Geological Characteristics and Metallogenic Geological Conditions of the Woxi Gold−Antimony−Tungsten Deposit in Yuanling, Hunan Province
-
摘要:
沃溪矿床为湖南雪峰成矿带弧形转折端非常重要且极具特色的金锑钨共生超大型矿床,矿体赋存于北西西向断裂破碎带中,赋矿围岩为元古界板溪群马底驿组中上部绢云母化板岩。矿床类型为中低温热液石英脉型金锑钨矿床。笔者在实地调查并结合前人研究成果基础上,对该矿床地质特征、围岩蚀变和成矿地质条件进行了系统分析和总结。矿区围岩蚀变作用强烈,绢云母化、黄铁矿化和硅化与金锑钨成矿关系密切,此外还有伊利石化、碳酸盐化和绿泥石化等。矿床成矿作用分为热液成矿期及表生氧化期两个成矿期,其中热液成矿期可划分为石英–白钨矿–黄铁矿、自然金–黄铁矿–石英、辉锑矿–方锑金矿–石英和碳酸盐–石英4个阶段。矿床主要受地层和构造控制,是地层、构造和围岩蚀变三者在有利成矿条件下耦合的产物,其中地层为成矿提供了物源,一级断裂构造为成矿流体提供运移通道,二级次生层间断裂和节理裂隙提供了容矿空间,围岩蚀变则是成矿富集的必备条件,三者也是矿区找矿的直接标志。
Abstract:The Woxi gold antimony tungsten deposit is an important and characteristic gold antimony tungsten symbiotic super large deposit in the arc turning end of Xuefeng metallogenic belt in Hunan province.The deposit controlled by NWW trending faults, and hosted in purplish discoloration sericite slate in the middle and upper part of Madiyi formation of the Proterozoic Banxi group. The genesis of the deposit is metamorphic hydrothermal quartz vein type gold antimony tungsten deposit. Based on the field investigation and previous research results, this paper systematically analyzes and summarizes the geological characteristics, wall rock alteration and metallogenic geological conditions of the deposit. The wall rock alteration in the mining area is strong, pyritization and silicification are closely related to the gold antimony tungsten mineralization. In addition, there are illitization, carbonation and chloritization . The mineralization of the deposit can be divided into two metallogenic periods: hydrothermal metallogenic period and supergene oxidation period. The hydrothermal metallogenic period of the deposit can be divided into four stages: quartz–scheelite–pyrite stage, natural gold–pyrite–quartz stage, stibnite–fangantimony gold–quartz stage and carbonate–quartz stage. The deposit is mainly controlled by stratum , structure and wall rock alteration, which is the product of the coupling of stratum, structure and wall rock alteration under favorable metallogenic conditions. Among them,stratum provides material source for mineralization, primary fault structure provides migration channel for metallogenic fluid, and secondary interlayer faults and joint fissures provide ore holding space. Wall rock alteration is the necessary condition for metallogenic enrichment, and the three factors are also the direct signs of ore prospecting in the mining area.
-
东昆仑造山带地处于青藏高原北部,北部与柴达木盆地相接,其西端被阿尔金大型左行走滑断裂所截,东西延伸约1 500 km。带内广泛分布元古宙到晚中生代的花岗质岩石,大致展布方向为北西西–南东东向(袁万明等,2000)。近年来,随着一批区域地质调查工作的开展,众多学者对东昆仑造山带不同时代的花岗岩类进行了大量研究。东昆仑造山带内的花岗质岩石被前人划分为4个阶段,并分别对应4个构造旋回:①基底形成(前寒武世)。②洋盆扩张、俯冲、碰撞造山阶段(早寒武世—中泥盆世),造山后崩塌阶段(晚泥盆世)。③洋盆打开(晚泥盆世—早石炭世),俯冲造山时期(中晚二叠世—早三叠世),碰撞到后碰撞陆内造山阶段(晚三叠世),进入后造山垮塌阶段(晚侏罗世)。④受新特提斯构造影响强烈隆升阶段(晚中生代—新生代)(莫宣学等,2007)。其中,以早古生代及晚古生代—早中生代的岩浆活动最为发育。早古生代花岗岩多呈大型线状复式岩基产出于东昆仑北部祁漫塔格山一带,其年龄为485~384 Ma(高晓峰等,2010;黎敦朋等,2010;高永宝等,2011;孟繁聪,2013;熊富浩,2014;张斌等,2014)。
东昆仑早古生代巴什尔希花岗杂岩体,北邻南阿尔金造山带,南部与东昆仑西北部祁漫塔格构造带相接。前人对该岩体已有部分研究,但关于其形成时代、构造背景及构造归属仍存在不同认识:①高晓峰等(2010)研究中给出了巴什尔希柯可·卡尔德岩体似斑状二长花岗岩锆石U–Pb年龄为(458±9) Ma,钾长花岗岩锆石U–Pb年龄为(432±1) Ma,认为其具有A型花岗岩的特征,可能是弧后盆地拉张过程中地幔底侵的产物。②包亚范等(2008)研究认为,巴什尔希花岗岩为S型花岗岩,其形成于板内造山带或陆缘环境。③黎敦朋等(2010)认为巴什尔希花岗岩的构造环境属性可能并不属于祁漫塔格构造域。针对上述分歧,笔者拟以巴什尔希似斑状二长花岗岩为研究对象,通过详细的岩相学、地球化学、年代学及锆石Hf同位素分析等工作,在此基础上,与区内前人研究成果进行对比研究,以期为巴什尔希花岗杂岩体的形成时代、原岩属性及构造背景进行约束,并为进一步探讨东昆仑造山带北缘的构造演化过程提供依据。
1. 区域地质概况和岩相学特征
巴什尔希岩体分布于东昆仑造山带祁漫塔格西翼与南阿尔金的接合部位(图1),其北为南阿尔金俯冲碰撞杂岩带,以南为东昆仑祁漫塔格造山带。南阿尔金俯冲碰撞杂岩带是一条早古生代形成的板块缝合带,主要出露与陆壳深俯冲相关的超高压变质岩、中酸性花岗岩和蛇绿混杂岩等(张建新等,2001;刘良等,2003,2007,2009)。此外,阿尔金南缘主断裂是一条长期活动的巨型左行走滑构造带,其新生代构造活动形成了一系列拉分盆地(车自成等,1998)。东昆仑祁漫塔格造山带主要出露的地层为长城系金水口岩群的小庙岩组、青白口系冰沟岩群、古生界祁漫塔格群和志留系白干湖组,在古生代至中生代经历了强烈的岩浆活动。巴什尔希岩体以形态和规模不等的岩基或岩墙侵入于长城系金水口岩群小庙岩组和蓟县系至青白口系冰沟岩群中,主要的岩石组合由钾长花岗岩和二长花岗岩组成。
