ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

北大巴山平利一带晚三叠世粗面岩和基性岩墙群成因及其地质意义

陈涛, 陈隽璐, 李平, 朱卫红, 郝晨羽, 孙吉明, 王健, 颜玲丽

陈涛,陈隽璐,李平,等. 北大巴山平利一带晚三叠世粗面岩和基性岩墙群成因及其地质意义[J]. 西北地质,2025,58(1):93−105. doi: 10.12401/j.nwg.2023071
引用本文: 陈涛,陈隽璐,李平,等. 北大巴山平利一带晚三叠世粗面岩和基性岩墙群成因及其地质意义[J]. 西北地质,2025,58(1):93−105. doi: 10.12401/j.nwg.2023071
CHEN Tao,CHEN Junlu,LI Ping,et al. Petrogenesis of Late Triassic Trachyte and Basic Dike Swarms in Northern Dabashan and Its Geological Significance[J]. Northwestern Geology,2025,58(1):93−105. doi: 10.12401/j.nwg.2023071
Citation: CHEN Tao,CHEN Junlu,LI Ping,et al. Petrogenesis of Late Triassic Trachyte and Basic Dike Swarms in Northern Dabashan and Its Geological Significance[J]. Northwestern Geology,2025,58(1):93−105. doi: 10.12401/j.nwg.2023071

北大巴山平利一带晚三叠世粗面岩和基性岩墙群成因及其地质意义

基金项目: 中国地质调查局项目(DD20243439、DD20230228、12120114020501、DD20230215),陕西省自然科学基础研究计划(2023-JC-ZD-15、2023-JC-YB-268)和国家自然科学基金项目(40972150)联合资助。
详细信息
    作者简介:

    陈涛(1992−),男,助理工程师,长期从事基础地质研究工作。 E−mail:297041366@qq.com

    通讯作者:

    陈隽璐(1964−),男,研究员,长期从事大地构造研究工作。E−mail:chjl0116@163.com

  • 中图分类号: P581

Petrogenesis of Late Triassic Trachyte and Basic Dike Swarms in Northern Dabashan and Its Geological Significance

  • 摘要:

    北大巴山紫阳−平利−竹溪一带较为广泛地分布有一期基性岩墙与碱性火山岩,这些火山−侵入岩系多被认为形成于早古生代。通过对基性岩和粗面岩的LAICP−MS锆石UPb同位素测年工作发现,其形成时代分别为(219.5±2.2)Ma和(223.9±2.8)Ma,属于晚三叠世岩浆作用的产物。其中,基性岩墙中的辉绿岩显示出贫Si、高Ti的特征,粗面岩显示高Ti、富碱的特征,两类岩石轻、重稀土元素分馏存有一定差异。辉绿岩的Pb−Sr−Nd同位素组成上显示出OIB物质源区组成且具有EMⅡ和上地壳富集物质成分的加入,碱性系列的粗面岩在原始地幔标准化图解上则显示出大隆起的微量元素分布样式,构造环境判别图解均显示出二者与板内岩浆活动具有成因关系。结合区域地质特征,认为北大巴山地区晚三叠世的粗面岩−辉绿岩组合形成于勉−略洋闭合之后持续的板内伸展活动,为南秦岭地区深部地幔岩浆物质演化的地质记录。

    Abstract:

    An amount of basic dikes and alkaline igneous rock occurred in Ziyang−Pingli−Zhuxi regions of the North Daba Mountain, most of these rock series are believed to have been formed in Early Paleozoic magmatic activity, while the zircon U−Pb isotope dating of the basic dike swarms and trachyte in this study show them formed at (219.5 ± 2.2)Ma and (223.9 ± 2.8) Ma, respectively. The rock series can be regarded as a product of Late Triassic magmatism. The diabase from the basic dike swarms shows a characteristic of high Ti and low Si, trachyte shows a feature of high Ti and is rich in alkali, both of which have some differences for the fractionation of REE. The Pb−Sr−Nd isotopic composition of the diabase shows a source region of OIB, with some additions of enrichment material of EmⅡ and upper crust, the trachyte shows an obvious rise inthe Primitive Mantle normalized diagram. Thus, both of them are formed by the intra-plate magmatism. The Late Triassic trachyte−diabase assemblage in North Beidaba Mountain is considered to have been formed by the continuous intraplate extension after the closure of the Mian−Lue Ocean, also is a geological record of mantle derived magma in South Qinling.

  • 粗面岩作为一种较为常见的碱性岩,通常被认为是碱性岩浆作用中的演化端元,并长期以来备受学界关注(张成立等,2002汪洋等,2009Yan et al.,2022刘燊等,2023)。尤其是其岩石化学和矿物化学等方面的研究工作(Yang et al.,2022)对于突显其岩石成因和地球动力学背景方面具有十分重要的指示意义。近年来,在竹溪一带发现几处与碱性岩浆作用密切相关的萤石、Nb和稀土金属矿床(郭现轻等,2017杨成等,2017鲁显松等,2021Yan et al.,2022)。因此,对区内碱性岩浆岩进一步开展地球化学成因研究工作可以有效限定区内富碱岩浆作用特征,并对萤石和金属矿产的资源评价与找矿工作有重要的意义。

    在南秦岭至扬子地块北缘的紫阳−平利−竹溪地区,发育着大量粗面岩、基性岩墙群;其总体呈NW向展布,与区域构造方向一致。前人对该地区粗面岩、基性岩墙群进行了较多研究(黄月华等,1992张成立等,2002夏林圻,2008刘燊等,2023),认为其形成于早古生代,但对形成环境仍存有几种不同认识。例如,大陆裂谷成因(黄月华等,1992夏林圻等,2008王存智等,2009)、地幔热柱成因(宴云翔,2005刘燊等,2023)和岛弧相关成因(张方毅等,2020)等。为了加深对此类碱性岩有关的成矿地质背景的研究,笔者对该地区出露的粗面岩、基性岩墙,从岩相学、岩石地球化学、同位素示踪及同位素年代学等方面进行了系统研究,并在北大巴山地区新发现有形成于晚三叠世的粗面岩、基性岩墙。通过系统的岩石学研究工作,可以对秦岭印支期岩浆活动的大地构造背景和相关的成矿潜力提供依据。

    大巴山弧形构造带以城口−房县断裂为界可划分为北大巴山和南大巴山两个岩石构造单元。其中,北大巴山沿紫阳−岚皋−平利−镇坪−竹山一带碱性火山岩浆作用极为发育,主要岩性包括辉长−辉绿岩、辉石玢岩、碱性玄武岩、粗面岩及少量的煌斑岩和碳酸岩脉等(郭现轻等,20122017)。区域地质调查研究表明,平利−镇坪一带发育以粗面岩为主、碱性玄武岩为辅的火山−沉积岩石组合, 垂向上由底到顶依次为火山熔岩(粗面岩+少量碱性玄武岩)、火山碎屑岩(凝灰质角砾岩、角砾凝灰岩、凝灰岩)和生物碎屑灰岩。其中火山碎屑岩中火山角砾主要为粗面质火山岩,部分存有大量碱性长石晶屑。

    研究区位于北大巴山地区紫阳−平利−竹溪一带(图1),出露有中新元古代武当岩群、耀岭河组变质火山−碎屑岩地层和早古生代沉积地层。其中,武当岩群、耀岭河组构成多个穹隆构造。区域上的基性岩墙群、碱性岩出露具有一定规模,其岩石空间分布与地层展布方向基本一致。区内基性岩墙多呈低角度顺层产出,主要由辉长岩、辉绿岩等组成;火山岩主要由粗面岩、粗面质火山碎屑岩和凝灰岩等组成。

