Petrogenesis of Late Triassic Trachyte and Basic Dike Swarms in Northern Dabashan and Its Geological Significance
-
摘要:
北大巴山紫阳−平利−竹溪一带较为广泛地分布有一期基性岩墙与碱性火山岩,这些火山−侵入岩系多被认为形成于早古生代。通过对基性岩和粗面岩的LA−ICP−MS锆石U−Pb同位素测年工作发现,其形成时代分别为(219.5±2.2)Ma和(223.9±2.8)Ma,属于晚三叠世岩浆作用的产物。其中,基性岩墙中的辉绿岩显示出贫Si、高Ti的特征,粗面岩显示高Ti、富碱的特征,两类岩石轻、重稀土元素分馏存有一定差异。辉绿岩的Pb−Sr−Nd同位素组成上显示出OIB物质源区组成且具有EMⅡ和上地壳富集物质成分的加入,碱性系列的粗面岩在原始地幔标准化图解上则显示出大隆起的微量元素分布样式,构造环境判别图解均显示出二者与板内岩浆活动具有成因关系。结合区域地质特征,认为北大巴山地区晚三叠世的粗面岩−辉绿岩组合形成于勉−略洋闭合之后持续的板内伸展活动,为南秦岭地区深部地幔岩浆物质演化的地质记录。
Abstract:An amount of basic dikes and alkaline igneous rock occurred in Ziyang−Pingli−Zhuxi regions of the North Daba Mountain, most of these rock series are believed to have been formed in Early Paleozoic magmatic activity, while the zircon U−Pb isotope dating of the basic dike swarms and trachyte in this study show them formed at (219.5 ± 2.2)Ma and (223.9 ± 2.8) Ma, respectively. The rock series can be regarded as a product of Late Triassic magmatism. The diabase from the basic dike swarms shows a characteristic of high Ti and low Si, trachyte shows a feature of high Ti and is rich in alkali, both of which have some differences for the fractionation of REE. The Pb−Sr−Nd isotopic composition of the diabase shows a source region of OIB, with some additions of enrichment material of EmⅡ and upper crust, the trachyte shows an obvious rise inthe Primitive Mantle normalized diagram. Thus, both of them are formed by the intra-plate magmatism. The Late Triassic trachyte−diabase assemblage in North Beidaba Mountain is considered to have been formed by the continuous intraplate extension after the closure of the Mian−Lue Ocean, also is a geological record of mantle derived magma in South Qinling.
-
-
图 1 北大巴山地区地质图及采样位置图(据徐学义等,2014)
Figure 1. Geological map of north Daba mountain and sampling location
图 5 平利地区粗面岩和辉绿岩岩石类型判别图
a. Nb/Y–Zr/TiO2图(Winchester,1977);b. SiO2–(K2O+Na2O)图(Miyashiro, 1974)
Figure 5. Rock types of trachyte and diabase in Pingli
图 6 稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b)
标准化数据自Taylor 等(1985)和Sun等(1989)
Figure 6. (a) Chondrite–normalized REE distribution patternss and (b) primitive mantle–normalized trace elements spider diagram
图 8 平利地区辉绿岩和粗面岩构造环境判别图 (据Pearce, 1983)
Figure 8. Discriminant diagram of tectonic settingfor diabase and trachyte in Pingli
表 1 平利地区粗面岩和辉绿岩锆石U–Pb同位素物质成分组成表
Table 1 Zircon LA–ICP–MS U–Pb analytical data for the trachyteand diabase in Pingli
