Mesozoic-Cenozoic Tectonic Evolution in the Central Taiyue Mountain: Constraints from Apatite Fission Track Analysis
-
摘要:
应用磷灰石裂变径迹年代学方法研究太岳山脉中段构造隆升与剥露过程,这对于进一步认识华北地块构造演化过程具有重要的意义。结果表明:太岳山脉中段自中侏罗世末期以来经历了持续隆升剥露过程,并受到了热事件的影响。模拟结果显示,太岳山脉中段中生代—新生代共经历了4期快速隆升剥露:165~112 Ma、103~85 Ma、80~50 Ma及28 Ma以来。样品裂变径迹年龄与海拔高程呈正相关关系,隆升速率为8.4 m/Ma。剥蚀速率从早白垩世晚期以来的14.9~18.1 m/Ma逐渐增加到始新世以来的50.5~64.7 m/Ma,太岳山脉中段早白垩世晚期以来的隆升过程具有多期性,总体上呈加速隆升的特点。太岳山脉中段中生代—新生代的隆升史与太行山、吕梁山等山西地块的同期演化史具有一定的一致性,与汾渭裂谷系的快速沉降相耦合。
-
关键词:
- 太岳山脉 /
- 磷灰石裂变径迹 /
- 热演化史模拟 /
- 中生代—新生代多期次剥露 /
- 剥蚀速率
Abstract:In order to shed light on the tectonic evolution processes of the north China block, we applied apatite fission track thermochronology method to the central Taiyue Mountain as a major mountain range in Shanxi massif. The results reveal that since the late middle Jurassic the central Taiyue Mountain experienced a pulsed uplift and exhumation at shallow crustal levels, which could be summarized as four rapid uplift and exhumation stages at 165~112 Ma, 103~85 Ma, 80~50 Ma and since ~28 Ma. These fission track ages show a positive correlation with the altitude, and the exhumation rate is estimated as ~8.4 m/Ma. The denudation rate increases gradually from 14.9~18.1 m/Ma since the late early Cretaceous to 50.5~64.7 m/Ma since the Eocene, reflecting the episodic and accelerated uplift and exhumation of the central Taiyue Mountains since the late Early Cretaceous. The Mesozoic-Cenozoic uplift history of the central Taiyue Mountain has a certain consistency with the evolution history of the Taihang Mountain, Lüliang Mountain in Shanxi massif, which is also coupled with the rapid subsidence of the Fenwei rift valley.
-
碳汇的增加和碳源的减少是降低大气中CO2浓度、实现“碳达峰、碳中和”目标的2个主要途径(王国强等,2023)。生态系统能够通过光合作用将CO2吸收并固定在植被、土壤、湿地等载体中(李姝等,2015),因此在增加“碳汇”、调节区域碳循环中具有重要作用。围绕生态系统的碳汇功能评估,国内学者目前已开展了一系列研究工作,其中包括针对不同类型陆地生态系统的碳汇评估方法(潘竟虎等,2015;关晋宏等,2016;冯晶红等,2020;谢立军等,2022;张杰等,2022),不同区域不同土地利用类型生态系统的碳汇时空变化 (彭文甫等,2016;杨文学等,2016;严慈等,2021;魏媛等,2022;杨静媛等,2022;洪增林等,2023)及碳汇影响因素(胡雷等,2015;张赫等,2020;李磊等,2022)等。但是,由于方法的不同、样本量的限制,有关生态系统碳汇变化估算结果仍存在极大不确定性。现有的碳汇评估方法多针对某一区域的单一生态系统类型进行,涉及不同土地利用类型时多采用同一固碳系数进行评估,难以体现不同区域不同时期生态系统的碳汇能力的差异;同时,关于碳汇评估效果的影响因素的研究相对缺乏,主要集中在经济发展、产业结构、土地利用变化等方面。
位于胡焕庸线以西的西北地区占据着国土面积的32%,但深居内陆,气候干旱、降水稀少,生态系统敏感脆弱,是双碳目标实现的关键和难点区域。精准估算西北地区生态系统碳汇,是促进区域生态保护,寻求生态系统碳汇能力提升途径的基础,对中国碳中和战略目标实现有着重要意义。笔者以西北地区为对象,在分析近40年碳汇用地演化的基础上,在省域尺度上采用特异性的固碳速率法分析了不同区域、不同时期和不同类型生态系统碳汇时空变化规律,并深入探讨了其驱动因素,以期为西北地区低碳国土空间塑造、固碳能力提升及双碳目标实现提供重要的参考依据。
1. 研究区概况
西北地区地理位置为E 73°~123°,N 36°~50°,深居中国西北部内陆,涵盖陕西、甘肃、宁夏、青海、新疆5省(区)和内蒙古自治区西部,面积约为375×104 km2。该区地域辽阔,人口相对稀少,气候干旱,降水稀少,蒸发旺盛(党学亚等,2022),多年平均降水量为235 mm。特殊的地理位置及气候条件决定了西北地区水资源短缺,生态环境脆弱(李文明等,2022;徐友宁等,2022)。根据西北地区地形地貌特点(计文化等,2022),将研究区划分为平原、台地、丘陵、低山、中山、高山6类,其中平原和丘陵面积最大(28.51%和28.37%),高山次之(18.53%),低山最小(0.76%)。
2. 估算方法及数据来源
文中土地利用、地貌类型、降水、气温等数据均来源于中国科学院资源环境科学与数据中心(https://www.resdc.cn)。土地利用数据涉及1980~2020年,通过Arcgis10.2软件按生态系统类型将其划分为林地、草地、农田、湿地、未利用地、水域6类,建设用地不涉及碳汇,本次估算不包括在内。
受数据资料限制,文中碳汇估算系数采用不同时期省域平均值测算,虽能体现不同省域不同时期生态系统碳汇能力的差异,但省域内地域性差异无法体现。耕地生态系统碳汇只考虑了施肥、秸秆还田、无固碳措施对土壤固碳速率的影响,忽略免耕固碳效应,测算的耕地碳汇量会有所偏低。
2.1 陆地生态系统碳汇估算
根据《陆地生态系统生产总值(GEP)核算技术指南》(生态环境部环境规划院,中国科学院生态环境研究中心,2020),采用固碳速率法直接测算林地、草地、农田、湿地4种生态系统净碳汇量,其计算公式为:
$$ {Q_{\text{t}}} = FCS + GSCS + WCS + CSCS $$ (1) 式中:
