Chronology, Geochemistry and Geological Significance of Volcanic Rocks of Dianzhong Formation in Konglong Township Area, Xizang
-
摘要:
笔者对冈底斯中段孔隆乡地区典中组火山岩进行了年代学与地球化学研究。西藏孔隆乡地区典中组火山岩为一套酸性、弱铝质的高钾钙碱性岩石,富集大离子亲石元素Rb、K、U等,亏损高场强元素Nb、P和Ti,具有明显的壳源岩浆的特征,可能是地壳不同程度重熔作用的产物。根据该火山岩地球化学特征,推测其形成于火山弧构造环境,并且有向同碰撞及板内环境过渡的趋势。笔者获得流纹质凝灰岩样品的LA−ICP−MS锆石U−Pb年龄为(62.70±0.83)Ma,指示其形成时代为古近纪古新世。通过对比分析,该套火山岩喷发在冈底斯中西部要早于东部,印证了印度−亚洲大陆碰撞的穿时性这一观点。
Abstract:In this paper, the chronology and geochemistry of the volcanic rocks of the Dianzhong Formation in the Konglong Township area of the central Gangdise are studied. The volcanic rocks of the Dianzhong Formation in Konglong Township Xizang are is a set of acidic, peraluminous, high-potassium, calcium-alkaline rocks, which are rich in large ion lithophile elements(e.g., Rb, K, U), and are depleted of high field strength elements (e.g., Nb, P, Ti), showing obvious characteristics of crust-derived magma, which may be the product of different degrees of remelting of the earth's crust.According to the geochemical characteristics of this volcanic rock, it is speculated that it was formed in a volcanic arc structural environment and has a tendency to transition to syn-collision and intraplate environment. The study samples are all rhyolite tuffs, and one sample obtained LA-ICP-MS zircon U-Pb age of 62.70±0.83 Ma, indicating that its formation age is the Paleogene Paleocene. Through comparative analysis, this set of volcanic rocks erupted earlier in the central and western Gangdise than in the east, confirming the view that the India-Asian collision is time-lapse.
-
Keywords:
- volcanic rocks /
- Konglong Township /
- Dianzhong Formation /
- zircon U−Pb age /
- geochemistry
-
林子宗群火山岩自从1953年被李璞命名以来(李璞,1955),一直都是西藏冈底斯岩浆带的研究热点,因为其成因蕴含着新特提斯洋的俯冲和印度亚洲大陆碰撞的关键信息(王天武等,1999;莫宣学等,2003;周肃等,2004;李皓扬等,2007;李俊等,2023)。林子宗群火山岩在冈底斯岩浆岩带广泛分布,主要以中酸性火山岩为主,被分为典中组、年波组以及帕那组(董国臣等,2005)。近年来,研究显示林子宗火山岩在冈底斯东部、中部和西部的年龄并不一致(梁银平等,2010;于枫等,2010;付文春等,2014)。早期对林子宗群火山岩的研究主要集中在冈底斯东部的林周地区(周肃等,2004;黄映聪等,2005;Mo et al.,2007;李皓扬等,2007;莫宣学,2009;Lee et al.,2009),而后中西部地区也开展了许多研究工作,得到了许多准确的年龄数据,进一步丰富和完善了冈底斯岩浆带构造演化的基础资料(朱弟成等,2006;付文春等,2014;刘安琳等,2015;李强等,2017;唐攀等,2018;李洪梁等,2019;潘亮等,2021)。笔者根据昂仁县北西孔隆乡地区1∶5万区域地质矿产调查的研究基础上,对典中组火山岩进行年代学与岩石地球化学研究,了解研究区林子宗群火山岩岩浆源区与构造成因,再结合区域特征,认识区域性变化规律,为进一步揭示印度–欧亚大陆碰撞的穿时性提供支撑。
1. 区域地质背景
研究区位于西藏中西部昂仁县孔隆乡地区,属于冈底斯火山岩浆弧中段(侯增谦等,2006),大地构造单元位于拉达克−冈底斯−察隅湖盆系内,隆格尔−工布江达复合岛弧带(C−K)三级构造单元北部(图1a)。隆格尔−工布江达复合岛弧带在整个冈底斯呈NWW向延展,与冈底斯弧背断隆带位置一致。
图 1 西藏孔隆乡地区地质简图(据朱弟成等,2006)1.第四系;2.布嘎寺组;3.帕那组;4.年波组;5.典中组;6.昂杰组;7.永珠组;8.二长花岗岩;9.石英脉;10.整合界线;11.角度不整合界线;12.断层;13.工作区范围;14.采样点位Figure 1. Geological sketch map of Konglong Township, Tibet研究区林子宗群火山活动强烈(占研究区面积30%以上),分布的地层单元有:典中组(E1d)、年波组(E2n)、帕那组(E2p),布噶寺组(N1b)。其中,笔者研究的典中组(E1d),呈条带状展布,主要分布在孔隆乡中东部地区。典中组为一套中酸性火山岩组合,主要岩性组合为灰紫色晶屑浆屑熔结凝灰岩、灰绿色含砾凝灰岩、紫色含砾晶屑熔结凝灰岩、紫色含砾凝灰岩等。研究区内构造主要以正断层、平移断层为主,局部地区也发育一些逆断层,构造线的方向主要为NW向,局部也有SN向(图1b)。
2. 样品采集及测试方法
文中6件典中组凝灰岩样品(均为)采集于孔隆乡东南部的申拉日古近系古新统典中组实测剖面PM13上。样品风化面呈土黄色,新鲜面浅紫红色,凝灰结构,块状构造。镜下特征显示火山碎屑主要为流纹岩岩屑,呈不规则状,大小为0.1~0.6 mm,含量约为1%,晶屑为石英、钾长石(透长石),斜长石,呈棱角状,少量石英有熔蚀港湾状、次圆状、孔状,晶屑大小为0.05~1.2 mm,石英含量为7%,长石含量为14%,黑云母少量。胶结物为<0.05 mm的火山灰(泥),多数呈隐晶质−显微晶质状,压结式胶结,胶结物中有点状、不规则团状的方解石、绿泥石蚀变,含量为71%(图2)。在全岩主微量分析的基础上,选取其中1件典型凝灰岩样品进行LA–ICP–MS锆石U–Pb定年,用于U–Pb定年的样品PM13DH6接近帕那组火山岩地层,坐标为N 30°22′26″, W 85°59′17″(图1b)。
