矿床可能发育浅部浅成低温热液矿化-深部斑岩型矿化的这样一套成矿系统,与我国西藏多龙矿集区、紫金山矿田类似(唐菊兴等,20142016张德全等,20032005李斌等,2015)。

    图  12  矿区成矿元素及蚀变分带平面(a)和剖面(b)示意图
    1.晚三叠世鄂拉山组晶屑凝灰岩;2.晚三叠世鄂拉山组流纹岩;3.晚三叠世鄂拉山组火山角砾岩;4.晚三叠世鄂拉山组安山岩;5.早三叠世二长花岗岩;6.晚三叠世花岗闪长岩;7.青磐岩化;8.黄铁绢英岩化;9.钾化;10.泥化;11.矿(化)体类型及编号;12.化探元素异常组合及分布范围;13.M1磁异常位置
    Figure  12.  (a)The plane and (b)sectionsketch map of Metallogenic elements and Alteration zoning in the mining area.

    根据综合分析,M1磁异常是由深部隐伏的花岗闪长斑岩体中发育磁黄铁矿化引起,地表面状的低阻高极化激电异常是浅部泥化带中发育黄铁矿化引起,测深异常是对深部黄铁绢英岩化带中发育金属硫化物的反应;再结合地表及浅部已经存在泥化、黄铁绢英岩化、钾化的面状蚀变分带,认为M1磁异常具备寻找斑岩型矿的较大潜力。经验证浅部已发现含铜花岗闪长斑岩脉,深部尚存在厚大的测深低阻体,认为是黄铁绢英岩化带中发育黄铜矿等金属硫化物的反应,存在较大的找矿潜力。

    (1)根据矿区地物化资料综合推测M1磁异常为深部隐伏的花岗闪长斑岩体引起;M1磁异常区域的地质显示其与斑岩型矿床的成矿地质条件相近,具备寻找斑岩型矿的较大潜力。

    (2)因为激电异常是隐伏岩体浅部的黄铁矿绢英岩化带的反映,测深异常反应的是黄铁绢英岩化带。下步应根据测深、磁法、激电综合异常,对M1磁异常应采用钻探工程进行深部验证,揭穿浅部的黄铁绢英岩化带,至深部钾化带附近寻找斑岩型矿。

  • 图  1   秦岭造山带地质简图(据Dong et al.,2011a修改)

    LLWF.灵宝–鲁山–舞阳断裂;LLF.洛南–栾川断裂;N–SCB.华南板块北缘;1.华北板块南缘;2.宽坪岩群;3.秦岭杂岩;4.商丹缝合带;5.二郎坪群;6.南秦岭南部带;7.南秦岭北部带;8.MLSZ.勉略缝合带;9.大别地体

    Figure  1.   Simplified tectonic division of the Qinling orogenic belt

    图  2   涝峪地区地质图及采样位置(据陕西省地质局区测队,1966陕西地质局13队,1972修改)

    Figure  2.   Simplified geological map of Laoyu area, showing the with sample location

    图  3   野外露头照片

    a. 强烈褶皱变形的二云母石英片岩与绿片岩;b. 绿片岩;c、d. 二云母石英片岩;e、f. 糜棱岩化含金云母大理岩

    Figure  3.   Photographs of outcrop

    图  4   二云母石英片岩和含石榴子石二云母石英片岩显微照片

    a.二云母石英片岩样品KP-3片理发生褶皱弯曲(单偏光);b.二云母石英片岩样品KP-3部分区域TIMA扫描图显示褶皱变形;c.二云母石英片岩样品KP-3中的黑云母、白云母、石英和钠长石等矿物(正交偏光);d.二云母石英片岩样品KP-4中黑云母、白云母和石英等矿物(单偏光);e.二云母石英片岩样品KP-4中黑云母、白云母和石英等矿物以及明显的片理构造(正交偏光);f.二云母石英片岩样品KP-4部分区域TIMA扫描图;g、h.含石榴子石二云母石英片岩样品KP2202石榴子石变斑晶和基质矿物黑云母,白云母,斜长石,和石英(单偏光);i.含石榴子石二云母石英片岩样品KP2202中黑云母、白云母、石英、斜长石和钛铁矿等矿物(背散射照片)

    Figure  4.   Photomicrographs of the two-mica quartz schist and the garnet-berting two-mica quartz schist

    图  5   含石榴子石二云母石英片岩的黑云母Mg–Fe2+图(a)于长石分类图解(b)

    Figure  5.   (a) Biotite Mg–Fe2+ diagram, (b) plagioclase XOr–XAb–XAn diagram in the garnet-bearing two-mica quartz schist sample KP2202

    图  6   含石榴石的二云母石英片岩KP2202石榴子石变斑晶成分剖面

    Figure  6.   Compositional profiles of garnet porphyroblast from the garnet-bearing two-mica quartz schist sample KP2202

    图  7   绿片岩及糜棱岩化金云母大理岩显微照片与TIMA扫描图

    a. 绿片岩样品KP-2中绿泥石、绿帘石和阳起石等矿物(单偏光);b. 绿片岩样品KP-5中定向分布的绿泥石、绿帘石和阳起石等矿物(正交偏光);c. 糜棱岩化含金云母大理岩样品KP-1中的方解石碎斑与碎基以及金云母(正交偏光);d. 糜棱岩化含金云母大理岩中经历变形的金云母(单偏光);e. TIMA扫描图(与图7d具有相同视域)

    Figure  7.   Photo-micrographs of green schist and mylonitized phlogopite-bearing marble

    图  8   二云母石英片岩样品KP-3与KP-4的黑云母Ti温度计结果(a)与多硅白云母压力计计算结果(b)

    Figure  8.   The P-T conditions calculated by (a) Ti-in-biotite geothermometer and (b) phengite geobarometer

    图  9   二云母石英片岩样品KP-3的P–T视剖面图(a)、黑云母XTi(bt)XFe(bt)等值线的P–T视剖面图(b)

    Figure  9.   (a) P–T pseudosection, (b) P–T pseudosection with isopleths of XTi(bt) and XFe(bt) for the two-mica quartz schist sample KP-3

    图  10   二云母石英片岩样品KP-4的P–T视剖面图(a)黑云母XTi(bt)XFe(bt)等值线的P–T视剖面图(b)

    Figure  10.   (a) P–T pseudosection, (b) P–T pseudosection with isopleths of XTi(bt) and XFe(bt) for the two-mica quartz schist sample KP-4

    图  11   含石榴子石二云母石英片岩样品KP2202的P–T视剖面图(a)、石榴子石XPyXGrs等值线的P–T视剖面图(b)

    Figure  11.   (a) P–T pseudosection, (b) P–T pseudosection with isopleths of XPy and XGrs for the garnet-bearing two-mica quartz schist sample KP2202

    图  12   原位LA–ICP–MS黑云母和白云母Rb–Sr定年的部分分析点位

    a.二云母石英片岩样品KP-3;b.二云母石英片岩样品KP-4;c、d.含石榴子石二云母石英片岩样品KP2202

    Figure  12.   Spot locations for in-situ LA-ICP-MS biotite and muscovite Rb–Sr analysis

    图  13   原位LA–ICP–MS黑云母和白云母Rb–Sr等时线年龄图

    a.二云母石英片岩样品KP-3;b.二云母石英片岩样品KP-4;c.含石榴子石二云母石英片岩样品KP2202

    Figure  13.   In situ LA–ICP–MS biotite and muscovite Rb–Sr isochron diagrams

    图  14   宽坪岩群变质温压条件及P–T轨迹

    轨迹1和2分别为桐柏地区宽坪岩群北部和南部构造单元变质P–T轨迹(Liu et al., 2011);轨迹3为红土岭地区含石榴子石石英片岩变质P–T轨迹(王海杰等,2021);区域4和5分别为涝峪地区宽坪岩群中二云母石英片岩和含石榴子石二云母石英片岩变质温压条件(本研究)