样品 比值 年龄(Ma) 组成 (10–6) U/Th 207Pb/206Pb ±% 207Pb/235U ±% 206Pb/238U ±% 208Pb/232Th ±% 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 204Pb 206Pb 207Pb 208Pb 232Th 238U 粗面岩(08-66Tw),n=16 1 0.05069 0.00127 0.2498 0.00639 0.03572 0.00049 0.0078 0.00018 227 34 226 5 226 3 157 4 3.43 236 13.67 4.67 224.69 1733 7.71 2 0.05142 0.00146 0.24692 0.00707 0.03487 0.00049 0.00587 0.00017 260 40 224 6 221 3 118 3 3.57 162 15.22 4.86 276.33 1187 4.30 3 0.05133 0.00144 0.26141 0.00736 0.03709 0.00052 0.01004 0.00021 256 39 236 6 235 3 202 4 7.36 183 12.02 11.8 460.73 1355 2.94 4 0.054 0.00139 0.26166 0.00679 0.03534 0.00049 0.00902 0.00021 371 34 236 5 224 3 181 4 3.51 197 13.79 6.02 275.53 1461 5.30 5 0.04893 0.0013 0.24222 0.00646 0.03615 0.00051 0.00914 0.00021 144 37 220 5 229 3 184 4 <2.14 170 10.16 4.97 213.81 1233 5.77 6 0.05407 0.0014 0.2638 0.00685 0.03568 0.0005 0.01103 0.00026 374 34 238 6 226 3 222 5 6.62 148 9.85 4.76 174.16 1105 6.35 7 0.05088 0.00155 0.2379 0.00719 0.03424 0.0005 0.0096 0.00025 235 43 217 6 217 3 193 5 83.8 230 92.18 92.7 231.69 1004 4.33 8 0.04839 0.0013 0.23992 0.00642 0.03643 0.00052 0.01135 0.00027 118 37 218 5 231 3 228 5 6.17 218 12.84 7.07 263.14 1498 5.69 9 0.04809 0.0014 0.23401 0.00675 0.0358 0.00052 0.01065 0.00029 104 41 214 6 227 3 214 6 4.17 208 12 5.32 219.69 1522 6.93 10 0.04823 0.0013 0.23091 0.00617 0.03526 0.0005 0.00887 0.00024 111 37 211 5 223 3 178 5 3.99 263 16.49 7.03 312.25 1931 6.18 11 0.04903 0.00132 0.22949 0.00608 0.03454 0.0005 0.0049 0.00016 149 36 210 5 219 3 99 3 4.31 136 8.88 5.13 443.46 1022 2.31 12 0.0518 0.00135 0.24233 0.0062 0.03463 0.0005 0.01181 0.00031 277 33 220 5 219 3 237 6 3.46 225 17.79 9.56 307.68 1715 5.58 13 0.0563 0.00151 0.25047 0.00656 0.03296 0.00048 0.01075 0.00029 464 33 227 5 209 3 216 6 3.76 208 16.98 10.2 420.19 1666 3.96 14 0.05115 0.00282 0.25254 0.01336 0.03581 0.00056 0.01127 0.00017 248 128 229 11 227 3 227 3 7.67 103 11.69 9.1 186.45 731 3.92 15 0.05029 0.00155 0.22322 0.00662 0.03313 0.00051 0.0172 0.00059 208 41 205 5 210 3 345 12 15.2 248 13.11 11.3 326.16 1838 5.64 16 0.05581 0.00175 0.27652 0.00829 0.03707 0.00059 0.00154 0.00042 445 39 248 7 235 4 31 8 21.2 178 26.25 16.2 251.77 1187 4.72 辉长岩(08-72Tw),n=16 1 0.05495 0.00228 0.26736 0.01103 0.03528 0.00053 0.01234 0.00031 410 65 241 9 224 3 248 6 6.64 47.1 3 6.78 320.28 350.4 1.09 2 0.0552 0.00151 0.50307 0.01391 0.06608 0.00091 0.02002 0.00051 420 37 414 9 412 6 401 10 6.13 248 15.04 5.86 159.88 956.5 5.98 3 0.05105 0.00155 0.24955 0.00761 0.03545 0.0005 0.00586 0.0002 243 44 226 6 225 3 118 4 3.64 78.6 4.45 