图 1 东昆仑巴什尔希区域地质图(据黎敦朋,2010修编)Figure 1. Geological map of the Bashenerxi region of the East Kunlun Mountains文中的角闪二长花岗岩(13A-18)和灰色二长花岗岩均采自巴什尔希岩体中细粒状似斑状二长花岗岩单元(图1),二者均呈岩株状侵入金水口岩群小庙岩组。角闪二长花岗岩(图2a、图2c)主要矿物组成为石英、斜长石、钾长石、角闪石和黑云母,副矿物有磷灰石、锆石和少量电气石,其中斜长石与钾长石含量均为30%~40%,自行–半自形,斜长石有双晶发育;石英含量约为25%~30%,可见波状消光,他形粒状;角闪石含量为5%~10%,分布于斜长石和石英颗粒间,半自形结构;黑云母含量不足5%。灰色二长花岗岩(图2b、图2d),主要矿物组合石英、斜长石、钾长石和少量黑云母,副矿物有锆石和磷灰石。斜长石钾长石含量均为30%~35%,半自形粒状结构;石英含量约为25%~30%,他形结构;黑云母含量约为10%,自形程度较差。
2. 分析方法
文中样品委托河北廊坊诚信地质服务有限公司进行锆石的分离和挑选等工作,其他测试分析工作在西北大学大陆动力学国家重点实验室完成。全岩主量元素分析在XRF(Rugaku RIX2100)仪上测定,全岩微量元素分析和稀土元素测试在Perkin Elnmer公司Elan6100 DRC型ICP–MS上完成,标样使用BHVO–1、BCR–2和AVG–1进行监控。阴极发光(CL)分析在装有Mono CL3+阴极发光装置系统的场发射扫描电镜上完成,而U–Pb年龄测定及微量元素分析Agilient 7500a型ICP–MS上进行,连接Geolas 200 M激光剥蚀系统,测试中使用直径为32 μm激光剥蚀斑束进行刻蚀,剥蚀深度为20 μm,在测定时每5个测点测定一次91500、GJ–1和NIST 610,数据处理使用ICPMS Data Cal 8.9程序(Liu et al.,2010),年龄计算以标准锆石91500为外标进行同位素比值分馏校正,元素浓度矫正以NIST610为外标,29Si为内标,年龄谐和图和加权平均年龄计算绘制和计算均采用Isoplot(ver3.0)。锆石微区原位Lu–Hf同位素分析使用Nu Plasma Ⅱ MC–ICP MS激光剥蚀系统为 RESOlutionM–50,ASI,监控样品采用GJ–1和91500标准锆石样品,每8个样品插入一组国际标样,数据采集模式为TRA模式,积分时间为0.2 s,背景采集时间为30 s,样品积分时间为50 s,吹扫时间为40 s,分析方法和仪器参数详见Yuan 等(2008)。
3. 分析结果
3.1 地球化学特征
3.1.1 主量元素
角闪二长花岗岩和灰色二长花岗岩SiO2含量均较高,分别为71.97%~73.49%和73.28%~74.12%;K2O含量分别为4.80%~5.61%和5.57%~5.79%,均高于Na2O含量(3.01%~3.13%和2.83%~2.91%),里特曼指数σ均为2.04~2.75,K2O/Na2O值分别为1.55~1.76和1.92~2.05(表1)。在SiO2–K2O关系图中可以看出,角闪二长花岗岩和灰色二长花岗岩落点集中在高钾钙碱性岩系列(图3a),二者均具有富Al特征(Al2O3含量为13.06%~17.20%,平均为13.79%),在A/CNK–A/NK关系图中显示为弱过铝质(图3b);Mg、Ti和Ca含量较低(MgO、TiO2、CaO含量分别为0.28%~0.38%、0.18%~0.33%和0.92%~1.24%),侵入岩TAS分类图如下(图3c)。因此,角闪二长花岗岩和灰色二长花岗岩均具有过Al、富碱、相对贫Na、高K、低Ca的岩石地球化学特征。
表 1 角闪二长花岗岩和灰色二长花岗岩地球化学组成(主量元素:%;微量元素:10−6)Table 1. Element compositions of granite (Major element: %; Trace element: 10−6)元素 13A-18(a) 13A-18(b) 13A-18(c) 13A-18(d) 13A-18(e) 13A-18(g) 13A-19(a) 13A-19(b) 13A-19(c) 13A-19(d) 13A-19(e) 13A-19(f) SiO2 72.09 73.49 73.22 71.97 72.67 72.31 73.67 74.12 73.49 73.84 73.28 73.83 TiO2 0.26 0.29 0.24 0.32 0.31 0.33 0.19 0.20 0.20 0.20 0.19 0.18 Al2O3 13.98 13.09 13.51 13.76 13.55 13.48 13.61 13.53 13.64 13.61 13.65 13.48 Fe2O3t 2.01 2.14 1.74 2.36 2.45 2.21 1.57 1.54 1.53 1.56 1.55 1.51 MnO 0.04 0.05 0.03 0.04 0.05 0.04 0.02 0.03 0.03 0.03 0.03 0.03 MgO 0.34 0.36 0.29 0.42 0.38 0.38 0.30 0.31 0.28 0.30 0.31 0.28 CaO 1.18 1.17 0.92 1.21 1.24 1.21 0.99 1.11 1.17 1.17 1.08 1.06 Na2O 3.13 3.10 3.01 3.04 3.06 3.08 2.91 2.90 2.86 2.90 2.89 2.83 K2O 5.51 4.80 5.61 5.19 5.38 5.45 5.75 5.57 5.64 5.60 5.60 5.79 P2O5 0.08 0.08 0.08 0.10 0.10 0.10 0.07 0.07 0.06 0.07 0.07 0.07 LOI 1.07 1.19 0.92 1.10 0.87 1.02 0.88 0.94 0.82 0.93 0.91 0.94 TOTAL 99.69 99.76 99.57 99.51 100.1 99.61 99.96 100.3 99.72 100.2 99.56 100.0 Li 31.2 28.6 26.3 33.1 37.6 24.6 41.8 47.6 45.6 42.2 44.4 43.9 Be 4.53 4.84 4.10 4.69 4.23 4.89 2.99 4.10 3.38 3.95 3.63 3.45 Sc 3.38 3.67 2.69 3.54 5.54 3.42 3.14 3.21 2.89 2.93 3.20 2.84 V 12.9 13.3 9.65 16.0 14.1 13.7 8.46 8.09 8.22 8.08 8.15 7.71 Cr 6.52 5.63 6.82 4.12 4.33 4.55 5.64 7.20 7.00 3.49 5.00 3.19 Co 19.2 32.2 33.2 20.2 24.5 35.9 32.3 36.2 33.4 34.8 35.9 26.4 Ni 2.33 3.69 4.05 2.38 2.59 2.88 4.93 4.32 4.11 2.39 3.29 2.06 Cu 1.56 2.21 1.54 2.53 4.10 1.81 1.41 1.10 1.16 1.03 1.00 1.01 Zn 32.7 38.4 29.6 38.0 43.5 37.8 29.3 33.4 31.3 35.7 31.9 29.8 Ga 20.8 20.0 19.4 21.5 21.1 20.3 18.6 19.4 18.8 19.0 18.7 18.2 Ge 1.57 1.36 1.48 1.52 1.54 1.44 1.53 1.62 1.60 1.61 1.53 1.57 Rb 203 183 187 178 206 208 235 214 224 198 223 240 Sr 80.7 73.9 75.9 83.9 79.6 79.5 86.1 77.5 78.6 79.5 80.2 76.0 Y 27.6 31.3 20.2 25.1 26.8 23.9 36.0 38.3 33.0 34.1 