$ {Q_{\text{t}}} $ 为碳汇总量(tC/a);FCS为林地碳汇量(tC/a);GSCS为草地碳汇量(tC/a);WCS为湿地碳汇量(tC/a);CSCS为农田碳汇量(tC/a)。$$ FCS = FCSR \times SF \times \left( {1 + \beta } \right) $$ (2) 式中:FCSR为林地固碳速率(tC/hm2·a);SF为林地面积(km2);β为土壤固碳系数。
$$ GSCS = GSR \times SG $$ (3) 式中:GSR为草地土壤固碳速率(tC/hm2·a);SG为草地面积(km2)。
$$ WCS = SCS{R_{\text{i}}} \times S{W_{\text{i}}} $$ (4) 式中:
$ SCS{R_{\text{i}}} $ 为第i类水域湿地的固碳速率(tC/hm2﹒a);$ S{W_{\text{i}}} $ 为第i类水域湿地的面积(km2)。$$ CSCS = \left( {BSS + SCS{R_n} + PR \times SCS{R_s}} \right) \times SC $$ (5) 式中:BSS为无固碳措施下固碳速率(tC/hm2·a);
$ SCS{R_n} $ 为施用化肥固碳速率(tC/hm2·a);$ SCS{R_s} $ 为秸秆还田固碳速率(tC/ hm2·a);PR为秸秆还田率。$$ BSS = NSC \times BD \times H \times 0.1 $$ (6) 式中:NSC为土壤有机碳的变化;BD为土壤容重(g/cm3);H为土壤厚度(取20 cm)。
$$\operatorname{SCSR}_n=0.6352 \times T N F-1.0834 S $$ (7) 式中:TNF为单位面积耕地化学氮肥、复合肥总施用量(kg/hm2·a)
$$ TNF = {{\left( {NF + CF \times 0.3} \right)} \mathord{\left/ {\vphantom {{\left( {NF + CF \times 0.3} \right)} {{S_p}}}} \right. } {{S_p}}} $$ (8) 式中:Sp为耕作面积(hm2);NF和CF为化学氮肥和复合肥施用量(t)。
$$ SCS{R_n} = 17.116 \times S + 30.553 $$ (9) 式中:S为单位面积秸秆还田量(t/hm2·a)。
$$ S = {{\sum\nolimits_{j = 1}^n {{C_{yj}} \times SG{R_j}} } \mathord{\left/ {\vphantom {{\sum\nolimits_{j = 1}^n {{C_{yj}} \times SG{R_j}} } {{S_p}}}} \right. } {{S_p}}} $$ (10) 式中:
$ {C_{yj}} $ 为作物j在当年的产量(t);$ SG{R_j} $ 为作物j的草谷比;$ {S_p} $ 为耕作面积(hm2)。2.2 水域及未利用地碳汇估算
文中水域及未利用地的碳汇量估算采用以下公式:
$$ {Q_i} = \sum\nolimits_{j = 1}^n {{S_{\text{i}}}} \times {F_i} $$ (11) 式中:
$ {Q_i} $ 为碳汇量(tC/a);$ {S_i} $ 为不同土地类型面积(km2);$ {F_i} $ 为不同土地类型的固碳速率(tC/ hm2·a)。所用参数具体值及来源见表1和表2。表 1 主要参数列表Table 1. List of main parameters参数 定义 取值 单位 来源 FCSR 林地固碳速率 0.28~1.36 tC/hm2·a 陆地GEP核算技术指南 β 林地土壤固碳系数 0.646 / 陆地GEP核算技术指南 GSR 草地土壤固碳速率 0.02~0.06 tC/hm2·a 陆地GEP核算技术指南 $ SCS{R_{\text{i}}} $ 湿地的固碳速率 0.3026~0.6711 tC/hm2·a 陆地GEP核算技术指南 $ {S}_{水域} $ 水域的固碳速率 0.303 tC/hm2·a 张赫等,2020 $ {S}_{未利用地} $ 未利用地固碳速率 0.0005 tC/hm2·a 张赫等,2020 PR 秸秆还田推广实行率 0.8%~33.2% / 张国等,2017 NSC 土壤有机碳的变化 0.06 / 陆地GEP核算技术指南 H 土壤厚度 20 cm 陆地GEP核算技术指南 NF 化学氮肥施用量 / t 各省统计年鉴 CF 复合肥施用量 / t 各省统计年鉴 $ {C_{{\text{yj}}}} $ 作物j在当年的产量 / t 各省统计年鉴 $ SG{R_{\text{j}}} $ 作物j的草谷比 见表2 / 农业农村部办公厅 表 2 不同作物的草谷比Table 2. Ratio of grass to grain of different crops作物 草谷比 作物 草谷比 水稻 0.623 油料 2.0 麦类 1.366 棉花 8.1 玉米 2.0 豆类 1.57 薯类 0.5 麻类 8.10 烟叶 1.0 其它谷物 0.85 2.3 分布指数
为消除不同地貌区面积差异的影响,引入分布指数(P)来描述碳汇类型在地貌区的分布情况,计算公式如下(李磊等,2022):
$$ P = {{\left( {{{{S_{ie}}} \mathord{\left/ {\vphantom {{{S_{ie}}} {{S_i}}}} \right. } {{S_i}}}} \right)} \mathord{\left/ {\vphantom {{\left( {{{{S_{ie}}} \mathord{\left/ {\vphantom {{{S_{ie}}} {{S_i}}}} \right. } {{S_i}}}} \right)} {\left( {{{{S_e}} \mathord{\left/ {\vphantom {{{S_e}} S}} \right. } S}} \right)}}} \right. } {\left( {{{{S_e}} \mathord{\left/ {\vphantom {{{S_e}} S}} \right. } S}} \right)}} $$ (12) 式中:P为分布指数;
$ {S_{ie}} $ 为在e区域内i类型的面积;$ {S_i} $ 为研究区内i类型的总面积;$ {S_e} $ 表示e区域(本研究中指地貌区域)的面积;S为研究区总面积。当P=1时,表示该类型在e区域平稳分布;当P>1时,表示该类型在e区域为优势分布,反之劣势分布,且P值越大,分布优势越显著。3. 结果分析
3.1 西北地区土地利用时空演化特征
土地利用覆被变化是影响生态系统碳汇最主要的因素之一。从40年间西北地区土地利用分布可以看出(图1),受特有的气候和自然地理条件限制,未利用地和草地在西北地区占主导地位。未利用地主要分布于塔里木盆地、准噶尔盆地的荒漠区以及内蒙古北部的沙漠区,占比达46.11%~47.35%;草地主要分布于新疆天山山脉地区、青海南部地区及内蒙古赛罕塔拉城中草原、鄂尔多斯草原,占比达35.79%~36.90%;其次为耕地,主要分布在环塔里木盆地和环准噶尔盆地的边缘地带、关中平原、银川平原、甘肃的高原地区等,占比为7.55%~8.24%;再次是林地,主要分布在陕西秦岭、甘肃南部及中部武威地区、青海东南部,占4.80%~5.04%;湿地、水域和建设用地很少,分别占1.28%~1.46%、1.66%~2.04%和0.48%~0.94%。