3.23 296.43 596.9 2.01 4 0.05202 0.00187 0.25059 0.00901 0.03493 0.00051 0.012 0.0003 286 55 227 7 221 3 241 6 2.32 43.7 2.504 3.46 164.02 337.9 2.06 5 0.05141 0.00158 0.24466 0.00755 0.03451 0.00049 0.01116 0.00026 259 45 222 6 219 3 224 5 3.09 67.1 3.87 4.91 246.6 520.5 2.11 6 0.05434 0.00164 0.25908 0.00787 0.03457 0.00049 0.01098 0.00024 385 43 234 6 219 3 221 5 5.58 116 6.82 21.4 1070.3 879.8 0.82 7 0.04862 0.0015 0.22684 0.00705 0.03383 0.00048 0.01075 0.00026 130 47 208 6 214 3 216 5 3.03 97.8 5.74 10.1 531.6 794.8 1.50 8 0.04987 0.00282 0.23887 0.013 0.03474 0.00052 0.01097 0.00013 189 130 217 11 220 3 221 3 3.97 96.6 6.39 8.71 417.06 754.4 1.81 9 0.05161 0.00184 0.24186 0.00863 0.03399 0.00051 0.01177 0.00032 268 54 220 7 215 3 237 6 4.61 64.1 3.93 7.89 353.71 496.9 1.40 10 0.0513 0.00216 0.24242 0.01017 0.03428 0.00055 0.01149 0.00036 254 67 220 8 217 3 231 7 4.78 54.9 3.27 5.75 276.96 432.4 1.56 11 0.04861 0.0045 0.23374 0.02132 0.03487 0.00056 0.01105 0.00028 129 210 213 18 221 3 222 6 8.54 131 15.58 22.8 673.9 959.7 1.42 12 0.04971 0.00189 0.24441 0.00929 0.03566 0.00055 0.0097 0.00031 181 60 222 8 226 3 195 6 <1.81 66.8 3.75 6.52 372.82 506.5 1.36 13 0.05514 0.00256 0.25882 0.01194 0.03405 0.00057 0.01103 0.00036 418 73 234 10 216 4 222 7 2.94 38.4 2.9 4.25 189.61 256.8 1.35 14 0.05466 0.00204 0.26282 0.00984 0.03488 0.00055 0.01119 0.00037 398 56 237 8 221 3 225 7 4.21 122 8.67 6.81 296.95 912.4 3.07 15 0.05236 0.00212 0.25041 0.01012 0.03469 0.00056 0.01165 0.00039 301 63 227 8 220 3 234 8 2.81 52.9 3.29 5.29 244.19 412.8 1.69 16 0.05128 0.00231 0.23695 0.01061 0.03352 0.00056 0.01129 0.00041 253 72 216 9 213 3 227 8 3.14 34.8 2.083 3.2 147.24 261.9 1.78 表 2 平利地区粗面岩和辉绿岩主量元素(%)和微量元素(10−6)地球化学数据表
Table 2 Major elements (%) and trace elements (10−6) compositions for the trachyte and diabase in Pingli
样品 粗面岩 辉绿岩 08-65h 08-67h 08-68-1h 08-68-2h 08-69h 08-70h 08-71h 08-72h 08-75h SiO2 61.16 63.94 66.18 66.78 50.44 50.47 49.19 49.93 48.4 Al2O3 18.23 16.92 15.79 15.54 13.33 12.67 13.56 13.68 12.53 Fe2O3 1.01 0.95 2.30 1.55 3.35 3.37 3.31 2.61 2.96 FeO 2.56 3.26 1.46 2.06 9.75 9.91 10.08 9.62 10.56 CaO 1.47 0.425 0.48 0.56 8.17 9.65 8.75 7.64 9 MgO 1.61 0.925 0.64 0.61 5.94 5.46 6.22 6.96 6.66 K2O 4.35 6.02 4.19 4.24 0.48 0.46 0.74 0.77 0.72 Na2O 6.66 5.45 6.83 6.31 2.79 2.06 2.64 3.08 2.08 TiO2 1.09 0.9 0.84 0.81 2.01 2.13 2.03 1.69 2.78 P2O5 0.2 0.09 0.09 0.08 0.22 0.23 0.22 0.17 0.32 MnO 0.2 0.25 0.25 0.26 0.2 0.2 0.21 0.19 0.19 LOLI 0.89 0.49 0.3 0.55 2.31 1.91 2.2 