锆石U–Pb定年在南京宏创地质勘查技术服务有限公司完成,测试仪器为LA–ICP–MS,激光剥蚀系统为Photon Machines Excite,ICP–MS为Agilent 7700x,激光剥蚀深度为20~40 μm,剥蚀斑束直径为32 μm。分析数据采用软件ICPMSDataCal进行离线处理,使用Isoplot3.0软件对同位素数据结果处理(钟玉芳等,2006;Liu et al.,2010;李艳广等,2023)。
主微量和稀土元素分析在核工业二三〇研究所进行,主量元素分析方法采用XRF法,使用仪器为X射线荧光光谱仪,分析精度优于1%,微量和稀土元素分析方法采用ICP–MS法(刘颖等,1996),使用仪器为等离子体质谱仪,分析精度优于5%。
3. 分析结果
3.1 锆石U–Pb年代学
所有锆石具有类似的外形特征,呈自形长柱状,长为100~200 μm,长宽比为1∶1~2.5∶1。阴极发光图像中(图3),普遍具有明显的振荡环带。17个测试点位的Th/U值为0.38~1.07(表1),指示岩浆成因特点(王梓桐等,2022;柳永正等,2023;熊万宇康等,2023)。所有样品206Pb/238U年龄为60.2~68.5 Ma,在谐和图中(图4)均落在谐和线上或附近,其年龄加权平均值为(62.70±0.83) Ma(MSWD=1.7,n=17),指示为古近纪古新世喷发。
表 1 典中组凝灰岩(P13DH6)LA–ICP–MS 锆石U–Pb定年结果统计表Table 1. LA–ICP–MS zircon U–Pb dating Results of Dianzhong Formation tuff (P13DH6)点号 含量 (10−6) Th/U 同位素比值 年龄 (Ma) Pb Th U 207Pb/206Pb (±1 σ) 207Pb/235U (±1 σ) 206Pb/238U (±1 σ) 207Pb/206Pb (±1 σ) 207Pb/235U (±1 σ) 206Pb/238U (±1 σ) P13DH6-01 4.6 287.2 372.7 0.77 0.0467 0.0022 0.0610 0.0028 0.0095 0.0002 31.6 111.1 60.1 2.7 61.2 1.0 P13DH6-02 5.4 307.2 429.7 0.71 0.0506 0.0022 0.0694 0.0028 0.0100 0.0001 220.4 98.1 68.1 2.7 64.2 0.9 P13DH6-03 1.9 129.9 145.8 0.89 0.0484 0.0027 0.0668 0.0042 0.0100 0.0002 116.8 125.9 65.7 4.0 63.9 1.5 P13DH6-04 4.9 241.6 426.8 0.57 0.0509 0.0018 0.0656 0.0023 0.0094 0.0002 239.0 81.5 64.5 2.2 60.3 1.1 P13DH6-06 2.7 189.8 204.0 0.93 0.0513 0.0027 0.0701 0.0035 0.0100 0.0002 257.5 120.4 68.8 3.3 64.2 1.2 P13DH6-07 7.5 240.2 630.3 0.38 0.0470 0.0015 0.0691 0.0024 0.0107 0.0002 50.1 77.8 67.9 2.3 68.6 1.3 P13DH6-08 1.3 86.4 103.9 0.83 0.0497 0.0040 0.0672 0.0052 0.0099 0.0002 189.0 177.8 66.0 5.0 63.5 1.4 P13DH6-09 3.6 211.8 291.0 0.73 0.0481 0.0023 0.0647 0.0033 0.0098 0.0002 105.6 107.4 63.7 3.1 63.2 1.5 P13DH6-10 5.0 240.5 424.6 0.57 0.0472 0.0020 0.0631 0.0028 0.0097 0.0002 57.5 96.3 62.2 2.6 62.3 1.1 P13DH6-11 2.9 187.4 212.2 0.88 0.0517 0.0031 0.0711 0.0039 0.0101 0.0002 272.3 169.4 69.7 3.7 64.6 1.3 P13DH6-12 2.4 113.9 195.9 0.58 0.0528 0.0040 0.0738 0.0060 0.0102 0.0002 320.4 143.5 72.3 5.6 65.3 1.4 P13DH6-13 2.8 202.4 223.9 0.90 0.0525 0.0022 0.0693 0.0028 0.0097 0.0002 305.6 130.5 68.0 2.6 62.0 1.1 P13DH6-14 4.7 261.7 401.5 0.65 0.0504 0.0020 0.0649 0.0028 0.0094 0.0002 213.0 92.6 63.9 2.7 60.2 1.1 P13DH6-15 2.9 161.5 238.8 0.68 0.0515 0.0024 0.0678 0.0028 0.0097 0.0002 264.9 107.4 66.6 2.7 62.0 1.4 P13DH6-16 2.2 120.8 165.4 0.73 0.0522 0.0025 0.0707 0.0034 0.0099 0.0002 300.1 145.4 69.3 3.3 63.3 1.1 P13DH6-17 4.9 238.6 417.2 0.57 0.0510 0.0021 0.0670 0.0030 0.0095 0.0002 239.0 100.9 65.8 2.8 61.2 1.3 P13DH6-18 2.2 164.8 153.5 1.07 0.0525 0.0042 0.0715 0.0057 0.0099 0.0002 305.6 185.2 70.1 5.4 63.7 1.3 注:测试单位为南京宏创地质勘查技术服务有限公司;测试时间为2017年。 3.2 岩石地球化学特征
本次在研究区共采集6件典中组火山岩样品,原始数据在去掉烧矢量的基础上重新换算成100%,得到校正后的氧化物含量,测试结果如表2所示。样品SiO2含量为74.81%~78.14%,平均值为75.93%,全碱(K2O+Na2O)含量为8.05%~8.32%,平均值为8%,其中Na2O平均为4.11%,K2O平均为3.9%。在TAS图解中(图5),样品均落入流纹岩区域内,属酸性火山岩范畴。在SiO2–K2O图解(图6a)中,样品全部位于高钾钙碱性系列区域中。样品的里特曼指数δ值为1.53~2.17,小于3.3,为钙碱性岩。样品的A/CNK>1.1,在A/CNK–A/NK图解(图6b)中位于弱铝质岩石系列区域,表明岩浆具有壳源特征,总体上与冈底斯带中西部地区的典中组火山岩较为相似(胡新伟等,2007;谢克家等,2011;岳相元,2012,鲍春辉,2014;)。