时间尺度上,1980~2020年西北地区土地利用类型整体变化不大,但局部有一定的变化。林地、湿地和水域分布有增有减,其中林地在2015年前总体呈缓慢增长趋势,增幅1.52%,之后减少8 926 km2,减幅4.72%;湿地最大年变幅1.10%,40年总体减少14 190 km2。草地在2015年前呈波动性减少,2015年之后有所增加,40年中总体表现为增加,增加量14265 km2,增幅1.04%。耕地和建设用地持续增加,40年分别增加27 017 km2和17 041 km2,增幅分别为9.58%和94.48%,这与城市不断扩张有关。未利用地波动性减少,减少40434 km2,减幅2.28%。
3.2 西北地区碳汇时空分布特征
3.2.1 西北地区碳汇的时序演化规律
随着不同历史时期土地利用分布的变化,生态系统碳汇量也发生一系列的变化(表3)。1980~2020年,西北地区生态系统碳汇量从1980年的3 956.50×104 tC/a上升至2020年的5826.44×104 tC/a,整体呈波动上升态势,仅个别区域(新疆)在2020年略有下降。区域生态系统碳汇总量的变化可分为2个阶段:1980年至2015年间,碳汇总量持续上升至6203.08×104 tC/a,35年间增加2246.58×104 tC/a;2016~2020年,由于新疆片区生态系统碳汇下降376.64×104 tC/a,导致区域碳汇总量降至5 826.44×104 tC/a。碳汇强度随时间的变化与碳汇量趋势一致,整体呈波动上升态势,仅个别时期有所下降。1980~2015年,生态系统碳汇强度从0.105 tC/ hm2上升到了0.165 tC/ hm2,但之后有所降低,2020年碳汇强度为0.155tC/ hm2。区域生态碳汇类型主要以林地碳汇为主,占比74.08%~81.77%,其次是草地(6.83%~10.95%)、水域(4.47%~7.55%)、耕地(4.48%~5.25%)、湿地(1.44%~2.30%)和未利用地(0.13%~0.21%)。
表 3 40年间西北地区生态系统碳汇量及占比Table 3. Carbon sink amount and proportion of ecosystem in Northwest China in 40 years年份 碳汇量(104 tC/a)及占比 碳汇强度(tC/hm2) 林地 草地 耕地 湿地 水域 未利用地 合计 1980 2953.84 433.05 177.17 90.40 293.69 8.34 3956.50 0.105 74.66% 10.95% 4.48% 2.28% 7.42% 0.21% 100.00% 1990 2980.04 433.42 188.55 90.54 282.87 8.33 3983.73 0.106 74.81% 10.88% 4.73% 2.27% 7.10% 0.21% 100.00% 2000 2971.03 428.09 208.04 92.34 302.70 8.35 4010.57 0.107 74.08% 10.67% 5.19% 2.30% 7.55% 0.21% 100.00% 2010 3923.06 424.95 262.92 91.62 292.55 8.38 5003.49 0.133 78.41% 8.49% 5.25% 1.83% 5.85% 0.17% 100.00% 2015 5072.23 423.64 314.07 89.46 295.36 8.32 6203.08 0.165 81.77% 6.83% 5.06% 1.44% 4.76% 0.13% 100.00% 2020 4734.70 435.97 299.90 87.40 260.22 8.25 5826.44 0.155 81.26% 7.48% 5.15% 1.50% 4.47% 0.14% 100.00% 3.2.2 西北地区碳汇空间分布特征
由于自然地理条件的差异,西北地区不同区域碳汇量差异较大(图2)。1980~2010年,碳汇量从高到低依次为新疆、甘肃、陕西、青海、内蒙古(西北片区)、宁夏;2015~2020年,碳汇空间格局发生变化,陕西超越甘肃位居第二。整个研究期内碳汇量最高的区域是新疆,达1 386.63~1 817.34×104 t/a。
由于不同行政区域面积相差较大,相比碳汇总量,碳汇强度更能客观反映一个地区的碳汇水平,便于不同地区进行横向比较。碳汇强度分布图(图3)显示,整个研究期内陕西省碳汇强度最高,达28.09~58.43 t/km2,其主要原因是该省林地面积占比较高,达22.55%~23.66%;甘肃省次之(林地占比9.57%~10.23%),宁夏第三;新疆在1980~2000年位列第四、青海位列第五,但2010~2020年间青海超过新疆,位居第四;整个研究期内蒙古(西北片区)一直位居第六,主要与该地区林地面积占比仅为1.84%~2.07%有关。
研究期内各区域的碳汇效应在时间变化上具有较大差异性。陕西、宁夏整体呈持续上升趋势,但1980~2000年上升相对较缓,之后上升速率加快;甘肃、内蒙古、青海碳汇强度整体呈波动上升趋势,且上升较缓;新疆呈先持续缓慢上升到2015年又有所下降。
3.3 不同生态系统类型碳汇变化趋势
不同生态系统类型中湿地和未利用地的碳汇量占比很小,且变化趋势不明显。因此,文中仅分析林地、草地、水域、耕地4类生态系统的碳汇量变化趋势(图4)。
3.3.1 林地生态系统
通过评估,西北地区林地碳汇量整体呈持平-持续上升–下降或基本持平态势,不同区域在时间变化上有所差异。1980~2000年,各区域基本呈持平状态,之后持续上升。2015~2020年,除新疆外基本持平或略增;新疆先波动持平,2010年开始上升,2015年又开始下降。2000~2015年,青海、内蒙古(西北片区)、陕西上升幅度较大,年增幅分别达23.99%和20.86%、7.62%;宁夏、甘肃上升幅度较小,年增幅分别达2.54%和1.02%。2000年以后,各区域林地碳汇量持续上升,与当地相继开展的“天然林资源保护工程”和“退耕还林”等政策有关(胡雷等,2015;关晋宏等,2016;张杰等,2022)。新疆林地碳汇量由开始的持平到2015年后大幅下降,与区域林地从1990开始缓慢减少到2015年后大幅降低有关,这与马丽娜等(2022)研究结论一致。
3.3.2 草地生态系统
评估期内,草地碳汇量整体处于基本持平态势,不同区域在时间变化上有所差异。内蒙古(西北片区)、甘肃、陕西、宁夏整体呈持平趋势;青海1980~2015年先波动持平,之后上升,年上升幅度1.10%;新疆1980-2015年波动缓慢下降(年下降幅度0.11%),在2015年又开始上升(年上升幅度0.73%);宁夏持续减少,减少约5 929 tC/a,降幅9.50%。
内蒙古(西北片区)、甘肃、陕西、宁夏草地碳汇量年度变化差异不大,这与草地面积变化较小有关。新疆2015年之前碳汇量缓慢下降,与区域草地退化,草地面积减少有关;之后受土地利用转移影响(王志强等,2022),草地面积增加导致其碳汇量相应增加。青海碳汇量增加与2015年后草地面积增加有关。
3.3.3 耕地生态系统
