ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

地质建造对土壤性质的制约及其生态环境效应以西昌地区红壤为例

黄勇, 欧阳渊, 刘洪, 张腾蛟, 张景华, 李樋, 吴君毅, 邵璐, 高文龙

黄勇, 欧阳渊, 刘洪, 等. 地质建造对土壤性质的制约及其生态环境效应—以西昌地区红壤为例[J]. 西北地质, 2023, 56(4): 196-212. DOI: 10.12401/j.nwg.2023059
引用本文: 黄勇, 欧阳渊, 刘洪, 等. 地质建造对土壤性质的制约及其生态环境效应—以西昌地区红壤为例[J]. 西北地质, 2023, 56(4): 196-212. DOI: 10.12401/j.nwg.2023059
HUANG Yong, OUYANG Yuan, LIU Hong, et al. Restriction of Geological Formation on Soil Properties and Its Ecological Environmental Effects: Example from Red Soil in the Xichang Area[J]. Northwestern Geology, 2023, 56(4): 196-212. DOI: 10.12401/j.nwg.2023059
Citation: HUANG Yong, OUYANG Yuan, LIU Hong, et al. Restriction of Geological Formation on Soil Properties and Its Ecological Environmental Effects: Example from Red Soil in the Xichang Area[J]. Northwestern Geology, 2023, 56(4): 196-212. DOI: 10.12401/j.nwg.2023059

地质建造对土壤性质的制约及其生态环境效应—以西昌地区红壤为例

基金项目: 中国地质调查项目(DD20230247、DD20221776、DD20190542),西南地质科技创新中心刘宝珺院士基金,国家自然科学基金(42202105),宁夏生态地质调查示范项目(NXCZ20220201),广东省地质勘查与城市地质专项([2022]-21)联合资助
详细信息
    作者简介:

    黄勇(1987−),男,博士,工程师,从事矿床地球化学和生态地球化学研究。E–mail:976385971@qq.com

    通讯作者:

    欧阳渊(1982−),男,博士,高级工程师,硕导,从事遥感地质和生态地质研究。E−mail:oyangyuan@mail.cgs.gov.cn

  • 中图分类号: P66;P69

Restriction of Geological Formation on Soil Properties and Its Ecological Environmental Effects: Example from Red Soil in the Xichang Area

  • 摘要:

    厘清地质建造对土壤性质制约的作用及程度有助于建立起地质背景与生态环境之间的联系,为地质工作服务生态文明建设提供理论支撑。笔者以西昌地区6种类型地质建造上发育的红壤为例,系统分析每种类型地质建造内基岩和红壤中植物营养元素和重金属元素的含量,以及红壤的质地、酸碱性等理化性质。结果显示,土壤的营养元素和重金属元素含量与下伏地质建造中相应元素的含量呈现明显的线性正相关关系(S、N、As除外),相关系数R的平方值为0.54~0.97,不同类型地质建造上形成红壤的营养元素丰缺度、重金属污染风险、质地、酸碱性等性质存在明显差异。因此,地质建造可以在多个方面有效制约其形成土壤的性质,且这种制约作用具有普遍性,据此提出了“地质建造–土壤性质–生态环境”为主线的山地丘陵区生态地质调查工作思路。

    Abstract:

    Clarifying the role and extent of geological formation affecting soil properties will help establish the relationship between geological background and ecological environment, and provide theoretical support for geological work to serve the construction of ecological civilization. Taking the red soil formed on six geological formations in the Xichang area as an example, this paper systematically analyzed the contents of plant nutrient elements and heavy metals in bedrock and red soil of each geological formation. Meanwhile, the physical and chemical properties of red soil such as texture and pH value are also analyzed. The results show that the contents of nutrient elements and heavy metals in soil are linearly and positively correlated with the contents of corresponding elements in underlying geological formations (except for S, N, As), and the correlation coefficient R squared is concentrated in 0.54~0.97. There are significant differences in the nutrient element abundance, heavy metal pollution risk, texture, acidity of the red soil formed in different geological formations, indicating that geological formations can effectively restrict the properties of the overlying soil in many aspects. Considering the universality of the restriction of geological formation on soil properties, this paper puts forward that the ecological geological survey in mountainous and hilly areas can be based on the path of "geological formation–soil properties–ecological environment". The specific working method is also discussed in this paper.

  • 土壤是陆地生态系统的重要组成部分,发挥着维持生物活性和多样性、稳定陆地生态平衡等重要的生态功能。多数陆地植物以土壤为生长基质,植物生长发育需要的热量、空气、水分和养分皆与土壤有关,水分和养分主要通过根部从土壤中吸收,而土壤热量和空气均受土壤性质影响,此外土壤还为植物提供了根系伸展的空间和机械支撑作用(耿增超等,2020)。同时,土壤也是重要的环境因素,是环境污染物的缓冲带和过滤器,土壤的环境质量直接关系到农产品的安全,对人类的健康有着极其深刻的影响(吕贻忠等,2006)。因此,土壤是联系无机界与有机界、非生命和生命的中心纽带,在生态环境中扮演着十分重要的角色。

    由于土壤是由岩石的风化物(成土母质)形成的,除少数有机土外,矿物颗粒占整个土壤固相部分的95%以上,因此土壤的性质会在一定程度上继承母质的性质,并受到母质的岩石类型、结构、构造、矿物组成、化学成分等特征的制约(周爱国等,2001李天杰等,2004吕贻忠等,2006Juilleret et al.,2016Wilson,2019Vithanage et al.,2019欧阳渊等,2021贾磊等,2022)。地质建造是指同一时代、同一构造环境、同一地质作用下形成的,宏观上可识别填绘的一套岩石组合(中国地质调查局,2019),是地质环境的物质载体。在山地丘陵地貌区,大部分岩石在风化破碎后未经搬运或仅经历短距离搬运形成残积、塌积或坡积的成土母质,这些母质继续风化形成上覆的土壤层。因此,山地丘陵区的地质建造与上覆土壤层之间存在着密切的成因联系,而土壤层又直接制约着其上生态环境的质量。这表明在山地丘陵区,通过深入研究地质建造对区内土壤性质的制约,有望建立起地质背景与生态环境之间的联系,为地质工作服务生态文明建设提供理论支撑。

    尽管前人在地质建造影响土壤性质方面开展了一些研究(严明书等,2018Hahm et al.,2018赵凯丽等,2019王京彬等,2020张腾蛟等,20202021李樋等,2021a曾琴琴等,2021夏学齐等,2022),但这些研究以定性研究为主,常只研究土壤而未将地质建造和土壤作为一个体系开展对应研究,且往往仅关注个别元素或某种性质,而未将土壤与生态有关的各种性质进行综合研究。在上述背景下,笔者以西昌地区山地地貌上发育的红壤为例,对不同地质建造上形成红壤的风化壳剖面(基岩–土壤剖面)进行广泛采样调查,以期揭示和定量评价地质建造对土壤性质的制约作用,并为山地丘陵地貌区的生态地质调查提供工作思路。

    西昌地区位于中国西南四川省西南部的西昌市及其周边区域,坐标为E 102°00′00″~102°23′00″,N 27°40′00″~28°00′00″(图1图2)。该地区在大地构造上位于上扬子地块西缘和康滇断隆带北段(图1图2),区内自古太古代以来经历了多期次的构造活动,形成了前寒武纪基底及显生宙沉积盖层,在古生代末经历了海陆变迁,新生代时期由于青藏高原隆升引起的挤压,区内发生强烈的褶皱变形,形成现今复杂的一系列近南北走向的构造系统。研究区沉积地层分布较广,但以中新生界为主;区内岩浆岩广泛分布在研究区的西部,中东部少见;研究区内构造活动强烈,三条断裂带呈近南北向贯穿(图2a),这些断裂目前仍在活动(刘洪等,2021)。

    图  1  (a)研究区大地构造位置图和(b)研究区位置图
    QT. 羌塘地块;SG. 松潘–甘孜地块;UY. 上扬子地块
    Figure  1.  Location map of the study area
    图  2  (a)西昌地区形成红壤的6类地质建造图和(b)红壤分布图(红壤分布范围据国家地球系统科学数据中心,1995
    Figure  2.  (a) The map of 6 geological formations forming red soil in the Xichang area, and (b) the red soil distribution map

    研究区内岩石地层单元和岩浆岩较为复杂,为了简化问题的讨论,可将区内的各种岩石地层单元和岩浆岩体归并划分成不同的地质建造,划分时主要依据岩石的岩性及岩石形成的时代和构造环境,合并相似的地质单元,再考虑成图精度的要求和实用性,将出露较小的地质单元与附近的地质单元进行归并处理。刘洪等(20202022)将研究区划分成10个类型的地质建造,其中形成红壤的地质建造包括6类(图2):①新近纪—第四纪陆相碎屑岩建造,主要为昔格达组,岩性为粉砂岩、黏土岩,底部含砾岩,为河流–湖泊冲积相沉积,分布于安宁河两侧及邛海四周。②三叠纪陆相碎屑岩建造,包括白果湾组、宝顶组、大荞地组和丙南组,岩性为砂岩、泥岩,河流–湖泊相沉积为主,主要分布在区内西部和东南部。③三叠纪中酸性岩建造,岩性主要为碱性正长岩和碱性花岗岩,其形成可能与板内裂谷作用机制下的玄武岩浆分异有关,主要分布在区内西北部。④二叠纪基性岩建造,岩性为峨眉山玄武岩和辉长岩,分布于区内西部。⑤元古代中酸性岩建造,包括花岗闪长岩、石英闪长岩、斜长花岗岩、二长花岗岩等,形成环境具有活动大陆边缘的特征,分布于区内西部。⑥元古代火山碎屑岩建造,包括开建桥组和列古六组,仅少量分布于区内东南角。不同地质建造上形成红壤的土壤剖面和生态景观如图3所示。

    图  3  西昌地区6类地质建造上形成红壤的土壤剖面和生态景观图
    a、b. 新近纪—第四纪陆相碎屑岩建造上生态景观和红壤剖面,R层为含砾砂岩;c、d. 三叠纪陆相碎屑岩建造上生态景观和红壤剖面,R层为砂岩;e、f. 三叠纪中酸性岩建造上生态景观和红壤剖面,R层为碱性花岗岩;g、h. 二叠纪基性岩建造上生态景观和红壤剖面,R层为辉绿岩;i、j. 元古代中酸性岩建造上生态景观和红壤剖面,R层为花岗岩;k、l. 元古代火山碎屑岩建造上生态景观和红壤剖面,R层为火山碎屑岩;A层. 淋溶层;B层. 淀积层;C层. 母质层;R层. 基岩层
    Figure  3.  Soil profile and ecological landscape of red soil formed on the six geological formations in the Xichang area