    Figure  14.   Summary of metamorphic P–T conditions and paths for the Kuanping Group

    表  1   二云母石英片岩样品KP-3和KP-4中黑云母和白云母成分

    Table  1   Mineral composition of biotite and muscovite in the two-mica quartz schist of sample KP-3 and KP-4

    样品
    矿物
    KP-3
    BtMs
    SiO236.8638.0937.8037.8337.2237.7837.8237.5252.0849.3651.9650.5748.3447.8648.2547.59
    TiO21.020.961.110.890.831.110.971.130.120.110.190.190.120.110.120.20
    Al2O318.0918.0217.7416.9017.3317.5217.4517.3627.7429.3628.0429.7833.0233.0832.7532.79
    FeO20.1019.1219.7419.2520.1719.4220.4220.142.392.132.562.292.161.982.122.22
    MnO0.180.140.160.040.000.090.120.090.000.040.010.040.000.010.020.05
    MgO8.799.199.249.539.499.629.229.742.842.402.742.361.311.291.361.23
    CaO0.010.000.110.030.020.040.000.040.000.020.010.010.000.000.000.00
    Na2O0.060.070.030.050.080.050.040.090.160.200.180.220.330.410.480.35
    K2O8.859.038.218.818.968.809.238.5210.3310.2010.3410.5210.5210.7510.5310.72
    Totals93.9694.6194.1593.3494.0994.4295.2794.6395.6694.9496.0395.9895.8095.4995.6395.14
    Oxygens11111111111111111111111111111111
    Si2.842.892.882.912.862.882.872.863.443.313.433.343.203.193.213.19
    Ti0.060.060.060.050.050.060.060.070.010.010.010.010.010.010.010.01
    Al1.641.611.591.531.571.571.561.562.162.322.182.322.582.602.572.59
    Fe3+0.000.000.000.000.000.000.000.000.000.060.000.000.000.000.000.00
    Fe2+1.291.211.261.241.301.241.301.280.130.120.140.130.120.110.120.12
    Mn0.010.010.010.000.000.010.010.010.000.000.000.000.000.000.000.00
    Mg1.011.041.051.091.091.091.041.110.280.240.270.230.130.130.140.12
    Ca0.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.00
    Na0.010.010.010.010.010.010.010.010.020.030.020.030.040.050.060.05
    K0.870.870.800.870.880.850.890.830.870.870.870.890.890.910.890.92
    Sum7.737.707.667.717.757.717.747.726.926.956.926.956.976.996.986.99
    Mg0.440.460.450.470.460.470.450.460.680.670.660.650.520.540.530.50
    Al0.470.500.470.440.430.450.440.421.671.611.661.781.781.771.771.55
    XTi0.020.020.020.020.020.020.020.020.000.000.000.000.000.000.000.00
    XFe0.460.430.440.440.450.440.460.450.070.060.070.060.060.050.060.06
    XMg0.360.370.370.390.380.380.370.390.140.120.130.110.060.060.070.06
    T(℃)428405461385333463405468--------
    T(℃)491482495464455488476485--------
    下载: 导出CSV
    续表1
    样品
    矿物
    KP-4
    BtMs
    SiO239.4739.1738.6538.8737.7937.9637.3237.3049.0849.2051.9150.2248.6449.3548.8048.45
    TiO20.830.830.930.760.840.790.980.960.230.090.200.090.050.230.110.05
    Al2O317.7718.1217.9718.2218.0517.5317.4217.1934.0435.1330.4833.8233.1732.1232.2332.49
    FeO16.5316.7416.6516.1017.5317.5918.1117.900.640.571.090.571.922.371.892.01
    MnO0.040.120.110.110.130.070.070.140.000.010.000.150.000.030.000.00
    MgO10.9111.1110.9410.9610.5310.4810.7010.861.571.462.531.811.511.771.711.43
    CaO0.140.120.110.120.030.050.090.050.000.000.010.000.000.000.000.00
    Na2O0.040.050.010.090.090.090.030.010.350.370.100.260.310.320.320.28
    K2O7.978.148.008.208.998.928.498.619.689.829.319.7110.5910.7410.6110.76
    Totals93.7194.3893.3593.4193.9793.4993.2193.0297.0398.1296.6898.0996.1896.9295.6795.47
    Oxygens11111111111111111111111111111111
    Si2.952.922.912.922.872.892.862.863.183.153.363.223.213.243.243.22
    Ti0.050.050.050.040.050.050.060.060.010.000.010.000.000.010.010.00
    Al1.571.591.601.611.611.581.571.562.602.662.332.552.582.492.522.55
    Fe3+0.000.000.000.000.000.000.000.000.070.070.050.070.000.000.000.00
    Fe2+1.041.041.051.011.111.121.161.150.040.030.060.030.110.130.100.11
    Mn0.000.010.010.010.010.010.010.010.000.000.000.010.000.000.000.00
    Mg1.221.231.231.231.191.191.221.240.150.140.240.170.150.170.170.14
    Ca0.010.010.010.010.000.000.010.000.000.000.000.000.000.000.000.00
    Na0.010.010.000.010.010.010.000.000.040.050.010.030.040.040.040.04
    K0.760.770.770.790.870.870.830.840.800.800.770.790.890.900.900.91
    Sum7.607.637.627.637.727.727.727.736.896.906.836.886.976.986.976.98
    Mg0.540.540.540.550.520.510.510.520.810.820.810.850.580.570.620.56
    Al0.520.510.510.530.480.470.430.421.841.871.731.821.781.721.751.77
    X(Ti)0.020.020.020.020.020.020.020.020.010.000.000.000.000.010.000.00
    X(Fe)0.370.370.370.360.390.400.400.400.020.020.030.020.050.060.050.06
    X(Mg)0.430.440.430.440.420.420.430.430.080.070.120.090.070.090.080.07
    T(℃)381382433341378346442440--------
    T(℃)455452465447454446463458--------
     注:Mg#=Mg/(Mg+Fe2+),XTi=Ti/(Ti+Fe2++Mg+AlVI),XFe=Fe/(Ti+Fe2++Mg+AlVI),XMg=Mg/(Ti+Fe2++Mg+AlVI);①为Henry等(2005)计算的黑云母Ti温度计结果;②为Wu等(2015)计算的黑云母Ti温度计结果。
    下载: 导出CSV

    表  2   含石榴子石二云母石英片岩样品KP2202中黑云母、白云母、斜长石和石榴子石成分

    Table  2   Mineral compositions of biotite, muscovite, plagioclase and garnet in the garnet-bearing two-mica quartz schist sample KP2202