据评估,近40年的耕地碳汇量除青海外整体呈波动性增长态势。但不同区域在时间变化上也有所差异。受节水灌溉等影响,新疆、宁夏呈持续上升趋势,年升幅分别为3.62%和2.40%,这与40年间耕地面积不断增加,及农业产量提高有关;青海40年间整体变化不大,仅增加1.55万t,这与其耕地面积较少、作物产量较低有关。陕西、甘肃、内蒙古(西北地区)呈现先持续上升,2015年后又下降态势,2015年前升幅分别为1.76%、0.68%、3.13%,2015年后降幅分别为2.47%、0.81%和2.20%。陕西从1980年耕地面积虽然在缓慢减少,但由于作物产量提高,加上复合肥投入的增加,导致碳汇强度提高,从而使碳汇量不断增加;但由于2015~2020年耕地面积减少幅度增大,从而使整体碳汇量有所降低。近40年,甘肃和内蒙古耕地数量基本持平,由于作物产量提高及复合肥投入加大,使碳汇量不断增加,之后甘肃耕地面积大量缩减导致碳汇量降低,而内蒙古(西北片区)由于耕地面积、复合肥投入的减少略有降低。
3.3.4 水域生态系统
近40年来,内蒙古(西北片区)、甘肃、陕西、宁夏水域碳汇量整体呈持平趋势;新疆呈现先波动上升,至2015年又下降趋势,5年间下降50.80×104 t,年降幅6.39%;青海有升有降,之后2010年持续上升,年上幅1.64%。水域碳汇量随水域面积变化而变化,新疆受冰川融化、降水等(徐丽萍等,2020)影响水域面积发生改变。青海2010年之后受径流量、降水等影响,水域面积逐年增大(郭丰杰等,2022)。
4. 西北生态系统碳汇与地形地貌、温度和降水等驱动因素的关系
植被生长变化受多种要素影响。地貌是自然环境最基本的组成要素,在不同尺度上制约着气候、植被、土壤、水文等其他自然环境要素的变化(巩杰等,2017)。气候因素中,温度和降水是影响生态系统净生产力的两个最主要因素(刘应帅等,2022),它能通过影响植物的光合作用和呼吸作用进而影响生态系统的碳汇能力。因此探讨碳汇强度与地貌、降水、温度的关系对生态系统碳汇的提升至关重要。西北地区碳汇强度及各驱动因素分布见图5。
4.1 生态系统碳汇与地貌的关系分析
西北地区地处中国第一和第二地势阶梯之上,横跨干旱–半干旱区、青藏高原高寒区、东部季风区3大自然地理分区;有阿尔泰山、天山、昆仑山、阿尔金山、祁连山、秦岭、大巴山、巴颜喀拉山和可可西里山等山脉;并有内蒙古高原、黄土高原、准噶尔盆地、塔里木盆地、柴达木盆地(党学亚等,2022)。不同的地貌类型,其生态系统的碳汇量也有差异。通过评估,各生态碳汇类型在地貌区中的分布见表4。地貌对生态碳汇类型的分布具有明显的控制作用。林地在山区呈优势分布,特别是中山地貌区,分布指数达4.4,在其他地貌类型区呈劣势分布;草地在山区呈优势分布,在其他地貌类型区呈劣势分布;耕地在地势较为平坦的平原和台地呈优势分布,在低中山区呈稳态分布;水域和湿地在平原呈优势分布;未利用地在丘陵区呈优势分布,在平原和台地呈稳态分布。
表 4 生态碳汇类型在地貌类型中的分布指数Table 4. Distribution index of ecological carbon sink types in landform types类型 平原 台地 丘陵 低山 中山 高山 林地 0.3 0.4 0.4 1.6 4.4 1.3 草地 0.8 0.9 0.8 1.5 1.5 1.5 耕地 1.7 1.3 0.7 1.0 1.2 0.1 水域 2.5 0.9 0.3 0.5 0.1 0.4 未利用地 1.0 1.1 1.4 0.6 0.3 0.8 4.2 生态系统碳汇与降水的关系分析
西北地区平均降水量差别较大(2.1~1 208 mm),为研究碳汇强度在不同降水区的变化趋势,以100 mm为一个梯度,将研究区降水量划分为12个级别。研究表明,西北地区碳汇强度总体上随降水量增加呈先上升后下降又上升的态势(图6)。具体地,在降水量2~802 mm段,呈持续上升阶段,并在102~802 mm出现最大值,其碳汇强度约为127.41 t/km2;在803~1 002 mm出现持续下降,最低约为44.06 t/km2;在1003~1 208 mm随降水量增加而增加。结合区域地形地貌分析,902~1 002 mm主要分布在陕西南部汉中及汉江流域,海拔低,耕地、草地较多,其碳汇强度相对较低。
为进一步分析降水量与碳汇强度相关性,对不同降水区平均降水量与其对应的平均碳汇强度作相关分析。结果显示,降水量2~802 mm段呈显著正相关(r=0.915 2),803~1 002 mm段呈显著负相关(r=−0.981 5); 1003~1 208 mm段呈显著正相关(r=0.997 7)。
4.3 生态系统碳汇与气温的关系分析
为研究碳汇强度在不同气温区的变化趋势,以3 ℃为一个梯度,将研究区气温(−22.3~17.7 ℃)划分为14个级别。研究表明,西北地区碳汇强度总体上随气温增加呈波动上升的态势(图7)。低于零下2 ℃区域,其碳汇强度均较低,最高为9.52 t/km2;−2.0~10 ℃区域,其碳汇强度变化不大,在1~4 ℃区最高,为12.27 t/km2;10 ℃开始,其碳汇强度随温度升高而持续上升,在16~18 ℃区域出现最大值,其碳汇强度为71.98 t/km2。
对不同气温区平均温度与其对应的平均碳汇强度作相关分析。结果显示,2 ℃以下呈正相关(r=0.631 5),2 ℃以上呈显著正相关(r=0.959 5)。
5. 结论
(1)受特有的自然地理环境控制性影响,西北地区未利用地和草地占主导地位。土地利用类型40年间整体变化不大,但局部有一定的变化。林地先呈缓慢增长趋势,2015年后开始下降;草地先波动性减少后又增长趋势;耕地、建设用地呈持续增长趋势;未利用地波动性减少;湿地、水域则有增有减。
(2)2020年西北地区生态碳汇量约为5 826.44×104 tC/a,其中林地占主导地位,其次为草地、水域、耕地、湿地、未利用地。碳汇量大小依次为新疆、陕西、甘肃、青海、内蒙古(西北片区)、宁夏;碳汇强度大小依次为陕西、甘肃、宁夏、新疆、青海、内蒙古(西北片区)。1980~2020年,西北地区碳汇量变化整体呈波动上升态势,个别时期有所下降,主要由于新疆在2015~2020年间林地降幅较大所致。
(3)受水土保持、天然林保护等措施影响,各区域林地碳汇整体呈上升趋势,而新疆受2015年林地大幅下降影响有所降低。草地整体处于基本持平态势。耕地碳汇受灌溉、经济等投入影响,除青海外整体呈波动性增长态势。受气温等影响,青海水域面积有所增加,新疆则先增加后降低。
(4)西北地区生态碳汇与地貌、降水、气温有一定的相关关系。地貌是控制性因素,降水和气温具有一定的正相关关系。不同的地貌类型,决定了土地利用类型,决定了碳汇的强度大小;不同降水区呈现出相关差异性,低降水区和高降水区呈显著正相关,中降水区呈显著负相关;碳汇强度与气温呈现正相关,在较高温和高温区相关性显著。
-
表 1 太岳山脉中段磷灰石裂变径迹测试结果统计表
Table 1 Test results of apatite fission track in the middle part of Taiyue mountain
样品号 岩性 颗粒数
(n)ρs(105/cm2)(Ns) ρi(105/cm2)(Ni) ρd(105/cm2)(Nd) P(χ2)
(%)中值年龄(Ma)(±1σ) 池年龄
(Ma)(±1σ)L (μm)(N) 401-5 黑云角闪二