    研究区整体位于横断山脉的东南缘(图1),地貌兼具中山山地、河谷平原和干热峡谷等类型(图2b)。其中,区内西部主要属于牦牛山和磨盘山组成的中山山地,海拔为1500~3400 m;东部为螺髻山北段中山山地,海拔为1500~3000 m;中部为南北向狭长分布的安宁河谷平原,海拔约为1500 m;西南部小部分区域属于雅砻江沿岸的干热峡谷,海拔约为1200~1700 m。

    区内的红壤主要分布于较低海拔的山地地貌,包括安宁河谷两侧、邛海周围以及雅砻江沿岸,海拔为1500~2500 m,分布面积较广(图2b)。这些山地地貌上的基岩在风化破碎后都未经搬运或仅经历短距离搬运后形成上覆的红壤,因此基岩(地质建造)与其上覆红壤之间具有密切的成因联系(李樋等,2021b)。

    笔者选择研究区内的红壤进行采样和分析,原因有2点:①传统土壤类型的划分更注重气候和生物等成土因素的作用,同一地区同种土壤类型形成的气候和生物作用基本一致,因此选择同一种类型的土壤进行研究可以更准确地评价地质建造(母质)因素对土壤性质的影响。②红壤的形成通常经历了较强的淋溶作用,物理和化学风化程度均很高,其是否仍然保留了地质建造(母质)对其性质的影响也值得探究。

    笔者分别对可形成红壤的6类地质建造上的基岩和红壤进行了野外调查和样品采集,采样时对应采集各采样点同一风化壳剖面上的新鲜基岩和土壤样品。土壤样品统一采集B层,采样时连续均匀采集B层剖面上不同部位的土壤混合成一件土壤样品。共计采集基岩–土壤样品45组。

    对采集的基岩和土壤样品进行了植物必需营养元素(N、P、K、Ca、Mg、S、Cu、Zn、Mn、Fe、B、Mo、Cl、Ni)和重金属元素(Cr、Cd、Hg、Pb、As)含量分析,分析测试工作在中国地质调查局成都地质调查中心沉积盆地与油气资源自然资源部重点实验室完成,分析方法参考标准《区域地球化学样品分析方法》(DZ/T 0279.3-2016),同时对土壤样品进行了粒度、pH值等物理化学参数的分析,其中粒度分析测试工作在四川省科源工程技术测试中心完成,分析方法参考标准《化学品 土壤粒度分析试验方法》(GB/T 27845-2011),pH值在中国地质调查局成都地质调查中心沉积盆地与油气资源自然资源部重点实验室完成,分析方法参考标准《土壤检测 第2部分:土壤pH的测定》(NY/T 1121.2-2006)。

    6类地质建造中基岩和土壤的元素含量分析结果表明(表1图4),不同元素种类在基岩中含量或在土壤中含量均存在较大差异,但基岩与土壤中不同元素种类的含量显示出明显的正相关性。一些元素种类在基岩和土壤中含量均较低,如属于微量元素的Hg、Cd、Mo和属于主量元素的P、Mn,而另一些元素种类在基岩和土壤中含量均较高,如属于微量元素的Cu、Zn、Cl和属于主量元素的Fe、K(表1图4)。这种现象本质上是基岩和土壤中元素含量同时受地壳元素丰度控制的结果,即地壳元素丰度控制了地壳岩石(地质建造中基岩)中各元素种类含量的数量级范围,而地壳岩石中各元素种类的含量又控制了土壤相应元素种类含量的数量级范围。各类地质建造上形成红壤的元素含量配分型式都与地壳元素丰度的配分型式一致(图5),证明了土壤元素含量受地壳元素丰度的控制。地壳元素丰度对土壤元素含量的控制体现了岩石圈对土壤圈的影响作用。值得注意的是,这种控制作用是间接的和粗略的,地壳元素丰度仅控制了土壤中各种元素含量在数量级上的大致范围。