29.7 33.0 Zr 231 230 190 284 239 252 171 172 171 169 171 164 Nb 27.6 30.0 23.9 34.6 33.2 38.1 27.2 30.5 29.4 31.3 29.5 30.4 Cs 2.75 2.46 1.72 2.57 3.48 1.54 4.83 4.09 6.47 3.61 5.17 3.57 Ba 478 313 393 412 385 424 393 361 384 373 402 370 La 56.4 65.7 51.2 65.0 65.1 64.6 50.4 50.7 54.1 56.8 60.4 50.7 Ce 110 129 101 126 128 122 96.9 98.2 104 106 114 98.4 Pr 12.4 14.6 11.4 14.5 14.8 14.2 11.1 11.2 11.8 12.1 13.0 11.0 Nd 42.1 51.2 38.4 50.1 51.2 48.6 37.9 38.5 40.8 42.2 45.9 38.7 Sm 7.30 8.70 6.54 8.94 9.39 8.27 7.60 7.86 8.15 8.24 8.77 7.69 Eu 0.95 0.88 0.88 1.00 0.94 0.97 0.77 0.77 0.81 0.80 0.83 0.76 Gd 6.00 7.01 5.25 7.13 7.48 6.83 6.75 6.98 7.02 7.22 7.34 6.78 续表1 元素 13A-18(a) 13A-18(b) 13A-18(c) 13A-18(d) 13A-18(e) 13A-18(g) 13A-19(a) 13A-19(b) 13A-19(c) 13A-19(d) 13A-19(e) 13A-19(f) Tb 0.83 1.00 0.68 0.91 0.98 0.91 1.03 1.07 1.01 1.02 1.03 0.97 Dy 4.67 5.53 3.62 4.72 5.13 4.67 5.89 6.17 5.60 5.67 5.47 5.43 Ho 0.85 1.04 0.64 0.82 0.88 0.79 1.12 1.16 1.03 1.05 0.98 1.02 Er 2.49 2.97 1.82 2.25 2.37 2.14 3.14 3.33 2.82 2.92 2.65 2.88 Tm 0.37 0.42 0.25 0.30 0.32 0.30 0.46 0.49 0.42 0.42 0.38 0.42 Yb 2.27 2.52 1.54 1.79 1.97 1.88 2.96 3.15 2.66 2.72 2.42 2.72 Lu 0.31 0.34 0.23 0.26 0.27 0.28 0.42 0.45 0.39 0.39 0.35 0.38 Hf 5.54 5.79 4.81 6.76 5.72 6.12 4.61 4.63 4.73 4.56 4.81 4.45 Ta 2.32 2.23 1.43 1.84 1.87 2.37 1.87 2.52 2.23 2.79 2.24 2.61 Pb 22.7 18.9 17.6 19.0 19.4 18.1 27.1 27.6 29.2 30.2 32.6 29.8 Th 23.3 29.6 24.8 27.3 26.3 26.8 29.6 34.1 33.7 34.7 34.9 33.3 U 1.67 2.09 1.43 1.34 1.86 1.51 2.14 2.90 2.26 2.41 7.96 2.22 ΣREE 230 270 209 266 270 258 226 230 241 247 264 228 LREE 17.80 20.83 14.03 18.17 19.42 17.80 204.6 207.3 219.7 225.9 243.1 207.2 HREE 12.90 12.98 14.90 14.62 13.90 14.52 21.78 22.80 20.95 21.41 20.63 20.61 LREE/HREE 17.80 18.69 23.86 26.06 23.66 24.69 9.40 9.09 10.49 10.55 11.79 10.05 LaN/YbN 0.44 0.35 0.46 0.38 0.34 0.40 12.19 11.56 14.57 14.96 17.89 13.37 δEu 0.43 0.33 0.44 0.37 0.33 0.39 0.32 0.31 0.32 0.31 0.31 0.32 δCe 0.98 0.98 0.98 0.97 0.97 0.94 0.96 0.97 0.97 0.94 0.95 0.97 δ 2.57 2.05 2.46 2.34 2.40 2.48 2.45 2.31 2.37 2.34 2.38 2.41 Al2O3/TiO2 53.77 45.14 56.29 43.00 43.71 40.85 71.63 67.65 68.20 68.05 71.84 74.89 CaO/Na2O 0.38 0.38 0.31 0.40 0.41 0.39 0.34 0.38 0.41 0.40 0.37 0.37 K2O/Na2O 1.76 1.55 1.86 1.71 1.76 1.77 1.98 1.92 1.97 1.93 1.94 2.05 Rb/Ba 0.42 0.58 0.48 0.43 0.53 0.49 0.60 0.59 0.58 0.53 0.56 0.65 Sr/Ba 0.17 0.24 0.19 0.20 0.21 0.19 0.22 0.21 0.20 0.21 0.20 0.21 A/CNK 1.05 1.05 1.06 1.07 1.03 1.02 1.06 1.06 1.05 1.05 1.07 1.05 注: A/CNK = Al2O3 / (CaO + K2O + Na2O); δ =(K2O+Na2O)2 / (SiO2 -43); δEu = EuN / (SmN+GdN)1/2, δCe = CeN / (LaN + PrN)1/2;原始地幔值据Sun et al.,1989。 3.1.2 稀土及微量元素特征
角闪二长花岗岩和灰色二长花岗岩的LREE/HREE值分别为17.80~26.06和9.09~11.79;(La/Yb)N值为10.79~26.06,(La/Sm)N值为1.62~3.20,均表现出轻稀土元素相对富集,重稀土相对亏损的特征,轻重稀土分馏程度较高;存在Eu元素“V”型谷,δEu值为0.31~0.44;稀土配分模式(图4a)显示,样品稀土元素具有相对一致的变化趋势,总体表现为“右倾海鸥型”配分模式。
图 4 角闪二长花岗岩和灰色二长花岗岩稀土模式图(a)和微量元素蛛网图(b)(原始地幔值据Sun et al.,1989)Figure 4. (a) Patterns of rare earth elements and (b) spider webs of trace elements in granite2个样品均富集K、Rb、Ba等大离子亲石元素(LILEs),亏损Nb、Ta、P、Ti等高场强元素(HSFEs);Zr和Hf无明显分异;Nb和Ta的相对亏损可能暗示岩浆来源于地壳的重熔作用,或是经历了Nb、Ta矿物的结晶分异作用;P、Ti异常可能与磷灰石、钛铁氧化物的分离结晶有关(图4b)。
3.2 锆石U–Pb年龄和微量元素特征:
角闪二长花岗岩中的锆石形态为自形–半自形,CL图像显示,锆石颗粒有明显的震荡环带,大多数长宽比接近1∶1.5~1∶2,无继承核(图5);13个锆石测点206Pb/238U加权平均年龄为(452.8 ± 3.1)Ma;Th/U值分别为0.51~1.23,平均为0.80。灰色二长花岗岩中锆石形态为自形–半自形,CL图像显示锆石亦有较为清晰的震荡环带,长宽比约为1∶1.5,20个锆石测点获得(454.2±4.8)Ma和(758±15)Ma 2组年龄,前者的测点Th/U值为0.46~0.90,平均为0.52;后者的测点Th/U值为0.16~2.61,平均为0.71,测试结果见图6和表2。据以上锆石CL图像和Th/U值可判断可以确定角闪二长花岗岩与灰色二长花岗岩中的锆石为岩浆成因(Corfu et al.,2003;Hoskin et al.,2003),其年龄可以代表岩浆的结晶年龄。因此认为,角闪二长花岗岩的成岩年龄为(452.8±3.1) Ma,灰色二长花岗岩的成岩年龄为(454.2±4.8)Ma,其获得的一组(758 ± 15)Ma为残留核年龄。