长片麻岩20 10.454(333) 35.348(1126) 19.35(16174) 20.4 66.0±5.2 66.0±4.8 13.36±1.43(17) GX-1 黑云二长片麻岩 24 12.351(1122) 37.935(3446) 18.23(15680) 23.05 68.7±3.7 68.5±3.4 10.94±1.57(46) GX-2 长石杂砂岩 21 11.235(745) 38.982(2585) 17.71(15680) 99.68 58.9±3.3 58.9±3.3 13.15±1.31(29) GX-3 断层泥 24 14.732(566) 41.072(1578) 16.66(15680) 80.4 68.9±4.2 68.9±4.2 12.69±1.38(26) GX-4 (断层壁)长石砂岩 34 18.679(804) 42.214(1817) 19.63(16174) 74.99 100.1±5.7 100.0±5.6 11.25±1.58(30) GX-5 断层泥 22 13.536(411) 28.192(856) 19.49(16174) 0.0 123.3±16.6 107.6±7.6 12.30±1.40(27) GX-6 长石砂岩 20 10.719(919) 19.151(1642) 16.54(14961) 5.97 113.9±7.7 106.5±5.9 11.86±1.86(41) GX-7 长石石英砂岩 11 9.548(259) 23.63(641) 18.54(15680) 96.5 86.3±7.1 86.3±7.1 10.46±1.81(7) GX-8 长石砂岩 25 17.716(412) 39.598(941) 16.87(16174) 100.0 87.0±6.0 87.0±6.0 12.89±1.25(28) GX-10 长石砂岩 24 12.893(716) 30.703(1705) 17.29(15680) 23.58 84.5±5.2 83.7±4.8 12.92±1.50(34) TB-26 长石岩屑砂岩 3 5.07(106) 20.425(427) 16.1(12945) 97.76 50.4±6.2 50.4±6.2 11.06±2.11(5) 注:ρs(Ns). 自发裂变径迹密度及径迹数量;ρi(Ni).诱发裂变径迹密度及径迹数量;ρd(Nd). 标准铀玻璃诱发径迹密度及数量;P(χ2). 检验概率;L. 平均径迹长度;N. 样品中的封闭径迹长度数。 表 2 太岳山脉中段剥蚀量、剥蚀速率统计表
Table 2 Statistics of denudation amount and denudation rate in the middle part of Taiyue mountain
样号 地质单元 池年龄(Ma) 古地温梯度(℃/100 m) 剥蚀量(km) 剥蚀速率(m/Ma) 速率变化趋势 GX-6 J3r 106.5±5.9 5.5~6 1.67~1.82 14.9~18.1 GX-4 J2t 100.0±5.6 5.5~6 1.67~1.82 15.8~19.3 GX-10 T2e1 83.7±4.8 5~5.5 1.82~2 20.6~25.3 GX-8 T1l 87.0±6.0 5~5.5 1.82~2 19.6~24.7 GX-7 P3sh5 86.3±7.1 5~5.5 1.82~2 19.5~25.3 401-5 Ar3Hgn 66.0±4.8 5~5.5 1.82~2 25.7~32.7 GX-1 Ar3Hgn 68.5±3.4 5~5.5 1.82~2 25.3~30.7 GX-2 P3sh3 58.9±3.3 3.5 2.86 46.0~51.4 TB-26 P3sh3 50.4±6.2 3.5 2.86 50.5~64.7 -
柏道远, 孟德保, 刘耀荣, 等. 青藏高原北缘昆仑山中段构造隆升的磷灰石裂变径迹记录[J]. 中国地质, 2003, 30(3): 240-246 doi: 10.3969/j.issn.1000-3657.2003.03.003 BAI Daoyuan, MENG Debao, LIU, Yaorong, et al. Apatite fission track records of the tectonic uplift of the central segment fo the Kunlun Mountains on the northern margin of the Qinghai-Tibet Plateau[J]. Geology in China, 2003, 30(3): 240-246. doi: 10.3969/j.issn.1000-3657.2003.03.003
柴金钟, 高宇辉, 王瑞军, 等. 1: 5万洪洞县测区区域地质调查报告[R]. 太原: 山西省地质调查院, 2019.
陈平, 柴东浩. 山西地块石炭纪铝土矿沉积地球化学研究[M]. 太原: 山西科学技术出版社, 1997 CHEN Ping, CHAI Donghao. Sedimentary Geochemistry of Carboniferous Bauxite Deposits in S hanxi Massif[M]. Taiyuan: Shanxi Science and Techonology Press, 1997.
邓涛, 王伟铭, 岳乐平, 等. 新近系保德阶建阶研究新进展[J]. 地层学杂志, 2004, 28(1): 41-47 doi: 10.3969/j.issn.0253-4959.2004.01.005 DENG Tao, WANG Weiming, YUE Leping, et al. New advances in the Establishment of the Neogene Baode stage[J]. Journal of Stratigraphy, 2004, 28(1): 41-47. doi: 10.3969/j.issn.0253-4959.2004.01.005
董树文, 张岳桥, 龙长兴, 等. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 2007, 81(11): 1449-1461 doi: 10.3321/j.issn:0001-5717.2007.11.001 DONG Shuwen, ZHANG Yueqiao, LONG Changxiang, et al. Jurassic Tectonic Revolution i n Chi na and New Interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 2007, 81(11): 1449-1461. doi: 10.3321/j.issn:0001-5717.2007.11.001
董树文, 张岳桥, 李海龙, 等. “燕山运动”与东亚大陆晚中生代多板块汇聚构造——纪念“燕山运动”90周年[J]. 中国科学: 地球科学, 2019, 49: 913-938 DONG Shuwen, ZHANG Yueqiao, LI Hailong, et al. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia-Commemorating 90th years of the “Yanshan Orogeny” [J]. Science China Earth Sciences, 2019, 49: 913-938.