    表  1  不同地质建造中基岩和土壤样品的营养元素和重金属含量表
    Table  1.  Nutrient element and heavy metal content of bedrock and soil samples from each geological formation
    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    新近纪—第四纪陆相碎屑岩建造–基岩
    D0112R11.161.322.410.220.064.990.030.04/92.700.3630.5079.0033.900.1466.6023.906.820.01
    D1210R10.392.003.380.090.086.870.020.0528.0064.900.1749.60138.0048.60<0.05114.0028.706.130.02
    D2112R10.201.133.050.070.077.870.01/47.4077.700.3860.50106.0041.200.0887.9053.109.040.01
    D3111R20.131.583.020.060.025.430.02/38.9079.900.5020.4088.4038.400.0971.2033.607.080.08
    平均值0.471.512.970.110.066.290.020.0538.1078.800.3540.25102.8540.530.1084.9334.837.270.03
    新近纪—第四纪陆相碎屑岩建造–土壤
    D0112B10.841.422.750.100.096.610.020.1058.60104.000.5443.20143.0042.400.1580.1038.3011.800.04
    D1210B10.200.662.200.080.126.410.040.0617.9092.501.7439.5091.2046.00<0.0564.3029.1010.700.02
    D2112B10.230.512.020.060.054.630.02/50.8079.600.5525.3057.8027.300.0776.5026.808.040.03
    D3111B10.121.232.120.090.045.910.02/38.3060.100.7819.2067.2043.800.08103.0024.007.380.11
    平均值0.350.962.270.080.075.890.030.0841.4084.050.9031.8089.8039.880.1080.9829.559.480.05
    三叠纪陆相碎屑岩建造–基岩
    D1204R10.070.822.810.130.046.980.020.1412.6084.401.0759.10109.0076.700.17320.0015.103.670.04
    D1306R10.040.331.390.050.012.830.030.0521.9022.100.6214.8022.3035.30<0.05123.0015.001.900.03
    D1608R10.180.521.020.050.072.880.030.0320.2046.000.3311.1050.5017.20<0.0537.6014.908.630.06
    D2101R10.341.422.860.160.085.280.01/25.0098.000.4028.60120.0031.500.1870.2024.303.920.04
    D2102R11.171.742.160.160.036.030.01/24.8086.700.4518.60105.0026.500.1952.9029.103.730.04
    D2202R13.052.774.420.150.086.640.01/21.60109.000.2431.60111.0045.700.23107.0021.9030.600.04
    D2204R10.190.180.690.020.020.820.01/28.8021.500.183.3819.104.720.0612.2011.003.050.02
    D2207R10.441.852.520.160.065.700.01/18.2077.800.1729.40111.0037.200.2276.7022.604.170.03
    D2307R13.861.472.540.210.118.470.01/41.108.700.6748.4096.5029.100.1465.6016.001.460.02
    D2308R124.054.281.590.150.134.950.01/42.70124.000.4070.6053.1035.000.14129.0010.700.830.03
    D2401R10.240.260.870.030.011.000.01/25.4029.100.184.2623.807.79<0.0514.606.782.120.02
    D2402R10.110.932.700.110.065.860.01/16.70114.000.2829.0095.8034.900.1075.5033.804.000.03
    D3112R10.130.691.790.080.032.750.01/28.4057.600.366.3839.0015.500.1128.4019.002.030.03
    D3113R10.080.432.870.070.033.130.01/20.40120.000.5622.0039.9014.100.1277.4021.3017.900.05
    D3211R10.111.474.810.100.066.440.01/16.20128.000.1628.0079.6032.000.0896.0044.3021.800.07
    D3219R10.360.742.040.070.012.990.01/25.4083.300.1716.5069.8022.70<0.0546.6015.807.040.03
    平均值2.151.242.320.110.054.550.010.0724.3475.640.3926.3671.5929.120.1583.2920.107.300.04
    三叠纪陆相碎屑岩建造–土壤
    D1204B10.211.041.920.180.149.820.080.2139.0086.004.1858.40104.0060.300.13186.0024.6016.600.18
    D1306B10.060.601.770.090.0310.860.040.0821.5048.603.7766.4072.8053.700.05203.0035.2019.400.17
    D1608B10.170.571.640.070.055.170.060.1226.0060.204.6524.0072.2033.700.13132.0025.0010.200.02
    D2101B10.110.742.180.110.056.100.02/30.8079.800.7021.80116.0033.400.1877.3031.809.480.07
    D2102B10.411.333.590.070.097.510.02/22.9070.201.1433.10143.0053.700.12122.0034.6011.600.06
    D2202B13.212.613.760.160.106.730.02/25.6082.100.4630.60108.0047.200.35112.0029.607.930.03
    D2204B10.170.401.280.060.023.490.01/36.6041.600.5714.0038.3026.60<0.0552.8018.909.890.03
    下载: 导出CSV 
    | 显示表格
    续表1
    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    D2207B10.161.783.130.130.067.650.01/32.6074.700.4632.70111.0054.500.17116.0027.507.510.06
    D2307B13.172.192.300.250.1812.300.02/52.006.560.6081.80119.0056.800.22169.0015.901.720.02
    D2308B13.314.572.280.190.219.870.02/31.4096.000.9196.60102.0068.800.30174.0017.202.020.02
    D2401B10.220.602.100.090.143.830.02/26.8055.400.4113.0059.0019.600.1059.2023.003.160.03
    D2402B10.220.771.740.100.084.290.02/23.2075.500.5518.6069.0029.700.0773.3021.107.440.02
    D3112B10.150.811.320.080.025.830.03/39.3047.801.1819.0093.9034.900.0589.9026.3012.700.25
    D3113B10.180.622.430.140.086.540.02/36.1080.900.9531.8075.6034.700.09100.0036.509.900.10
    D3211B10.150.791.880.120.056.140.03/35.3066.001.2123.4073.0026.700.0793.1033.1014.900.16
    D3219B10.120.591.420.090.044.420.03/31.8074.500.7224.6065.3023.40<0.0579.0021.709.300.03
    平均值0.751.252.170.120.086.910.030.1431.9365.371.4036.8688.8841.110.14114.9126.389.610.08
    三叠纪中酸性岩建造–基岩
    D1206R10.190.145.190.020.164.710.020.0135.205.630.5910.50295.003.500.269.2521.000.700.00
    D1309R10.280.163.320.030.198.660.030.0129.402.701.548.56275.0013.400.0711.4029.200.230.01
    D1312R10.270.336.090.090.1010.030.020.0128.202.481.0517.20168.0020.20<0.0566.5019.101.710.00
    D1409R10.373.002.280.150.1311.920.030.0529.8030.800.59112.00137.0089.100.12189.008.810.560.00
    D2309R10.820.405.190.070.184.660.01/73.605.640.213.96123.001.400.153.148.960.640.02
    平均值0.390.814.410.070.158.000.020.0239.249.450.8030.44199.6025.520.1555.8617.410.770.01
    三叠纪中酸性岩建造-土壤
    D1206B10.370.593.080.110.045.450.070.1941.9035.301.6712.00109.0017.700.0667.1028.407.290.13
    D1309B10.110.541.470.060.059.170.050.0636.5056.704.3337.20150.0047.00<0.05124.0034.6021.800.10
    D1312B10.130.391.750.070.115.870.030.0462.8079.105.4428.8079.9028.00<0.0576.6022.308.240.02
    D1409B10.381.242.220.240.518.860.050.2228.6037.904.47123.00155.0065.900.35174.0033.506.460.10
    D2309B10.440.394.680.060.184.720.02/63.4016.700.4713.20101.008.290.1019.3014.002.800.02
    平均值0.290.632.640.110.186.810.050.1346.6445.143.2842.84118.9833.380.1792.2026.569.320.07
    二叠纪基性岩建造–基岩
    D1205R10.071.333.660.300.0420.600.030.1522.3088.901.66206.00178.00153.000.32218.0030.2031.800.04
    D1207R10.151.891.360.360.3020.350.030.0239.8011.300.19524.00178.0060.600.1674.308.732.470.01
    D2306R17.977.210.820.250.1711.260.01/20.003.650.5892.10113.0085.800.16279.008.870.600.02
    D2409R16.558.161.060.280.1411.520.01/25.802.690.8867.80103.00205.000.13652.007.080.340.02
    平均值3.684.651.730.300.1615.930.020.0826.9826.640.83222.48143.00126.100.19305.8313.728.800.02
    二叠纪基性岩建造-土壤
    D1205B10.503.491.730.170.1713.370.060.0713.5040.003.33118.00136.00157.000.16428.0018.403.370.03
    D1207B10.080.432.050.140.2011.860.040.0628.7028.504.4424.80177.0032.30<0.0588.1025.0013.700.07
    D2306B13.002.761.390.180.1713.820.02/24.7010.900.82116.00100.0093.800.12310.0012.802.440.06
    D2409B10.361.221.040.190.1712.940.03/35.0021.401.04112.00102.00161.000.05521.0017.203.880.04
    平均值0.991.981.550.170.1813.000.030.0725.4825.202.4192.70128.75111.030.11336.7818.355.850.05
    元古代中酸性岩建造–基岩
    D1105R11.941.131.820.230.145.450.020.0067.904.330.2812.60125.003.720.185.0218.300.230.00
    D1106R12.421.402.800.100.084.950.020.0054.206.130.5317.1094.104.490.068.1315.700.000.00
    下载: 导出CSV 
    | 显示表格
    续表1
    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    D1107R11.650.692.790.050.083.290.020.0245.504.420.336.5473.105.450.097.2516.300.830.00
    D1108R13.921.962.260.180.126.500.030.0199.602.460.3050.0084.4012.700.0625.008.000.420.00
    D1110R12.251.602.150.140.105.060.020.0144.803.140.2525.5068.8013.500.0917.6011.700.500.00
    D2105R11.810.703.160.110.042.320.01/25.905.29<0.12.2249.903.60<0.057.9212.600.240.00
    D2209R10.740.531.760.090.042.210.01/55.507.58<0.11.5242.601.750.094.239.410.000.01
    D2210R13.331.172.330.110.073.450.01/46.505.160.2011.5060.4017.20<0.0548.0010.501.800.01
    D2211R12.720.672.680.080.062.260.01/67.505.21<0.13.6755.102.400.066.0916.900.420.01
    D2212R13.561.121.840.120.063.110.03/81.206.600.166.3173.006.16<0.0519.8012.200.600.01
    D2214R10.561.702.700.120.052.750.04/52.4023.50<0.12.5454.504.22<0.0511.702.200.550.00
    D2406R11.070.604.580.040.042.210.01/32.408.311.2390.2073.4010.000.2312.8025.000.590.04
    D2407R16.614.321.050.180.127.690.01/66.504.830.1220.7081.1039.400.1090.607.610.310.00
    D2407R20.430.472.600.040.062.100.01/26.8037.90<0.13.3238.202.080.164.0615.000.280.03
    平均值2.361.292.470.110.073.810.020.0154.768.920.3818.1269.549.050.1119.1612.960.480.01
    元古代中酸性岩建造–土壤
    D1105B12.771.831.880.870.1810.820.030.0881.904.710.5219.80112.0011.900.1210.6013.001.340.02
    D1106B10.551.251.960.060.077.270.020.0348.1011.800.5524.80108.0014.80<0.0520.7018.302.810.04
    D1107B11.150.822.620.100.095.420.040.0938.8028.209.4532.6093.8023.800.16182.0018.803.060.02
    D1108B12.801.042.200.070.106.210.030.06124.004.515.7624.5064.8012.400.1263.2013.100.910.01
    D1110B11.680.622.170.080.075.140.040.0960.3017.009.4323.8049.5012.900.14163.0017.603.390.02
    D2105B12.130.703.170.090.043.420.01/77.807.150.2114.3061.204.73<0.0511.2017.500.490.01
    D2209B10.670.663.410.060.053.570.01/88.508.770.2710.6050.507.86<0.0513.1018.501.330.02
    D2210B11.700.862.540.060.053.190.03/67.005.580.174.4650.805.540.1018.8013.100.880.02
    D2211B11.560.533.280.050.052.240.02/57.204.040.1112.9044.902.26<0.054.7115.700.230.00
    D2212B11.310.782.830.080.053.140.02/58.905.380.197.2254.106.36<0.0519.1013.300.680.02
    D2214B10.231.442.380.060.043.150.01/66.708.220.1039.6049.506.19<0.0519.8020.500.430.01
    D2406B10.533.542.170.090.168.660.02/31.9014.000.40135.00126.00384.000.13437.0021.402.770.04
    D2407B12.303.691.070.090.099.920.02/47.2014.100.4637.6093.7059.800.07150.0011.903.980.02
    D2407B20.590.792.740.060.053.290.02/51.0021.800.347.9053.709.77<0.0518.3017.403.500.02
    平均值1.431.332.460.130.085.390.020.0764.2411.092.0028.2272.3240.170.1280.8216.441.840.02
    元古代火山碎屑岩建造–基岩
    D2222R10.080.235.740.010.032.200.01/27.2019.801.064.16169.001.440.093.5410.404.390.02
    D2601R10.130.413.830.020.032.560.02/48.9015.300.273.8041.103.250.065.0120.803.990.01
    平均值0.110.324.790.010.032.380.01/38.0517.550.673.98105.052.350.074.2815.604.190.01
    元古代火山碎屑岩建造–土壤
    D2222B10.160.453.440.030.053.680.03/35.6038.301.2719.30120.0014.900.1130.4026.7012.000.04
    D2601B10.140.383.330.020.032.670.03/64.1013.600.7314.7068.807.67<0.0512.4025.3023.600.04
    平均值0.150.423.390.030.043.170.03/49.8525.951.0017.0094.4011.290.1121.4026.0017.800.04
    大陆地壳
    元素丰度
    5.393.672.580.170.096.170.070.06472.0011.001.1025.0065.0056.000.10126.0014.801.700.04
     注:CaO、MgO、K2O、P2O5、MnO、TFe2O5、S、N元素含量为%;Cl、B、Mo、Cu、Zn、Ni、Cd、Cr、Pb、As、Hg元素含量为10–6;/表示无数据;大陆地壳元素丰度引自Wedepohl(1995)
    下载: 导出CSV 
    | 显示表格
    图  4  基岩与红壤中各元素含量的相关性
    a.含量较高的大量中量元素;b.含量较低的微量元素;每一个样品点代表一种元素在一种地质建造内所有基岩或土壤样品含量的平均值
    Figure  4.  Correlation of element contents in bedrock and red soil
    图  5  地壳元素丰度与不同地质建造中形成红壤元素含量的关系
    a.含量较高的大量中量元素;b.含量较低的微量元素;土壤元素含量为一种地质建造内所有土壤样品含量的平均值
    Figure  5.  Relationship between average element content of crust and element content of red soil formed in each geological formation

    营养元素是植物生长发育必需的物质基础,在植物生命活动中发挥着不可替代的功能。植物的营养元素主要从土壤中吸收,土壤中营养元素的含量是土壤肥力的重要体现。14种营养元素在不同类型地质建造和相应土壤中的含量关系表明(图6),每一种营养元素在不同类型地质建造(基岩)中含量或在不同类型建造形成土壤中含量均存在较大差异。除S和N两种元素外,其余12种元素在土壤中的含量均与其在相应地质建造(基岩)中的含量呈明显的线性正相关关系,相关系数R的平方值较高,为0.70~0.97,表明土壤中的这些元素均主要来源于下伏地质建造中,且不同类型地质建造中某种营养元素的含量直接控制了其形成土壤中相应营养元素的含量。尽管基岩风化可以为土壤提供重要的S输入和少量的N输入(Morford et al.,2011Dynarski et al.,2019),但土壤中85%~95%的S和95%的N以有机态形式存在,生物地球化学循环过程对土壤中S和N含量影响更大(耿增超等,2020),这可能导致了地质建造与其形成土壤的S、N含量相关性很低或不存在相关性。

    图  6  基岩(地质建造)与土壤各种营养元素含量的相关性
    基岩和土壤的元素含量均为一种地质建造内所有基岩和土壤样品含量的平均值;CaO、B和Mo图解中均有1个异常点未参与R2值计算。
    Figure  6.  Nutrient elements correlation between the bedrock (geological formation) and the soil

    西昌地区的元古代火山碎屑岩建造具有最低的P2O5、MgO、TFe2O3、MnO、CaO、Cu、Ni含量和最高的K2O含量(图6)。相反,二叠纪基性岩建造具有最高的P2O5、MgO、TFe2O3、MnO、CaO、Cu、Ni含量和最低的K2O含量。因此,这两种地质建造形成的红壤在营养元素组成上差别最为显著(图6)。此外,尽管三叠纪陆相碎屑岩建造与元古代中酸性岩建造的岩性存在差异,但它们的K2O、P2O5、MgO、TFe2O3、MnO、Cu、Ni、Zn、Mo等营养元素含量十分接近(图6),这就造成它们所形成红壤的上述营养元素含量也十分接近(图6)。