    图  1  北大巴山地区地质图及采样位置图(据徐学义等,2014
    Figure  1.  Geological map of north Daba mountain and sampling location

    基性岩墙位于平利县长安镇南,侵入于耀岭河组变火山岩中,呈NW向低角度顺层侵入。岩墙宽约为1~3 m,出露长度超过100 m,且向两侧被植被覆盖。其由中心向两侧呈有轻微相变,矿物粒度至边部逐步变细。

    在基性岩墙中所采集的样品为辉绿岩,岩石具辉绿结构,主要由角闪石、斜长石、辉石和蚀变矿物绿泥石、绿帘石等组成(图2a)。其中,角闪石多为半自形–他形粒状,个别仍保持有辉石的晶形特征;斜长石为略小的半自形–他形板状,内部填充有绿帘石、绿泥石等蚀变矿物。偶见次生石英颗粒和不透明矿物。

    图  2  平利地区辉绿岩(a)和粗面岩(b)显微照片(正交偏光)
    Kfs. 钾长石;Cpx. 单斜辉石;Hbl. 角闪石;Chl. 绿泥石;Ep. 绿帘石
    Figure  2.  Micrographs of (a) diabase and (b) trachyte in Pingli (cross–polar light)

    碱性岩位于镇平县水晶坪乡公路旁,调查路线上围岩为早—中志留世梅子垭组碎屑岩,二者接触关系不明。工作区由南至北,主要由粗面岩(局部柱状节理发育)–板岩–枕状粗面熔岩、粗面质火山角砾岩–凝灰岩–板岩等组成。粗面岩具斑状结构、块状构造。斑晶基本为钾长石,含量为5%~8%,粒径为2.5 mm×0.5 mm。钾长石斑晶熔蚀边发育,且边部由细小帘石环绕。少量斑晶具穿孔结构,可见细小帘石呈脉状贯穿钾长石且未切入基质之内。基质主要由长石和蚀变矿物帘石组成,偶见有格子双晶发育的微斜长石(图2b)。此外,部分样品基质中可见同成份的火山岩屑,含量约为3%~5%,粒径为0.5 mm×0.5 mm~0.5 mm×1 mm。

    地球化学分析在西北大学大陆动力学国家重点实验室完成,主量元素除FeO、LOI采用标准湿化学法分析外,其他主量元素测定采用XRF方法完成,精度优于10%;微量元素测定用ICP–MS方法完成,Co、Ni、Zn、Ga、Rb、Y、Zr、Nb、Hf、Ta及REE(Hf、Lu除外)等元素分析精度优于5%,其他元素分析精度优于10%。

    用于LA–ICP–MS U–Pb测年的单矿物锆石采用常规的人工破碎、淘洗,经过重液、电磁分选技术分选出重矿物,并在双目镜下人工挑选出锆石颗粒。在双目镜下根据颜色、自形程度、形态和透明度等特征初步分类挑选,将锆石颗粒黏在双面胶上,用无色透明的环氧树脂固定,待环氧树脂充分固化后,对其表面进行抛光至锆石石内部暴露,进行透射光显微镜分析和阴极发光显微图像(CL)照相。

    激光剥蚀电感偶合等离子体质谱LA–ICP MS U–Pb同位素定年在西北大学大陆动力学国家重点实验室测定。在Agilent7500型ICP–MS 和德国Lambda Physik公司的 ComPex102 ArF准分子激光器(工作物质为ArF,波长为193 nm)以及MicroLas公司的GeoLas 200M 光学系统的联机上进行。激光束斑直径为 30 μm,激光剥蚀样品的深度为 20~40 μm。实验中采用 He 作为剥蚀物质的载气,用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST SRM610进行仪器最佳化,采样方式为单点剥蚀,数据采集选用一个质量峰一点的跳峰方式,每完成 4~5个测点的样品测定,加测标样一次。在所测锆石样品分析15~20个点前后各测 2 次 NIST SRM610。锆石年龄采用国际标准锆石 91500作为外标标准物质,元素含量采用 NIST SRM610 作为外标,29Si 作为内标。采用glitter(ver4.0, Mac-quarie University)程序对锆石的同位素比值及元素含量进行计算,并按照 Andersen Tom的方法(Andersen,2002),用LAM–ICP MS Common Lead Correction(ver3.15)对其进行了普通铅校正,年龄计算及谐和图采用Isoplot(ver3.0)完成。

    Pb–Sr–Nd同位素成分的测定在中国科学院地质与地球物理研究所完成,Sr和Nd同位素的分馏校正分别采用86Sr/88Sr=0.1194146Nd/l44Nd =0.7219。在分析期间,NBS987 标准给出87Sr/86Sr=0.710244±14(2σ),J&M 标准给出143Nd/144Nd=0.511825±6(2σ)。Pb同位素分馏校正采用205Tl/203Tl=2.3875;在样品测量期间,NBS981标准为206Pb/204Pb=16.937 (2σ),207Pb/204Pb=15.4917 (2σ),208Pb/204Pb=36.6967(2σ);BCR-2标准为206Pb/204Pb=18.742 25,207Pb/204Pb=15.6202208Pb/204Pb= 38.705 25。

    粗面岩(0866-TW)的锆石CL图像(图3a)显示,锆石多呈长柱状,长宽比为3.5~4,岩浆生长环带发育,Th/U值为0.13~0.43,具有典型岩浆锆石的特征(表1)。在此次分析中,共对16颗锆石进行了测试。除部分测定点给出略大(No.3/16)或略小(No.13/15)的206Pb/238U表面年龄外,其余分析点的206Pb/238U表面年龄为217~231 Ma,其加权平均值为(223.9±2.8)Ma (MSWD=1.7)(图4a图4b)。可见,这些粗面岩与前人在研究区获得的古生代粗面岩不同,其成岩时代为晚三叠世。

    图  3  平利地区粗面岩(a)和辉绿岩(b)锆石CL图像
    Figure  3.  CL images of zircon for (a) trachyte and (b) diabase in Pingli
    图  4  锆石U–Pb谐和图及加权平均年龄图
    a、b. 粗面岩;c、d. 辉绿岩
    Figure  4.  Zircon U–Pb concordance diagram and weighted average age diagram

    辉绿岩(08-72TW)的锆石CL图像(图3b)多呈柱状锆石,与粗面岩样品0866-TW的锆石相比,其锆石颗粒大小相对小,但环带结构清晰,测得17颗锆石的Th/U值为0.17~1.22,表明测定的锆石均为岩浆成因。除分析测试点No.2给出较大的206Pb/238U表面年龄(412 Ma)外,其余测试点的206Pb/238U表面年龄呈现较为集中的特点,其年龄值为213~226 Ma,其加权平均年龄为(219.5±2.2)Ma(MSWD=1.6)(图4c图4d),属于晚三叠世。

    辉绿岩的SiO2含量为48.4%~50.47%,TiO2含量为1.69%~2.78%,TFeO含量为11.94%~13.19%,MgO含量为5.4%~6.66%,CaO含量为7.64%~9.00%(表2)。此外,其Na2O含量远大于K2O含量(Na2O/K2O>2.8),Mg#值中等略高(Mg#=43.55~50.32)。总体上,岩石具有富Na、富Ti的地球化学特征。在硅碱图上,所测5件样品落入亚碱性系列;δ值绝大多为1.44~2.14(除一个样品的δ值为0.85),属于钙碱性系列岩石(图5b)。其K2O含量较低,且变化范围小,为0.46%~0.77%,属于低钾钙碱性系列。