表 2 角闪二长花岗岩和灰色二长花岗岩的锆石LA–ICP–MS定年分析表Table 2. Table of dating analysis of granite zircon LA–ICP–MS样品编号 含量( 10−6) Th / U 同位素比值 年龄值(Ma) 232Th 238U 207Pb / 206Pb 1σ 207Pb / 235U 1σ 206Pb /238U 1σ 207Pb /206Pb 1σ 207Pb /235U 1σ 206Pb /238U 1σ 13A-18-01 215 361 0.5973 0.0579 0.0027 0.5759 0.0269 0.0720 0.0012 528 104 462 17 448 7 13A-18-02 556 454 1.2254 0.0589 0.0025 0.5842 0.0236 0.0719 0.0009 565 91 467 15 448 6 13A-18-03 293 369 0.7941 0.0578 0.0032 0.5848 0.0300 0.0737 0.0010 520 120 468 19 458 6 13A-18-04 455 526 0.8648 0.0555 0.0036 0.5630 0.0366 0.0732 0.0011 435 143 453 24 455 6 13A-18-05 333 382 0.8713 0.0568 0.0028 0.5706 0.0275 0.0730 0.0011 483 109 458 18 454 6 13A-18-06 260 510 0.5091 0.0554 0.0025 0.5624 0.0245 0.0735 0.0010 428 98 453 16 457 6 13A-18-07 355 387 0.9165 0.0561 0.0031 0.5640 0.0305 0.0727 0.0012 457 120 454 20 452 7 13A-18-08 193 317 0.6106 0.0553 0.0040 0.5590 0.0418 0.0731 0.0017 433 161 451 27 455 10 13A-18-09 386 470 0.8217 0.0548 0.0043 0.5522 0.0462 0.0723 0.0011 406 178 446 30 450 6 13A-18-10 169 309 0.5458 0.0567 0.0042 0.5650 0.0415 0.0723 0.0016 480 161 455 27 450 10 13A-18-11 536 585 0.9177 0.0571 0.0032 0.5716 0.0330 0.0720 0.0012 494 124 459 21 448 7 13A-18-12 431 491 0.8788 0.0547 0.0029 0.5580 0.0293 0.0735 0.0010 398 120 450 19 457 6 13A-18-13 427 473 0.9029 0.0567 0.0051 0.5677 0.0482 0.0726 0.0010 480 166 457 31 452 6 13A-19-01 35 174 0.1997 0.0659 0.0048 1.1562 0.0793 0.1283 0.0019 1200 152 780 37 778 18 13A-19-02 89 193 0.4628 0.0652 0.0046 1.1382 0.0793 0.1263 0.0032 781 147 772 38 767 12 13A-19-03 168 481 0.3496 0.0662 0.0037 1.1736 0.0653 0.1283 0.0021 813 114 788 31 778 13 13A-19-04 700 268 2.6131 0.0626 0.0038 1.0943 0.0659 0.1265 0.0023 694 127 751 32 768 10 13A-19-05 308 668 0.4609 0.0637 0.0041 1.0351 0.0662 0.1172 0.0017 731 137 721 33 715 10 13A-19-06 114 127 0.8976 0.0571 0.0055 0.5708 0.0527 0.0727 0.0012 494 181 459 34 453 11 13A-19-07 152 632 0.2400 0.0562 0.0035 0.5656 0.0321 0.0734 0.0023 457 137 455 21 456 7 13A-19-08 683 1474 0.4637 0.0676 0.0041 1.1581 0.0759 0.1230 0.0026 857 124 781 36 748 13 13A-19-09 101 92 1.1082 0.0636 0.0051 1.1402 0.0891 0.1309 0.0014 728 169 773 42 793 15 13A-19-10 383 349 1.0975 0.0664 0.0034 1.1432 0.0617 0.1241 0.0022 820 107 774 29 754 13 13A-19-11 21 125 0.1646 0.0632 0.0066 1.0419 0.1128 0.1196 0.0039 722 222 725 56 728 23 13A-19-12 529 582 0.9077 0.0565 0.0030 0.5617 0.0303 0.0719 0.0011 472 117 453 20 448 7 13A-19-13 669 1139 0.5871 0.0549 0.0037 0.5610 0.0383 0.0739 0.0012 406 150 452 25 459 7 13A-19-14 266 453 0.5873 0.0627 0.0028 1.0607 0.0482 0.1228 0.0019 698 96 734 24 746 11 13A-19-15 44 76 0.5809 0.0684 0.0051 1.1881 0.0818 0.1289 0.0027 880 156 795 38 782 16 13A-19-16 86 185 0.4655 0.0631 0.0051 1.1077 0.0853 0.1279 0.0023 722 172 757 41 776 13 13A-19-17 288 2028 0.1420 0.0598 0.0023 0.5961 0.0229 0.0725 0.0011 594 83 475 15 451 7 13A-19-18 338 3209 0.1054 0.0569 0.0026 0.5741 0.0250 0.0733 0.0010 487 102 461 16 456 6 13A-19-19 466 561 0.8304 0.0561 0.0033 0.5712 0.0360 0.0737 0.0015 457 131 459 23 458 9 13A-19-20 229 497 0.4607 0.0555 0.0032 0.5577 0.0313 0.0733 0.0011 435 132 450 20 456 7 3.3 锆石Hf同位素
在角闪二长花岗岩中挑选了13个U–Pb年龄约为460 Ma的锆石点位,进行原位Lu–Hf同位素分析;在灰色二长花岗岩中对U–Pb年龄约760 Ma和460 Ma分别挑选了11个和12个锆石点位进行分析。2组岩石176Lu/177Hf值为0.000278~0.003492,绝大多数小于0.002,表明放射成因Hf累积较少,而176Hf/177Hf值为0.2823~0.2826,基本可以代表锆石结晶时体系的Hf同位素组成(表3)(第五春荣等,2008)。角闪二长花岗岩176Hf/177Hf 值为0.282342~0.282483;εHf(t)值为−0.88~−5.89,平均为−2.78;灰色二长花岗岩中,U–Pb年龄约为450 Ma的测点176Hf/177Hf值为0.282150~0.282440;εHf(t)值为−2.16~−8.65,平均为−9.71;U–Pb年龄约760 Ma的测点176Hf/177Hf值为0.282178~0.282373,εHf(t)值为0.86~−5.61,暗示两花岗岩岩体的源岩来源于陆壳物质(表3、图7)。角闪二长花岗岩和灰色二长花岗岩的tDM2 值分别为1280~1533和1333~1784。花岗岩中锆石的二阶段Hf模式年龄并不能代表花岗岩和其源岩形成时代,而是代表源岩地壳物质从亏损地幔库脱离的年龄(吴福元等,2007),表明角闪二长花岗岩和灰色二长花岗岩源岩物质从地幔库中脱离的时代为古元古代—中元古代。