表 2 孔隆地区典中组火山岩的主量元素(%)、微量和稀土元素(10−6)分析结果表Table 2. Whole–rock geochemical data of Dianzhong Formation volcanic rocks in Konglong area编号 P13DH1 P13DH2 P13DH3 P13DH4 P13DH5 P13DH6 岩性 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 SiO2 76.26 75.34 75.22 75.78 74.81 78.14 TiO2 0.25 0.35 0.34 0.26 0.15 0.11 Al2O3 11.83 12.28 12.28 11.94 12.53 11.92 Fe2O3 2.10 2.29 2.35 2.09 2.65 1.52 MnO 0.04 0.03 0.02 0.05 0.07 0.03 MgO 0.14 0.16 0.15 0.20 0.12 0.17 CaO 0.32 0.40 0.39 0.35 0.32 0.16 Na2O 4.23 4.35 4.40 4.42 4.45 2.81 K2O 3.86 3.71 3.77 3.68 3.87 4.52 P2O5 0.05 0.04 0.04 0.06 0.05 0.03 LOI 0.47 0.57 0.55 0.50 0.52 1.01 Total 100.09 100.19 100.13 99.91 100.13 100.42 K+Na 8.09 8.05 8.16 8.10 8.32 7.33 K/Na 0.91 0.85 0.86 0.83 0.87 1.61 Ti 1491 2086 2027 1550 894 677 K 32057 30787 31289 30561 32124 37513 P 221 177 177 273 199 122 A/CNK 1.01 1.03 1.02 1.00 1.04 1.61 A/NK 1.06 1.10 1.09 1.06 1.09 1.21 AR 4.99 4.48 4.62 4.87 4.67 2.74 SI 1.33 1.48 1.38 1.89 1.06 1.9 δ43 1.97 2.01 2.07 2.00 2.17 1.53 La 41.00 35.20 36.50 38.00 35.60 28.93 Ce 88.40 76.60 76.30 84.80 74.90 54.68 Pr 9.37 8.64 8.63 8.50 8.51 6.64 续表2 编号 P13DH1 P13DH2 P13DH3 P13DH4 P13DH5 P13DH6 岩性 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 Nd 33.40 33.80 30.30 30.60 34.90 24.04 Sm 5.60 5.88 5.61 5.57 5.91 5.29 Eu 0.92 1.01 0.90 0.97 0.94 0.52 Gd 4.68 5.32 5.24 4.90 5.26 4.90 Tb 0.57 0.71 0.75 0.66 0.70 0.84 Dy 2.75 3.90 3.95 3.37 4.03 5.01 Ho 0.46 0.75 0.78 0.61 0.79 1.06 Er 1.30 2.34 2.48 1.78 2.42 3.13 Tm 0.22 0.40 0.43 0.29 0.42 0.48 Yb 1.36 2.29 2.24 1.64 2.46 3.08 Lu 0.25 0.44 0.44 0.30 0.43 0.46 ΣREE 190 177 174 181 177 139 LREE 178 161 158 168 160 120 HREE 11.59 16.15 16.31 13.55 16.51 18.96 LREE/HREE 15.42 9.98 9.70 12.44 9.74 6.34 δEu 0.53 0.54 0.50 0.56 0.51 0.31 δCe 1.06 1.05 1.02 1.11 1.02 0.93 (La/Yb)N 21.62 11.03 11.69 16.62 10.38 6.74 Sc 5.15 5.87 5.27 5.28 6.34 3.79 V 8.42 7.33 5.38 6.66 5.71 9.94 Cr <5 <5 8.50 <5 5.90 16.21 Co 10.90 11.80 8.80 14.00 9.28 0.83 Ni 4.99 4.48 4.62 4.87 4.67 1.18 Rb 80.10 87.10 88.90 78.10 81.60 166.37 Sr 94.40 118.00 118.00 97.40 119.00 50.91 Y 13.00 21.20 22.20 18.40 21.10 29.96 Zr 198 208 197 203 200 106 Nb 6.65 8.80 9.15 7.02 8.70 9.54 Ba 871 852 888 842 922 396 Hf 1.77 2.38 2.44 1.98 2.36 3.58 Ta 0.69 0.84 0.86 0.64 0.87 0.92 Pb 11.80 12.90 11.60 22.20 13.80 23.47 Th 14.70 14.50 15.20 13.50 14.70 18.90 U 1.48 2.01 2.16 1.54 2.07 3.12 Li 16.30 20.50 21.00 15.20 20.60 20.80 Cu 2.48 2.62 3.11 2.05 3.87 1.13 Zn 31.30 21.60 19.80 104.00 20.10 39.86 W 110 120 90 134 93.8 1.44 Sb 0.34 0.42 0.44 0.17 0.38 1.03 注:测试单位为核工业二三〇研究所;测试时间为2017年。 样品稀土元素含量及相关特征值见表2。在微量元素原始地幔标准化蛛网图(图7a)中,呈多峰多谷的右倾型分布,样品普遍富集大离子亲石元素Rb、K、U等,亏损高场强元素Nb、P和Ti。稀土元素总量(ΣREE)为139.06× 10−6~190.28×10−6,平均值为173.41×10−6,ΣLREE/ΣHREE值为6.34~15.42,平均值为10.60。在稀土元素球粒陨石标准化模式分配模式图中(图7b),配分曲线呈右倾,轻重稀土元素分馏明显((La/Yb)N=6.74~21.62)。样品δEu平均值为0.49,具有明显Eu、Sr负异常,说明岩浆源区可能存在斜长石的结晶分离或残留,δCe平均值为1.03,具有弱的Ce异常。
4. 讨论
4.1 年代学