    表  1  平利地区粗面岩和辉绿岩锆石U–Pb同位素物质成分组成表
    Table  1.  Zircon LA–ICP–MS U–Pb analytical data for the trachyteand diabase in Pingli
    样品比值年龄(Ma)组成 (10–6U/Th
    207Pb/206Pb±%207Pb/235U±%206Pb/238U±%208Pb/232Th±%207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ208Pb/232Th±1σ204Pb206Pb207Pb208Pb232Th238U
    粗面岩(08-66Tw),n=16
    10.050690.001270.24980.006390.035720.000490.00780.00018227342265226315743.4323613.674.67224.6917337.71
    20.051420.001460.246920.007070.034870.000490.005870.00017260402246221311833.5716215.224.86276.3311874.30
    30.051330.001440.261410.007360.037090.000520.010040.00021256392366235320247.3618312.0211.8460.7313552.94
    40.0540.001390.261660.006790.035340.000490.009020.00021371342365224318143.5119713.796.02275.5314615.30
    50.048930.00130.242220.006460.036150.000510.009140.0002114437220522931844<2.1417010.164.97213.8112335.77
    60.054070.00140.26380.006850.035680.00050.011030.00026374342386226322256.621489.854.76174.1611056.35
    70.050880.001550.23790.007190.034240.00050.00960.000252354321762173193583.823092.1892.7231.6910044.33
    80.048390.00130.239920.006420.036430.000520.011350.00027118372185231322856.1721812.847.07263.1414985.69
    90.048090.00140.234010.006750.03580.000520.010650.00029104412146227321464.17208125.32219.6915226.93
    100.048230.00130.230910.006170.035260.00050.008870.00024111372115223317853.9926316.497.03312.2519316.18
    110.049030.001320.229490.006080.034540.00050.00490.0001614936210521939934.311368.885.13443.4610222.31
    120.05180.001350.242330.00620.034630.00050.011810.00031277332205219323763.4622517.799.56307.6817155.58
    130.05630.001510.250470.006560.032960.000480.010750.00029464332275209321663.7620816.9810.2420.1916663.96
    140.051150.002820.252540.013360.035810.000560.011270.0001724812822911227322737.6710311.699.1186.457313.92
    150.050290.001550.223220.006620.033130.000510.01720.0005920841205521033451215.224813.1111.3326.1618385.64
    160.055810.001750.276520.008290.037070.000590.001540.00042445392487235431821.217826.2516.2251.7711874.72
    辉长岩(08-72Tw),n=16
    10.054950.002280.267360.011030.035280.000530.012340.00031410652419224324866.6447.136.78320.28350.41.09
    20.05520.001510.503070.013910.066080.000910.020020.000514203741494126401106.1324815.045.86159.88956.55.98
    30.051050.001550.249550.007610.035450.00050.005860.0002243442266225311843.6478.64.453.23296.43596.92.01
    40.052020.001870.250590.009010.034930.000510.0120.0003286552277221324162.3243.72.5043.46164.02337.92.06
    50.051410.001580.244660.007550.034510.000490.011160.00026259452226219322453.0967.13.874.91246.6520.52.11
    60.054340.001640.259080.007870.034570.000490.010980.00024385432346219322155.581166.8221.41070.3879.80.82
    70.048620.00150.226840.007050.033830.000480.010750.00026130472086214321653.0397.85.7410.1531.6794.81.50
    80.049870.002820.238870.0130.034740.000520.010970.0001318913021711220322133.9796.66.398.71417.06754.41.81
    90.051610.001840.241860.008630.033990.000510.011770.00032268542207215323764.6164.13.937.89353.71496.91.40
    100.05130.002160.242420.010170.034280.000550.011490.00036254672208217323174.7854.93.275.75276.96432.41.56
    110.048610.00450.233740.021320.034870.000560.011050.0002812921021318221322268.5413115.5822.8673.9959.71.42
    120.049710.001890.244410.009290.035660.000550.00970.0003118160222822631956<1.8166.83.756.52372.82506.51.36
    130.055140.002560.258820.011940.034050.000570.011030.000364187323410216422272.9438.42.94.25189.61256.81.35
    140.054660.002040.262820.009840.034880.000550.011190.00037398562378221322574.211228.676.81296.95912.43.07
    150.052360.002120.250410.010120.034690.000560.011650.00039301632278220323482.8152.93.295.29244.19412.81.69
    160.051280.002310.236950.010610.033520.000560.011290.00041253722169213322783.1434.82.0833.2147.24261.91.78
    下载: 导出CSV 
    | 显示表格
    表  2  平利地区粗面岩和辉绿岩主量元素(%)和微量元素(10−6)地球化学数据表
    Table  2.  Major elements (%) and trace elements (10−6) compositions for the trachyte and diabase in Pingli
    样品粗面岩辉绿岩
    08-65h08-67h08-68-1h08-68-2h08-69h08-70h08-71h08-72h08-75h
    SiO261.1663.9466.1866.7850.4450.4749.1949.9348.4
    Al2O318.2316.9215.7915.5413.3312.6713.5613.6812.53
    Fe2O31.010.952.301.553.353.373.312.612.96
    FeO2.563.261.462.069.759.9110.089.6210.56
    CaO1.470.4250.480.568.179.658.757.649
    MgO1.610.9250.640.615.945.466.226.966.66
    K2O4.356.024.194.240.480.460.740.770.72
    Na2O6.665.456.836.312.792.062.643.082.08
    TiO21.090.90.840.812.012.132.031.692.78
    P2O50.20.090.090.080.220.230.220.170.32
    MnO0.20.250.250.260.20.20.210.190.19
    LOLI0.890.490.30.552.311.912.22.552.53
    Total99.4399.61599.3599.353.43.013.323.623.71
    TFeO3.464.103.513.4412.7312.9113.0311.9413.19
    MgO#41.9125.9022.0521.5646.0343.5546.3550.3246.89
    Ritman6.686.285.244.68 1.440.851.852.141.45
    La16422321322213.113.712.910.316.8
    Ce30241539341229.230.328.722.938.3
    Pr32.744.442.144.04.074.243.963.155.42
    Nd11615314414918.819.618.614.826.1
    Sm19.826.924.725.45.335.605.324.237.02
    Eu4.574.564.194.221.491.541.471.251.95
    Gd13.619.518.218.75.495.785.424.507.08
    Tb2.213.383.123.170.981.040.970.781.22
    Dy11.7018.617.218.36.386.606.155.077.15
    Ho2.133.523.273.341.251.321.261.011.34
    Er5.529.278.458.963.023.293.172.503.23
    Tm0.801.411.281.360.470.490.460.370.47
    Yb5.008.988.519.053.063.233.002.472.92
    Lu0.711.261.181.270.450.450.440.350.42
    Y58.197.196.996.533.935.532.927.334.8
    Li15.241.445.369.617.413.919.719.525.1
    Sc2.036.395.765.9438.938.237.836.433.0
    V70.834.831.331.7334336324293286
    Cr2.072.551.942.2750.335.154.189.9194
    Co18.022.847.449.351.053.552.952.257.1
    Ni0.280.630.280.2848.736.649.268.6105
    下载: 导出CSV 
    | 显示表格
    续表2
    样品粗面岩辉绿岩
    08-65h08-67h08-68-1h08-68-2h08-69h08-70h08-71h08-72h08-75h
    Cu5.344.794.724.58126121124118159
    Zn172238221164119114117104146
    Ga34.045.042.641.917.418.819.116.720.1
    Rb1251451381353.273.618.217.9219.20
    Sr40818146.566.7268308402221302
    Zr811157314731593146153143114200
    Nb22934032333610.811.210.78.4419.9
    Cs0.611.280.070.260.210.210.360.140.25
    Ba56449642.780.8278198258276232
    Hf17.035.732.735.33.904.183.923.225.23
    Ta13.722.019.019.60.750.710.730.531.28
    Pb10.517.918.920.34.612.762.622.436.35
    Th19.833.230.733.41.581.641.581.231.70
    U5.408.988.058.550.430.420.410.320.48
    REE680.74932.78882.20920.77 93.0997.1891.8273.68119.42
    LREE/HREE15.4913.3413.6113.56 3.413.383.403.324.00
    (La/Sm)N5.355.365.575.65 1.591.581.571.571.55
    (La/Yb)N23.5417.8217.9617.60 3.073.043.092.994.13
    (Gd/Yb)N2.251.801.771.71 1.481.481.491.512.01
    δEu0.850.610.610.59 0.840.830.840.880.85
    下载: 导出CSV 
    | 显示表格
    图  5  平利地区粗面岩和辉绿岩岩石类型判别图
    a. Nb/Y–Zr/TiO2图(Winchester,1977);b. SiO2–(K2O+Na2O)图(Miyashiro, 1974
    Figure  5.  Rock types of trachyte and diabase in Pingli