    样品KP2202
    位置接触基质
    矿物BtBt
    SiO234.3433.6334.9034.5634.0234.0934.2735.2334.5434.7933.9534.5934.3434.5534.5534.41
    TiO22.822.873.083.233.133.083.212.953.063.303.153.373.423.393.083.30
    Al2O317.7818.1018.3118.3317.9418.1117.6118.4718.7317.9417.8618.2618.4218.3218.6818.09
    Cr2O30.080.080.030.050.030.070.120.050.030.010.010.020.020.100.020.00
    FeO23.4322.7623.3223.5723.7623.4422.9722.7322.2621.8121.7322.1122.3622.0221.0022.34
    MnO0.430.320.530.540.480.520.390.310.290.290.270.240.250.240.190.30
    MgO5.516.195.305.154.955.735.786.225.996.176.176.236.086.346.586.36
    CaO0.010.010.000.000.000.000.000.000.010.000.000.000.000.000.000.00
    Na2O0.140.130.140.120.100.090.060.130.170.120.080.050.100.170.100.08
    K2O10.019.4110.129.999.909.999.9110.2210.279.9910.359.7510.219.9110.0110.00
    SrO0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
    NiO0.010.000.010.020.000.050.040.000.010.000.010.040.030.070.000.03
    Totals94.5693.4995.7595.5694.3195.1694.3496.3095.3694.4293.5994.6695.2395.1194.2294.91
    Oxygens11.0011.0011.0011.0011.0011.0011.0011.0011.0011.0011.0011.0011.0011.0011.0011.00
    Si2.712.672.722.702.702.682.712.712.692.732.702.702.682.692.702.69
    Ti0.170.170.180.190.190.180.190.170.180.190.190.200.200.200.180.19
    Al1.661.701.681.691.681.681.641.681.721.661.671.681.691.681.721.67
    Cr0.010.010.000.000.000.000.010.000.000.000.000.000.000.010.000.00
    Fe3+0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
    Fe2+1.551.511.521.541.581.541.521.461.451.431.441.451.461.431.371.46
    Mn0.030.020.040.040.030.040.030.020.020.020.020.020.020.020.010.02
    Mg0.650.730.620.600.590.670.680.710.700.720.730.730.710.740.770.74
    Ca0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
    Na0.020.020.020.020.020.010.010.020.030.020.010.010.020.030.020.01
    K1.010.961.011.001.001.001.001.001.021.001.050.971.020.981.001.00
    Sum7.807.797.787.777.787.817.787.797.807.767.817.757.797.777.777.79
    Mg#0.300.330.290.280.270.300.310.330.320.340.340.330.330.340.360.34
    T(℃)651.93658.34662.65670.67667.59665.50673.55657.52664.55678.05673.30681.07682.69682.28669.56678.18
    XAn----------------
    XAb----------------
    XOr----------------
    XAlm----------------
    XSps----------------
    Xpy----------------
    XGrs----------------
    下载: 导出CSV
    续表2
    样品KP2202
    位置-边部核部
    矿物MsPlGrtGrt
    SiO245.4445.3645.6045.3345.7645.7461.8062.3061.4736.6636.5437.0536.3736.2336.9436.56
    TiO21.091.140.620.710.620.650.000.050.020.060.080.100.060.030.000.08
    Al2O335.0134.9135.2935.1135.4334.8424.0623.2824.2520.6421.1921.1421.0220.8420.9820.83
    Cr2O30.000.000.000.000.000.000.030.030.000.020.000.040.000.000.000.00
    FeO1.501.521.681.671.541.650.150.180.0829.0328.3730.5033.6133.8133.9333.70
    MnO0.000.010.090.020.060.010.000.000.048.106.345.915.625.645.585.37
    MgO0.540.600.570.540.520.620.000.010.011.361.251.361.511.551.611.63
    CaO0.020.000.060.000.080.005.945.716.283.455.263.411.271.051.020.97
    Na2O0.360.400.500.340.400.338.338.488.360.000.000.000.010.030.020.02
    K2O11.2811.4411.1210.8911.2611.030.190.180.220.000.020.000.000.000.000.03
    SrO0.000.000.000.000.000.000.020.160.090.000.000.000.000.000.000.00
    NiO0.000.020.040.010.000.020.000.030.010.010.000.000.010.000.020.02
    Totals95.2495.3995.5794.6395.6894.90100.53100.41100.8299.3499.0499.5199.4899.19100.0999.22
    Oxygens11.0011.0011.0011.0011.0011.008.008.008.0012.0012.0012.0012.0012.0012.0012.00
    Si3.053.043.053.053.053.072.732.762.723.002.983.012.982.983.003.00
    Ti0.060.060.030.040.030.030.000.000.000.000.010.010.000.000.000.01
    Al2.772.762.782.792.792.761.251.221.261.992.042.022.032.022.012.01
    Cr0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
    Fe3+0.000.000.000.000.000.000.010.010.000.010.000.000.010.030.000.00
    Fe2+0.080.090.090.090.090.090.000.000.001.971.932.072.292.292.312.31
    Mn0.000.000.010.000.000.000.000.000.000.560.440.410.390.390.380.37
    Mg0.050.060.060.050.050.060.000.000.000.170.150.160.180.190.200.20
    Ca0.000.000.000.000.010.000.280.270.300.300.460.300.110.090.090.09
    Na0.050.050.070.040.050.040.710.730.720.000.000.000.000.010.000.00
    K0.970.980.950.940.960.950.010.010.010.000.000.000.000.000.000.00
    Sum7.027.047.047.017.037.015.005.005.018.008.007.988.008.007.997.99
    Mg#0.390.410.380.360.380.40----------
    T(°C)----------------
    XAn------0.280.270.29-------
    XAb------0.710.720.70-------
    XOr------0.010.010.01-------
    XAlm---------0.660.650.700.770.770.780.78
    XSps---------0.190.150.140.130.130.130.13
    Xpy---------0.060.050.060.060.060.070.07
    XGrs---------0.100.150.100.040.030.030.03
     注:Mg#=Mg/(Mg+Fe2+), XAn = Ca/(Ca+Na+K), XAb = Na/(Ca+Na+K), XOr = K/(Ca+Na+K); XAlm = Fe2+/(Fe2++ Mn + Mg + Ca), XSps = Mn/
    (Fe2+ + Mn + Mg + Ca), XPy = Mg/(Fe2+ + Mn + Mg + Ca), XGrs = Ca/(Fe2+ + Mn + Mg + Ca)。
    下载: 导出CSV

    表  3   糜棱岩化含金云母大理岩样品KP-1中金云母成分

    Table  3   Mineral compositions of phlogopite in the mylonitizd phlogopite-bearing marble sample KP-1

    样品KP-1
    矿物Phl
    SiO242.9243.6243.7743.5142.6243.5142.0343.8743.8644.7143.3341.8942.2943.08
    TiO20.600.820.550.390.550.730.780.460.410.390.490.530.570.62
    Al2O316.3515.6915.6816.1116.3316.4816.5915.2315.0215.0215.9517.4217.5717.54
    FeO1.451.621.231.911.351.481.701.571.481.552.021.711.871.82
    MnO0.020.000.030.000.010.030.000.060.000.000.000.000.000.00
    MgO22.4922.6922.9622.9222.3722.0622.3623.1622.7723.3822.6322.0621.8821.84
    CaO0.020.020.050.020.060.040.000.110.050.020.020.080.070.09
    Na2O0.090.000.080.050.030.050.080.030.030.020.000.110.090.04
    K2O10.3410.3110.229.9410.5110.4510.6110.2910.3910.4010.4110.6010.6910.78
    Totals94.2794.7594.5694.8693.8394.8294.1594.7894.0195.4994.8594.4195.0395.79
    Oxygens1111111111111111111111111111
    Si3.013.043.053.023.003.032.963.063.083.093.022.942.952.98
    Ti0.030.040.030.020.030.040.040.020.020.020.030.030.030.03
    Al1.351.291.291.321.361.351.381.251.241.221.311.441.451.43
    Fe3+0.000.000.000.000.000.000.000.000.000.000.000.000.000.00
    Fe2+0.090.090.070.110.080.090.100.090.090.090.120.100.110.11
    Mn0.000.000.000.000.000.000.000.000.000.000.000.000.000.00
    Mg2.352.362.382.372.352.292.352.402.382.412.352.312.282.25
    Ca0.000.000.000.000.010.000.000.010.000.000.000.010.010.01
    Na0.010.000.010.010.000.010.010.000.000.000.000.020.010.01
    K0.920.920.910.880.940.930.950.910.930.920.930.950.950.95
    Sum7.767.747.747.747.777.737.797.767.757.747.767.797.787.76
    Mg0.970.960.970.960.970.960.960.960.960.960.950.960.950.96
     注:Mg#=Mg/(Mg+Fe2+)。
    下载: 导出CSV