    依据地质矿产行业标准《土地质量地球化学评价规范》(DZ/T 2016),对研究区不同类型地质建造上形成红壤营养元素含量的生态环境效应进行评价。结果显示(图7):①多数地质建造上形成红壤的K在适中或较丰范围,仅二叠纪基性岩建造上的红壤K较缺乏。②多数地质建造上形成红壤的P、Mg较缺或缺乏,仅二叠纪基性岩建造上的红壤的P、Mg达到适中范围。③二叠纪基性岩建造上红壤的Mn很丰富,而元古代火山碎屑岩建造上红壤的Mn很缺乏,其余建造上红壤的Mn在较缺至较丰之间变化。④多数地质建造上形成红壤的Ca均很缺乏,仅元古代中酸性岩建造上红壤的Ca主体在适中范围。⑤元古代火山碎屑岩建造及元古代中酸性岩建造上红壤的Cu较缺乏,而二叠纪基性岩建造上红壤的Cu含量过高,已超出适宜范围,存在污染风险,其余3种建造上红壤的Cu总体在适中至很丰富范围。⑥三叠纪陆相碎屑岩建造、三叠纪中酸性岩建造、二叠纪基性岩建造、元古代火山碎屑岩建造上红壤的Zn总体处于很丰富范围,而新近纪—第四纪陆相碎屑岩建造和元古代中酸性岩建造上红壤的Zn在较缺乏至较丰富之间变化。⑦二叠纪基性岩建造、元古代中酸性岩建造、元古代火山碎屑岩建造上红壤的B缺乏,而新近纪—第四纪陆相碎屑岩建造和三叠纪陆相碎屑岩建造上红壤的B丰富。⑧元古代中酸性岩建造上红壤的Mo、S总体缺乏,其余建造上红壤的Mo、S均为适中至丰富范围,其中三叠纪中酸性岩建造上部分红壤的Mo已过量,超出适宜范围。可见,不同类型地质建造上形成红壤的营养元素丰缺度存在显著差异。

    图  7  不同类型地质建造上形成红壤的营养元素丰缺度评价
    Figure  7.  Nutrient element abundance evaluation of red soil formed on each geological formations

    土壤中重金属元素超标不仅可直接影响植物生长,抑制土壤微生物活性,还可通过食物链、水体、粉尘等途径传递至人体,危害人体健康(张鑫,2019杨乐等,2020)。Cr、Cd、Pb、Hg、As等5种重金属元素(图8)及Cu、Zn、Ni等3种重金属元素(图6)含量特征显示,每一种重金属元素在不同类型地质建造(基岩)中含量或在不同类型建造形成土壤中含量均存在较大差异。除As外,其余重金属元素在土壤中的含量均与其在相应地质建造中的含量呈明显的正相关关系,相关系数R的平方值较高,为0.54~0.96,表明土壤中的这些重金属元素主要来源于下伏地质建造(基岩)中,且不同类型地质建造中某种重金属元素的含量直接控制了其形成土壤中相应重金属元素的含量。土壤中As元素除了来自基岩风化外,极容易受到人类工农业活动的影响(安礼航等,2020),这可能是区内地质建造与其形成土壤的As含量相关性低的原因。

    图  8  基岩(地质建造)与土壤中各重金属元素含量的相关性
    基岩和土壤的元素含量均为一种地质建造内所有基岩和土壤样品含量的平均值;Cd、Hg图解均中有1个异常点未参与R2值计算
    Figure  8.  Heavy metals correlation between the bedrock (geological formation) and the soil

    依据地质矿产行业标准《土地质量地球化学评价规范》(DZ/T 2016)和国家标准《土壤环境质量农用地土壤污染风险管控标准》(GB15618-2018),对不同类型地质建造上形成红壤重金属元素含量的生态环境风险进行评价(图9)。结果显示(图10):①所有地质建造形成红壤的Cd、Pb、Hg、As、Zn均低于农用地土壤污染风险筛选值,表明所有地质建造上红壤的上述重金属含量对农产品质量安全、农作物生长或土壤生态环境的风险低,一般情况下可以忽略。②二叠纪基性岩建造的Cr、Ni、Cu总体超标,高于农用地土壤污染风险筛选值,对农产品质量安全、农作物生长或土壤生态环境可能存在风险,应当加强土壤环境监测和农产品协同监测,原则上应当采取安全利用措施。③新近纪—第四纪陆相松散碎屑岩建造和元古代火山碎屑岩建造上红壤的Cr、Ni、Cu含量未超标,属安全范围。④三叠纪陆相碎屑岩建造、三叠纪中酸性岩建造、元古代中酸性岩建造上红壤的Cr、Ni、Cu含量总体均为安全范围,但有少部分存在超标现象,应予以关注。可见,不同类型地质建造上形成红壤的重金属污染风险存在显著差异。

    图  9  不同类型地质建造上形成红壤的重金属污染风险评价
    Figure  9.  Risk assessment of heavy metal pollution of red soils formed on different geological formations
    图  10  不同类型基岩建造上形成红壤物理化学性质差异图
    a. 红壤颗粒粒级百分含量图;b. 红壤酸碱性图;NQms. 新近纪—第四纪陆相碎屑岩建造;Tss. 三叠纪陆相碎屑岩建造;Tγδ. 三叠纪中酸性岩建造;Pβ. 二叠纪基性岩建造; Ptγδ. 元古代中酸性岩建造;Ptpr. 元古代火山碎屑岩建造
    Figure  10.  Physical and chemical properties of red soils formed on different bedrock formations

    土壤质地是土壤的基本物理性质之一,土壤蓄水、供水、保肥、供肥、容气、通气、保温、导温和耕性等均受土壤质地影响(耿增超等,2020)。研究区内不同类型地质建造上形成红壤的土壤粒级存在一定的差异(表2图10a),元古代中酸性岩建造上形成的红壤具有最高的砂粒和最低的黏粒含量,其质地为砂质壤土;三叠纪碱性岩建造、二叠纪基性岩建造和新近纪—第四纪陆相松散碎屑岩建造上形成的红壤粉粒含量最高,质地属于粉质壤土;三叠纪陆相砂质碎屑岩建造和元古代火山碎屑岩建造上形成的红壤介于上述两者之间,质地属于壤土。

    表  2  不同类型地质建造上形成红壤的粒级分布和pH值
    Table  2.  Particle size distribution and pH value of red soil formed on different geological formations
    红壤的下伏地质建造类型砂粒含量
    (0.075~1 mm)
    粉粒含量
    (0.075~0.005 mm)
    黏粒含量
    (< 0.005 mm)
    pH
    新近纪-第四纪陆相碎屑岩建造42.65%48.06%9.30%6.26
    三叠纪陆相碎屑岩建造45.57%45.40%9.03%5.91
    三叠纪中酸性岩建造40.55%50.29%9.17%5.53
    二叠纪基性岩建造39.77%47.44%12.80%5.68
    元古代中酸性岩建造53.86%39.84%6.30%5.63
    元古代火山碎屑岩建造46.82%40.05%13.14%4.92
    下载: 导出CSV 
    | 显示表格

    土壤的酸碱性是土壤的基本化学性质之一,它不仅直接影响植物生长,而且对土壤营养元素和重金属元素的化学形态和生物有效性产生影响(耿增超等,2020)。虽然研究区内不同地质建造形成的红壤均为酸性,但酸性程度存在一定差异(表2图10b)。元古代火山碎屑岩建造上形成红壤的pH值最低(4.9),显示较强的酸性;而新近纪—第四纪陆相松散碎屑岩建造上形成红壤的pH值最高(6.3),显示弱酸性。

    同一种地质建造一般具有相似的基岩岩石类型、矿物组成、化学组成、结构构造等特征,风化成土过程中,这些特征可能在一定程度上遗传给其形成的土壤,从而影响着其形成土壤的性质。笔者以西昌地区山地地貌区发育的红壤为例,对不同类型地质建造上的基岩和红壤进行了地球化学分析和理化性质分析。研究结果表明:在山地丘陵区,地表的红壤与下伏的地质建造之间具有密切的成生关系;红壤的营养元素和重金属元素含量与下伏地质建造中相应元素的含量呈现近似线性的正相关关系;红壤的质地和酸碱性等理化性质也因其发育于不同类型的地质建造而存在差异。因此,尽管研究区内的红壤经历了较强烈的淋溶风化作用,红壤的土壤性质仍然显著地受到下伏地质建造的制约。

    实际上,如果不考虑土壤类型,即在不同的气候和植被条件下,山地丘陵区地质建造对上覆土壤性质的制约作用也是明显的。例如,笔者曾采集了大凉山区二叠纪基性岩建造上的49件土壤样品,采集地点包括西昌市、普格县、冕宁县、雷波县等地,涉及土壤类型包括红壤、黄壤、黄棕壤、棕壤、暗棕壤等。这些土壤样品也存在明显的Cu、Cr、Ni、Cd、Mn等重金属元素超标现象,其中Cu超标率为83.67%,Cr超标率为36.73%,Ni超标率为53.06%,Cd超标率为24.49%,Mn超标率53.06%,这种超标现象与二叠纪基性岩建造上红壤重金属的超标现象相似,而大凉山区其他地质建造类型上形成土壤的重金属超标比例很低,这一现象说明地质建造对土壤元素含量等性质的制约作用可以跨越土壤类型,而具有普遍性。

    前人的有关研究也支持这一结论,夏学齐等(2022)对贵州地区的研究表明基岩类型是造成土壤Cd空间变异的重要原因,石灰岩、玄武岩、炭质页岩等岩石类型常造成土壤的高Cd背景;王京彬等(2020)对河北承德地区的研究发现,相似岩性的岩石风化成的土壤具有相似的K、Mg、P、Fe和Ca等元素含量;严明书等(2018)对重庆渝北地区的研究表明基岩类型是土壤元素含量的重要控制因素,同时基岩的形成时代也会影响土壤的元素含量;董玲玲等(2008)对喀斯特山区的研究表明不同基岩上发育的土壤存在理化性质差异;赵凯丽等(2019)对湖南祁阳地区红壤的研究表明,不同岩性母质发育的土壤pH值存在较大差异,石灰岩剖面土壤的pH值最高,而板页岩剖面土壤的pH值最低;Hahm等(2018)对美国西海岸附近两种相邻地质建造区的对比研究表明,岩性类型的差异导致了上覆土壤厚度和土壤层保水能力的差异,进而导致两个区域植被群落特征的不同;卫晓锋等(2020)对河北承德柴白河流域的研究也表明地质建造类型制约着土壤的厚度和营养元素含量等性质,进而对其上植物群落组成产生影响。可见,地质建造对土壤性质的制约作用是普遍存在的,然而在以往的土壤学研究中这种作用是普遍被低估的(Juilleret et al.,2016Wilson,2019)。