    辉绿岩的稀土元素总量∑REE不高,除一个样品的∑REE值为119.42 ×10–6外,其余均小于100×10–6δEu值为0.83~0.88,存有轻微的Eu负异常。稀土配分曲线向右缓倾,(La/Yb)N值为2.99~4.13(图6a),(La/Yb)N值为2.99~4.13,轻稀土富集,重稀土相对亏损,轻重稀土分异不明显。微量元素原始地幔标准化图解(图6b)显示,Ba、Nb、Ta相对富集,Rb、P的相对亏损。

    图  6  稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b)
    Figure  6.  (a) Chondrite–normalized REE distribution patternss and (b) primitive mantle–normalized trace elements spider diagram

    粗面岩的SiO2含量为61.16%~66.78%,Al2O3含量高达15.54%~18.23%,TiO2含量为0.81%~1.09%,略高于中国粗面岩的TiO2平均含量为0.50%~0.73%(黄月华等,1992)。TFeO含量为3.44%~4.10%,MgO含量为0.61%~1.61%,P2O5含量为0.08%~0.2%。所测样品显示出较高的全碱含量,Na2O+K2O值为10.55%~11.47%,且Na2O>K2O(图5a)。在硅碱图上,所测样品落入碱性岩系列(图5b)。

    粗面岩的稀土元素球粒陨石标准化图解(图6a)表明,稀土元素总量∑REE值高于辉绿岩,为680×10–6~932×10–6δEu值为0.59~0.85,呈负异常,说明经历斜长石的分离结晶;(La/Yb)N值为17.6~23.54。其稀土配分型式(图6a)与辉绿岩相似,(La/Yb)N值为17.6~23.54,表现出轻稀土强烈富集,呈轻重稀土分异更强烈的特点,但其重稀土配分曲线平缓,类似于辉绿岩(图6a)。值得注意的是,这些粗面岩的Eu亏损程度随着∑REE含量的增加而加强,说明粗面岩的负Eu异常并非来自于地壳物质的加入,而是长石分离结晶的结果。强烈的Sr亏损也进一步表明其经历斜长石分离结晶作用(图6b)。虽然粗面岩轻重稀土给出强烈分异的特点,但重稀土并未产生强烈分异。石榴子石不可能在源区作为残余或发生过分离结晶。此类明显右倾型的轻稀土元素特征,与OIB型玄武岩稀土配分模式相似;而且,所测样品在原始地幔标准化图中(图6b)表现有相对富集的LILE和HFSE,其显著的“大隆起”的微量元素地球化学特征也与OIB十分的相似。

    文中仅对辉绿岩进行了Pb–Sr–Nd同位素成分分析(表3表4)。其中,87Sr/86Sr值为0.7052590.706500εNd(t)值绝大多数为+0.03~+0.23(仅一个样品的εNd(t)值为−0.09),TDM值为1.39~2.02 Ga。(206Pb/204Pb)t值为17.889~18.140,(207Pb/204Pb)t值为15.482~15.517,(208Pb/204Pb)t值为37.843~38.165(表3表4)。

    表  3  平利辉绿岩Sr–Nd 同位素组成
    Table  3.  Sr–Nd composition for diabase in Pingli
    样品87Rb/86Sr87Sr/86Sr±2σIsr147Sm/144Nd143Nd/144Nd±2σεNd(tTDM(Ga)
    08-70h0.0340.705259110.705150.1730.51260540.032.02
    08-71h0.0590.70650060.706320.1740.5126013−0.092.10
    08-72h0.1040.7062160.705890.1740.51261730.232.04
    08-75h0.1840.70552440.704950.1640.51269432.021.39
    下载: 导出CSV 
    | 显示表格
    表  4  平利辉绿岩Pb 同位素组成
    Table  4.  Pb composition for diabase in Pingli
    样品206Pb/204Pb±2σ207Pb/204Pb±2σ208Pb/204Pb±2σ238U/204Pb232Th/204Pb206Pb/204Pb)t207Pb/204Pb)t208Pb/204Pb)t
    08-70h18.0351615.5011438.455490.1542.4418.03015.48237.991
    08-71h18.0151715.5081538.396440.1643.0818.00915.48837.926
    08-72h18.1451715.5241338.560380.1336.1618.14015.50838.165
    08-75h17.8912415.5272138.052490.0819.1217.88915.51737.843
    下载: 导出CSV 
    | 显示表格

    辉绿岩MgO/(MgO+TFeO)值为0.29~0.36,且TiO2含量较高,与大陆溢流玄武岩相似(Wilson,1989);稀土配分模式与微量元素蛛网图与富集地幔或OIB相似;τ值为3.8~5.4(τ<10)属于幔源;Sr含量为308×10−6~221×10−6,明显小于富集地幔Sr含量(883×10−6)(Shimoda et al.,2009);Nb/Ta值较低(14.4~15.9),与球粒陨石和原始地幔Nb/Ta值(17.5)接近,Zr/Hf值(35.4~38.2)也与地幔源区(37)一致。同位素地球化学特征上,εNd(t)值为+0.03~+0.23,显示地幔源区物质为其主要来源。此外,在Sr–Nd同位素特征上(图7a),平利地区的辉绿岩不仅显示出OIB源区物质组成,也显示有EMⅡ或上地壳富集物质组分的加入。在(206Pb/204Pb)t–(208Pb/204Pb)图解中(图7b),辉绿岩落在了上地壳Pb同位素演化线上,表明有地壳物质组成的存在;在(206Pb/204Pb)t–(207Pb/204Pb)图解中(图7c),辉绿岩也进一步显示出了EMⅡ和上地壳端元的物质组成。以上特征说明平利地区辉绿岩源自于OIB源区,且形成过程中存有EMⅡ或上地壳物质成分的加入。

    图  7  平利地区辉绿岩Pb–Sr–Nd物质组成特征图
    Figure  7.  Pb–Sr–Nd composition of diabase in Pingli

    此外,在原始地幔微量元素标准化图解(图6b)中,可以见到元素Pb呈现出正异常的特征,且在分析的锆石数据中出现一颗较老的锆石年龄(412 Ma)(表1),说明该辉绿岩岩墙在侵位时遭受到地壳物质的混染。辉绿岩岩墙较低的Sr的含量(表2)也进一步证明其存在地壳的加入。结合构造环境判别图解(图8)中所测样品均投入E–MORB或WPT区域,认为该辉绿岩源于OIB源区的基性岩浆形成于板内构造环境。

    图  8  平利地区辉绿岩和粗面岩构造环境判别图 (据Pearce, 1983
    Figure  8.  Discriminant diagram of tectonic settingfor diabase and trachyte in Pingli