董挨管, 杜艳伟, 杨俊才, 等. 1: 5万张兰镇测区区域地质调查报告[R]. 太原: 山西省地质调查院, 2019. 冯子睿, 袁万明, 袁二军. 青海省都兰东北部多金属矿床锆石裂变径迹年代学分析[J]. 中国矿业, 2020, 29(S1): 284-286+293. FENG Zirui, YUAN Wanming, YUAN Erju. Zircon fission track dating evidence in polymetallic ore district, north-eastern Dulan, Qinghai provinc[J]. China Mining Magazine, 2020, 29(S1): 284- 286+293.
韩伟, 李玉宏, 刘溪, 等. 鄂尔多斯盆地东南南召地区中生代以来的构造演化研究——来自低温热年代学的证据[J]. 地质学报, 2020, 94(10): 2834-2843 doi: 10.3969/j.issn.0001-5717.2020.10.004 HAN Wei, LI Yuhong, LIU Xi, et al. Tectonic evolution since the Mesozoic of the Nanzhao area in southeast of the Ordos Basin: evidence from low-temperature thermal chronology[J]. Acta Geologica Sinica, 2020, 94(10): 2834-2843. doi: 10.3969/j.issn.0001-5717.2020.10.004
黄志刚, 任战利, 高龙刚. 鄂尔多斯盆地东南缘白垩纪以来构造演化的裂变径迹证据[J]. 地球物理学报, 2016, 59(10): 3753-3764 HUANG Zhigang, REN Zhanli, GAO Longgang. Evidence from detrital zircon and apatite fission track for tectonic evolution since Cretaceous in southeastern margin of Ordos basin[J]. Chinese Journal of Geophysics, 2016, 59(10): 3753-3764.
雷永良, 钟大赉, 季建清, 等. 东喜马拉雅构造结更新世两期抬升―剥露事件的裂变径迹证据[J]. 第四纪研究, 2008(04): 584-590 doi: 10.3321/j.issn:1001-7410.2008.04.010 LEI Yongliang, ZHONG Dalai, JI Jianqing, et al. Fission Track Evidence for two Pleistocene upl Ift- exhumation Events in the eastern himalayan Syntaxis[J]. Quaternary Sciences, 2008(04): 584-590. doi: 10.3321/j.issn:1001-7410.2008.04.010
李洪颜, 徐义刚, 黄小龙, 等. 华北克拉通北缘晚古生代活化: 山西宁武―静乐盆地上石炭统太原组碎屑锆石U-Pb测年及Hf同位素证据[J]. 科学通报, 2009(5): 632-640. LI Hongyan, XU Yigang, HUANG Xiaolong, et al. Activation of northern margin of the North China Craton in Late Paleozoic: Evidence from U-Pb dating and Hf isotopes of detrital zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu-Jingle basin[J]. Chinese Science Bulletin, 2009(5): 632- 640.
李建星, 刘池洋, 岳乐平, 等. 吕梁山新生代隆升的裂变径迹证据及其隆升机制探讨[J]. 中国地质, 2015, 42(4): 960-972 doi: 10.3969/j.issn.1000-3657.2015.04.013 LI Jianxing, LIU Chixang, YUE Leping, et al. Apatite fission track evidence for the Cenozoic uplift of the Lüliang Mountains and a discussion on the uplift mechanism[J]. Geology in China, 2015, 42(4): 960-972. doi: 10.3969/j.issn.1000-3657.2015.04.013
李建星, 岳乐平, 刘池洋, 等. 中新世以来吕梁山及邻区构造―沉积演化[J]. 地层学杂志, 2013, 37(01): 93-100 LI Jianxing, YUE Leping, LIU Chiyang, et al. The Tectonic-Sedimentary Evolution of the Lüliang Mountains since the Miocene[J]. Journal of Stratigraphy, 2013, 37(01): 93-100.
李庶波, 王岳军, 张玉芝, 等. 南太行山中新生代隆升过程: 磷灰石裂变径迹证据[J]. 大地构造与成矿学, 2015(03): 84-93 LI Shubo, WANG Yuejun, ZHANG Yuzhi, et al. Meso-Cenozoic Uplifting of South Taihang Mountains: Constraints from Apatite Fission Track Data[J]. Geotectonica et Metallogenia, 2015, (03): 84-93.
李三忠, 索艳慧, 李玺瑶, 等. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造―岩浆响应[J]. 科学通报, 2018, 63(16): 1550-1593 doi: 10.1360/N972017-01113 LI Sanzhong, SUO Yanhui, LI Xiyao, et al. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone[J]. Chin Sci Bull, 2018, 63: 1550-1593. doi: 10.1360/N972017-01113
林伟, 曾纪培, 孟令通, 等. 伸展构造与华北克拉通破坏——花岗岩磁组构和变质核杂岩的构造分析[J]. 中国科学: 地球科学, 2021, 51(9): 1558-1593. LIN Wei, ZENG Jipei, MENG Lingtong, et al. Extensional tectonics and North China Craton destruction: Insights from the magnetic susceptibility anisotropy (AMS) of granite and metamorphic core complex[J]. Science China: Earth Sciences, 2021, 64(9): 1557-1589.
刘康, 魏荣珠, 续世超. 山西隆起区燕山期构造变形特征[J]. 中国地质调查, 2019, 6(02): 58- 67. LIU Kang, WEI Rongzhu, XU Shichao. Structure deformation characteristics of Shanxi uplift area during Yanshan movement period[J]. Geological Survey of China, 2019, 6(02): 58- 67.
罗照华, 魏阳, 辛后田, 等. 太行山中生代板内造山作用与华北大陆岩石圈巨大减薄[J]. 地学前缘, 2006, 13(6): 52-63 doi: 10.3321/j.issn:1005-2321.2006.06.008 LUO Zhaohua, WEI Yang, XIN Houtian, et al. The Mesozoic intraplate orogeny of the Taihang Mountains and the thinning of the continental lithosphere in North China[J]. EarthScience Frontiers, 2006, 13(6): 52-63. doi: 10.3321/j.issn:1005-2321.2006.06.008
马晓军, 梁积伟, 李建星, 等. 鄂尔多斯盆地中西部中新生代构造抬升及演化[J]. 西北地质, 2019, 52(4): 127-136 doi: 10.3969/j.issn.1009-6248.2019.04.010 MA Xiaojun, LIANG Jiwei, LI Jianxing, et al. Meso-cenozoic Tectonic Uplift and Evolution of Central and Western Ordos Basin[J]. Northwestern Geology, 2019, 52(4): 127-136. doi: 10.3969/j.issn.1009-6248.2019.04.010
孟元库, 汪新文, 李波, 等. 华北克拉通中部沁水盆地热演化史与山西高原中新生代岩石圈构造演化[J]. 西北地质, 2015, 48(2): 159-168 doi: 10.3969/j.issn.1009-6248.2015.02.016 MENG Yuanku, WANG Xinwen, LI Bo, et al. Thermal Evolution History of Qinshui Basin in the Middle of North China Cratonand Mesozoic-Cenozoic Lithosphere Tectonic Evolution in Shanxi Plateau[J]. Northwestern Geology, 2015, 48(2): 159-168. doi: 10.3969/j.issn.1009-6248.2015.02.016
庆建春, 季建清, 王金铎, 等. 五台山新生代隆升剥露的磷灰石裂变径迹研究[J]. 地球物理学报, 2008(02): 384-392 QING Jianchun, JI Jianqing, WANG Jinduo, et al. Apatite fission track study of Cenozoic uplifting and exhumation of Wutai Mountain, China[J]. Chinese J. Geophys. 2008, 51(2): 384-392.