    表  4   用于变质相平衡模拟计算的全岩主量元素成分

    Table  4   Whole-rock compositions used for phase equilibrium modelling

    样品号全岩成分 (%)
    SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5LOITotal
    KP-371.240.6512.382.273.220.042.280.151.413.330.072.3799.41
    KP-479.140.529.341.781.880.031.840.110.112.760.052.2299.78
    KP220267.620.8315.351.144.560.121.540.941.144.300.061.6799.27
    样品号相平衡模拟中的各组分含量(mol%)
    SiO2Al2O3CaOMgOFeOK2ONa2OTiO2O*
    KP-371.7907.3510.1623.4254.4362.1401.3770.4930.861图9a、图9b
    KP-478.5525.4630.1172.7232.8901.7470.1060.3880.665图10a、图10b
    KP220271.0969.5101.0592.4144.9132.8831.1620.6560.452图11a、图11b
    下载: 导出CSV

    表  5   二云母石英片岩样品KP-3的原位LA–ICP–MS黑云母和白云母Rb–Sr同位素数据

    Table  5   In-situ LA–ICP–MS biotite and muscovite Rb–Sr isotopic data for two-mica quartz schist sample KP-3

    点位87Rb/86Sr±1σ87Sr/86Sr±1σ
    KP-3-118.01660.53890.79050.0054
    KP-3-229.34160.73850.85320.006
    KP-3-316.20090.29070.81810.0062
    KP-3-411.50610.36630.78990.0087
    KP-3-518.33690.6340.75840.0045
    KP-3-612.23890.21620.80480.0076
    KP-3-79.39390.25950.77950.0064
    KP-3-87.71390.15530.75460.0055
    KP-3-921.90591.07080.7920.0062
    KP-3-1025.49761.11640.84260.0173
    KP-3-1114.04220.67280.79240.0106
    KP-3-125.43610.18160.74670.0082
    KP-3-1325.58661.21850.81070.0158
    KP-3-1413.36420.33980.77510.0106
    KP-3-1523.58560.34390.80860.0043
    KP-3-1622.7330.69710.77780.0089
    KP-3-179.34860.27840.76320.0067
    KP-3-1813.62490.40570.75880.0059
    KP-3-1914.53420.31120.8040.0065
    KP-3-208.25990.21150.77970.006
    KP-3-2112.21920.22150.81110.0043
    KP-3-227.99820.12890.79370.0036
    KP-3-2312.1930.20940.79270.0043
    KP-3-2419.74960.29370.7950.005
    KP-3-2515.40030.2070.77310.0056
    KP-3-269.37780.20170.77790.0034
    KP-3-2724.2971.03540.81610.0112
    KP-3-2812.0850.35810.79110.0082
    KP-3-2933.60780.95510.83650.0091
    KP-3-307.96110.2460.75310.0046
    KP-3-3149.95644.41040.84070.0177
    KP-3-324.14490.10210.76940.0053
    KP-3-337.42860.14670.76460.0044
    KP-3-3420.75550.88950.80760.0073
    KP-3-3527.5180.59350.81060.0049
    KP-3-361.50580.15210.80350.0167
    KP-3-371.23560.23090.83770.051
    KP-3-380.27410.02150.78360.0107
    KP-3-390.13490.01850.68850.0255
    KP-3-400.32640.04260.75620.0312
    下载: 导出CSV

    表  6   二云母石英片岩样品KP-4原位LA–ICP–MS黑云母和白云母Rb–Sr同位素数据

    Table  6   In-situ LA–ICP–MS biotite and muscovite Rb–Sr isotopic data for two-mica quartz schist sample KP-4

    点位87Rb/86Sr±1σ87Sr/86Sr±1σ
    KP-4-125.44660.4540.81460.01
    KP-4-241.22590.81780.81140.0079
    KP-4-350.65321.17250.79220.0087
    KP-4-426.93110.4380.80140.0064
    KP-4-529.05310.66660.81580.0067
    KP-4-833.09241.66490.74480.0052
    KP-4-916.64760.9370.74540.0037
    KP-4-1041.21090.99430.82290.0076
    KP-4-1152.43460.82910.82850.0066
    KP-4-122.86040.08430.72510.0041
    KP-4-1526.82631.32350.82870.0105
    KP-4-1634.87792.25490.81220.0077
    KP-4-1717.25520.44620.78080.0089
    KP-4-1823.54650.5630.80490.007
    KP-4-1950.80471.57590.81370.0101
    KP-4-2097.77162.50250.9360.0087
    KP-4-2118.97150.59020.78070.0095
    KP-4-2241.67782.26370.82750.0074
    KP-4-2320.79991.07440.82150.0108
    KP-4-2541.97710.93810.79390.0067
    KP-4-2622.89230.71960.8290.0054
    KP-4-2731.41781.69190.78130.0101
    KP-4-2875.00061.65580.90760.0148
    KP-4-2939.93030.45390.88090.0064
    KP-4-3032.98890.42730.85580.0057
    KP-4-3123.07130.45010.80650.007
    KP-4-3225.72330.27880.82320.0048
    KP-4-3322.63230.64140.77830.0051
    KP-4-3428.3910.38440.81810.0062
    KP-4-3522.44790.3190.8140.0049
    KP-4-362.87750.05680.73040.0022
    KP-4-373.760.13440.73250.0032
    KP-4-382.93630.0670.72580.0018
    KP-4-391.40730.03350.71360.0018
    KP-4-401.62940.06830.72130.0016
    下载: 导出CSV

    表  7   含石榴子石二云母石英片岩样品KP2202原位LA–ICP–MS黑云母和白云母Rb–Sr同位素数据

    Table  7   In-situ LA–ICP–MS biotite and muscovite Rb–Sr isotopic data for garnet-bearing two-mica quartz schist sample KP2202