林子宗群火山岩的年代学研究一直是冈底斯带研究的热点,前人在这方面做了大量的实质性的工作。区域上林子宗群火山岩不整合接触于设兴组(K2sh)及更老的地层之上(李洪梁等,2019),表示该不整合面是由于发生了重大的地质事件所导致的,而典中组的最早年龄是该地质事件的最晚时限(莫宣学等,2006a;Mo et al.,2008)。但典中组的成岩时代一直有较大的争议,在冈底斯带东部的林周盆地,前人对林周盆地的典中组火山岩进行40Ar/39Ar同位素测年,测得典中组的顶底年龄为60.6~64.4 Ma(Zhou et al.,2004;莫宣学等,2006b);锆石U–Pb测年方法测得冈底斯带东部典中组火山岩年龄范围在62.6~68.7 Ma(He et al.,2007);林周盆地典中组火山岩的年龄分别为62~64 Ma 和 59~66 Ma(Huang et al.,2015;陈贝贝等,2016),故冈底斯带东段典中组火山岩最早年龄目前被限定约为68.7 Ma。
冈底斯带中段典中组年代学研究相对较少。梁银平等测得朱诺地区典中组顶部火山岩的锆石U–Pb年龄为 64.8 Ma(梁银平等,2010);冈底斯带中段的措麦地区典中组锆石U–Pb年龄为65~70 Ma(于枫等,2010);冈底斯带中段桑桑地区典中组底部火山岩年龄为 69.9 Ma(谢冰晶等,2013);查孜地区的典中组锆石U–Pb年龄为70.7 Ma,是目前报道的冈底斯带中部最老年龄(李勇等,2018)。
冈底斯带西段狮泉河地区典中组底部火山岩年龄分别为64.2 Ma和64.5 Ma(王乔林,2011);冈底斯带西段达若地区典中组火山岩年龄为61.9 Ma(李洪梁等,2019);冈底斯带西段狮泉河地区典中组火山岩年龄为67.1~70.8 Ma(曹延等,2020),该年龄为冈底斯带西段林子宗典中组火山岩最老的年龄。
印度和欧亚大陆碰撞的时限一直是区域研究的热点,前人研究表明林子宗群火山岩是印度–欧亚大陆碰撞的结果,并且典中组底部的火山岩年龄可以代表碰撞的开始时间(莫宣学等,2003;李皓扬等,2007;Mo X X et al.,2008),所以典中组底部的年龄对限定碰撞时限,进一步解释碰撞方式具有重要意义。冈底斯东、中、西段典中组火山岩年龄如图8所示,典中组火山岩的成岩年龄大致为60~70 Ma,并且典中组底部火山岩的年龄在冈底斯带表现得并不一致,具体为中西段比东段要略早(Barth et al.,2000)。笔者用于锆石U–Pb测年得样品采自于昂仁县孔隆乡地区林子宗群火山岩典中组顶部,测得凝灰岩的锆石U–Pb年龄为(62.70±0.83) Ma,由于采样位置比较接近于上覆的年波组火山岩,故该样品年龄可以代表比较新的典中组火山岩年龄,这也说明底部典中组火山岩年龄要比62.7 Ma更老,通过以上对比并结合前人的研究成果,间接支持了印度–亚洲大陆碰撞的穿时性这一观点,说明中西部要早于东部。
4.2 岩浆源区及构造背景
酸性火山岩一般有两种成因,一种是由幔源基性岩浆分异而来;另一种是地壳重熔作用的产物。文中酸性岩更可能为地壳重熔而来,包括以下5点原因:①研究区中基性岩浆岩出露较少,主要出露一套中酸性火山碎屑熔岩和火山碎屑岩(1∶5万孔隆乡幅),幔源基性岩浆的结晶分异不太可能形成如此大规模的酸性火山岩喷发。②文中样品的SiO2含量较高(平均值75.93%),富碱(K2O+Na2O平均值为8.01%),稀土元素含量高,轻、重稀土分馏明显,普遍富集大离子亲石元素Rb、K、U等,亏损高场强元素Nb、P和Ti,具有明显的壳源岩浆的特征。③样品Nb/Ta值为9.6~11(平均值为10.3),接近地壳平均值(12~13)(Barth et al.,2000),与原始地幔平均值17.8差距较大(Mcdonough et al.,1995)。④在稀土元素La–La/Sm比值图解(图9)中,样品具有部分熔融趋势,并且样品微量元素Nb/La值为0.16~0.33,均小于1,显示岩浆在上升过程中受到了地壳的混染(Bruno et al.,2004;陈宁等,2023)。⑤样品的Cr、Ni等相容元素含量较低,Mg#值(平均值 为12.7)低于大陆地壳的值(44.8~55.3),且明显偏离玄武质岩浆(68~75)(Green,1976),表明岩浆源区有下地壳部分熔融作用并经历过铁镁质矿物的分异作用。综上所述,西藏孔隆乡地区典中组火山岩岩浆可能是壳源物质经不同程度的部分熔融形成。
研究区的典中组火山岩整体为一套酸性、过铝质的高钾钙碱性–钙碱性岩石,表现为碰撞造山的特点。且地壳物质对岩浆有明显影响;样品固结指数SI值为1.06~1.9,均值为1.5,属于非常低的范畴,说明研究区典中组火山岩分异很彻底,酸性程度高。一般认为,火山岩的碱度指数低且变化区间小指示该火山岩一般形成于岛弧和活动大陆边缘环境(鲍春辉,2014),样品碱度指数AR值为2.74~4.99,碱度指数低,变化区间小,显示岛弧和活动大陆边缘环境特征。在Y+Nb–Rb构造判别图解上(图10),样品全部落入火山弧环境,且靠近同碰撞区和板内区,说明典中组火山岩构造环境较复杂,形成于火山弧型构造环境,并且向同碰撞及板内环境过渡,与冈底斯带中西部桑桑地区和措勤地区特征一致(谢克家等,2011)。
5. 结论
(1)西藏孔隆乡地区典中组火山岩LA–ICP–MS锆石U–Pb年龄为(62.70±0.83)Ma,指示其形成时代为古近纪古新世,通过对比分析,暗示印度–亚洲大陆碰撞的穿时性这一观点,说明中西部要早于东部。
(2)西藏孔隆乡地区典中组火山岩为一套酸性、弱铝质的高钾钙碱性–钙碱性岩石,具有高Si、富碱,且稀土元素含量高,轻、重稀土分馏明显,富集大离子亲石元素Rb、K、U等,亏损高场强元素Nb、P和Ti,具有明显的壳源岩浆的特征,可能是壳源物质不同程度重熔作用的产物。
(3)西藏孔隆乡地区典中组火山岩形成于火山弧型构造环境,并且有同碰撞及板内环境过渡的趋势。
-
图 1 西藏孔隆乡地区地质简图(据朱弟成等,2006)
1.第四系;2.布嘎寺组;3.帕那组;4.年波组;5.典中组;6.昂杰组;7.永珠组;8.二长花岗岩;9.石英脉;10.整合界线;11.角度不整合界线;12.断层;13.工作区范围;14.采样点位
Figure 1. Geological sketch map of Konglong Township, Tibet
表 1 典中组凝灰岩(P13DH6)LA–ICP–MS 锆石U–Pb定年结果统计表
Table 1 LA–ICP–MS zircon U–Pb dating Results of Dianzhong Formation tuff (P13DH6)