    前人研究表明,未受岩石圈混染的大陆玄武岩通常具有平坦的REE分配型式或LREE富集的分配型式,并以缺乏Nb、Ta和Ti的负异常为特征。这类大陆玄武岩常具有小于1的原始地幔标准化Th/Nb值(Saunders et al.,1992)。此外,也常呈现出高Nb/La值(≥1)(Kieffer et al.,2004)和具有与洋岛玄武岩相似的La/Nb和La/Ba值特点(Fitton et al.,19911995夏林圻等,2008)。研究区辉绿岩墙原始地幔标准化Th/Nb值为1.21~1.22,其中一个样品为0.71;Nb/La=0.80~0.81,其中一个样品为1.16;Ti负异常,87Sr/86Sr值较高,进一步说明样品受到了地壳的混染。

    粗面岩具有较高的TiO2、Na2O、K2O,低TFeO、CaO、MgO特征,与实验玄武岩熔融的熔体成分相近(Rapp et al.,1995),TiO2含量高,Na2O>K2O,属于碱质粗面岩。岩石(Nb/Ta)N(15.4~17.1)分馏强烈、Zr/Sm值高(40.9~62.7),主要来自低Mg#角闪石和金红石的部分熔融作用(Foley et al.,2002)。LREE强烈富集,Zr/Hf值为44~47.7,与原始地幔Zr/Hf值(37)接近,Nb/Ta值(15.4~17.1)与原始地幔(17.5)相近。Ta/Hf值为0.55~0.80(>0.3)(Trevor,1995),Th/Ta值为1.4~1.7,总体与地幔柱或富集地幔特征相近(张成立等,2002)。粗面岩样品无明显的Pb的正异常(图6b),其较高Nb/U值(平均为39.90)也明显高于大陆地壳的 Nb/U值(9.7)(Campbell,2002),基本排除本区粗面质岩浆存在地壳混染。

    粗面岩原始地幔标准化Th/Nb值为0.72~0.82,Nb/La值为1.35~1.50,Nb/U值为37.9~42.4,略高于地壳的比值(9.7)(Campbell,2002),并接近OIB的比值(Nb/U=47±1)(Hofmann et a1.,1986)。微量元素原始地幔标准化图(图6b)中不存在明显的Nb、Ta、Hf和 Ti负异常,同时表现出“大隆起”的原始地幔标准化图解与洋岛玄武岩(OIB) 相似。所测样品在构造环境判别图中均落入板内玄武的区域(图8),反映出平利地区粗面岩为伸展机制下的岩浆记录。

    张国伟等(2001)研究认为,泥盆纪裂解形成的勉略洋盆,在中—晚三叠世发生碰撞造山;随后,秦岭造山带进入板内造山阶段,晚三叠世为碰撞造山后的隆升塌陷、断块平移走滑、逆冲推覆和以酸性为主的岩浆活动。徐学义等(2014)认为西秦岭地区二叠纪时期受到南侧阿尼玛卿洋向北俯冲作用所导致的弧后扩张效应;而在早中三叠世演变成南部同期特提斯洋的弧后前陆盆地,接受了巨厚的浊流沉积。从晚三叠世开始,南秦岭地区进入到陆内盆山构造演化阶段。

    夏林圻等(2008)认为秦岭东段的基性岩墙群总体产于幔源石榴子石稳定区;张成立等(1999)认为武当地块基性岩墙源区与南半球局DUPAL异常的洋岛玄武岩区相似,是一以亏损软流圈地幔(DM)和EMⅡ为主要端元组分的混合源区。张方毅等(2020)认为辉绿岩墙源于富角闪石的岩石圈地幔高程度部分熔融产物,形成于岩石圈伸展背景下受交代的岩石圈地幔低温下部分熔融形成。

    大巴山碱性岩浆主要与上地幔的部分熔融及地幔来源的玄武岩浆的分异作用有关,且大部分碱性岩都不同程度同化混染了大陆的物质(喻学惠,1992)。徐学义等(2001)则进一步认为碱性岩源于含金云母和单斜辉石的交代地幔。从岩石组合特征上看,黄月华等(1992)认为北大巴山存有双峰式岩浆组合,其中的基性岩浆源自于大陆地幔,可能是原生岩浆演化的产物。杨成等(2017)认为竹溪一带粗面岩岩石地球化学类似于OIB,其来源于幔源玄武质岩浆的演化。张成立等(2002)认为该区碱性基性岩墙群及碱性岩是深度大于150 km的幔源物质在强烈岩浆作用下喷出或侵位的产物。

    总体上,北大巴山古生代碱性火山岩为扬子板块北缘被动大陆边缘裂陷作用下火山活动的产物。自扬子板块北缘发生初始裂陷后,形成有紫阳–岚皋和竹山等地以碱性玄武岩为主的火山岩组合,以及平利–镇坪地区以粗面岩为主碱性玄武岩为辅的火山岩组合(郭现轻,20122017)。原勉略洋盆打开与最终关闭碰撞造山都是穿时的,勉略带中东、西段上千公里的不同地段的同期构造事件必然出现有一定差异的年龄数据(张国伟等,2019)。勉略洋最早俯冲消减始于二叠纪( 300~270 Ma),随之发生闭合;而后,陆–陆碰撞造山事件最早于中三叠世自东向西穿时发展,东秦岭主要在中—晚三叠世(242~220 Ma),西秦岭最迟至晚三叠世( 220~200 Ma)。具体到秦岭蜂腰地区的留坝–宁陕–柞水一带,分布有大量晚三叠世二长花岗岩岩基被,被认为是碰撞造山及后续伸展作用的响应(李平等,2023)。形成于217~214 Ma(卢欣祥等,1999王晓霞等,2003)的朱厂沟、秦岭梁和老君山等环斑花岗岩,也是秦岭部分地段开始步入后碰撞晚期的标志(张成立等,2009)。这些环斑花岗岩形成时间,与北大巴山一带粗面岩、辉绿岩墙形成时间一致,可能是勉略洋碰撞后岩石圈增厚、减薄、拆沉诱发的壳幔相互作用有关。北大巴平利–竹溪一带出露的基性岩墙群、碱性岩组合,位于秦岭造山带的蜂腰东侧。晚三叠世,该地区受深部地幔活动影响,发生伸展裂解,伴随幔源岩浆演化并最终形成基性岩墙群及粗面岩组合。

    (1)平利地区的辉绿岩墙、粗面岩LA–ICP–MS锆石 U–Pb年龄分别为(219.5±2.2)Ma和(223.9±2.8)Ma,为晚三叠世岩浆活动的产物。

    (2)北大巴山晚三叠世辉绿岩墙、粗面岩显示有OIB源区的地球化学特征性,为南秦岭地区后碰撞–造山后伸展环境下岩浆活动的直接反映。

  • 图  1   北大巴山地区地质图及采样位置图(据徐学义等,2014

    Figure  1.   Geological map of north Daba mountain and sampling location

    图  2   平利地区辉绿岩(a)和粗面岩(b)显微照片(正交偏光)

    Kfs. 钾长石;Cpx. 单斜辉石;Hbl. 角闪石;Chl. 绿泥石;Ep. 绿帘石

    Figure  2.   Micrographs of (a) diabase and (b) trachyte in Pingli (cross–polar light)

    图  3   平利地区粗面岩(a)和辉绿岩(b)锆石CL图像

    Figure  3.   CL images of zircon for (a) trachyte and (b) diabase in Pingli

    图  4   锆石U–Pb谐和图及加权平均年龄图

    a、b. 粗面岩;c、d. 辉绿岩

    Figure  4.   Zircon U–Pb concordance diagram and weighted average age diagram

    图  5   平利地区粗面岩和辉绿岩岩石类型判别图

    a. Nb/Y–Zr/TiO2图(Winchester,1977);b. SiO2–(K2O+Na2O)图(Miyashiro, 1974

    Figure  5.   Rock types of trachyte and diabase in Pingli

    图  6   稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b)