    点位87Rb/86Sr±1σ87Sr/86Sr±1σ备注
    KP2202-121.34460.37680.90610.0048Ms type-1
    KP2202-219.08020.37690.86680.0042Ms type-1
    KP2202-316.16070.25110.82310.0034Ms type-1
    KP2202-416.96110.23040.82890.0036Ms type-1
    KP2202-518.69720.28850.88460.0048Ms type-1
    KP2202-617.09290.29860.83480.0044Ms type-1
    KP2202-718.56840.31450.86650.0049Ms type-1
    KP2202-3016.56790.26400.83700.0051Ms type-1
    KP2202-3117.72410.30350.83770.0039Ms type-1
    KP2202-3218.41860.30050.86080.0037Ms type-1
    KP2202-4017.47550.28390.82920.0035Ms type-1
    KP2202-4117.99740.46530.83170.0037Ms type-1
    KP2202-4217.66000.25560.83070.0043Ms type-1
    KP2202-4316.96420.26340.79300.0043Ms type-1
    KP2202-4416.52810.27980.79200.0034Ms type-1
    KP2202-4516.70140.36720.81730.0042Ms type-1
    KP2202-4616.54530.30810.81120.0036Ms type-1
    KP2202-1116.91590.28980.79450.0044Ms type-2
    KP2202-1218.14690.31060.80100.0036Ms type-2
    KP2202-1317.91120.33210.79410.0043Ms type-2
    KP2202-1419.94690.33150.79630.0041Ms type-2
    KP2202-2218.90350.30150.80210.0043Ms type-2
    KP2202-2319.89870.34430.80030.0038Ms type-2
    KP2202-2416.65550.39500.78350.0034Ms type-2
    KP2202-2519.94710.37230.79580.0044Ms type-2
    KP2202-2618.98920.33320.79600.0048Ms type-2
    KP2202-2713.29820.47080.79000.0042Ms type-2
    KP2202-2821.19900.51950.79270.0044Ms type-2
    KP2202-2918.49510.40680.79610.0044Ms type-2
    KP2202-3312.76961.16550.78870.0030Ms type-2
    KP2202-3420.18440.54340.80580.0044Ms type-2
    KP2202-3520.00610.34140.79610.0042Ms type-2
    KP2202-3620.57870.31020.79040.0041Ms type-2
    KP2202-8160.80248.56051.02680.0116Bt
    KP2202-9144.930310.25301.01570.0092Bt
    KP2202-10213.51818.71991.09470.0099Bt
    KP2202-1594.45289.33570.91030.0055Bt
    KP2202-16159.50034.99541.01450.0085Bt
    KP2202-1713.22941.58340.78170.0039Bt
    KP2202-18167.01617.14871.03320.0092Bt
    KP2202-19356.221622.07361.38010.0217Bt
    KP2202-20298.369322.77251.19050.0173Bt
    KP2202-2188.79817.07200.92020.0058Bt
    KP2202-37105.15569.63430.89700.0079Bt
    KP2202-3865.79362.75660.85800.0062Bt
    KP2202-39125.35063.58190.93000.0086Bt
    KP2202-47219.276913.27061.09120.0131Bt
    KP2202-4819.14621.16340.79310.0047Bt
    KP2202-49174.102310.29011.02290.0126Bt
    KP2202-5027.71171.11520.78050.0040Bt
    下载: 导出CSV
  • 陈龙龙, 唐利, 沈彦谋, 等. 秦岭造山带栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区斑岩型矿床成矿差异性对比[J]. 西北地质, 2024, 57(2): 67−89.

    CHEN Longlong, TANG Li, SHEN Yanmou, et al. Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions[J]. Northwestern Geology, 2024, 57(2): 67−89.

    陈能松, 韩郁菁, 游振东, 等. 豫西东秦岭造山带核部杂岩全岩Sm-Nd、Rb-Sr和单晶锆石~(207)Pb-~(206)Pb计时及其地壳演化[J]. 地球化学, 1991(03): 219–228 doi: 10.3321/j.issn:0379-1726.1991.03.003

    CHEN Nengsong, HAN Yuqing, YOU Zhendong, et al. Whole-rock Sm–Nd, Rb–Sr, and single grain zircon Pb–Pb dating of complex rocks from the interior of the Qinling orogenic belt, Western Henan and its crustal evolution[J]. Geochemica, 1991, 20(3): 219–228. doi: 10.3321/j.issn:0379-1726.1991.03.003

    丁丽雪, 马昌前, 李建威, 等. 华北克拉通南缘蓝田和牧护关花岗岩体: LA-ICPMS 锆石 U–Pb 年龄及其构造意义[J]. 地球化学, 2010, 39(5): 401–413

    DING Lixue, MA Changqian, LI Jianwei, et al. LA-ICPMS zircon U–Pb ages of the Lantian and Muhuguan granitoid plutons, southern margin of the North China craton: Implications for tectonic setting[J]. Geochimica, 2010, 39(5): 401–413.

    第五春荣, 孙勇, 刘良, 等. 北秦岭宽坪杂岩的解体及新元古代 N-MORB[J]. 岩石学报, 2010 (7): 2025–2038

    DIWU Chunrong, SUN Yong, LIU Liang, et al. The disintegration of Kuanping Group in North Qinling orogenic belts and Neo-proterozoic N-MORB[J]. Acta Petrologica Sinica, 2010, 26(7): 2025–2038.

    胡娟. 桐柏北部宽坪群变质作用研究[D]. 北京: 中国地质科学院, 2010

    HU Juan. Study on metamorphism of the KuanPing Group, northern Tongba[D]. Beijing: Chinese Academy of Geological Sciences, 2010.

    李康宁, 汤庆艳, 栾晓刚, 等. 西秦岭三叠纪大河坝组砂岩构造背景与物质来源[J]. 西北地质, 2024, 57(3): 113−127.

    LI Kangning, TANG Qingyan, LUAN Xiaogang, et al. Tectonic Setting and Provenance of Sandstones from Triassic Daheba Formation in the West Qinling Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 113−127.

    李靠社. 陕西宽坪杂岩变基性熔岩锆石 U–Pb 年龄[J]. 陕西地质, 2002, 20(1): 72–78 doi: 10.3969/j.issn.1001-6996.2002.01.010

    LI Kaoshe. Zircon U–Pb age of meta-basic lava from the Kuanping Rock Group, Shaanxi Province[J]. Geology of Shaanxi, 2002, 20(1): 72–78. doi: 10.3969/j.issn.1001-6996.2002.01.010

    李三忠, 张国伟, 李亚林, 等. 勉县地区勉略带内麻粒岩的发现及构造意义[J]. 岩石学报, 2000, 16(2): 220–226 doi: 10.3321/j.issn:1000-0569.2000.02.011

    LI Sanzhong, ZHANG Guowei, LI Yalin, et al. Discovery of granulite in the Mianxian-Lueyang suture zone, Mianxian area and its tectonic significance[J]. Acta Petrologica Sinica, 2000, 16(2): 220–226. doi: 10.3321/j.issn:1000-0569.2000.02.011

    刘良, 陈丹玲, 王超, 等. 阿尔金, 柴北缘与北秦岭高压-超高压岩石年代学研究进展及其构造地质意义[J]. 西北大学学报: 自然科学版, 2009 (3): 472–479.

    LIU Liang, CHEN Danling, WANG Chao, et al. New progress on geochronology of high-pressure/ultrahigh-pressure metamorphic rocks from the South Altyn Tagh, the North Qaidam and the North Qinling orogenic, NW China and their geological significance[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(3): 472–479.

    刘良, 廖小莹, 张成立, 等. 北秦岭高压-超高压岩石的多期变质时代及其地质意义[J]. 岩石学报, 2013, 29(5): 1634–1656

    LIU Liang, LIAO Xiaoying, ZHANG Chengli, et al. , Multi-metamorphic timings of HP-UHP rocks in the North Qingling and their geological implications[J], Acta Petrologica Sinica, 2013, 29(5): 1634–1656.

    马大铨, 李志昌, 肖志发. 鄂西崆岭杂岩的组成, 时代及地质演化[J]. 地球学报: 中国地质科学院院报, 1997, 18(3): 233–241

    MA Daquan, LI Zhichang, XIAO Zhifa. The constitute, geochronology and geologic evolution of the Kongling complex, western Hubei[J]. Acta Geoscientia Sinica, 1997, 18(3): 233–241.