表 3 角闪二长花岗岩和灰色二长花岗岩中锆石的Hf同位素分析结果Table 3. Hf isotope analysis of zircons in granite样品
编号176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(t) 2s tDM Hf (Ma) tDM2(Ma) 13A-18-01 0.05 0.001762 0.282483 −0.88 1.62 1132 1514 13A-18-02 0.05 0.001583 0.282457 −1.75 1.43 1161 1566 13A-18-03 0.05 0.001294 0.282421 −2.72 1.4 1200 1630 13A-18-04 0.06 0.001625 0.282473 −1.06 1.48 1142 1529 13A-18-05 0.06 0.001609 0.282407 −3.41 1.33 1235 1676 13A-18-06 0.04 0.001360 0.282447 −1.87 2.12 1167 1576 13A-18-07 0.04 0.001188 0.282443 −2.03 1.24 1164 1580 13A-18-08 0.05 0.001620 0.282454 −1.72 1.9 1167 1570 13A-18-09 0.05 0.001547 0.282414 −3.23 2.02 1222 1661 13A-18-10 0.06 0.001812 0.282399 −3.85 2.2 1255 1704 13A-18-11 0.06 0.001901 0.282344 −5.86 1.93 1338 1831 13A-18-12 0.06 0.001871 0.282342 −5.72 2.05 1340 1829 13A-18-13 0.04 0.001299 0.282444 −2.07 1.53 1169 1584 13A-19-01 0.02 0.000607 0.282319 0.86 1.50 1303 1459 13A-19-02 0.03 0.000694 0.282338 1.22 1.37 1280 1431 13A-19-03 0.08 0.002255 0.282307 −0.44 1.98 1380 1525 13A-19-04 0.03 0.000928 0.282337 1.11 1.31 1289 1438 13A-19-05 0.07 0.002191 0.282206 −5.29 1.69 1522 1718 13A-19-06 0.05 0.001340 0.282424 −2.68 1.28 1181 1378 13A-19-07 0.14 0.003492 0.282289 −2.33 1.84 1455 1596 13A-19-08 0.01 0.000278 0.282382 3.57 1.20 1206 1333 13A-19-09 0.07 0.002219 0.282266 −8.65 3.70 1437 1676 13A-19-10 0.06 0.001977 0.282373 −4.46 3.04 1274 1477 13A-19-11 0.05 0.001691 0.282178 −5.22 1.75 1542 1747 13A-19-12 0.02 0.000536 0.282231 −3.31 1.33 1422 1630 13A-19-13 0.05 0.001591 0.282407 −3.53 1.38 1213 1415 13A-19-14 0.03 0.000822 0.282374 −4.04 1.59 1234 1457 13A-19-15 0.06 0.001558 0.282331 −5.95 1.21 1319 1547 13A-19-16 0.08 0.002047 0.282367 1.12 1.90 1286 1420 13A-19-17 0.04 0.001104 0.282280 −0.72 1.65 1375 1542 13A-19-18 0.05 0.001422 0.282150 −5.61 2.14 1570 1784 13A-19-19 0.05 0.001526 0.282291 −7.53 1.35 1375 1620 13A-19-20 0.06 0.001655 0.282383 −4.23 1.25 1249 1457 13A-19-21 0.05 0.001465 0.282440 −2.16 0.92 1162 1352 13A-19-22 0.07 0.001984 0.282297 −7.32 1.70 1384 1615 13A-19-23 0.04 0.001186 0.282341 −5.56 1.15 1292 1524 4. 讨论
4.1 花岗岩类型及源岩特征
东昆仑巴什尔希角闪二长花岗岩和灰色二长花岗岩弱的过铝质(A/CNK略小于1.1),略高的10000 Ga/Al值以及富集Rb、K、U、Pb,亏损Zr、Hf、Nb、Ta、P、Ti等地球化学性质可能为弱分异作用的结果(Eby,1990)。在TFeO/MgO–SiO2图解(图8a)中,绝大多数样品落入“I&S”区域。另外,P2O5的含量随SiO2增大无变化(Wolf et al.,1994),Rb/Sr值为2.12~3.16,平均为2.63(大于0.9),有别于I性花岗岩(王德滋,1993),表现为 S型花岗岩地球化学特征(图8b)。
一般认为S型花岗岩的源区主要为变质沉积岩(泥质岩、砂岩或杂砂岩)(Chappell et al. ,1992;Harris et al.,1992;Williamson et al.,1996;Sylvester,1998),如强烈富铝和富钾质花岗岩可以由K2O含量较高(平均为5.49%)的泥砂质沉积岩类部分熔融形成(Johannes et al.,1996)。在过铝质花岗岩中(SiO2含量为67%~77%),源区成分特征也可以由CaO/Na2O值来反映(Sylvester,1998)。如CaO/Na2O值一般小于0.3的过铝质花岗岩,一般被认为是泥岩部分熔融形成,而CaO/Na2O值大于0.3的过铝质花岗岩一般被认为是由砂屑岩部分熔融形成。而巴什尔希角闪二长花岗岩和灰色二长花岗岩具有高钾的特点,同时CaO/Na2O值为0.31~0.41>0.3。在Rb/Sr–Rb/Ba图解中(图9a),样品落在砂质岩和泥质岩之间的区域;在CaO/(MgO+FeOt)–Al2O3/(MgO+FeOt) 图解中(图9b),样品投在变泥质岩与变质杂砂岩之间的部分熔融起源的岩浆区域。此外,2个样品的锆石εHf同位素值(t ≈ 450 Ma)均为负值(−0.88~−5.89和−2.16~−8.65),并且稀土元素和微量元素配分具有与上地壳相对一致的特征(图4),暗示岩浆岩起源于上地壳。综合分析,笔者认为岩浆源岩可能起源于泥砂质沉积岩类。
图 9 角闪二长花岗岩和灰色二长花岗岩源区判别图底图a据Sylvester,1998; 底图b据Altherr et al.,2000Figure 9. Source region discrimination diagrams of Bashierxi granites from the eastern Kunlun area4.2 部分熔融条件
花岗岩在上升就位时,一般为绝热上升的,所以岩浆早期结晶的温度可以近似代表岩浆起源时最低温度(吴福元等,2007)。对于岩浆早期结晶温度的计算,目前常用的方法是全岩锆饱和温度计和锆石钛温度计(Watson et al.,1983;Ferry et al.,2007)2种方法。但文中样品未见与锆石共生金红石,故采用全岩锆饱和温度计。角闪二长花岗岩和灰色二长花岗岩的锆饱和温度计得出的温度范围分别为776 ~816 ℃、753 ~817 ℃(表4),结果基本一致,可近似地认为岩浆起源温度约为800 ℃。