点号 含量 (10−6) Th/U 同位素比值 年龄 (Ma) Pb Th U 207Pb/206Pb (±1 σ) 207Pb/235U (±1 σ) 206Pb/238U (±1 σ) 207Pb/206Pb (±1 σ) 207Pb/235U (±1 σ) 206Pb/238U (±1 σ) P13DH6-01 4.6 287.2 372.7 0.77 0.0467 0.0022 0.0610 0.0028 0.0095 0.0002 31.6 111.1 60.1 2.7 61.2 1.0 P13DH6-02 5.4 307.2 429.7 0.71 0.0506 0.0022 0.0694 0.0028 0.0100 0.0001 220.4 98.1 68.1 2.7 64.2 0.9 P13DH6-03 1.9 129.9 145.8 0.89 0.0484 0.0027 0.0668 0.0042 0.0100 0.0002 116.8 125.9 65.7 4.0 63.9 1.5 P13DH6-04 4.9 241.6 426.8 0.57 0.0509 0.0018 0.0656 0.0023 0.0094 0.0002 239.0 81.5 64.5 2.2 60.3 1.1 P13DH6-06 2.7 189.8 204.0 0.93 0.0513 0.0027 0.0701 0.0035 0.0100 0.0002 257.5 120.4 68.8 3.3 64.2 1.2 P13DH6-07 7.5 240.2 630.3 0.38 0.0470 0.0015 0.0691 0.0024 0.0107 0.0002 50.1 77.8 67.9 2.3 68.6 1.3 P13DH6-08 1.3 86.4 103.9 0.83 0.0497 0.0040 0.0672 0.0052 0.0099 0.0002 189.0 177.8 66.0 5.0 63.5 1.4 P13DH6-09 3.6 211.8 291.0 0.73 0.0481 0.0023 0.0647 0.0033 0.0098 0.0002 105.6 107.4 63.7 3.1 63.2 1.5 P13DH6-10 5.0 240.5 424.6 0.57 0.0472 0.0020 0.0631 0.0028 0.0097 0.0002 57.5 96.3 62.2 2.6 62.3 1.1 P13DH6-11 2.9 187.4 212.2 0.88 0.0517 0.0031 0.0711 0.0039 0.0101 0.0002 272.3 169.4 69.7 3.7 64.6 1.3 P13DH6-12 2.4 113.9 195.9 0.58 0.0528 0.0040 0.0738 0.0060 0.0102 0.0002 320.4 143.5 72.3 5.6 65.3 1.4 P13DH6-13 2.8 202.4 223.9 0.90 0.0525 0.0022 0.0693 0.0028 0.0097 0.0002 305.6 130.5 68.0 2.6 62.0 1.1 P13DH6-14 4.7 261.7 401.5 0.65 0.0504 0.0020 0.0649 0.0028 0.0094 0.0002 213.0 92.6 63.9 2.7 60.2 1.1 P13DH6-15 2.9 161.5 238.8 0.68 0.0515 0.0024 0.0678 0.0028 0.0097 0.0002 264.9 107.4 66.6 2.7 62.0 1.4 P13DH6-16 2.2 120.8 165.4 0.73 0.0522 0.0025 0.0707 0.0034 0.0099 0.0002 300.1 145.4 69.3 3.3 63.3 1.1 P13DH6-17 4.9 238.6 417.2 0.57 0.0510 0.0021 0.0670 0.0030 0.0095 0.0002 239.0 100.9 65.8 2.8 61.2 1.3 P13DH6-18 2.2 164.8 153.5 1.07 0.0525 0.0042 0.0715 0.0057 0.0099 0.0002 305.6 185.2 70.1 5.4 63.7 1.3 注:测试单位为南京宏创地质勘查技术服务有限公司;测试时间为2017年。 表 2 孔隆地区典中组火山岩的主量元素(%)、微量和稀土元素(10−6)分析结果表
Table 2 Whole–rock geochemical data of Dianzhong Formation volcanic rocks in Konglong area
编号 P13DH1 P13DH2 P13DH3 P13DH4 P13DH5 P13DH6 岩性 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 SiO2 76.26 75.34 75.22 75.78 74.81 78.14 TiO2 0.25 0.35 0.34 0.26 0.15 0.11 Al2O3 11.83 12.28 12.28 11.94 12.53 11.92 Fe2O3 2.10 2.29 2.35 2.09 2.65 1.52 MnO 0.04 0.03 0.02 0.05 0.07 0.03 MgO 0.14 0.16 0.15 0.20 0.12 0.17 CaO 0.32 0.40 0.39 0.35 0.32 0.16 Na2O 4.23 4.35 4.40 4.42 4.45 2.81 K2O 3.86 3.71 3.77 3.68 3.87 4.52 P2O5 0.05 0.04 0.04 0.06 0.05 0.03 LOI 0.47 0.57 0.55 0.50 0.52 1.01 Total 100.09 100.19 100.13 99.91 100.13 100.42 K+Na 8.09 8.05 8.16 8.10 8.32 7.33 K/Na 0.91 0.85 0.86 0.83 0.87 1.61 Ti 1491 2086 2027 1550 894 677 K 32057 30787 31289 30561 32124 37513 P 221 177 177 273 199 122 A/CNK 1.01 1.03 1.02 1.00 1.04 1.61 A/NK 1.06 1.10 1.09 1.06 1.09 1.21 AR 4.99 4.48 4.62 4.87 4.67 2.74 SI 1.33 1.48 1.38 1.89 1.06 1.9 δ43 1.97 2.01 2.07 2.00 2.17 1.53 La 41.00 35.20 36.50 38.00 35.60 28.93 Ce 88.40 76.60 76.30 84.80 74.90 54.68 Pr 9.37 8.64 8.63 8.50 8.51 6.64 续表2 编号 P13DH1 P13DH2 P13DH3 P13DH4 P13DH5 P13DH6 岩性 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 Nd 33.40 33.80 30.30 30.60 34.90 24.04 Sm 5.60 5.88 5.61 5.57 5.91 5.29 Eu 0.92 1.01 0.90 0.97 0.94 0.52 Gd 4.68 5.32 5.24 4.90 5.26 4.90 Tb 0.57 0.71 0.75 0.66 0.70 0.84 Dy 2.75 3.90 3.95 3.37 4.03 5.01 Ho 0.46 0.75 0.78 0.61 0.79 1.06 Er 1.30 2.34 2.48 1.78 2.42 3.13 Tm 0.22 0.40 0.43 0.29 0.42 0.48 Yb 1.36 2.29 2.24 1.64 2.46 3.08 Lu 0.25 0.44 0.44 