    秦海鹏, 吴才来, 武秀萍, 等. 秦岭造山带蟒岭花岗岩锆石 LA-ICP-MSU-Pb 年龄及其地质意义[J]. 地质论评, 2012, 58(4): 783–793 doi: 10.3969/j.issn.0371-5736.2012.04.019

    QIN Haipeng, WU Cailai, WU Xiuping, et al. LA-ICP-MS Zircon U-Pb ages and implications for tectonic setting of the Mangling granitoid plutons in Qinling Orogen Belt[J]. Geological Review, 2012, 58(4): 783–793. doi: 10.3969/j.issn.0371-5736.2012.04.019

    冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121.

    RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110−121.

    陕西省地质局区测队. 东江口幅I-49-19 1/20万地质图矿产图说明书[DS]. 全国地质资料馆, 1966
    陕西地质局13队. 西安幅I-49-13 1/20万地质矿产图及其说明书[DS]. 全国地质资料馆, 1972
    魏春景, 朱文萍. 多硅白云母地质压力计的研究进展[J]. 地质通报, 2007, 26(9): 1123–1130 doi: 10.3969/j.issn.1671-2552.2007.09.014

    WEI Chunjing, ZHU Wenping. Progress in the study of phengite geobarometry[J]. Geological Bulletin of China, 2007, 26(9): 1123–1130. doi: 10.3969/j.issn.1671-2552.2007.09.014

    王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义. 西北地质, 2023, 56(1): 48−62.

    WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling. Northwestern Geology, 2023, 56(1): 48−62.

    王宗起, 闫臻, 王涛, 等. 秦岭造山带主要疑难地层时代研究的新进展[J]. 地球学报, 2009, 30(5): 561–570 doi: 10.3321/j.issn:1006-3021.2009.05.001

    WANG Zongqi, YAN Zhen, WANG Tao, et al. New advances in the study on ages of metamorphic strata in the Qinling orogenic belt[J]. Acta Geoscientica Sinica, 2009, 30(5): 561–570. doi: 10.3321/j.issn:1006-3021.2009.05.001

    王晓霞, 王涛, 齐秋菊, 等. 秦岭晚中生代花岗岩时空分布, 成因演变及构造意义[J]. 岩石学报, 2011, 27(6): 1573–1593

    WANG Xiaoxia, WANG Tao, QI Qiuju, et al. Temporal-spatial variations, origin and their tectonic significance of the Late Mesozoic granites in the Qinling, Central China[J]. Acta Petrologica Sinica, 2011, 27(6): 1573–1593.

    王海杰, 陈丹玲, 任云飞, 等. 北秦岭构造带与华北板块关系探讨: 来自宽坪杂岩变碎屑岩锆石 U-Pb 年代学与变质作用证据[J]. 岩石学报, 2021, 37(5): 1489–1507 doi: 10.18654/1000-0569/2021.05.10

    WANG HaiJie, CHEN DanLing, REN YunFei, et al. The relationship between the North Qinling Belt and the North China Craton: Constrains from zircon U-Pb geochronology and metamorphism of metaclastic rocks from the Kuanping Complex[J]. Acta Petrologica Sinica, 2021, 37(5): 1489–1507. doi: 10.18654/1000-0569/2021.05.10

    肖思云, 张维吉, 宋子季, 等. 北秦岭变质地层[M]. 西安: 西安交通大学出版社, 1988
    向华, 钟增球, 李晔, 等. 北秦岭造山带早古生代多期变质与深熔作用: 锆石 U–Pb 年代学证据[J]. 岩石学报, 2014 (8): 2421–2434

    XIANG Hua, ZHONG ZengQiu, LI Ye, et al. Early Paleozoic polymetamorphism and anatexis in the North Qinling orogen: Evidence from U-Pb zircon geochronology[J]. Acta Petrologica Sinica, 2014, 30(8): 2421-2434.

    杨阳, 王晓霞, 柯昌辉, 等. 北秦岭蟒岭岩体的锆石 U-Pb 年龄, 地球化学及其演化[J]. 矿床地质, 2014, 33(1): 14-36 doi: 10.3969/j.issn.0258-7106.2014.01.002

    YANG Yang, WANG Xiaoxia, KE Changhui, et al. Zircon U-Pb ages, geochemistry and evolution of Mangling pluton in North Qinling Mountains[J]. Mineral Deposits, 2014, 33(1): 14–36. doi: 10.3969/j.issn.0258-7106.2014.01.002

    闫全人, 王宗起, 闫臻, 等. 秦岭造山带宽坪群中的变铁镁质岩的成因, 时代及其构造意义[J]. 地质通报, 2008, 27(9): 1475–1492 doi: 10.3969/j.issn.1671-2552.2008.09.010

    YAN Quanren, WANG Zongqi, YAN Zhen, et al. Origin, age and tectonic implications of metamafic rocks in the Kuanping Group of the Qinling orogenic belt, China[J]. Geological Bulletin of China, 2008, 27(9): 1475-1492. doi: 10.3969/j.issn.1671-2552.2008.09.010

    张维吉. 宽坪群的层序划分及时代归属[J]. 长安大学学报 (地球科学版), 1987, 1(9): 15–29

    ZHANG Weiji. The subdivision of the Kuanping Group and its geological date[J]. Journal of Xi'an College of Geology, 1987, 1(9): 15–29.

    张维吉, 马志和. 陕西蟒岭马河地区宽坪群多期褶皱变形[J]. 西安地质学院学报, 1988, (04), 33–42

    ZHANG Weiji, MA Zhihe. The polydeformation of Kuanping Group at Mahe of Mangling, Shaanxi Province[J]. Journal of Xi’an College of Geology, 1988, (04), 33–42

    张维吉, 李育敬. 陶湾群层序及时代研究[J]. 西安地质学院学报, 1989, 11(2): 1–10.

    ZHANG Weiji, LI Yujing. The sequences and the age of the Taowan Group[J]. Journal of Xi’an College of Geology, 1989, 11(2), 1–10

    张宗清, 刘敦一, 付国民. 北秦岭变质地层同位素年代硏究[M]. 北京:地质出版社, 1994
    张成立, 韩松. 陕西商州地区丹凤变质火山岩的地球化学特征[J]. 地质科学, 1994, 29(4): 384–392

    ZHANG Chengli, HAN Song. The geochemical characteristics of Danfeng metavolcanic rocks in Shangzhou area, Shaanxi province[J]. Chinese Journal of Geology, 1994, 29(4): 384–392.

    张宗清, 张旗. 北秦岭晚元古代宽坪蛇绿岩中变质基性火山岩的地球化学特征[J]. 岩石学报, 1995 (S1): 165–177 doi: 10.3321/j.issn:1000-0569.1995.z1.013

    ZHANG Zongqin, ZHANG Qi. Geochemistry of metamorphosed late Proterozoic Kuanping ophiolite in the northern Qinling, China[J]. Acta Petrologica Sinica, 1995, 11(Suppl. ): 165–177. doi: 10.3321/j.issn:1000-0569.1995.z1.013

    张国伟, 孟庆任, 赖绍聪. 秦岭造山带的结构构造[J]. 中国科学: B 辑, 1995a, 25(9): 994–1003

    ZHANG Guowei, MENG Qingren, LAI Shaocong. Structural structure of Qinling orogenic belt[J]. Science in China (Series B), 1995, 25: 994–1003.