    值得注意的是,生态学研究中多关注降水、气温等气候作用对植物群落和生态状况的影响,强调气候为植物生长提供必需的水分和光热等大环境条件,然而气候作用很难解释气候条件相似下相邻区域的植物群落组成差异现象(田海芬等,2014卫晓锋等,2020)。不同的地质建造由于形成具有不同性质和特征的土壤,从而为植物生长孕育了不同的小环境,这种小环境可以较大程度地影响植物种群空间分布格局、生态系统生产力和生态景观演化(Hahm et al.,20142018Jiang et al.,2020卫晓锋等,2020),这种影响作用可以与气候垂直分带对植被和生态的影响作用一样大(Hahm et al.,2014)。因此,地质建造对土壤性质及生态环境的影响值得被重视和深入研究。

    在中国生态文明建设战略的大背景下,生态地质调查成为地质调查工作转型的新方向(李金发,2014聂洪峰等,20192021施俊法,2020刘洪等,2022李文明等,2022赵银兵等, 2022)。生态地质调查是调查生态赋存的基础地质环境条件和研究各种生态环境问题或生态过程的地学机理,为生态保护修复和国土空间用途管制等工作提供地球系统科学解决方案(聂洪峰等,2019袁国礼等,2023)。目前,生态地质的调查内容和工作方法仍在探索和完善中,如何建立起地质背景与生态环境之间的联系和相互作用机制仍是摆在地质学家面前的重要命题。

    山地丘陵区不同地质建造中基岩的类型、结构、构造、矿物组成、化学成分等特征深刻地影响着其形成土壤的理化性质(质地、结构、酸碱度等)和元素组成(包括营养元素和重金属元素),而土壤的这些性质和特征又会引起养分、水分、热量、空气、空间等生态环境因子的变化(周爱国等,2001),从而造成生态系统和生态环境质量的差异。因此,山地丘陵区地质建造可以通过“地质建造–土壤性质–生态环境”的路径制约生态系统的发展和生态环境的质量,从而在一定程度上建立起了地质与生态环境之间的联系。

    综上所述,在山地丘陵区的生态地质调查过程中,可以把“地质建造–土壤性质–生态环境”这一关系作为工作思路之一。具体而言,调查人员首先可以根据已有的1∶25万或1∶5万地质图将工作区划分成若干地质建造区,划分方法参考刘洪等(20202022),然后针对每种地质建造开展一定量的基岩-土壤剖面调查及采样分析,获得每种地质建造区内土壤的理化性质及元素组成特征,随后根据各地质建造区的土壤质地、酸碱性和营养元素丰缺度对区内的农业种植规划、施肥、名特优农产品布局、林业选种、水土流失防治等工作提供建议。与此同时,在土壤重金属超标的地质建造区,可进一步开展土壤重金属形态、生物有效性研究及地下水、农作物、人体组织的重金属超标情况调查,对区内土壤重金属污染修复和地方病防治提供依据。此外,生态地质调查中通常会进行区域生态地质脆弱性评价(张景华等,20202021),可以将受地质建造制约的土壤营养元素丰缺度、土壤重金属含量、土壤质地、土壤酸碱性、土壤厚度、地形地貌、地下水保蓄能力等因素纳入生态地质评价指标,从而更充分体现地质建造对生态环境的影响,更科学地开展生态地质脆弱性评价和指导生态保护修复及国土空间规划等工作。

    (1)西昌地区各类地质建造上形成红壤的元素含量配分型式都与地壳元素丰度的配分型式一致,反映了地壳元素丰度对土壤元素含量在数量级范围上的间接控制作用。

    (2)西昌山地丘陵地貌区内红壤的营养元素和重金属元素含量与下伏地质建造(基岩)中相应元素的含量呈明显的线性正相关关系(S、N、As除外),相关系数R的平方值为0.54~0.97,表明红壤中的这些元素均主要来源于下伏地质建造(基岩)中,同时反映了地质建造类型对其形成土壤营养元素和重金属元素含量的直接控制作用。西昌山地丘陵地貌区内地质建造类型还影响了其形成土壤的粒级(质地)、酸碱性等理化性质。

    (3)山地丘陵区地质建造对土壤性质(质地、酸碱度、结构、厚度、营养元素含量和重金属元素含量等)的制约具有普遍性,土壤性质的差异又可影响生态环境因子的变化从而具有不同的生态环境效应。因此,山地丘陵区地质建造可以通过“地质建造–土壤性质–生态环境”的路径制约生态系统的发展和生态环境的质量,从而在一定程度上建立起地质与生态环境之间的联系。

    (4)山地丘陵区的生态地质调查可以把“地质建造–土壤性质–生态环境”这一关系作为工作思路之一,在利用已有地质图进行地质建造类型划分的基础上,开展各类型地质建造内土壤性质的调查研究,为农林业发展、污染治理、地方病防治、生态地质脆弱性评价、生态保护修复及国土空间规划等工作提供科学建议。

    致谢:四川省地质矿产勘查开发局攀西地质队谢恩顺高级工程师、李雁龙高级工程师、肖启亮高级工程师、曾建高级工程师、文登奎高级工程师和侯谦工程师在野外采样工作中给予帮助,国家地球系统科学数据中心(http://www.geodata.cn)提供了土壤类型数据支撑,在此一并表示衷心的感谢。

  • 图  1   (a)研究区大地构造位置图和(b)研究区位置图

    QT. 羌塘地块;SG. 松潘–甘孜地块;UY. 上扬子地块

    Figure  1.   Location map of the study area

    图  2   (a)西昌地区形成红壤的6类地质建造图和(b)红壤分布图(红壤分布范围据国家地球系统科学数据中心,1995

    Figure  2.   (a) The map of 6 geological formations forming red soil in the Xichang area, and (b) the red soil distribution map

    图  3   西昌地区6类地质建造上形成红壤的土壤剖面和生态景观图

    a、b. 新近纪—第四纪陆相碎屑岩建造上生态景观和红壤剖面,R层为含砾砂岩;c、d. 三叠纪陆相碎屑岩建造上生态景观和红壤剖面,R层为砂岩;e、f. 三叠纪中酸性岩建造上生态景观和红壤剖面,R层为碱性花岗岩;g、h. 二叠纪基性岩建造上生态景观和红壤剖面,R层为辉绿岩;i、j. 元古代中酸性岩建造上生态景观和红壤剖面,R层为花岗岩;k、l. 元古代火山碎屑岩建造上生态景观和红壤剖面,R层为火山碎屑岩;A层. 淋溶层;B层. 淀积层;C层. 母质层;R层. 基岩层

    Figure  3.   Soil profile and ecological landscape of red soil formed on the six geological formations in the Xichang area

    图  4   基岩与红壤中各元素含量的相关性

    a.含量较高的大量中量元素;b.含量较低的微量元素;每一个样品点代表一种元素在一种地质建造内所有基岩或土壤样品含量的平均值

    Figure  4.   Correlation of element contents in bedrock and red soil

    图  5   地壳元素丰度与不同地质建造中形成红壤元素含量的关系

    a.含量较高的大量中量元素;b.含量较低的微量元素;土壤元素含量为一种地质建造内所有土壤样品含量的平均值

    Figure  5.   Relationship between average element content of crust and element content of red soil formed in each geological formation

    图  6   基岩(地质建造)与土壤各种营养元素含量的相关性

    基岩和土壤的元素含量均为一种地质建造内所有基岩和土壤样品含量的平均值;CaO、B和Mo图解中均有1个异常点未参与R2值计算。

    Figure  6.   Nutrient elements correlation between the bedrock (geological formation) and the soil

    图  7   不同类型地质建造上形成红壤的营养元素丰缺度评价

    Figure  7.   Nutrient element abundance evaluation of red soil formed on each geological formations

    图  8   基岩(地质建造)与土壤中各重金属元素含量的相关性

    基岩和土壤的元素含量均为一种地质建造内所有基岩和土壤样品含量的平均值;Cd、Hg图解均中有1个异常点未参与R2值计算

    Figure  8.   Heavy metals correlation between the bedrock (geological formation) and the soil

    图  9   不同类型地质建造上形成红壤的重金属污染风险评价

    Figure  9.   Risk assessment of heavy metal pollution of red soils formed on different geological formations

    图  10   不同类型基岩建造上形成红壤物理化学性质差异图

    a. 红壤颗粒粒级百分含量图;b. 红壤酸碱性图;NQms. 新近纪—第四纪陆相碎屑岩建造;Tss. 三叠纪陆相碎屑岩建造;Tγδ. 三叠纪中酸性岩建造;Pβ. 二叠纪基性岩建造; Ptγδ. 元古代中酸性岩建造;Ptpr. 元古代火山碎屑岩建造

    Figure  10.   Physical and chemical properties of red soils formed on different bedrock formations

    表  1   不同地质建造中基岩和土壤样品的营养元素和重金属含量表

    Table  1   Nutrient element and heavy metal content of bedrock and soil samples from each geological formation