0.30 0.43 0.46 ΣREE 190 177 174 181 177 139 LREE 178 161 158 168 160 120 HREE 11.59 16.15 16.31 13.55 16.51 18.96 LREE/HREE 15.42 9.98 9.70 12.44 9.74 6.34 δEu 0.53 0.54 0.50 0.56 0.51 0.31 δCe 1.06 1.05 1.02 1.11 1.02 0.93 (La/Yb)N 21.62 11.03 11.69 16.62 10.38 6.74 Sc 5.15 5.87 5.27 5.28 6.34 3.79 V 8.42 7.33 5.38 6.66 5.71 9.94 Cr <5 <5 8.50 <5 5.90 16.21 Co 10.90 11.80 8.80 14.00 9.28 0.83 Ni 4.99 4.48 4.62 4.87 4.67 1.18 Rb 80.10 87.10 88.90 78.10 81.60 166.37 Sr 94.40 118.00 118.00 97.40 119.00 50.91 Y 13.00 21.20 22.20 18.40 21.10 29.96 Zr 198 208 197 203 200 106 Nb 6.65 8.80 9.15 7.02 8.70 9.54 Ba 871 852 888 842 922 396 Hf 1.77 2.38 2.44 1.98 2.36 3.58 Ta 0.69 0.84 0.86 0.64 0.87 0.92 Pb 11.80 12.90 11.60 22.20 13.80 23.47 Th 14.70 14.50 15.20 13.50 14.70 18.90 U 1.48 2.01 2.16 1.54 2.07 3.12 Li 16.30 20.50 21.00 15.20 20.60 20.80 Cu 2.48 2.62 3.11 2.05 3.87 1.13 Zn 31.30 21.60 19.80 104.00 20.10 39.86 W 110 120 90 134 93.8 1.44 Sb 0.34 0.42 0.44 0.17 0.38 1.03 注:测试单位为核工业二三〇研究所;测试时间为2017年。 -
鲍春辉. 西藏措勤地区林子宗群典中组火山岩地球化学特征及成因研究[D]. 成都: 成都理工大学, 2014 BAO Chunhui. Geochemical characteristics and genesis of volcanic rocks in the Dianzhong Formation of the Linzizong Group in Cuoqin, Tibet[D]. Chengdu: Chengdu University of Technology, 2014.
陈贝贝, 丁林, 许强, 等. 西藏林周盆地林子宗群火山岩的精细年代框架[J]. 第四纪研究, 2016, 36(5): 1037-1054 CHEN Beibei, DING Lin, XU Qiang, et al. Fine Chronological Framework of Volcanic Rocks in Linzizong Group, Linzhou Basin, Tibet[J]. Quaternary Research, 2016, 36(5): 1037-1054.
陈宁, 曾忠诚, 赵端昌, 等. 阿尔金造山带南缘晚奥陶世碱性辉长岩成因及其大地构造意义[J]. 西北地质, 2023, 56(4): 91−102. CHEN Ning, ZENG Zhongcheng, ZHAO Duanchang, et al. Petrogenesis and Tectonic Implications of Late Ordovician Alkaline Gabbro in the South Altyn Orogenic Belt[J]. Northwestern Geology, 2023, 56(4): 91−102.
曹延, 康志强, 许继峰, 等. 拉萨地块西部狮泉河地区典中组火山岩年代学、地球化学特征及其构造意义[J]. 地球科学, 2020, 45(5): 1573-1592 CAO Yan, KANG Zhiqiang, XU Jifeng, et al. Chronological, geochemical characteristics and tectonic significance of volcanic rocks of the Dianzhong Formation in Shiquanhe area, western Lhasa block[J]. Earth Science, 2020, 45(5): 1573-1592.
董国臣, 莫宣学, 赵志丹, 等. 拉萨北部林周盆地林子宗火山岩层序新议[J]. 地质通报, 2005, 24(6): 549-557 DONG Guochen, MO Xuanxue, ZHAO Zhidan, et al. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Linzhou Basin, northern Lhasa, China[J]. Geological Bulletin of China, 2005, 24(6): 549-557.
付文春, 康志强, 潘会彬. 西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征_锆石U-Pb年龄及地质意义[J]. 地质通报, 2014, 33(6): 850-859 FU Wenchun, KANG Zhiqiang, PAN Huibin. Geochemical, zircon U-Pb age and implications of the Linzizong Group volcanic rocks in the Shiquan River area, western Gangdise belt, Tibet [J]. Geological Bulletin of China, 2014, 33(6): 850-859.
黄映聪, 杨德明, 郑常青, 等. 西藏林周县扎雪地区林子宗群帕那组火山岩的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2005, 35(5): 576-580 HUANG Yingcong, YANG Deming, ZHENG Changqing, et al. Geochemical characteristics and geological significance of volcanic rocks in the Pana Formation of Linzizong Group, Zhaxue District, Linzhou County, Tibet[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(5): 576-580.