    张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995b, 11(2): 101–114 doi: 10.3321/j.issn:1000-0569.1995.02.002

    ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng. Nature of main tectono-lithostratigraphic units of the Qinling orogen: implications for the tectonic evolution[J]. Acta Petrologica Sinica, 1995, 11: 101–114. doi: 10.3321/j.issn:1000-0569.1995.02.002

    张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京:科学出版社, 2001.
    张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(3): 304 doi: 10.3969/j.issn.1006-7493.2008.03.003

    ZHANG Chengli, WANG Tao, WANG Xiaoxia. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling orogenic belt[J]. Geological Journal of China Universities, 2008, 14(3): 304. doi: 10.3969/j.issn.1006-7493.2008.03.003

    张建新, 于胜尧, 孟繁聪. 北秦岭造山带的早古生代多期变质作用[J]. 岩石学报, 2011, 27(04): 1179–1190

    ZHANG Jianxin, YU Shengyao, MENG Fancong. Ployphase Early Paleozoic metamorphism in the northern Qinling orogenic belt[J]. Acta Petrologica Sinica, 2011, 27(4): 1179–1190.

    Chen D L, Liu L, Sun Y, et al. LA-ICP-MS zircon U-Pb dating for high-pressure basic granulite from North Qinling and its geological significance[J]. Chinese Science Bulletin, 2004, 49: 2296–2304. doi: 10.1360/03wd0544

    Capitani, D C , Petrakakis, K. The computation of equilibrium assemblage diagrams with Theriak/Domino software[J]. American mineralogist, 2010, 95(7): 1006–1016. doi: 10.2138/am.2010.3354

    Cao H H, Li S Z, Zhao S J, et al. Detrital zircon geochronology of Neoproterozoic to early Paleozoic sedimentary rocks in the North Qinling Orogenic Belt: Implications for the tectonic evolution of the Kuanping Ocean[J]. Precambrian Research, 2016, 279: 1–16. doi: 10.1016/j.precamres.2016.04.001

    Cheng H, Zhang C, Vervoort J D, et al. Timing of eclogite facies metamorphism in the North Qinling by U–Pb and Lu–Hf geochronology[J]. Lithos, 2012, 136: 46–59.

    Diwu C R, Sun Y, Lin C L, et al. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton[J]. Chinese Science Bulletin, 2010, 55: 2557–2571.

    Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: review and synthesis[J]. Journal of Asian Earth Sciences, 2011a, 41(3): 213–237. doi: 10.1016/j.jseaes.2011.03.002

    Dong Y P, Zhang G W, Hauzenberger C, et al. Palaeozoic tectonics and evolutionary history of the Qinling orogen: evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos, 2011b, 122(1–2): 39–56.

    Dong Y P, Genser J, Neubauer F, et al. U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China[J]. Gondwana Research, 2011c, 19(4): 881–893. doi: 10.1016/j.gr.2010.09.007

    Dong Y P, Yang Z, Liu X M, et al. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite[J]. Precambrian Research, 2014, 255: 77–95. doi: 10.1016/j.precamres.2014.09.008

    Dong Y P, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1–40. doi: 10.1016/j.gr.2015.06.009

    Dong Y P, Yang Z, Liu X M, et al. Mesozoic intracontinental orogeny in the Qinling Mountains, central China[J]. Gondwana Research, 2016b, 30: 144–158. doi: 10.1016/j.gr.2015.05.004

    Dong Y P, Sun S S, Yang Z, et al. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China[J]. Precambrian Research, 2017, 293: 73–90. doi: 10.1016/j.precamres.2017.02.015

    Dong Y P, Neubauer F, Genser J, et al. Timing of orogenic exhumation processes of the Qinling orogen: Evidence from 40Ar/39Ar dating[J]. Tectonics, 2018, 37(10): 4037–4067. doi: 10.1029/2017TC004765

    Dong Y P, Sun S S, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131–194. doi: 10.1016/j.gr.2021.03.006

    Dong Y P, Sun S S, Santosh M, et al. Cross Orogenic belts in Central China: Implications for the tectonic and paleogeographic evolution of the east Asian continental collage[J]. Gondwana Research, 2022, 109: 18–88. doi: 10.1016/j.gr.2022.04.012

    England P C, Thompson A B. Pressure—temperature—time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust[J]. Journal of Petrology, 1984, 25(4): 894–928. doi: 10.1093/petrology/25.4.894

    Gao S, Zhang B R, Li Z J. Geochemical evidence for Proterozoic continental arc and continental-margin rift magmatism along the northern margin of the Yangtze Craton, South China[J]. Precambrian Research, 1990, 47(3–4): 205–221.

    Gao S, Ling W, Qiu Y, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13–14): 2071–2088.

    Gao S, Yang J, Zhou L, et al. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of science, 2011, 311(2): 153–182. doi: 10.2475/02.2011.03

    Gao S, Zhang B R, Wang D P, et al. Geochemical evidence for the Proterozoic tectonic evolution of the Qinling Orogenic Belt and its adjacent margins of the North China and Yangtze cratons[J]. Precambrian Research, 1996, 80(1–2): 23–48.

    Gorojovsky L, Alard O. Optimisation of laser and mass spectrometer parameters for the in situ analysis of Rb/Sr ratios by LA-ICP-MS/MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(10): 2322–2336. doi: 10.1039/D0JA00308E

    Guo J L, Gao S, Wu Y B, et al. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth[J]. Precambrian Research, 2014, 242: 82–95. doi: 10.1016/j.precamres.2013.12.018

    Harley S L. The origins of granulites: a metamorphic perspective[J]. Geological Magazine, 1989, 126(3): 215–247. doi: 10.1017/S0016756800022330

    Henry D J, Guidotti C V, Thomson J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms[J]. American mineralogist, 2005, 90(2–3): 316–328.

    He Y H, Zhao G C, Sun M, et al. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton[J]. Precambrian Research, 2009, 168(3–4): 213–222.

    Holland T J B, Powell R. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of metamorphic Geology, 1998, 16(3): 309–343.

    Holland T, Powell R. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation[J]. Contributions to Mineralogy and Petrology, 2003, 145: 492–501. doi: 10.1007/s00410-003-0464-z

    Holland T J B, Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of metamorphic Geology, 2011, 29(3): 333–383. doi: 10.1111/j.1525-1314.2010.00923.x

    Hu J, Liu X C, Chen L Y, et al. A ∼2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58: 3564–3579. doi: 10.1007/s11434-013-5904-1

    Lai S, Zhang G, Yang R. Identification of the island-arc magmatic zone in the Lianghe-Raofeng-Wuliba area, south Qinling and its tectonic significance[J]. Science in China Series D: Earth Sciences, 2000, 43: 69–81. doi: 10.1007/BF02911934

    Li S, Hou Z, Yang Y, et al. Timing and geochemical characters of the Sanchazi magmatic arc in Mianlue tectonic zone, South Qinling[J]. Science in China Series D: Earth Sciences, 2004, 47(4): 317–328. doi: 10.1360/02YD0490

    Liu X C, Jahn B M, Hu J, et al. Metamorphic patterns and SHRIMP zircon ages of medium‐to‐high grade rocks from the Tongbai orogen, central China: implications for multiple accretion/collision processes prior to terminal continental collision[J]. Journal of Metamorphic Geology, 2011, 29(9): 979–1002. doi: 10.1111/j.1525-1314.2011.00952.x

    Liu X C, Jahn B M, Li S Z, et al. U‐Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China[J]. Tectonophysics, 2013, 599: 67–88. doi: 10.1016/j.tecto.2013.04.003

    Liu Q, Wu Y B, Wang H, et al. Zircon U–Pb ages and Hf isotope compositions of migmatites from the North Qinling terrane and their geological implications[J]. Journal of Metamorphic Geology, 2014, 32(2): 177–193. doi: 10.1111/jmg.12065

    Liu L, Liao X, Wang Y, et al. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation[J]. Earth-Science Reviews, 2016, 159: 58–81. doi: 10.1016/j.earscirev.2016.05.005

    Liao X Y, Liu L, Zhai M G, et al. Metamorphic evolution and Petrogenesis of garnet–corundum silica–undersaturated metapelitic granulites: A new case study from the Mianlüe Tectonic Zone of South Qinling, Central China[J]. Lithos, 2021, 392: 106154.