表 4 角闪二长花岗岩和灰色二长花岗的温度计计算结果Table 4. Values for admellite by zircon saturation thermometer样品编号 锆饱和温度计 M(×10-6) Dzr TZr(℃) 13A-18a 1.74 2147.16 793 13A-18b 1.71 2159.33 794 13A-18c 1.74 2605.78 776 13A-18d 1.69 1744.33 816 13A-18e 1.74 2077.57 796 13A-18f 1.76 1969.10 799 13A-19a 1.34 2893.36 796 13A-19b 1.35 2877.50 796 13A-19c 1.36 2897.50 795 13A-19d 1.36 2928.57 794 13A-19e 1.34 2899.91 796 13A-19f 1.36 3030.87 791 注:TZr(℃) = 12900 / (InDZr + 0.85M + 2.95)-273.15,DZr近似为496000/全岩锆含量,M=(2Ca+K+Na)/(Si×Al),令Si+Al+Fe+ Mg+Ca+Na+K+P=1,均为原子数分数(Watson et al.,1983)。 花岗岩大上升就位过程中压力变化较大,所以就位时的压力不能有效限定,但是花岗岩起源的压力条件,可以通过源岩部分熔融过程中残留相特征来估计。大量研究表明,岩石地球化学特征与残留矿物之间密切相关(Castillo,2006),如高Sr(>300 × 10−6)、高Sr/Y(>20)、低Yb(<1.9 × 10−6)和高La/Yb(>20)表明源区中基本无斜长石残留;低Y(<15 × 10−6)、高Sr/Y(>20)、低Yb(<1.9×10−6)和高La/Yb(>20)则表明源区残留相中有石榴子石。文中2个岩石样品均具有低Sr(64.6×10−6~86.1×10−6)和明显的负Eu异常,可推测源区中有斜长石残留;高Y(20.2 × 10−6~85.1 × 10−6)、低Sr/Y(0.8~3.8)、高Yb(1.54 × 10−6~5.58 × 10−6)和低La/Yb(15.04 × 10−6~36.33 × 10−6),可推测源区中无石榴子石残留;低程度的HREE亏损可能暗示残留相中含有角闪石(Xiong et al.,2005)。同时,实验岩石学资料显示,低压条件(<1.6 GPa)下石榴子石通常不会出现在残留相里,中酸性源区熔融时稳定压力的下限更低。结合部分熔融实验,杂砂岩源岩在875 ℃ 、1. 0 GPa 条件下便可发生黑云母脱水部分熔融,并产生大量熔体 ( Patiňo Douce et al.,1991),此温压条件与文中样品所处的条件相近,角闪二长花岗岩和灰色二长花岗源区残留相矿物组合应为斜长石+角闪石(不含石榴子石),估算其熔融时的压力较低<1.0 GPa。综上所述,角闪二长花岗岩和灰色二长花岗是源岩为变质泥砂质岩石在压力<1.0 GPa、温度约为800 ℃,可能由黑云母脱水部分熔融产生。
4.3 年代学及构造背景
2个样品的锆石U–Pb年龄主体均为约455 Ma,表明二者为同一期岩浆事件的产物。值得注意的是,灰色二长花岗岩的锆石中还获得了约760 Ma的U–Pb年龄,由于在有限锆石颗粒上未能在同一颗锆石上同时测定出核部约760 Ma且边部约460 Ma的U–Pb年龄,因此无法直接判断760 Ma年龄的成因,但推断其可能来自:①在岩浆上升过程中,捕获的围岩中的锆石。②原岩发生部分熔融的锆石残留核。野外产状特征显示,灰色二长花岗岩以岩株方式侵入到东昆仑金水口岩群小庙组,而东昆仑小庙组主体形成于约1000 ~ 2 000 Ma的中元古代(陈能松等,2002;张建新等,2003;殷鸿福等,2003;王国灿等,2004,2007;陈有炘等,2011),而文中灰色二长花岗岩中的锆石核部并未发现年龄在1000~2 000 Ma的锆石,因此760 Ma的锆石可能不是捕获的围岩锆石。新近巴什尔希二长花岗岩可能形成于金水口岩群小庙组的部分熔融(Zheng et al.,2018),相关研究中没有发现新元古代约760 Ma的残留锆石年龄。因此,灰色二长花岗岩可能不是因金水口岩群小庙组部分熔融而形成。在弱过铝质(A/CNK值分别为1.02~1.07和1.05~1.07)花岗岩构造判别图中,2个样品基本落在同碰撞–造山后区域(图10)。结合区域内前人研究成果综合分析(高永宝等,2011;王增振等,2014),2个样品可能形成于同碰撞向后碰撞转换阶段的初始伸展构造背景。
4.4 区域地质意义
巴什尔希岩体出露于南阿尔金与东昆仑北部白干湖地区的交接部位,目前关于其构造归属还存在不同认识。多数研究认为其属于东昆仑造山带祁漫塔格构造域,但部分学者认为其可能属于南阿尔金构造域(王增振等,2014)。黎敦朋等(2010)认为巴什尔希花岗侵入的地层围岩与东昆仑地区有显著的差别,与阿尔金地块更具亲缘性。
已有研究表明,南阿尔金地区在经历了~500 Ma陆壳深俯冲及~460 Ma的俯冲板片折返后,在中晚奥陶世进入后碰撞演化阶段(马中平等,2009;曹玉亭等,2010;杨文强等,2012;康磊等2016a,2016b),且广泛分布一期~450 Ma花岗岩。东昆仑祁漫塔格晚奥陶世—早泥盆世初期为俯冲–碰撞阶段,出露于祁漫塔格主脊断裂以北岩浆岩具有岛弧岩浆岩的特点(肖爱芳,2005;崔美慧等,2012);而同碰撞阶段发生在早志留世末—早泥盆世初期,同碰撞型岩浆岩分布在祁漫塔格哈拉达乌、十字沟、双石峡、乌兰乌珠尔和阿达滩断裂南侧等地(曹世泰等,2011;谈生祥,2011);后碰撞型花岗岩则形成时代晚于早志留世末—早泥盆世初(郝杰等,2003;谌宏伟等,2006;郭通珍等,2011)。
前人研究认为,在晚奥陶世—早泥盆世期间,巴什尔希岩浆主体于后造山阶段伸展构造背景下产出(黎敦朋等,2010;高永宝等,2011;李国臣等,2012;王增振等,2014),而祁漫塔格地区在晚奥陶世—早泥盆世时期为俯冲–碰撞演化阶段的挤压环境,与笔者及前人部分研究结果认为的后碰撞伸展环境不相符。区域年代学统计可将巴什尔希岩浆活动为2期,第Ⅰ期为458~454 Ma(高晓峰等,2010),第Ⅱ期432 ~410 Ma为后碰撞伸展体系下形成的花岗岩(包亚范等,2008;高永宝等,2011)。对比发现(表5),巴什尔希第Ⅰ期岩浆活动的形成时代、原岩性质、构造背景均与南阿尔金早古生代广泛分布的一期(466 ~451 Ma)花岗质岩浆活动(曹玉亭等,2010;康磊等,2013,2014)相一致;第Ⅱ期岩浆活动(432 ~410 Ma)的形成时代与构造背景也可与南阿尔金~410 Ma花岗质岩浆活动相对应(吴锁平等,2007;王超等,2008;Liu et al.,2015)。此外,在南阿尔金塔特勒克布拉克片麻状花岗岩中获得了(782.3 ± 6.9) Ma残留岩浆锆石年龄,成岩年龄为450 Ma(康磊等,2013),与文中灰色二长花岗岩锆石中获得的760 Ma锆石U-Pb年龄(成岩年龄454 Ma)相对一致。上述分析表明,文中的2个二长花岗岩样品可能与南阿尔金早古生代花岗岩活动更具亲缘性。如前文所述,南阿尔金地区在~450 Ma处于陆壳俯冲碰撞后由挤压转换为初始伸展的构造背景,也进一步证明了前述关于样品形成压力的合理性。
表 5 巴什尔希花岗岩类锆石年龄统计表Table 5. Isotopic ages statistics of the granitoids in the Bashierxi magmatic series位置 岩性 年龄(Ma) 构造背景 测试方法 资料来源 东昆仑巴什
尔希地区似斑状二长
花岗岩458±9.0 局部拉张构造背景 Zircon U−Pb LA−MC−ICP−MS 高晓峰等,2010 角闪二长花岗岩 452.9±3.6 碰撞造山后的初始
伸展构造背景Zircon U−Pb LA−ICP−MS 本文 灰色二 长花岗岩 454.2±4.8 本文 南阿尔金构
造带西段二长花岗岩 462±2.0 碰撞造山后的抬升初期 Zircon U−Pb LA−ICP−MS 曹玉亭等,2010 钾长花岗岩 452.8±3.1 俯冲陆壳断离后的
伸展背景杨文强等,2012 黑云母花岗岩 454.0±1.8 后碰撞初始伸展 Zircon U−Pb