任星民, 朱文斌, 朱晓青, 等. 山西吕梁山地区中―新生代隆升剥露过程: 磷灰石裂变径迹证据[J]. 地球科学与环境学报, 2015(4): 63-73 doi: 10.3969/j.issn.1672-6561.2015.04.010 REN Xingmin, ZHU Wenbin, ZHU Xiaoqing, et al. Mesozoic-Cenozoic Uplift-exhumation History in Lüliangshan Area of Shanxi: Evidences from Apatite Fission Track[J]. Journal of Earth Sciences and Environment, 2015(4): 63-73. doi: 10.3969/j.issn.1672-6561.2015.04.010
孙蓓蕾, 曾凡桂, 刘超, 等. 太原西山煤田新生代隆升史的磷灰石裂变径迹约束[J]. 地质学报, 2017, 91(01): 43-54 doi: 10.3969/j.issn.0001-5717.2017.01.003 SUN Beilei, ZENG Fangui, LIU Chao, et al. Cenozoic Uplift History of the Xishan Coalfield and Constraints from Apatite Fission Track Dating[J]. Acta Geologica Sinica, 2017, 91(01): 43-54. doi: 10.3969/j.issn.0001-5717.2017.01.003
孙迪, 李秋根, 陈隽璐, 等. 山西五台绿岩带柏枝岩组条带状铁建造(BIFs)成因及其环境意义[J]. 西北地质, 2021, 54(4): 16-41 doi: 10.19751/j.cnki.61-1149/p.2021.04.002 SUN Di, Li Qiugen, CHEN Junlu, et al. The Origin and Environmental Significance of Banded Iron Formations in the Baizhiyan Formation of Wutai Greenstone Belt, Shaanxi Province[J]. Northwestern Geology, 2021, 54(4): 16-41. doi: 10.19751/j.cnki.61-1149/p.2021.04.002
孙建博, 陈刚, 章辉若, 等. 鄂尔多斯盆地中新生代构造事件的峰值年龄及其沉积响应[J]. 西北地质, 2006, 39(3): 91-96 doi: 10.3969/j.issn.1009-6248.2006.03.013 SUN Jianbo, CHEN Gang, ZHANG Huiruo, et al. Peak Ages and Sedimentary Responses of the Mesozo ic-Cenozoic Tectonic Events in Ordos Basin[J]. Northwestern Geology, 2006, 39(3): 91-96. doi: 10.3969/j.issn.1009-6248.2006.03.013
汤艳杰, 英基丰, 赵月鹏, 等. 华北克拉通岩石圈地幔特征与演化过程[J]. 中国科学: 地球科学, 2021, 51(9): 1489-1503. TANG Yanjie, YING Jifeng, ZHAO Yuepeng, et al. Nature and secular evolution of the lithospheric mantle beneath the North China Craton[J]. Science China Earth Sciences, 2021, 64(9): 1492-1503.
田朋飞, 袁万明, 杨晓勇. 热年代学基本原理, 重要概念及地质应用[J]. 地质论评, 2020, 66(04): 975-1004 TIAN Pengfei, YUAN Wanming, YANG Xiaoyong. The basics, essential concepts and geological applications of thermochronology[J]. Geological Review, 2020, 66(04): 975-1004.
王建强, 刘池洋, 赵红格, 等. 鄂尔多斯盆地西南部三叠纪末抬升剥蚀事件及热年代学记录[J]. 岩石学报, 2020, 36(04): 238-251 doi: 10.18654/2095-8927/014 WANG Jianqiang1, LIU Chiyang, ZHAO Hongge, et al. Uplift and exhumation events and thermochronological constraints at the end of Triassic in southwestern Ordos Basin[J]. Acta Petrologica Sinica, 2020, 36(04): 238-251. doi: 10.18654/2095-8927/014
王瑜, 孙立新, 周丽云, 等. 燕山运动与华北克拉通破坏关系的讨论[J]. 中国科学: 地球科学, 2018, 48(5): 521-535. Wang Y, Sun L X, Zhou L Y, et al. Discussion on the relationship between the Yanshanian Movement and cratonic destruction in North China[J]. Science China Earth Sciences, 2018, 61: 499-514.
魏荣珠, 李好斌, 徐朝雷, 等. 对山西隆起区中新生代构造演化的认识[J]. 中国地质调查, 2017, 4(01): 24-34 doi: 10.19388/j.zgdzdc.2017.01.04 WEI Rongzhu, LI Haobin, XU Chaolei, et al. Review on Meso-Cenozoic tectonic evolution in Shanxi uplift[J]. Geological Survey of China, 2017, 4(01): 24-34. doi: 10.19388/j.zgdzdc.2017.01.04
魏荣珠, 杨鹏生, 魏云峰, 等. 1: 5万清徐县测区区域地质调查报告[R]. 太原: 山西省地质调查院, 2021. 卫彦升, 冯志强, 闫涛, 等. 华北板块中部中生代构造演化―以山西为例[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1127-1152 WEI yansheng, FENG Zhiqiang, YAN Tao, et al. Mesozoic Tectonic Evolution of the Central North China Craton: A Case Study from the Shanxi Province[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(4): 1127-1152.
吴中海, 吴珍汉. 鄂尔多斯、沁水盆地晚新生代隆升―剥蚀历史[J]. 地质科技情报, 2001(03): 16- 20. WU Zhonghai, WU Zhenghan. Ordos and Qinshui Basin History of Uplift-Denudation[J]. Geological Science and Technology Information, 2001(03): 16-20.
杨进辉, 许蕾, 孙金凤, 等. 华北克拉通破坏与岩浆―成矿的深部动力学过程[J]. 中国科学: 地球科学, 2021, 51(9): 1401−1419. YANG Jinhui, XU Lei, SUN Jinfeng, et al. Geodynamics of decratonization and related magmatism and mineralization in the North China Craton[J]. Science China: Earth Sciences, 2021, 64(9): 1409−1427.
杨巍然, 王国灿, 李长安. 造山带中―新生代隆升作用构造年代学研究新进展[J]. 地质科技情报, 1999, 18(4): 19-22 YANG Weiran, WANG Guocan, LI Chang’an. Progresses of the study on the Tectono-Chronology of the Mesozoic-Cenozoic uplifting in orogenic Belt[J]. Geological Science and Technology Information, 1999, 18(4): 19-22.