    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    新近纪—第四纪陆相碎屑岩建造–基岩
    D0112R11.161.322.410.220.064.990.030.04/92.700.3630.5079.0033.900.1466.6023.906.820.01
    D1210R10.392.003.380.090.086.870.020.0528.0064.900.1749.60138.0048.60<0.05114.0028.706.130.02
    D2112R10.201.133.050.070.077.870.01/47.4077.700.3860.50106.0041.200.0887.9053.109.040.01
    D3111R20.131.583.020.060.025.430.02/38.9079.900.5020.4088.4038.400.0971.2033.607.080.08
    平均值0.471.512.970.110.066.290.020.0538.1078.800.3540.25102.8540.530.1084.9334.837.270.03
    新近纪—第四纪陆相碎屑岩建造–土壤
    D0112B10.841.422.750.100.096.610.020.1058.60104.000.5443.20143.0042.400.1580.1038.3011.800.04
    D1210B10.200.662.200.080.126.410.040.0617.9092.501.7439.5091.2046.00<0.0564.3029.1010.700.02
    D2112B10.230.512.020.060.054.630.02/50.8079.600.5525.3057.8027.300.0776.5026.808.040.03
    D3111B10.121.232.120.090.045.910.02/38.3060.100.7819.2067.2043.800.08103.0024.007.380.11
    平均值0.350.962.270.080.075.890.030.0841.4084.050.9031.8089.8039.880.1080.9829.559.480.05
    三叠纪陆相碎屑岩建造–基岩
    D1204R10.070.822.810.130.046.980.020.1412.6084.401.0759.10109.0076.700.17320.0015.103.670.04
    D1306R10.040.331.390.050.012.830.030.0521.9022.100.6214.8022.3035.30<0.05123.0015.001.900.03
    D1608R10.180.521.020.050.072.880.030.0320.2046.000.3311.1050.5017.20<0.0537.6014.908.630.06
    D2101R10.341.422.860.160.085.280.01/25.0098.000.4028.60120.0031.500.1870.2024.303.920.04
    D2102R11.171.742.160.160.036.030.01/24.8086.700.4518.60105.0026.500.1952.9029.103.730.04
    D2202R13.052.774.420.150.086.640.01/21.60109.000.2431.60111.0045.700.23107.0021.9030.600.04
    D2204R10.190.180.690.020.020.820.01/28.8021.500.183.3819.104.720.0612.2011.003.050.02
    D2207R10.441.852.520.160.065.700.01/18.2077.800.1729.40111.0037.200.2276.7022.604.170.03
    D2307R13.861.472.540.210.118.470.01/41.108.700.6748.4096.5029.100.1465.6016.001.460.02
    D2308R124.054.281.590.150.134.950.01/42.70124.000.4070.6053.1035.000.14129.0010.700.830.03
    D2401R10.240.260.870.030.011.000.01/25.4029.100.184.2623.807.79<0.0514.606.782.120.02
    D2402R10.110.932.700.110.065.860.01/16.70114.000.2829.0095.8034.900.1075.5033.804.000.03
    D3112R10.130.691.790.080.032.750.01/28.4057.600.366.3839.0015.500.1128.4019.002.030.03
    D3113R10.080.432.870.070.033.130.01/20.40120.000.5622.0039.9014.100.1277.4021.3017.900.05
    D3211R10.111.474.810.100.066.440.01/16.20128.000.1628.0079.6032.000.0896.0044.3021.800.07
    D3219R10.360.742.040.070.012.990.01/25.4083.300.1716.5069.8022.70<0.0546.6015.807.040.03
    平均值2.151.242.320.110.054.550.010.0724.3475.640.3926.3671.5929.120.1583.2920.107.300.04
    三叠纪陆相碎屑岩建造–土壤
    D1204B10.211.041.920.180.149.820.080.2139.0086.004.1858.40104.0060.300.13186.0024.6016.600.18
    D1306B10.060.601.770.090.0310.860.040.0821.5048.603.7766.4072.8053.700.05203.0035.2019.400.17
    D1608B10.170.571.640.070.055.170.060.1226.0060.204.6524.0072.2033.700.13132.0025.0010.200.02
    D2101B10.110.742.180.110.056.100.02/30.8079.800.7021.80116.0033.400.1877.3031.809.480.07
    D2102B10.411.333.590.070.097.510.02/22.9070.201.1433.10143.0053.700.12122.0034.6011.600.06
    D2202B13.212.613.760.160.106.730.02/25.6082.100.4630.60108.0047.200.35112.0029.607.930.03
    D2204B10.170.401.280.060.023.490.01/36.6041.600.5714.0038.3026.60<0.0552.8018.909.890.03
    下载: 导出CSV
    续表1
    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    D2207B10.161.783.130.130.067.650.01/32.6074.700.4632.70111.0054.500.17116.0027.507.510.06
    D2307B13.172.192.300.250.1812.300.02/52.006.560.6081.80119.0056.800.22169.0015.901.720.02
    D2308B13.314.572.280.190.219.870.02/31.4096.000.9196.60102.0068.800.30174.0017.202.020.02
    D2401B10.220.602.100.090.143.830.02/26.8055.400.4113.0059.0019.600.1059.2023.003.160.03
    D2402B10.220.771.740.100.084.290.02/23.2075.500.5518.6069.0029.700.0773.3021.107.440.02
    D3112B10.150.811.320.080.025.830.03/39.3047.801.1819.0093.9034.900.0589.9026.3012.700.25
    D3113B10.180.622.430.140.086.540.02/36.1080.900.9531.8075.6034.700.09100.0036.509.900.10
    D3211B10.150.791.880.120.056.140.03/35.3066.001.2123.4073.0026.700.0793.1033.1014.900.16
    D3219B10.120.591.420.090.044.420.03/31.8074.500.7224.6065.3023.40<0.0579.0021.709.300.03
    平均值0.751.252.170.120.086.910.030.1431.9365.371.4036.8688.8841.110.14114.9126.389.610.08
    三叠纪中酸性岩建造–基岩
    D1206R10.190.145.190.020.164.710.020.0135.205.630.5910.50295.003.500.269.2521.000.700.00
    D1309R10.280.163.320.030.198.660.030.0129.402.701.548.56275.0013.400.0711.4029.200.230.01
    D1312R10.270.336.090.090.1010.030.020.0128.202.481.0517.20168.0020.20<0.0566.5019.101.710.00
    D1409R10.373.002.280.150.1311.920.030.0529.8030.800.59112.00137.0089.100.12189.008.810.560.00
    D2309R10.820.405.190.070.184.660.01/73.605.640.213.96123.001.400.153.148.960.640.02
    平均值0.390.814.410.070.158.000.020.0239.249.450.8030.44199.6025.520.1555.8617.410.770.01
    三叠纪中酸性岩建造-土壤
    D1206B10.370.593.080.110.045.450.070.1941.9035.301.6712.00109.0017.700.0667.1028.407.290.13
    D1309B10.110.541.470.060.059.170.050.0636.5056.704.3337.20150.0047.00<0.05124.0034.6021.800.10
    D1312B10.130.391.750.070.115.870.030.0462.8079.105.4428.8079.9028.00<0.0576.6022.308.240.02
    D1409B10.381.242.220.240.518.860.050.2228.6037.904.47123.00155.0065.900.35174.0033.506.460.10
    D2309B10.440.394.680.060.184.720.02/63.4016.700.4713.20101.008.290.1019.3014.002.800.02
    平均值0.290.632.640.110.186.810.050.1346.6445.143.2842.84118.9833.380.1792.2026.569.320.07
    二叠纪基性岩建造–基岩
    D1205R10.071.333.660.300.0420.600.030.1522.3088.901.66206.00178.00153.000.32218.0030.2031.800.04
    D1207R10.151.891.360.360.3020.350.030.0239.8011.300.19524.00178.0060.600.1674.308.732.470.01
    D2306R17.977.210.820.250.1711.260.01/20.003.650.5892.10113.0085.800.16279.008.870.600.02
    D2409R16.558.161.060.280.1411.520.01/25.802.690.8867.80103.00205.000.13652.007.080.340.02
    平均值3.684.651.730.300.1615.930.020.0826.9826.640.83222.48143.00126.100.19305.8313.728.800.02
    二叠纪基性岩建造-土壤
    D1205B10.503.491.730.170.1713.370.060.0713.5040.003.33118.00136.00157.000.16428.0018.403.370.03
    D1207B10.080.432.050.140.2011.860.040.0628.7028.504.4424.80177.0032.30<0.0588.1025.0013.700.07
    D2306B13.002.761.390.180.1713.820.02/24.7010.900.82116.00100.0093.800.12310.0012.802.440.06
    D2409B10.361.221.040.190.1712.940.03/35.0021.401.04112.00102.00161.000.05521.0017.203.880.04
    平均值0.991.981.550.170.1813.000.030.0725.4825.202.4192.70128.75111.030.11336.7818.355.850.05
    元古代中酸性岩建造–基岩
    D1105R11.941.131.820.230.145.450.020.0067.904.330.2812.60125.003.720.185.0218.300.230.00
    D1106R12.421.402.800.100.084.950.020.0054.206.130.5317.1094.104.490.068.1315.700.000.00
    下载: 导出CSV
    续表1
    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    D1107R11.650.692.790.050.083.290.020.0245.504.420.336.5473.105.450.097.2516.300.830.00
    D1108R13.921.962.260.180.126.500.030.0199.602.460.3050.0084.4012.700.0625.008.000.420.00
    D1110R12.251.602.150.140.105.060.020.0144.803.140.2525.5068.8013.500.0917.6011.700.500.00
    D2105R11.810.703.160.110.042.320.01/25.905.29<0.12.2249.903.60<0.057.9212.600.240.00
    D2209R10.740.531.760.090.042.210.01/55.507.58<0.11.5242.601.750.094.239.410.000.01
    D2210R13.331.172.330.110.073.450.01/46.505.160.2011.5060.4017.20<0.0548.0010.501.800.01
    D2211R12.720.672.680.080.062.260.01/67.505.21<0.13.6755.102.400.066.0916.900.420.01
    D2212R13.561.121.840.120.063.110.03/81.206.600.166.3173.006.16<0.0519.8012.200.600.01
    D2214R10.561.702.700.120.052.750.04/52.4023.50<0.12.5454.504.22<0.0511.702.200.550.00
    D2406R11.070.604.580.040.042.210.01/32.408.311.2390.2073.4010.000.2312.8025.000.590.04
    D2407R16.614.321.050.180.127.690.01/66.504.830.1220.7081.1039.400.1090.607.610.310.00
    D2407R20.430.472.600.040.062.100.01/26.8037.90<0.13.3238.202.080.164.0615.000.280.03
    平均值2.361.292.470.110.073.810.020.0154.768.920.3818.1269.549.050.1119.1612.960.480.01
    元古代中酸性岩建造–土壤
    D1105B12.771.831.880.870.1810.820.030.0881.904.710.5219.80112.0011.900.1210.6013.001.340.02
    D1106B10.551.251.960.060.077.270.020.0348.1011.800.5524.80108.0014.80<0.0520.7018.302.810.04
    D1107B11.150.822.620.100.095.420.040.0938.8028.209.4532.6093.8023.800.16182.0018.803.060.02
    D1108B12.801.042.200.070.106.210.030.06124.004.515.7624.5064.8012.400.1263.2013.100.910.01
    D1110B11.680.622.170.080.075.140.040.0960.3017.009.4323.8049.5012.900.14163.0017.603.390.02
    D2105B12.130.703.170.090.043.420.01/77.807.150.2114.3061.204.73<0.0511.2017.500.490.01
    D2209B10.670.663.410.060.053.570.01/88.508.770.2710.6050.507.86<0.0513.1018.501.330.02
    D2210B11.700.862.540.060.053.190.03/67.005.580.174.4650.805.540.1018.8013.100.880.02
    D2211B11.560.533.280.050.052.240.02/57.204.040.1112.9044.902.26<0.054.7115.700.230.00
    D2212B11.310.782.830.080.053.140.02/58.905.380.197.2254.106.36<0.0519.1013.300.680.02
    D2214B10.231.442.380.060.043.150.01/66.708.220.1039.6049.506.19<0.0519.8020.500.430.01
    D2406B10.533.542.170.090.168.660.02/31.9014.000.40135.00126.00384.000.13437.0021.402.770.04
    D2407B12.303.691.070.090.099.920.02/47.2014.100.4637.6093.7059.800.07150.0011.903.980.02
    D2407B20.590.792.740.060.053.290.02/51.0021.800.347.9053.709.77<0.0518.3017.403.500.02
    平均值1.431.332.460.130.085.390.020.0764.2411.092.0028.2272.3240.170.1280.8216.441.840.02
    元古代火山碎屑岩建造–基岩
    D2222R10.080.235.740.010.032.200.01/27.2019.801.064.16169.001.440.093.5410.404.390.02
    D2601R10.130.413.830.020.032.560.02/48.9015.300.273.8041.103.250.065.0120.803.990.01
    平均值0.110.324.790.010.032.380.01/38.0517.550.673.98105.052.350.074.2815.604.190.01
    元古代火山碎屑岩建造–土壤
    D2222B10.160.453.440.030.053.680.03/35.6038.301.2719.30120.0014.900.1130.4026.7012.000.04
    D2601B10.140.383.330.020.032.670.03/64.1013.600.7314.7068.807.67<0.0512.4025.3023.600.04
    平均值0.150.423.390.030.043.170.03/49.8525.951.0017.0094.4011.290.1121.4026.0017.800.04
    大陆地壳
    元素丰度
    5.393.672.580.170.096.170.070.06472.0011.001.1025.0065.0056.000.10126.0014.801.700.04
     注:CaO、MgO、K2O、P2O5、MnO、TFe2O5、S、N元素含量为%;Cl、B、Mo、Cu、Zn、Ni、Cd、Cr、Pb、As、Hg元素含量为10–6;/表示无数据;大陆地壳元素丰度引自Wedepohl(1995)
    下载: 导出CSV