LA−MC−ICP MS康磊,2014 钾长花岗岩 453.4±2.5 二长花岗岩 453.1±2.1 石英闪长岩 458.3±6.2 深俯冲陆壳折返抬升 康磊等,2016b 东昆仑巴什
尔希地区粗粒碱长花岗岩 432.3±0.8 造山花岗岩(板内和陆缘
造山带)后造山构造环境包亚范等,2008
黎敦朋等,2010碱长花岗岩 430.5±1.2 造山后局部拉张环境 Zircon U−Pb LA−MC−ICP−MS 高永宝等,2011 碱长花岗岩 422.0±3.0 后碰撞伸展阶段 Zircon U−Pb SIMS 李国臣等,2012 正长花岗岩 428.2±4.2 Zircon U−Pb LA−ICP−MS 王增振等,2014 正长花岗岩 422.5±2.3 正长花岗岩 413.6±2.4 Zircon U−Pb LA−ICP−MS 周建厚等,2014 南阿尔金构
造带东段似斑状钾长
花岗岩424 造山后伸展阶段 Zircon U−Pb LA−ICP−MS 王超等,2008 花岗细晶岩 406 碱性花岗岩 385.2±8.1 造山后的拉张环境 Zircon U−Pb LA−ICP−MS 吴锁平等, 2007 5. 结论
(1)巴什尔希角闪二长花岗岩和灰色二长花岗岩为过铝质S型花岗岩,微量元素及锆石Hf同位素特征表明其源岩为上地壳的变质泥砂质沉积岩,岩浆起源温度、压力分别为~800 ℃和0.8~1.0 GPa。
(2)LA–ICP–MS锆石U–Pb定年获得角闪二长花岗岩和灰色二长花岗岩的形成年龄基本一致,分别为(452.9 ± 3.6) Ma和(454.2 ± 4.8) Ma,后者还获得了一组残留锆石约为760 Ma的年龄。
(3)巴什尔希角闪二长花岗岩和灰色二长花岗岩可能形成于碰撞造山后的初始伸展构造背景,其形成时代、岩浆序列和构造背景研究结果显示其与南阿尔金构造域更具亲缘性。
致谢:由衷感谢盖永升、郝江波、赵国军、马拓同学在工作中给予的帮助和建议;特别感谢两位审稿人提出的宝贵意见。谨此致谢!
-
表 1 沃溪矿床热液成矿期矿物生成顺序表
Table 1 Sequence of mineral formation during hydrothermal mineralization of the Woxi deposit
表 2 矿区构造及其控矿作用表
Table 2 Structure of mining area and its ore-control function
构造 分布或名称 活动时间 控矿作用 成矿前 成矿期 成矿后 一级断裂 沃溪大断裂 导矿构造 冷家溪大断裂 次级构造 层间断裂 导矿、容矿构造 横断裂 横跨褶曲 控矿、容矿构造 节 理 成矿后断裂 北东向张扭性断层 破坏矿体 注:椭圆长度表示活动时长,宽度代表活动强度。 -
陈爱清. 湖南沃溪Au-Sb-W矿床中白钨矿与黑钨矿的成矿规律及成因机制的研究[D]. 北京: 中国地质大学(北京), 2012 CHEN Aiqing. Study on Mineralization Regularity and Formation Mechanism of Scheelite and Wolframite in the Woxi Au-Sb-W Deposit in Hunan Province[D]. Beijing: China University of Geosciences (Beijing), 2012.
陈爱清,唐攀科,李国武,等. 湖南沃溪Au-Sb-W矿床中黑钨矿族矿物特征及其对矿床成因的指示[J]. 高校地质学报,2014,20(2):213–221. doi: 10.3969/j.issn.1006-7493.2014.02.005 CHEN Aiqing, TANG Panke, LI Guowu, et al. Characteristics of the Wolframite Mineral Series and Implications for Metallogeny of the Woxi Au-Sb-W Deposit in Hunan Province[J]. Geological Journal of China Universities, 2014, 20(02): 213-221. doi: 10.3969/j.issn.1006-7493.2014.02.005
陈明辉. 湘西地区脉状钨锑金矿床的矿体侧伏与板柱状赋存规律[J]. 地质找矿论丛,2016,31(3):340–345. CHEN Minghui. Pitch of ore bodies and occurrence pattern of the tabular ore body in vein-like W-Tb-Au deposits in western Hunan province[J]. Contributions to Geology and Mineral Resources Research, 2016, 31(03): 340-345.
陈明辉,杨洪超,娄亚利,等. 湘西沃溪钨锑金矿床成矿的独特性[J]. 地质找矿论丛,2008,23(1):32–35+42. CHEN Mimghui, YANG Hongchao, LOU Yali, et al. Minerogenic particularity of WoXi W-Sb-Au deposit in west Hunan[J]. Contributions to Geology and Mineral Resources Research, 2008, 23(01): 32-35+42.
方福康,杜杨松,曹毅. 安徽省桃冲铁矿地质特征、控矿因素及找矿方向[J]. 地质找矿论丛,2013,28(2):181–188. doi: 10.6053/j.issn.1001-1412.2013.02.003 FANG Fukang, DU Yangsong, CAO Yi. Geological characteristics, ore-controlling factors and prospecting orientation of the Taochong iron deposit in Anhui province[J]. Contributions to Geology and Mineral Resources Research, 2013, 28(02): 181-188. doi: 10.6053/j.issn.1001-1412.2013.02.003
顾雪祥,刘建明,Oskar Schulz,等. 湖南沃溪金-锑-钨矿床成因的稀土元素地球化学证据[J]. 地球化学,2005,34(5):428–442. doi: 10.3321/j.issn:0379-1726.2005.05.002 GU Xuexiang, LIU Jianming, Oskar Schulz, et al. REE geochemical evidence for the genesis of the Woxi Au-Sb-W deposit, Hunan Province[J]. Geochimica, 2005(05): 428-442. doi: 10.3321/j.issn:0379-1726.2005.05.002
刘亚军. 湘西沃溪金锑钨矿床褶皱构造及其控矿规律与动力成矿作用[J]. 矿床地质,1992,11(2):134–141. doi: 10.16111/j.0258-7106.1992.02.005 LIU Yajun. Fold structure of the Woxi Gold-Antimony-Tungsten deposit in West Hunan and its orecontrolling regularity as well as dynamic ore forming progcess[J]. Mineral Deposits, 1992(02): 134-141. doi: 10.16111/j.0258-7106.1992.02.005
柳永康. 湖南沃溪十六棚公金锑钨矿床地质地球化学特征及成因分析[D]. 长沙: 中南大学, 2014 LIU Yongkang. Geochemical Characteristics and Genesis of the sixteen penggong Au-Sb-W deposit in Woxi Hunan[D]. Changsha: Central South University, 2014.