翟明国. 华北克拉通构造演化[J]. 地质力学学报, 2019, 25(5): 722-745 doi: 10.12090/j.issn.1006-6616.2019.25.05.063 ZHAI Mingguo. Tectonic Evolution of the North China Craton[J]. Journal of Geomechanics, 2019, 25(5): 722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063
张文高, 陈正乐, 蔡琳博, 等. 西天山白垩纪隆升―剥露的裂变径迹证据[J]. 地质学报, 2017, 91(03): 510-522. ZHANG Wengao, CHEN Zhengle, CAI Linbo, et al. Cretaceous Uplifting-Exhumation Process of west Tianshan: Evidence from Apatite Fission Track[J]. Acta Geologica Sinica, 2017, 91(03): 510- 522.
赵俊峰, 刘池洋, 王晓梅, 等. 吕梁山地区中―新生代隆升演化探讨[J]. 地质论评, 2009, 55(05): 663- 672. Zhao Junfeng, Liu Chiyang, Wang Xiaomei, et al. Uplifting and Evolution Characteristics in the Lüliang Mountain and Its Adjacent Area during the Meso-Cenozoic[J]. Geological Review, 2009, 55 (05): 663- 672.
赵俊峰, 刘池洋, Nigel MOUNTNEY, 等. 吕梁山隆升时限与演化过程研究[J]. 中国科学: 地球科学, 2015, 45(10): 1427-1438 ZHAO Junfeng, LIU Chiyang, Mountney N, et al. Timing of uplift and evolution of the Lüliang Mountains, North China Craton[J]. Science China: Earth Sciences, 2015, 45(10): 1427-1438.
赵祯祥, 杜晋锋. 山西大地构造划分、成矿旋回与演化[R]. 太原: 山西省地质调查院, 2004. 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356 ZHU Rixiang, XU Yigang. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 49(9): 1346-1356.
Brown R, Gleadow A. Fission track thermochronology and the long-term denudational response to tectonics[M]. Geomorphology and Global Tectonics, 2000: 57−75.
DV Díaz, S Omodeo-Salé, Ulyanov A, et al. Insights into the Thermal History of North-Eastern Switzerland-Apatite Fission Track Dating of Deep Drill Core Samples from the Swiss Jura Mountains and the Swiss Molasse Basin[J]. Geosciences (Switzerland), 2020, 11(10): 1-21.
Ma Q, Xu Y G. Magmatic perspective on subduction of Paleo-Pacific plate and initiation of big mantle wedge in East Asia[J]. Earth-Science Reviews, 2021, 213: 1-11.
Erhan Gülyüz. Apatite fission track dating of the Beypazar Granitoid: insight for the inception of collision along the Northern Neotethys, Turkey[J]. Geodinamica Acta, 2020, 32(1): 1-10. doi: 10.1080/09853111.2020.1809824
Gelder I, Willingshofer E, Andriessen P, et al. Cooling and Vertical Motions of Crustal Wedges Prior to, During, and After Lateral Extrusion in the Eastern Alps: New Field Kinematic and Fission Track Data from the Mur‐Mürz Fault System[J]. Tectonics, 2020, 39(3): 1-26.
Gleadow A J W. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis[J]. Cont Min Pet, 1986, 94(4): 405-415. doi: 10.1007/BF00376334
Green, Paul F. On the thermo-tectonic evolution of Northern England: evidence from fission track analysis[J]. Geological Magazine, 1986, 123(05): 493-506. doi: 10.1017/S0016756800035081
Green P F. A new look at statistics in fission track dating[J]. Nuclear Tracks, 1981, 5: 77-86. doi: 10.1016/0191-278X(81)90029-9
Ketcham R A. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data[J]. Reviews in Mineralogy and Geochemistry. 2005, 58(1): 275-314.
Ketcham R A, Donelick R A, Balestrieri M L, et al. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters, 2009, 284 (3-4): 504-515. doi: 10.1016/j.jpgl.2009.05.015
Laslett G M, Green P F, Duddy I R, et al. Thermal annealing of fission tracks in apatite 2. A quantitative analysis[J]. Chemical geology, 1987, 65(1): 1-13. doi: 10.1016/0168-9622(87)90057-1
Liang C, Neubauer F, Liu Y, et al. Diachronous onset and polyphase cooling of the Taili-Yiwulüshan metamorphic core complex corridor, NE China, and its relationships to the formation of adjacent extensional basins[J]. Gondwana Research, 2020, 102: 271-298.
Lin W, Faure M, Chen Y, et al. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan–Yanshan orogenic belt[J]. Gondwana Research, 2013, 23(1): 54-77. doi: 10.1016/j.gr.2012.02.013
Pan B, Hu Z, Wang J, et al. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River[J]. Geomorphology, 2011, 125(1): 225-238. doi: 10.1016/j.geomorph.2010.09.019
Pt A, Xy B, Wy A. Formation and preservation of the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia: Insights from evidences of petrogenesis, geochemistry and apatite fission track dating - ScienceDirect[J]. Solid Earth Sciences, 2020, 1–18.
Sun Y, Kohn B P, Boone S C, et al. Burial and Exhumation History of the Lujing Uranium Ore Field, Zhuguangshan Complex, South China: Evidence from Low-Temperature Thermochronology[J]. Minerals, 2021, 11(2): 1-24.
Wu F Y, Yang J H, Xu Y G, et al. Destruction of the North China Craton in the Mesozoic[J]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 173-195. doi: 10.1146/annurev-earth-053018-060342
Yang J H, Wu F Y, Wilde S A, et al. Mesozoic decratonization of the North China block[J]. Geology, 2008, 36(6): 467-470. doi: 10.1130/G24518A.1
Zhu G, Jiang D, Zhang B, et al. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005
-
期刊类型引用(5)
1. 王璐晨,韩海辉,张俊,黄姣,顾小凡,常亮,董佳秋,龙睿,王倩,杨炳超. 塔里木河流域土地利用及人类活动强度的时空演化特征研究. 中国地质. 2024(01): 203-220 . 百度学术
2. 黄艳,刘晓曼,袁静芳,付卓,乔青. 2000—2020年华北干旱半干旱区碳储量变化特征及影响因素. 环境科学研究. 2024(04): 849-861 . 百度学术
3. 盖兆雪,郑文璐,王洪彦,杜国明. 气候变化下黑土区陆地生态系统碳储量时空格局与模拟. 农业机械学报. 2024(06): 303-316 . 百度学术
4. 王洪彦,郑文璐,盖兆雪. 基于InVEST模型的黑土区碳储量时空分异特征. 环境科学学报. 2024(07): 473-481 . 百度学术
5. 郭佳晖,刘晓煌,李洪宇,邢莉圆,杨朝磊,雒新萍,王然,王超,赵宏慧. 2000—2030年云贵高原碳储量和生境质量时空格局演变. 地质通报. 2024(09): 1485-1497 . 百度学术
其他类型引用(1)