    标准化数据自Taylor 等(1985)Sun等(1989)

    Figure  6.   (a) Chondrite–normalized REE distribution patternss and (b) primitive mantle–normalized trace elements spider diagram

    图  7   平利地区辉绿岩Pb–Sr–Nd物质组成特征图

    Figure  7.   Pb–Sr–Nd composition of diabase in Pingli

    图  8   平利地区辉绿岩和粗面岩构造环境判别图 (据Pearce, 1983

    Figure  8.   Discriminant diagram of tectonic settingfor diabase and trachyte in Pingli

    表  1   平利地区粗面岩和辉绿岩锆石U–Pb同位素物质成分组成表

    Table  1   Zircon LA–ICP–MS U–Pb analytical data for the trachyteand diabase in Pingli

    样品比值年龄(Ma)组成 (10–6U/Th
    207Pb/206Pb±%207Pb/235U±%206Pb/238U±%208Pb/232Th±%207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ208Pb/232Th±1σ204Pb206Pb207Pb208Pb232Th238U
    粗面岩(08-66Tw),n=16
    10.050690.001270.24980.006390.035720.000490.00780.00018227342265226315743.4323613.674.67224.6917337.71
    20.051420.001460.246920.007070.034870.000490.005870.00017260402246221311833.5716215.224.86276.3311874.30
    30.051330.001440.261410.007360.037090.000520.010040.00021256392366235320247.3618312.0211.8460.7313552.94
    40.0540.001390.261660.006790.035340.000490.009020.00021371342365224318143.5119713.796.02275.5314615.30
    50.048930.00130.242220.006460.036150.000510.009140.0002114437220522931844<2.1417010.164.97213.8112335.77
    60.054070.00140.26380.006850.035680.00050.011030.00026374342386226322256.621489.854.76174.1611056.35
    70.050880.001550.23790.007190.034240.00050.00960.000252354321762173193583.823092.1892.7231.6910044.33
    80.048390.00130.239920.006420.036430.000520.011350.00027118372185231322856.1721812.847.07263.1414985.69
    90.048090.00140.234010.006750.03580.000520.010650.00029104412146227321464.17208125.32219.6915226.93
    100.048230.00130.230910.006170.035260.00050.008870.00024111372115223317853.9926316.497.03312.2519316.18
    110.049030.001320.229490.006080.034540.00050.00490.0001614936210521939934.311368.885.13443.4610222.31
    120.05180.001350.242330.00620.034630.00050.011810.00031277332205219323763.4622517.799.56307.6817155.58
    130.05630.001510.250470.006560.032960.000480.010750.00029464332275209321663.7620816.9810.2420.1916663.96
    140.051150.002820.252540.013360.035810.000560.011270.0001724812822911227322737.6710311.699.1186.457313.92
    150.050290.001550.223220.006620.033130.000510.01720.0005920841205521033451215.224813.1111.3326.1618385.64
    160.055810.001750.276520.008290.037070.000590.001540.00042445392487235431821.217826.2516.2251.7711874.72
    辉长岩(08-72Tw),n=16
    10.054950.002280.267360.011030.035280.000530.012340.00031410652419224324866.6447.136.78320.28350.41.09
    20.05520.001510.503070.013910.066080.000910.020020.000514203741494126401106.1324815.045.86159.88956.55.98
    30.051050.001550.249550.007610.035450.00050.005860.0002243442266225311843.6478.64.453.23296.43596.92.01
    40.052020.001870.250590.009010.034930.000510.0120.0003286552277221324162.3243.72.5043.46164.02337.92.06
    50.051410.001580.244660.007550.034510.000490.011160.00026259452226219322453.0967.13.874.91246.6520.52.11
    60.054340.001640.259080.007870.034570.000490.010980.00024385432346219322155.581166.8221.41070.3879.80.82
    70.048620.00150.226840.007050.033830.000480.010750.00026130472086214321653.0397.85.7410.1531.6794.81.50
    80.049870.002820.238870.0130.034740.000520.010970.0001318913021711220322133.9796.66.398.71417.06754.41.81
    90.051610.001840.241860.008630.033990.000510.011770.00032268542207215323764.6164.13.937.89353.71496.91.40
    100.05130.002160.242420.010170.034280.000550.011490.00036254672208217323174.7854.93.275.75276.96432.41.56
    110.048610.00450.233740.021320.034870.000560.011050.0002812921021318221322268.5413115.5822.8673.9959.71.42
    120.049710.001890.244410.009290.035660.000550.00970.0003118160222822631956<1.8166.83.756.52372.82506.51.36
    130.055140.002560.258820.011940.034050.000570.011030.000364187323410216422272.9438.42.94.25189.61256.81.35
    140.054660.002040.262820.009840.034880.000550.011190.00037398562378221322574.211228.676.81296.95912.43.07
    150.052360.002120.250410.010120.034690.000560.011650.00039301632278220323482.8152.93.295.29244.19412.81.69
    160.051280.002310.236950.010610.033520.000560.011290.00041253722169213322783.1434.82.0833.2147.24261.91.78
    下载: 导出CSV

    表  2   平利地区粗面岩和辉绿岩主量元素(%)和微量元素(10−6)地球化学数据表

    Table  2   Major elements (%) and trace elements (10−6) compositions for the trachyte and diabase in Pingli

    样品粗面岩辉绿岩
    08-65h08-67h08-68-1h08-68-2h08-69h08-70h08-71h08-72h08-75h
    SiO261.1663.9466.1866.7850.4450.4749.1949.9348.4
    Al2O318.2316.9215.7915.5413.3312.6713.5613.6812.53
    Fe2O31.010.952.301.553.353.373.312.612.96
    FeO2.563.261.462.069.759.9110.089.6210.56
    CaO1.470.4250.480.568.179.658.757.649
    MgO1.610.9250.640.615.945.466.226.966.66
    K2O4.356.024.194.240.480.460.740.770.72
    Na2O6.665.456.836.312.792.062.643.082.08
    TiO21.090.90.840.812.012.132.031.692.78
    P2O50.20.090.090.080.220.230.220.170.32
    MnO0.20.250.250.260.20.20.210.190.19
    LOLI0.890.490.30.552.311.912.22.552.53
    Total99.4399.61599.3599.353.43.013.323.623.71
    TFeO3.464.103.513.4412.7312.9113.0311.9413.19
    MgO#41.9125.9022.0521.5646.0343.5546.3550.3246.89
    Ritman6.686.285.244.68 1.440.851.852.141.45
    La16422321322213.113.712.910.316.8
    Ce30241539341229.230.328.722.938.3
    Pr32.744.442.144.04.074.243.963.155.42
    Nd11615314414918.819.618.614.826.1
    Sm19.826.924.725.45.335.605.324.237.02
    Eu4.574.564.194.221.491.541.471.251.95
    Gd13.619.518.218.75.495.785.424.507.08
    Tb2.213.383.123.170.981.040.970.781.22
    Dy11.7018.617.218.36.386.606.155.077.15
    Ho2.133.523.273.341.251.321.261.011.34
    Er5.529.278.458.963.023.293.172.503.23
    Tm0.801.411.281.360.470.490.460.370.47
    Yb5.008.988.519.053.063.233.002.472.92
    Lu0.711.261.181.270.450.450.440.350.42
    Y58.197.196.996.533.935.532.927.334.8
    Li15.241.445.369.617.413.919.719.525.1
    Sc2.036.395.765.9438.938.237.836.433.0
    V70.834.831.331.7334336324293286
    Cr2.072.551.942.2750.335.154.189.9194
    Co18.022.847.449.351.053.552.952.257.1
    Ni0.280.630.280.2848.736.649.268.6105
    下载: 导出CSV
    续表2
    样品粗面岩辉绿岩
    08-65h08-67h08-68-1h08-68-2h08-69h08-70h08-71h08-72h08-75h
    Cu5.344.794.724.58126121124118159
    Zn172238221164119114117104146
    Ga34.045.042.641.917.418.819.116.720.1
    Rb1251451381353.273.618.217.9219.20
    Sr40818146.566.7268308402221302
    Zr811157314731593146153143114200
    Nb22934032333610.811.210.78.4419.9
    Cs0.611.280.070.260.210.210.360.140.25
    Ba56449642.780.8278198258276232
    Hf17.035.732.735.33.904.183.923.225.23
    Ta13.722.019.019.60.750.710.730.531.28
    Pb10.517.918.920.34.612.762.622.436.35
    Th19.833.230.733.41.581.641.581.231.70
    U5.408.988.058.550.430.420.410.320.48
    REE680.74932.78882.20920.77 93.0997.1891.8273.68119.42
    LREE/HREE15.4913.3413.6113.56 3.413.383.403.324.00
    (La/Sm)N5.355.365.575.65 1.591.581.571.571.55
    (La/Yb)N23.5417.8217.9617.60 3.073.043.092.994.13
    (Gd/Yb)N2.251.801.771.71 1.481.481.491.512.01
    δEu0.850.610.610.59 0.840.830.840.880.85
    下载: 导出CSV