刘正庚,余景明,刘升友,等. 湖南沃溪金锑钨矿床稀土元素特征研究[J]. 矿床地质,2000,19(3):270–280. doi: 10.3969/j.issn.0258-7106.2000.03.009 LIU Zhenggeng, YU Jingming, LIU Shengyou, et al. REE Characteristics of the Woxi Gold-Antimony-Tungsten deposit, Hunan Province[J]. Mineral Deposits, 2000(03): 270-280. doi: 10.3969/j.issn.0258-7106.2000.03.009
马承,葛战林,郑艳荣,等. 陕西商洛杨斜金矿床地质特征与控矿因素探讨[J]. 西北地质,2021,54(2):137–148. doi: 10.19751/j.cnki.61-1149/p.2021.02.011 MA Cheng, GE Zhanlin, ZHENG Yanrong, et al. Discussion on Geological Characteristics and Ore-Controlling Factors of the Yangxie Gold Deposit in Shangluo, Shaanxi Province[J]. Northwestern Geology, 2021, 54(02): 137-148. doi: 10.19751/j.cnki.61-1149/p.2021.02.011
彭建堂,胡瑞忠,赵军红,等. 湘西沃溪Au-Sb-W矿床中富放射成因锶的成矿流体及其指示意义[J]. 矿物岩石地球化学通报,2003,22(3):193–196. doi: 10.3969/j.issn.1007-2802.2003.03.001 PENG Jiantang, HU Ruizhong, ZHAO Junhong, et al. The Ore-forming Fluid with a Marked Radiogenic 87Sr Signature From the Woxi Au-Sb-W Deposit and its Significant Implications[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2003(03): 193-196. doi: 10.3969/j.issn.1007-2802.2003.03.001
彭建堂,胡瑞忠,赵军红,等. 湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学[J]. 地球化学,2005,34(2):115–122. doi: 10.3321/j.issn:0379-1726.2005.02.003 PENG Jiantang, HU Ruizhong, ZHAO Junhong, et al. Rare earth element (REE) geochemistry for scheelite from the Woxi Au-Sb-W deposit, western Hunan[J]. Geochimica, 2005(02): 115-122. doi: 10.3321/j.issn:0379-1726.2005.02.003
孙泓波, 彭南海, 邹天平, 等. 湖南省沅陵县沃溪矿区十六棚公矿段−610~−810米标高金锑钨矿勘探报告[R]. 长沙: 湖南省有色地质勘查研究院, 2012. 孙玉珍. 湘西沃溪金锑钨矿床成因与沃溪断层的控矿作用分析[J]. 湖南有色金属,2013,29(6):1–3+43. SUN Yuzhen. Discussion on Ore Genesis of the Woxi Au-Sb-W Deposit and Ore-controlling Role of the Woxi Fault[J]. Hunan Nonferrous Metals, 2013, 29(06): 1-3+43.
徐军伟,陈明辉,周旭林,等. 沃溪钨锑金多金属矿床成矿特征及深部构造与垂向矿化变化研究[J]. 矿产与地质,2015,29(6):708–713. XU Junwei, CHEN Minghui, ZHOU Xulin, et al. Metallogenic characteristics and structure in deep part of W-Sb-Au polymetallic deposit and vertical variation of mineralization, Woxi in western Hunan[J]. Mineral Resources and Geology, 2015, 29(06): 708-713.
杨燮. 湖南沃溪金-锑-钨矿床成矿物质来源及成矿元素的共生机制[J]. 成都地质学院学报,1992,19(2):23–31. YANG Xie. Source of ore material and paragenesis of orebuilding elements in WoXi Au-Sb-W deposit, Hunan[J]. Journal of Chengdu University of Technology, 1992(02): 23-31.
易升星. 湖南省沃溪金锑钨矿床地质特征、流体包裹体特征及矿床成因研究[D]. 长沙: 中南大学, 2012 YI Shengxing. Research on Geological Features, Fluid Inclusion and Genesis of Woxi Au-Sb-W Deposit in Hunan Province[D]. Central South University, 2012.
赵世启,袁波,陈荔湘,等. 陕西略阳金家河金矿床地质特征及控矿因素分析[J]. 西北地质,2020,53(4):120–129. ZHAO Shiqi, YUAN Bo, CHEN Lixiang, et al. Geological Characteristics and Ore-Controlling Factors of Jinjiahe Gold Deposit in Lueyang County, Shaanxi Province[J]. Northwestern Geology, 2020, 53(04): 120-129.
祝亚男,彭建堂,刘升友,等. 湘西沃溪矿床中黑钨矿的地质特征及微量元素地球化学[J]. 地球化学,2014,43(3):287–300. ZHU Yanan, PENG Jiantang, LIU Shengyou, et al. Mineral deposit geology and trace element geochemistry of wolframite from the Woxi deposit, western Hunan, China[J]. Geochimica, 2014, 43(03): 287-300.
张龙升,彭建堂,张东亮,等. 湘西大神山印支期花岗岩的岩石学和地球化学特征[J]. 大地构造与成矿学,2012,36(1):137–148. doi: 10.3969/j.issn.1001-1552.2012.01.017 ZHANG Longsheng, PENG Jiantang, ZHANG Dongliang, et al. Geochemistry and Petrogenesis of the Indosinian Dashenshan Granite, Western Hunan, South China[J]. Geotectonica Et Metallogenia, 2012, 36(01): 137-148. doi: 10.3969/j.issn.1001-1552.2012.01.017
-
期刊类型引用(7)
1. 弓汶琪,弓虎军,王苏里,罗芬红,王苗苗. 鄂尔多斯盆地东南部延长组中期物源分析及其对秦岭造山带隆升作用的指示. 西北地质. 2025(01): 118-134 . 本站查看
2. 孔会磊,李青,李金超,张江伟,南卡俄吾,国显正,贾群子. 东昆仑波洛尕熊金矿区石英闪长玢岩锆石U-Pb测年、岩石地球化学及地质意义. 西北地质. 2025(01): 150-165 . 本站查看
3. 吴新斌,吴凡,毛友亮,李岩. 汉南杂岩高桥沟花岗斑岩体岩石地球化学特征及侵位机制时代归属探讨. 西北地质. 2023(04): 329-335 . 本站查看
4. 王新雨,王书来,吴锦荣,王幻,祝新友,王玉往,张坤,刘明,杨星,蔡亚伟. 青海省牛苦头铅锌矿床成矿时代研究:来自成矿岩体年代学和黄铁矿Re–Os地球化学证据. 西北地质. 2023(06): 71-81 . 本站查看
5. 刘嘉情,钟世华,李三忠,丰成友,戴黎明,索艳慧,郭广慧,牛警徽,薛梓萌,黄宇. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体. 西北地质. 2023(06): 41-56 . 本站查看
6. 任海东,王涛,潘彤,王建国. 东昆仑东段三叠纪岩浆岩Nd–Hf同位素组分特征、物源演变规律及其构造背景. 西北地质. 2023(06): 95-112 . 本站查看
7. 熊万宇康,赵梦琪,于淼,刘潇扬,龚磊,曾庆鸿. 造山带洋陆转换过程与岩浆作用:以东昆仑都兰地区古生代花岗岩为例. 西北地质. 2023(06): 113-139 . 本站查看
其他类型引用(1)