侯增谦, 赵志丹, 高永丰, 等. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 2006, 22 (04): 761-774 HOU Zengqian, ZHAO Zhidan, GAO Yongfeng, et al. Tearing and segmented subduction of the Indian continental slab front: evidence from the Gangdese Cenozoic volcano-magmatism[J]. Acta Petrologica Sinica, 2006, 22 (04): 761-774.
胡新伟, 马润则, 陶晓风, 等. 西藏措勤地区典中组火山岩地球化学特征及构造背景[J]. 成都理工大学学报(自然科学版), 2007 (01): 15-22 HU Xinwei, MA Runze, TAO Xiaofeng, et al. Geochemical characteristics and tectonic setting of the volcanic rocks of the Dianzhong Formation in the Cuoqin area, Tibet[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2007 (01): 15-22.
李俊, 刘函, 黄金元, 等. 西藏昂仁县孔隆地区下拉组时代修订及其对冈底斯中晚二叠世沉积演化的制约[J]. 地质通报, 2023, 42(2−3): 252−259. LI Jun, LIU Han, HUANG Jinyuan, et al. Age revision of the Xiala Formation in Konglong area, Nangren County, Tibet, and its constraints on the sedimentary evolution of the Gangdese belt in the Middle and Late Permian[J]. Geological Bulletin of China, 2023, 42(2−3): 252−259.
李璞. 西藏东部地质的初步认识[J]. 科学通报, 1955, (7): 62-71 LI Pu. A preliminary understanding of the geology of eastern Tibet[J]. Chinese Science Bulletin, 1955, (7): 62-71.
李皓扬, 钟孙霖, 王彦斌, 等. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义: 锆石U-Pb年龄和Hf同位素证据[J]. 岩石学报, 2007, 23(2): 493-500 LI Haoyang, ZHONG Sunlin, WANG Yanbin, et al. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou Basin, southern Tibet: Evidence from zircon U-Pb dates and Hf Isotopes[J]. Acta Petrologica Sinica, 2007, 23 (2): 493-500
李洪梁, 李光明, 丁俊, 等. 冈底斯西段达若地区林子宗群典中组火山岩锆石U-Pb定年与Hf同位素[J]. 矿物学报, 2019(3): 334-344 LI Hongliang, LI Guangming, DING Jun, et al. U-Pb dating and Hf isotopes of volcanic rocks from the Dianzhong Formation of Linzizong Group in the Daluo area, western Gangdise[J]. Acta Mineralogy, 2019(3): 334-344.
梁银平, 朱杰, 次邛, 等. 青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征[J]. 地球科学(中国地质大学学报), 2010(02): 211-223 LIANG Yinping, ZHU Jie, CI Qiong, et al. Zircon U-Pb Ages and Geochemistry of Volcanic Rocks from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau[J]. Earth Science (Journal of China University of Geosciences), 2010(02): 211-223.
刘安琳, 朱弟成, 王青, 等. 藏南米拉山地区林子宗火山岩LA-ICP-MS锆石U-Pb年龄和起源[J]. 地质通报, 2015, 34(5): 826-833 LIU Anlin, ZHU Dicheng, WANG Qing, et al. LA-ICP-MS zircon U-Pb age and origin of the Linzizong volcanic rock in the Mila Mountain area, southern Tibet[J]. Geological Bulletin of China, 2015, 34(5): 826-833.
柳永正, 张海平, 张永清, 等. 内蒙古中东部玛尼吐组火山岩形成时代及其大地构造环境[J]. 西北地质, 2023, 56(2): 46−60. LIU Yongzheng, ZHANG Haiping, ZHANG Yongqing, et al. Zircon U–Pb Age and Tectonic Setting of the Manitu Formation in the Middle–East Inner Mongolia, China[J]. Northwestern Geology, 2023, 56(2): 46−60.
李强, 冉孟兰, 康志强, 等. 拉萨地块西部亚热区则弄群火山岩锆石U-Pb年龄及其地质意义[J]. 桂林理工大学学报, 2017, 37(4): 561-569 LI Qiang, RAN Menglan, KANG Zhiqiang, et al. Zircon U-Pb ages of the volcanic rocks of the Zenong Group in the sub-hot area of the western Lhasa block and their geological significance[J]. Journal of Guilin University of Technology, 2017, 37(4): 561-569.
李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282. LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.
刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6): 7 LIU Yin, LIU Haicheng, LI Xianhua. Accurate determination of more than 40 trace elements in rock samples by ICP-MS[J]. Geochemistry, 1996, 25(6): 7.
李勇, 张士贞, 李奋其, 等. 拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义[J]. 地球科学, 2018 (08): 2755-2766 LI Yong, ZHANG Shizhen, LI Fenqi, et al. Zircon U-Pb ages and geological significance of the volcanic rocks of the Dianzhong Formation in the Chazi area of the central Lhasa block[J]. Earth Science, 2018 (08): 2755-2766.
莫宣学, 赵志丹, 邓晋福, 等. 印度—亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, (3): 135-148 MO Xuanxue, ZHAO Zhidan, Deng Jinfu, et al. response of volcanism to the india-asia collision[J]. Frontiers of Earth Science, 2003, (3): 135-148.
莫宣学. 青藏高原岩浆岩成因研究: 成果与展望[J]. 地质通报, 2009, 28(12): 1693-1703 MO Xuanxue. A review of genesis study on magmatic rocks of the Qinghai-Tibet Plateau: Achievements and remaining problems[J]. Geological Bulletin of china, 2009, 28(12): 1693-1703.
莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51 MO Xuanxue, PAN Guitang. From Tethys to the formation of the Qinghai-Tibet Plateau: Constraints of tectonic-magmatic events[J]. Earth Science Frontiers, 2006, 13(6): 43-51.
莫宣学, 赵志丹, Depaolo Don-J, 等. 青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr-Nd同位素证据[J]. 岩石学报, 2006, 22(04): 795-803 MO Xuanxue, ZHAO Zhidan, Depaolo Don-J, et al. Three types of collision-post-collision magmatism in the Lhasa block of the Qinghai-Tibet Plateau and their implications for continental subduction and mineralization: Sr-Nd isotope evidence[J]. Acta Petrologica Sinica, 2006, 22(04): 795-803.