    Massonne H J, Szpurka Z. Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems k2o-mgo-al2o3-sio2-h2o and k2o-feo-al2o3-sio2-h2o[J]. Lithos, 1997, 41(1–3): 229–250.

    Mao X H, Zhang J X, Yu S Y, et al. Early Paleozoic granulite-facies metamorphism and anatexis in the northern West Qinling orogen: Monazite and zircon U-Pb geochronological constraints[J]. Science China Earth Sciences, 2017, 60: 943–957. doi: 10.1007/s11430-016-9029-7

    Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 2003, 366(1–2): 1–53.

    Smye A J, Greenwood L V, Holland T J B. Garnet–chloritoid–kyanite assemblages: eclogite facies indicators of subduction constraints in orogenic belts[J]. Journal of Metamorphic Geology, 2010, 28(7): 753–768. doi: 10.1111/j.1525-1314.2010.00889.x

    Shi Y, Yu J H, Santosh M. Tectonic evolution of the Qinling orogenic belt, Central China: new evidence from geochemical, zircon U–Pb geochronology and Hf isotopes[J]. Precambrian Research, 2013, 231: 19–60. doi: 10.1016/j.precamres.2013.03.001

    Sun S, Dong Y, He D, et al. Thickening and partial melting of the Northern Qinling Orogen, China: insights from zircon U–Pb geochronology and Hf isotopic composition of migmatites[J]. Journal of the Geological Society, 2019, 176(6): 1218–1231. doi: 10.1144/jgs2019-030

    Thompson A B, England P C. Pressure—temperature—time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks[J]. Journal of Petrology, 1984, 25(4): 929–955. doi: 10.1093/petrology/25.4.929

    Wang C Y, Alard O, Lai Y J, et al. Advances in in-situ Rb-Sr dating using LA-ICP-MS/MS: applications to igneous rocks of all ages and to the identification of unrecognized metamorphic events[J]. Chemical Geology, 2022, 610: 121073. doi: 10.1016/j.chemgeo.2022.121073

    Wang X L, Jiang S Y, Dai B Z. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton[J]. Precambrian Research, 2010, 182(3): 204–216. doi: 10.1016/j.precamres.2010.08.007

    Wang Z Q, Gao L D, Wang T, et al. Microfossils from the siltstones and muddy slates: Constraint on the age of the Taowan Group in the Northern Qinling Orogenic Belt, Central China[J]. Science in China Series D: Earth Sciences, 2008, 51: 172–180. doi: 10.1007/s11430-007-0140-7

    Wang H, Wu Y B, Gao S, et al. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks[J]. Journal of Metamorphic Geology, 2011, 29(9): 1019–1031. doi: 10.1111/j.1525-1314.2011.00955.x

    Wang X X, Wang T, Zhang C L. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129–151. doi: 10.1016/j.jseaes.2012.11.037

    Wang X X, Wang T, Zhang C L. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution[J]. Science China Earth Sciences, 2015, 58: 1497–1512. doi: 10.1007/s11430-015-5150-2

    Whitney D L, Evans B W. Abbreviations for names of rock-forming minerals[J]. American mineralogist, 2010, 95(1): 185–187. doi: 10.2138/am.2010.3371

    Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402–1428. doi: 10.1016/j.gr.2012.09.007

    White R W, Powell R, Holland T J B, et al. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3[J]. Journal of Metamorphic Geology, 2000, 18(5): 497–511. doi: 10.1046/j.1525-1314.2000.00269.x

    White R W, Powell R, Johnson T E. The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese‐bearing minerals[J]. Journal of Metamorphic Geology, 2014a, 32(8): 809–828. doi: 10.1111/jmg.12095

    White R W, Powell R, Holland T J B, et al. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems[J]. Journal of Metamorphic Geology, 2014, 32(3): 261–286. doi: 10.1111/jmg.12071

    Wu C M, Chen H X. Revised Ti-in-biotite geothermometer for ilmenite-or rutile-bearing crustal metapelites[J]. Science Bulletin, 2015, 60: 116–121. doi: 10.1007/s11434-014-0674-y

    Woodhead J D, Hergt J M. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614[J]. Geostandards Newsletter, 2001, 25(2–3): 261–266.

    Xu J, Wang Q, Yu X. Geochemistry of high-Mg andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China: evidence of partial melting of the subducted Paleo-Tethyan crust[J]. Geochemical Journal, 2000, 34(5): 359–377. doi: 10.2343/geochemj.34.359

    Xue F, Lerch M F, Kröner A, et al. Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic: a review and new tectonic model[J]. Tectonophysics, 1996a, 253(3–4): 271–284.

    Xue F, Kröner A, Reischmann T, et al. Palaeozoic pre-and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks[J]. Journal of the Geological Society, 1996, 153(3): 409–417. doi: 10.1144/gsjgs.153.3.0409

    Xue Y Y, Liu H Y, Wang Z Y, et al. Reworking of the Juvenile Crust in the Late Mesozoic in North Qinling, Central China. Journal of Earth Science, 2022, 33(3): 623–641.

    Zhai X M, Day H W, Hacker B R, et al. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China[J]. Geology, 1998, 26(4): 371–374. doi: 10.1130/0091-7613(1998)026<0371:PMITQO>2.3.CO;2

    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U–Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters, 2006a, 252(1–2): 56–71.

    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for≥ 3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 2006b, 146(1–2): 16–34.

    Zhang Q Q, Gao X Y, Chen R X, et al. Granulites record the tectonic evolution from collisional thickening to extensional thinning of the Tongbai orogen in central China[J]. Journal of Metamorphic Geology, 2020, 38(3): 265–295. doi: 10.1111/jmg.12522

    Zhao T, Zhai M, Xia B, et al. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton[J]. Chinese Science Bulletin, 2004, 49: 2495–2502.

    Zhao G C, He Y H, Sun M. The Xiong'er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent[J]. Gondwana research, 2009, 16(2): 170v181.

    Zhao S J, Li S Z, Liu X, et al. The northern boundary of the Proto-Tethys Ocean: Constraints from structural analysis and U–Pb zircon geochronology of the North Qinling Terrane[J]. Journal of Asian earth sciences, 2015, 113: 560–574. doi: 10.1016/j.jseaes.2015.09.005

    Zhao Y H, Gou L L, Long X P, et al. Zircon U–Pb geochronology and clockwise P–T evolution of garnet-bearing migmatites from the Qinling complex in the Weiziping area of the Qinling Orogen, Central China: Implications for thermal relaxation after crustal thickening[J]. Journal of Asian Earth Sciences, 2020, 195: 104354. doi: 10.1016/j.jseaes.2020.104354

    Zhu X Y, Chen F, Li S Q, et al. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: evidence from detrital zircon U–Pb ages and Hf isotopic composition[J]. Gondwana Research, 2011, 20(1): 194–204. doi: 10.1016/j.gr.2010.12.009

图(14)  /  表(9)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  7
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 修回日期:  2023-03-13
  • 录用日期:  2023-03-23
  • 网络出版日期:  2024-12-18
  • 刊出日期:  2025-02-19

目录

/

返回文章
返回