    表  3   平利辉绿岩Sr–Nd 同位素组成

    Table  3   Sr–Nd composition for diabase in Pingli

    样品87Rb/86Sr87Sr/86Sr±2σIsr147Sm/144Nd143Nd/144Nd±2σεNd(tTDM(Ga)
    08-70h0.0340.705259110.705150.1730.51260540.032.02
    08-71h0.0590.70650060.706320.1740.5126013−0.092.10
    08-72h0.1040.7062160.705890.1740.51261730.232.04
    08-75h0.1840.70552440.704950.1640.51269432.021.39
    下载: 导出CSV

    表  4   平利辉绿岩Pb 同位素组成

    Table  4   Pb composition for diabase in Pingli

    样品206Pb/204Pb±2σ207Pb/204Pb±2σ208Pb/204Pb±2σ238U/204Pb232Th/204Pb206Pb/204Pb)t207Pb/204Pb)t208Pb/204Pb)t
    08-70h18.0351615.5011438.455490.1542.4418.03015.48237.991
    08-71h18.0151715.5081538.396440.1643.0818.00915.48837.926
    08-72h18.1451715.5241338.560380.1336.1618.14015.50838.165
    08-75h17.8912415.5272138.052490.0819.1217.88915.51737.843
    下载: 导出CSV
  • 郭现轻, 王宗起, 闫臻. 北大巴山平利—镇坪地区碱性火山作用及锌-萤石成矿作用研究[J]. 地球学报, 2017, 38(s1): 21-24

    GUO Xianqing, WANG Zongqi, YAN Zhen. Alkali Volcanism and Zinc-fluorite Mineralization of Pingli–Zhenping Area, North Daba Mountains[J]. Acta Geoscientica Sinica, 2017, (z1): 21-24.

    郭现轻. 北大巴山平利-镇坪地区碱性火山作用及锌-萤石成矿作用研究[D]. 北京: 中国地质科学院, 2012.

    GUO Xianqing. Alkali Volcanism and Zinc-fluorite Mineralization of Pingli–Zhenping Area, North Daba Mountains[D]. Beijing: Chinese Academy of Geological Sciences, 2012.

    黄月华, 任有祥, 夏林圻等. 北大巴山早古时代双模式火山岩套: 以高滩辉绿岩和蒿坪粗面岩为例[J]. 岩石学报, 1992, 8(3): 243-256

    HUANG Yuehua, REN youxiang, XIA Linqi, et al. Early Paleozoic Bimodal Igneous Suite on North Daba Mountains—GaoTanDiabashan and Haoping Trachyte As Examples. Acta Petrologica Sinica, 1992, 8(3): 243-256.

    李平,陈隽璐,张越,等.商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J].西北地质,2023,56(2):10-27.

    LI Ping, CHEN Junlu, ZHANG Yue, et al.The Formation Age of Intrusions from Tudigou-Chigou Region in Southern Margin of Shangdan Subduction-Accretion Belt and Its Geological Significance[J].Northwestern Geology, 2023,56(2):10-27.

    刘燊, 冯彩霞, 陈晓青, 等. 南秦岭地块紫阳地区早古生代岩石圈伸展规律、动力学机制及基性岩墙成因[J]. 岩石学报, 2023, 39(3): 938-962 doi: 10.18654/1000-0569/2023.03.18

    LIU Shen, FENG CaiXia, CHEN XiaoQing, et al. Early Paleozoic lithospheric extension law, dynamic mechanism, origin of mafic dykes in Ziyang, South Qinling Block, China[J]. Acta Petrologica Sinica, 2023, 39(3): 938-962. doi: 10.18654/1000-0569/2023.03.18

    卢欣祥, 董有, 尉向东, 等. 东秦岭吐雾山A型花岗岩的时代及其构造意义[J]. 科学通报, 1999, 44(9): 975-978.

    LU Xingxiang, DONG You, WEI Xiangdong, et al. The Age and Geological Significance of A-Type Granite in Tuwu Mountain, East Qinling Mountains. Chinese Science Bulletin, 1999, 44(9):975-978

    鲁显松, 孙腾, 熊意林, 等. 南秦岭南沟寨铌钽矿床粗面岩锆石U-Pb年代学特征及地质意义. 资源环境与工程, 2021, 35(4): 453-457

    LU Xiansong, SUN Teng, XIONG Yilin, et al. Ziron U-Pb geochronology characteristics and geological significance of coarse rocks in Nangouzhai Nb-Ta deposit, SouthQinling. Resources Environment and Engineering, 2021, 35(4): 453-457.

    汪洋, 姬广义, 孙善平, 等. 北京西山沿河城东岭台组火山岩成因及其地质意义[J]. 地质论评, 2009.55(2): 191-214,

    WANG Yang, JI Guangyi, LI Jiazhen, et al. Origin of the Volcanic Rocks in the Donglingtai Formation from Yanhecheng Area, Western Hills of Beijing and Its Geological Implications[J]. Geological Review, 2009, 55(2): 191-214

    王存智, 杨坤光, 徐扬, 等. 北大巴基性岩墙群地球化学特征、LA-ICP-MS锆石U-Pb定年及其大地构造意义. 地质科技情报, 2009, 28(3): 19-26

    WANG Cunzhi, YANG Kunguang, XU Yang, et al. Geochemistry and LA-ICP-MS Zircon U –Pb Age of Basic Dike Swarms in North Daba Mountains and Its Tectonic Significance. Geological Science and Technology Information, 2009, 28(3): 19-26.

    王晓霞, 王涛, 卢欣祥, 等. 北秦岭老君山和秦岭梁环斑结构花岗岩及构造环境—一种可能的造山带型环斑花岗岩[J]. 岩石学报2003, 19(04): 650-660

    WANG Xiaoxia, WANG Tao, LU Xinxiang, et al. Laojunshan and Qinlingliang rapakivi-textured granitoids in North Qinling and their tectonic setting: A possible orogenic-type rapakivi granitoids. ActaPetrologica Sinica, 2003, 19(4): 650-660.

    夏林圻, 夏祖春, 李向民, 等. 南秦岭东段耀岭河群、郧西群、武当山群火山岩和基性岩墙群岩石成因[J]. 西北地质, 2008, 41(3): 01-29.