潘亮, 周斌, 鲁麟, 等. 冈底斯带东段日多地区航木多岩体地球化学、锆石U-Pb年代学、Lu-Hf同位素特征及其地质意义[J]. 西北地质, 2021, 54(4): 59-81 PAN Liang, ZHOU Bin, LU Lin, et al. Geochemistry, Zircon U-Pb Chronology, Lu-Hf Isotopic Compositions and Geological Significance of the Hangmuduo Granite in Riduo Area of Eastern Gangdise Belt[J]. Northwestern Geology, 2021, 54(4): 59-81.
唐攀, 唐菊兴, 郑文宝, 等. 西藏新嘎果地区典中组火山岩年代学、Hf同位素及地球化学特征[J]. 岩石矿物学杂志, 2018, 37(1): 47-60 TANG Pan, TANG Juxing, ZHENG Wenbao, et al. Chronology, Hf isotope and geochemical characteristics of volcanic rocks of Dianzhong Formation in Xingaguo area, Tibet[J]. Journal of Rock and Mineralogy, 2018, 37(1): 47-60.
王天武, 李才, 杨德明. 西藏冈底斯地区早第三纪林子宗群火山岩地球化学特征及成因[J]. 地质论评, 1999, 45(7): 966-971 WANG Tianwu, LI Cai, YANG Deming. Geochemical features and genesis of the Linzizong Group volcanic rocks of the Early Tertiary in the Gangdise, Tibet[J]. Geological Review, 1999, 45(7): 966-971.
王乔林. 冈底斯西段林子宗群火山岩的地球化学特征及锆石年代学研究[D]. 北京: 中国地质大学(北京), 2011 WANG Qiaolin. Geochemical characteristics and zircon dating of the volcanic rocks of the Linzizong Group in the western section of Gangdise[D]. Beijing: China University of Geosciences (Beijing), 2011.
王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600. WANG Zitong, WANG Genhou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(5): 586−600.
谢克家, 曾令森, 刘静, 等. 藏南昂仁县桑桑地区林子宗群火山岩的形成时代和地球化学特征[J]. 地质通报, 2011, 30(9): 1339-1352 XIE Kejia, ZENG Lingsen, LIU Jing, et al. Formation age and geochemical characteristics of volcanic rocks of Linzizong Group in Sangsang area, Angren County, southern Tibet[J]. Geological Bulletin of China, 2011, 30(9): 1339-1352.
谢冰晶, 周肃, 谢国刚, 等. 西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比[J]. 岩石学报, 2013 (11): 3803-3814. XIE Bingjing, ZHOU Su, XIE Guogang, et al. Regional comparison of zircon SHRIMP ages and geochemical characteristics of volcanic rocks from the Linzizong Group in the Konglong to Dingrenle area of the central Gangdise, Tibet[J]. Acta Petrologica Sinica, 2013(11): 3803- 3814.
熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139. XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139.
于枫, 李志国, 赵志丹, 等. 西藏冈底斯带中西部措麦地区林子宗火山岩地球化学特征及意义[J]. 岩石学报, 2010, 26(7): 2217-2225 YU Feng, Li Zhiguo, ZHAO Zhidan, et al. Geochemistry and implication of the Linzizong volcanic succession in Cuomai area, central and western Gangdise Tibet[J]. Acta Petrologica Sinica, 2010, 26(7): 2217-2225.
岳相元. 西藏措勤地区典中组火山岩地球化学特征及其地质意义[D]. 成都: 成都理工大学, 2012 YUE Xiangyuan. Geochemical characteristics and geological significance of volcanic rocks of Dianzhong Formation in Cuoqin area, Tibet[D]. Chengdu: Chengdu University of Technology, 2012.
周肃, 莫宣学, 董国臣, 等. 西藏林周盆地林子宗火山岩40Ar/39Ar年代格架[J]. 科学通报, 2004, 49(20): 2095-2103 doi: 10.1360/csb2004-49-20-2095 ZHOU Su, MO Xuanxue, DONG Guochen, et al. The 40Ar/39Ar age framework of the Linzizong volcanic rocks in the Linzhou Basin, Tibet[J]. Chinese Science Bulletin, 2004, 49(20): 2095-2103. doi: 10.1360/csb2004-49-20-2095
朱弟成, 潘桂棠, 莫宣学, 等. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境: 火山岩约束[J]. 岩石学报, 2006, 22(03): 534-546 ZHU Dicheng, PAN Guitang, MO Xuanxue, et al. Late Jurassic-Early Cretaceous geodynamic environment in the north-central Gangdise: volcanic rock constraints[J]. Acta Petrologica Sinica, 2006, 22 (03): 534-546.
钟玉芳, 马昌前, 佘振兵. 锆石地球化学特征及地质应用研究综述[J]. 地质科技情报, 2006, 25(1): 27-34 ZHONG Yufang, MA Changqian, SHE Zhenbing. A review of zircon geochemical characteristics and geological applications[J]. Geological Science and Technology Information, 2006, 25(1): 27-34.
Barth M G, Mcdonough W F, Rudnick R L. Tracking the Budget of Nb and Ta in the Continental Crust[J]. Chemical Geology, 2000, 165(3): 197-213.
Bruno K, Nicholas A, Henriette L, et al. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. [J]. Journal of Petrology, 2004(4): 793-834.
Green D H. Experimental testing of 'equilibrium' partial melting of peidotite under water-saturated, high pressure conditions[J]. The Canadian Mineralogist, 1976, 14(3): 255-268.
He S, Kapp P, Decelles PG, et al. Cretaceous–tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet[J]. Tectonophysics, 2007, 433(1): 15-37.
Huang W, Dupont Nivet, Guillaume, et al. What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou Basin, Tibet)[J]. Tectonics, 2015, 34(3): 594-622. doi: 10.1002/2014TC003787
Lee HY, Chung SL, Lo CH, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tectonophysics, 2009, 477(1-2): 20-35. doi: 10.1016/j.tecto.2009.02.031
Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-pb Isotope and Trace Element Analyses By La-icp-ms[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1-2): 225-242. doi: 10.1016/j.lithos.2006.10.005
Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250(1): 49-67.
Mcdonough W F, Sun S S. The Composition of the Earth [J]. Chemical Geology, 1995, 120(3): 223-253.
Zhou S, Mo X X, Dong G C, et al. 40Ar/39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications[J]. Chinese Science Bulletin, 2004, 49(18): 1970-1979. doi: 10.1007/BF03184291