    表  2   不同类型地质建造上形成红壤的粒级分布和pH值

    Table  2   Particle size distribution and pH value of red soil formed on different geological formations

    红壤的下伏地质建造类型砂粒含量
    (0.075~1 mm)
    粉粒含量
    (0.075~0.005 mm)
    黏粒含量
    (< 0.005 mm)
    pH
    新近纪-第四纪陆相碎屑岩建造42.65%48.06%9.30%6.26
    三叠纪陆相碎屑岩建造45.57%45.40%9.03%5.91
    三叠纪中酸性岩建造40.55%50.29%9.17%5.53
    二叠纪基性岩建造39.77%47.44%12.80%5.68
    元古代中酸性岩建造53.86%39.84%6.30%5.63
    元古代火山碎屑岩建造46.82%40.05%13.14%4.92
    下载: 导出CSV
  • 安礼航, 刘敏超, 张建强等. 2020. 土壤中砷的来源及迁移释放影响因素研究进展[J]. 土壤, 52(02): 234-246

    An L H, Liu M H, Zhang J Q, Huan L, Chen Z L. 2020. Sources of Arsenic in Soil and Affecting Factors of Migration and Release: A Review. Soils, 52(2): 234–246

    曾琴琴, 王永华, 刘才泽, 等. 四川省南部县土壤地球化学元素分布特征研究[J]. 沉积与特提斯地质, 2021, 41(4): 656-662.

    ZENG Qinqin, WANG Yonghua, LIU Caize, et al. A study on distribution of elements of soil in Nanbu County, Sichuan Province[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(4): 656-662.

    董玲玲, 何腾兵, 刘元生, 舒英格, 罗海波, 刘方. 2008. 喀斯特山区不同母质(岩)发育的土壤主要理化性质差异性分析[J]. 土壤通报, 39(03): 471-474

    Dong L L, He T B, Liu Y S, Shu Y G, Luo H B, Liu F. 2008. Changes of soil physical-chemical properties derived from different parent materials/rocks in karst mountain. Chinese Journal of Soil Science, 38(03): 471-474

    耿增超, 贾宏涛. 土壤学[M]. 北京: 科学出版社, 2020.

    GENG Zengchao, JIA Hongtao. Soil Science[M]. Beijing: Science Press, 2020.

    国家地球系统科学数据中心. 四川省500 m土壤类型数据 (CSTR: 17099.11). G67438555732237.20151231. v1.[DB], 1995.
    贾磊, 刘洪, 欧阳渊, 等. 基于地质建造的南方山地-丘陵区地表基质填图单元划分方案——以珠三角新会—台山地区为例[J]. 西北地质, 2022, 55(04): 140-157

    Jia Lei, Liu Hong, Ouyang Yuan. Division Scheme of Surface Substrate Mapping Units of Mountainous-Hilly Area in South China Based on Geological Formations Research: Example from Xinhui-Taishan Area in Pearl River Delta [J]. Northwestern Geology, 2022, 55(04): 140-157.

    李金发. 2014. 为生态文明服务的地质调查工作. 资源环境与工程, 28(1): 1-4

    Li J F. The geological survey for ecological civilization. Resources Environment & Engineering, 2014, 28(1): 1-4 (in Chinese).

    李天杰, 赵烨, 张科利, 等. 土壤地理学[M]. 北京: 高等教育出版社, 2004.

    LI Tianjie, ZHAO Ye, ZHANG Keli, et al. Soil Geography[M]. Beijing: Higher Education Press, 2004.

    李樋, 刘小念, 刘洪, 张腾蛟, 李佑国, 欧阳渊, 李随民, 王永华, 黄瀚霄, 张景华, 李嘉, 李富. 2021a. 基于地质建造的土壤营养元素空间分布特征研究—以大凉山区为例. 安全与环境工程, 28(6): 127-137

    Li T, Liu X N, Liu H, Zhang T J, Li Y G, Li S M, Wang X, Ouyang Y, Zhang J H. 2021b. Geochemistry of rare earth elements of purple soil layers in the middle-lower cretaceous Xiaoba Formation, Pushi area, Xichang. Sedimentary Geology and Tethyan Geology, 28(6): 127-137 (in Chinese with English abstract).

    李樋, 刘小念, 刘洪, 等. 西昌普诗地区中-下白垩统小坝组岩石-紫色土剖面稀土元素地球化学特征分析[J/OL]. 沉积与特提斯地质, 2021b. https://doi.org/10.19826/j.cnki.1009-3850.2021.06002

    LI Tong, LIU Xiaonian, LIU Hong, et al. Geochemistry of rare earth elements of purple soil layers in the middle-lower cretaceous Xiaoba Formation, Pushi area, Xichang[J/OL]. Sedimentary Geology and Tethyan Geology, 2021b.

    李文明, 李健强, 徐永, 等. 西北生态地质调查研究进展与展望[J]. 西北地质, 2022, 55(03): 108-119

    Li Wenming, Li Jianqiang, Xu Yong, et al. , Progress and Prospects of Ecological Geological Survey in Northwest China [J]. Northwestern Geology, 2022, 55(03): 108-119.

    刘洪, 黄瀚霄, 欧阳渊, 李文昌, 张景华, 张腾蛟. 2021. 新构造活动的生态地质环境效应讨论——以扬子西缘西昌市为例. 中国地质调查, 8(6): 63-77

    Liu H, Huang H X, Ouyang Y, Li W C, Zhang J H, Zhang T J. 2021. Discussion on the eco-geo-environment effects of Neotectonic activities: A case study of Xichang City in western Yangtze block. Geological Survey of China, 8(6): 63-77. (in Chinese with English abstract).

    刘洪, 黄瀚霄, 欧阳渊, 张景华, 张腾蛟, 李富, 肖启亮, 曾建, 侯谦, 文登奎, 段声义. 2020. 基于地质建造的土壤地质调查及应用前景分析—以大凉山区西昌市为例. 沉积与特提斯地质, 40(1): 91-105

    Liu H, Huang H X, Ouyang Y, Zhang J H, Li F, Xiao Q L, Zeng J, Hou Q, Wen D K, Duan S Y. 2020. Soil's geologic investigation in Daliangshan, Xichang, Sichuan. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 91-105 (in Chinese with English abstract).

    刘洪, 李文昌, 欧阳渊, 等. 基于地质建造的西南山区生态地质编图探索与实践——以邛海-泸山地区为例[J/OL]. 地质学报, 2022 https://doi.org/10.19762/j.cnki.dizhixuebao.2022014

    LIU Hong, LI Wenchang, OUYANG Yuan, et al. Exploration and ractice of the compilation of ecological geology series maps based on Geological Formations research, mountainous region in Southwest China: exemplified by Qionghai-Lushan area, western margin of Yangtze Block[J/OL]. Acta Geologica Sinica, 2022 https://doi.org/10.19762/j.cnki.dizhixuebao.2022014

    吕贻忠, 李保国. 土壤学[M]. 北京: 中国农业出版社, 2006.
    聂洪峰, 肖春蕾, 戴蒙, 刘建宇, 尚博譞, 郭兆成, 贺鹏, 欧阳渊, 雷天赐, 李文明, 周传芳, 姜琦刚. 2021. 生态地质调查工程进展与主要成果[J]. 中国地质调查, 8(01): 1-12. DOI: 10.19388/j.zgdzdc.2021.01.01.

    Nie H F, Xiao C L, Dai M, Liu J Y, Shang B X, Guo Z C, He P, Ouyang Y, Lei T C, Li W M, Zhou C F, Jiang Q G. 2021. Progresses and main achievements of ecogeological survey project. Geological Survey of China, 8(1): 1-12 (in Chinese with English abstract). doi: 10.19388/j.zgdzdc.2021.01.01

    聂洪峰, 肖春蕾, 郭兆成. 2019. 探寻生态系统运行与演化的秘密——生态地质调查思路及方法解读[J]. 国土资源科普与文化, (04): 4-13

    Nie H F, Xiao C L, Guo Z C. 2019. Exploring the secret of ecosystem operation and evolution -- an interpretation of the ideas and methods of Eco-geological survey. Popular science and culture of land and resources, 6(4): 4-13 (in Chinese).

    欧阳渊, 张景华, 刘洪, 黄瀚霄, 张腾蛟, 黄勇. 2021. 基于地质建造的西南山区成土母质分类方案——以大凉山区为例. 中国地质调查, 8(6): 50-62

    uyang Yuan, Zhang Jinghua, Liu Hong, Huang Hanxiao, Zhang Tengjiao, Huang Yong. 2021. Classification of soil parent materials in mountain areas of Southwest China based on geological formations: A case study of Daliangshan region. Geological Survey of China, 2021, 8(6): 50-62 (in Chinese with English abstract).