    XIA Linqi, XIA Zuchun, LI Xiangmin, et al. Petrogenesis of the Yaolinghe Group, YunxiGroup, Wudangshan Group volcanic rocks and Basic dyke swarms from Eastern part of the South Qingling Mountains. Northwestern Geology, 2008, 41(3):1-29

    徐学义, 陈隽璐, 张二朋, 等. 秦岭及邻区地质图及说明书[M]. 西安: 西安地图出版社, 2014.
    徐学义, 夏林圻, 夏祖春, 等. 岚皋早古时代碱质煌斑杂岩地球化学特征及成因探讨[J]. 地球化学, 2001, 22(1): 55-60.

    XU Xueyi, XIA Linqi, XIA Zuchun, et al. 2001. Geochemical characteristics and petrogenesis of the Early Paleozoic alkali lamprophyre complex from Langao County[J]. Acta Geoscientia Sinica, 2001, 22(1): 55-60

    宴云翔. 陕西紫阳-岚皋地区碱-基性岩墙群的岩石地球化学及Sr、Nd、Pb同位素地球化学研究[D]. 西安: 西北大学, 2005.

    YAN Yunxiang. Research on geochemistry and Sr, Nd and Pb isotope of the basic dyke swarms in Ziyang-Langaoarea, Shaanxi Provice[D]. Xi’an: Northwest University, 2005.

    杨成, 刘成新, 刘万亮, 等. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿[J]. 岩石矿物学杂志, 2017, 36(5): 605-618

    YANG Cheng, LIU Chengxin, LIU Wanliang, et al. Geochemical characteristics of trachyte and Nb mineralization process in TianbaoTown ship, Zhuxi County, South Qinling[J]. Acta Petrologica Et Minerlogica, 2017, 36(3): 605-618.

    喻学惠. 秦巴地区碱性岩与造山带构造演化关系及其特征[J]. 中国区域地质, 1992.3: 34-240

    YU Xuehui. The Relation of Alkaline Rocks in the Qinling-daba mountains region and the tectonic evolution of the orogen and their features[J]. Reginal Geology of China, 1992.3: 34-240.

    张成立, 高山, 张国伟, 等. 南秦岭早古生代碱性岩墙群的地球化学[J]. 中国科学(D辑), 2002, 32(10): 819-829.

    ZHANG Chengli, GAO Shan, ZHANG Guowei, et al. Geochemistry and Geological Significance of Early Paleozoic Alkaline Rock Wall Group in Southern Qinling Mountains. Science in China (Series D), 2002.32(10):819-829.

    张成立, 王晓霞, 王涛, 等. 东秦岭沙湾岩体成因—来自锆石U-Pb定年及其Hf同位素的证据[J]. 西北大学学报, 2009, 39(3): 453-465.

    ZHANG Chengli, WANG Xiaoxia, WANG Tao, et al. Origin of Shahewan granite intrusion in Eastern Qinling: evidences from zircon U-Pb dating and Hf isotopes[J]. Journal of Northwest University, 2009, 39(3): 453-465.

    张成立, 周鼎武, 金海龙, 等. 武当地块基性岩墙群及耀岭河群基性火山岩的Sr-Nd-Pb-O同位素研究[J]. 岩石学报, 1999, 15(3): 430-437

    ZHANG Chengli, ZHOU Dingwu, JIN Hailong, et al. Study on the Sr/Nd/Pb and O isotopes of basic dyke swarms in the Wudang block and basic volcanics of the Yaolinghe Group[J]. Acta Petrologica Sinica, 1999, 15(3): 430-437.

    张方毅, 赖绍聪, 秦江峰, 等. 北大巴山早古生代辉绿岩地球化学特征及其地质意义[J]. 岩石矿物学杂志, 2020, 39(1): 35-46

    ZHANG Fangyi, LAI Shaocong, QIN Jiangfeng, et al. Geochemical characteristics and geological significance of Early Paleozoic alkali diabases in North Daba Mountain[J]. Acta Petrologica Et Minerlogica, 2020, 39 (1): 35-46.

    张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带[J]. 地质力学学报, 25 (5): 746-768

    ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al. , 2019. RETHINKING OF THE QINLING OROGEN[J]. Journal of Geomechanics, 25 (5): 746-768.

    张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社. 2001.

    ZHANG Guowei, ZHANG Benren, YUAN Xuecheng, et al. Qinling orogenic beit and continental dynamics[M]. Beijing China: Science Press, 2001.

    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59–79.

    CAMPBELL H. Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the depleted mantle[J]. Geochemica et Cosmochimica Acta, 2002, 66(9): 1651-1661. doi: 10.1016/S0016-7037(01)00856-0

    Fitton J G. Coupled molybdenum and niobium depletion in continental basalts[J]. Earth And Planetary Science Letters, 1995: 715–721.

    Fitton J G. James D, Leeman W P. Basic magmatism associated with the late Cenozoic extension in the western United States compositionl variations in space and time[J]. Journal of Geophysical Research, 1991, 96: 13693–13711

    Foley S, Tiepolo M, Vannucci R. Groeth of early continental crust controlled by melting of amphibolite in subduction zone[J]. Nature, 2022, 417(20): 837-840.

    Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79(1-2): 33–45. doi: 10.1016/0012-821X(86)90038-5

    Kieffer B, Arndt N, Lapierre H, et al. Flood and shield basalts from Ethiopia magams from the African superswell[J]. Journal of Petrology, 2004, 45(4):793834

    MIYASHIRO A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355 doi: 10.2475/ajs.274.4.321

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[A]. In: Hawkesworth C J, Norry M J (eds.). Continental Basalts and Mantle Xenoliths[M]. Cambridge: Shiva Publishing Ltd., 1983

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32kbar: Implication for the continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4):891−931

    Saunders A D, Storey M, Kent R W, et al. Consequences of plume-lithosphere interaction[A]. In Storey B C, et al (eds.). Magmatism and the Causes of Continental Breakup[C].Geological Society, London, Special Publications,1992, 68: 41–60.

    Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes [A]. In: Saunders A D, Norry M J (eds) Magmatism in the Ocean Basins[M]. Geological Society, London, Special Publications, 1989, 42: 313-345

    Shimoda G. Genetic link between EMI and EMII: An adakite connection[J]. Lithos, 2009, 112: 591–602

    Taylor S R, McLennan S M. The Continental Crusts: Its Composition and Evolution [M]. Oxford: Blackwell Scientific Publications, 1985.

    TREVOR H G. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 12: 347-359.

    Wilson M. Igneous petrogenesis[M]. London: Unwin Hyman, 1989,1–323

    WINCHESTER P A and FLOYD. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343 doi: 10.1016/0009-2541(77)90057-2

    YAN Shuang, NIU He-Cai, ZHAO Xu, et al. Rare metal enrichment of the Tianbao trachytic complex, North Daba Mountains (South Qinling): Insights from textures and geochemistry of trachytes and Nb-REE minerals[J]. Ore Geology Reviews, 2022, 146: 104948 doi: 10.1016/j.oregeorev.2022.104948

    Yang Hang, Lai Shaocong , Qin Jiangfeng, et al. Petrogenetic evolution of early Paleozoic trachytic rocks in the South Qinling Belt, Central China: Insights from mineralogy, geochemistry, and thermodynamic modeling[J]. Lithos: An International Journal of Mineralogy, Petrology, and Geochemistry, 2022: 418/419: 106683.

图(8)  /  表(5)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  29
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 修回日期:  2023-08-15
  • 网络出版日期:  2023-05-05
  • 刊出日期:  2025-02-19

目录

/

返回文章
返回