    施俊法. 2020. 21世纪前20年世界地质工作重大事件、重大成果与未来30年中国地质工作发展的思考[J]. 地质通报, 39(12): 2044-2057

    SHI Junfa. 2020. The major accomplishments and geological events during the past two decades in the world and their implications for geological work in China in the next thirty years[J]. Geological Bulletin of China, 39(12): 2044-2057

    田海芬, 刘华民, 王炜, 等. 大青山山地植物区系及生物多样性研究[J].干旱区资源与环境, 2014, 28(08): 172-177.

    TIAN Haifen, LIU Huamin, WANG Wei, et al. The distribution patterns of biodiversity and environmental interpretation inDaqingshan Mountain[J]. Journal of Arid Land Resources and Environment, 2014, 28(08): 172-177.

    王京彬, 卫晓锋, 张会琼, 甘凤伟. 2020. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611-1624

    Wang J B, Wei X F, Zhang H Q, Gan F W. 2020. The eco - geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province. Geology in China, 47(6): 1611-1624 (in Chinese with English abstract).

    卫晓锋, 樊刘洋, 孙紫坚, 何泽新, 孙厚云, 魏浩. 2020. 河北承德柴白河流域地质建造对植物群落组成的影响[J]. 中国地质, 47(06): 1869-1880

    Wei X F, Fan L Y, Sun Z J, He Z X, Sun H Y, Wei H. 2020. The influence of geological formation on plant community composition in Chaibai river basin, Chengde, Hebei Province. Geology in China, 47(6): 1869~1880 (in Chinese with English abstract).

    夏学齐, 季峻峰, 杨忠芳, 卢新哲, 黄春雷, 魏迎春, 徐常艳, 梁卓颖. 2022. 母岩类型对土壤和沉积物镉背景的控制: 以贵州为例[J]. 地学前缘, 29(04): 438-447

    Xia X Q, Ji J F, Yang Z F, Lu X Z, Huang C L, Wei Y C, Xu C Y, Liang Z Y. Controlling of parent rock type on cadmium background in soil and sediment: anexample from Guizhou Province. Geology in China, 29(04): 438-447 (in Chinese with English abstract).

    严明书, 黄剑, 何忠庠, 鲍丽然, 罗宇洁. 2018. 地质背景对土壤微量元素的影响——以渝北地区为例. 物探与化探, 42(1): 199-205

    Yan M S, Huang J, He Z X, Bao L R, Luo Y H. 2018. The influence of geological background on trace elements of soil, a case study of Yubei area. Geophysical and Geochemical Exploration, 42(1): 199~205 (in Chinese with English abstract).

    杨乐, 王春森, 夏建国. 2020. 成乐高速两侧农田土壤重金属污染及潜在生态危害评价. 四川农业大学学报, 38(02): 168-175+182

    Yang L, Wang C S, Xia J G. 2020. Assessment of Heavy Metal Pollution and the Potential Ecological Hazard of Farmland Soils alongside Chengle Highway. Journal of Sichuan Agricultural University, 38(02): 168-175+182 (in Chinese with English abstract).

    袁国礼, 侯红星, 刘建宇, 等. 服务生态文明的生态地质调查工作方法浅析以地表基质调查为例[J]. 西北地质, 2023, 56(3): 30−38.

    YUAN Guoli, HOU Hongxing, LIU Jianyu, et al. Introduction to the Methods of Ecology: Geological Survey for Servicing Ecological Civilization: Example from Ecology−Supporting Sphere Survey[J]. Northwestern Geology, 2023, 56(3): 30−38.

    张景华, 欧阳渊, 刘洪, 等. 西昌市生态地质特征与脆弱性评价[M]. 武汉: 中国地质大学出版社, 2020.

    ZHANG Jinghua, OUYANG Yuan, LIU Hong, et al. Ecological geological characteristics and vulnerability assessment of Xichang City[M]. Wuhan: China University of Geosciences Press, 2020.

    张景华, 欧阳渊, 刘洪, 黄瀚霄, 张腾蛟, 李富, 李樋. 2021. 基于主控要素的生态地质脆弱性评价——以四川省西昌市为例. 自然资源遥感, 33(4): 181-191

    Zhang J H, Ouyang Y, Liu H, Huang H X, Zhang T J, Li F, Li T. 2021. Eco-geological vulnerability assessment based on major controlling factors: A case study of Xichang City, Sichuan Province. Remote Sensing for Natural Resources, 33(4): 181-191. (in Chinese with English abstract).

    张腾蛟, 刘洪, 欧阳渊, 黄瀚霄, 张景华, 李富, 肖启亮, 曾建, 侯谦, 文登奎, 段声义. 2020. 中高山区土壤成土母质理化特征及主控因素初探——以西昌市为例. 沉积与特提斯地质, 40(1): 106-114

    Zhang T J, Liu H, Ouyang Y, Huang H X, Zhang J H, Li F, Xiao Q L, Zeng J, Hou Q, Wen D K, Duan S Y. 2020. A preliminary discussion on the physical and chemical characteristics and main controlling factors of soil and parent material in the middle and high mountain area——take Xichang as an example. Sedimentary Geology and Tethyan Geology, 40(1): 106-114 (in Chinese with English abstract).

    张腾蛟, 刘洪, 欧阳渊, 张景华, 张振杰, 李樋. 2021. 不同地质建造类型的生态环境功能特征——以西昌地区为例. 中国地质调查, 8(6): 35-49

    Zhang T J, Liu H, Ouyang Y, Zhang J H, Zhang Z J, Li T. 2021. Ecological environment function of different geological formations: A case study of Xichang area. Geological Survey of China, 8(6): 35-49 (in Chinese with English abstract).

    张鑫. 2019. 土壤重金属污染的危害及修复技术研究[J]. 中国资源综合利用, 37(11): 89-90+93

    Zhang X. 2019. Research on harm and remediation technology of heavy metal pollution in soil. China Resources Comprehensive Utilization, 37 (11): 89-90+93 (in Chinese with English abstract).

    赵凯丽, 王伯仁, 徐明岗, 蔡泽江, 石伟琦, 马海洋. 2019. 我国南方不同母质土壤pH剖面特征及酸化因素分析[J]. 植物营养与肥料学报, 25(08): 1308-1315

    Zhao K L, Wang B R, Xu M G, Cai Z J, Shi W Q, Ma H Y. 2019. Analysis of pH profile characteristics and acidification factors of different parent materials in southern China. Journal of Plant Nutrition and Fertilizer, 25(08): 1308-1315 (in Chinese with English abstract).

    赵银兵, 倪忠云, 欧阳渊, 等. 生态地质环境承载力研究进展[J/OL]. 沉积与特提斯地质, 2022.https://doi.org/10.19826/j.cnki.10093850.2022.04021

    ZHAO Yinbing, NI Zhongyun, OUYANG Yuan, et al. Research progress of eco-geological environment carrying capacity[J/OL]. Sedimentary Geology and Tethyan Geology, 2022.https://doi.org/10.19826/j.cnki.10093850.2022.04021.

    周爱国, 孙自永, 徐恒力, 等. 地质环境生态适宜性评价指标体系研究[J]. 地质科技情报, 2001, (02): 71−74

    ZHOU Aiguo, SUN Ziyong, XU Hengli, et al. Study on the evaluation index system of geological environmental ecological suitability[J]. Geological Science and Technology Information, 2001, (02): 71−74

    中国地质调查局.固体矿产地质调查技术要求(1∶50 000)(DD 2019-02)[Z]. 中国地质调查局, 2019

    Dynarski K A, Morford S L, Mitchell S A, Houlton B Z. 2019. Bedrock nitrogen weathering stimulates biological nitrogen fixation. Ecology, 100(8).

    Dynarski K A, Morford S L, Mitchell S A, et al. Bedrock nitrogen weathering stimulates biological nitrogen fixation. Ecology, 2019,100(8).

    Hahm W J, Rempe D M, Dralle D N, et al. Lithologically controlled subsurface crtical zone thickness and water sorage capacity determine regional plant community composition. Water Resources Research, 2018,55, 3028–3055.

    Hahm W J, Riebe C S, Lukens C E, et al. Bedrock composition regulates mountain ecosystems andlandscape evolution. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(9): 3338-3343.

    Jiang Z, Liu H, Wang H, Peng J,et al. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nature Communications, 2020,11(1): 1-9.

    Juilleret J, Dondeyne S, Vancampenhout K, et al. Mind the gap: a classification system for integrating the subsolum into soil surveys. Geoderma,2016, 264: 332–339.

    Morford S L , Houlton B Z , Dahlgren R A . Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature,2011, 477(7 362): 78-81.

    Vithanage M, Kumarathilaka P, Oze C, et al. Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: a critical review. Environment International, 2019,131.

    Wedepohl K H. The composition of the continental crust. Geochim et Cosmochim Acta, 1995,59, 1217-1232.

    Wilson M J. The importance of parent material in soil classification: a review in a historical context. Catena, 2019,182, 104131.

  • 期刊类型引用(7)

    1. 邵璐,刘洪,欧阳渊,张景华,高文龙,刘小念,宋雯洁,吴君毅,苏悦. 三峡库区典型岩石土壤中重(类)金属迁移富集特征研究及风险评价. 西北地质. 2025(01): 204-218 . 本站查看
    2. 贾磊,刘洪,苏悦,窦磊,刘子宁,张景华. 基于地质条件的粤港澳地区成土母质类型划分. 中国地质调查. 2025(01): 69-80 . 百度学术
    3. 黄金廷,方拓,王强,王嘉玮,宋歌,张太平. 黄河三角洲典型植被–土壤主要营养成分特征分析. 西北地质. 2025(02): 41-50 . 本站查看
    4. 任宇,曹文庚,肖舜禹,李祥志,潘登,王帅. 重金属在土壤中的分布、危害与治理技术研究进展. 中国地质. 2024(01): 118-142 . 百度学术
    5. 周雪妮,巴仁基,肖成志,曹亚廷,计扬. 基于地质建造的岷江上游干旱河谷区下段土壤特征和植被时空变化. 现代地质. 2024(03): 660-673 . 百度学术
    6. 赵洪菊,王国良,拜永山,陈光庭,张小永,郝呈禄,李五福,王春涛. 地质遗迹资源和旅游地质文化内涵探析:以青藏高原东北缘东岔地质文化村构建为例. 现代地质. 2024(05): 1400-1412 . 百度学术
    7. 包雲舟. 浅析环境保护下的矿山水工环地质勘查工作方法. 世界有色金属. 2023(23): 166-168 . 百度学术

    其他类型引用(1)

图(10)  /  表(4)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  29
  • PDF下载量:  69
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-04-05
  • 录用日期:  2023-04-10
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-08-19

目录

/

返回文章
返回