2.55 2.53 Total 99.43 99.615 99.35 99.35 3.4 3.01 3.32 3.62 3.71 TFeO 3.46 4.10 3.51 3.44 12.73 12.91 13.03 11.94 13.19 MgO# 41.91 25.90 22.05 21.56 46.03 43.55 46.35 50.32 46.89 Ritman 6.68 6.28 5.24 4.68 1.44 0.85 1.85 2.14 1.45 La 164 223 213 222 13.1 13.7 12.9 10.3 16.8 Ce 302 415 393 412 29.2 30.3 28.7 22.9 38.3 Pr 32.7 44.4 42.1 44.0 4.07 4.24 3.96 3.15 5.42 Nd 116 153 144 149 18.8 19.6 18.6 14.8 26.1 Sm 19.8 26.9 24.7 25.4 5.33 5.60 5.32 4.23 7.02 Eu 4.57 4.56 4.19 4.22 1.49 1.54 1.47 1.25 1.95 Gd 13.6 19.5 18.2 18.7 5.49 5.78 5.42 4.50 7.08 Tb 2.21 3.38 3.12 3.17 0.98 1.04 0.97 0.78 1.22 Dy 11.70 18.6 17.2 18.3 6.38 6.60 6.15 5.07 7.15 Ho 2.13 3.52 3.27 3.34 1.25 1.32 1.26 1.01 1.34 Er 5.52 9.27 8.45 8.96 3.02 3.29 3.17 2.50 3.23 Tm 0.80 1.41 1.28 1.36 0.47 0.49 0.46 0.37 0.47 Yb 5.00 8.98 8.51 9.05 3.06 3.23 3.00 2.47 2.92 Lu 0.71 1.26 1.18 1.27 0.45 0.45 0.44 0.35 0.42 Y 58.1 97.1 96.9 96.5 33.9 35.5 32.9 27.3 34.8 Li 15.2 41.4 45.3 69.6 17.4 13.9 19.7 19.5 25.1 Sc 2.03 6.39 5.76 5.94 38.9 38.2 37.8 36.4 33.0 V 70.8 34.8 31.3 31.7 334 336 324 293 286 Cr 2.07 2.55 1.94 2.27 50.3 35.1 54.1 89.9 194 Co 18.0 22.8 47.4 49.3 51.0 53.5 52.9 52.2 57.1 Ni 0.28 0.63 0.28 0.28 48.7 36.6 49.2 68.6 105 续表2 样品 粗面岩 辉绿岩 08-65h 08-67h 08-68-1h 08-68-2h 08-69h 08-70h 08-71h 08-72h 08-75h Cu 5.34 4.79 4.72 4.58 126 121 124 118 159 Zn 172 238 221 164 119 114 117 104 146 Ga 34.0 45.0 42.6 41.9 17.4 18.8 19.1 16.7 20.1 Rb 125 145 138 135 3.27 3.61 8.21 7.92 19.20 Sr 408 181 46.5 66.7 268 308 402 221 302 Zr 811 1573 1473 1593 146 153 143 114 200 Nb 229 340 323 336 10.8 11.2 10.7 8.44 19.9 Cs 0.61 1.28 0.07 0.26 0.21 0.21 0.36 0.14 0.25 Ba 564 496 42.7 80.8 278 198 258 276 232 Hf 17.0 35.7 32.7 35.3 3.90 4.18 3.92 3.22 5.23 Ta 13.7 22.0 19.0 19.6 0.75 0.71 0.73 0.53 1.28 Pb 10.5 17.9 18.9 20.3 4.61 2.76 2.62 2.43 6.35 Th 19.8 33.2 30.7 33.4 1.58 1.64 1.58 1.23 1.70 U 5.40 8.98 8.05 8.55 0.43 0.42 0.41 0.32 0.48 REE 680.74 932.78 882.20 920.77 93.09 97.18 91.82 73.68 119.42 LREE/HREE 15.49 13.34 13.61 13.56 3.41 3.38 3.40 3.32 4.00 (La/Sm)N 5.35 5.36 5.57 5.65 1.59 1.58 1.57 1.57 1.55 (La/Yb)N 23.54 17.82 17.96 17.60 3.07 3.04 3.09 2.99 4.13 (Gd/Yb)N 2.25 1.80 1.77 1.71 1.48 1.48 1.49 1.51 2.01 δEu 0.85 0.61 0.61 0.59 0.84 0.83 0.84 0.88 0.85 表 3 平利辉绿岩Sr–Nd 同位素组成
Table 3 Sr–Nd composition for diabase in Pingli
样品 87Rb/86Sr 87Sr/86Sr ±2σ Isr 147Sm/144Nd 143Nd/144Nd ±2σ εNd(t) TDM(Ga) 08-70h 0.034 0.705259 11 0.70515 0.173 0.512605 4 0.03 2.02 08-71h 0.059 0.706500 6 0.70632 0.174 0.512601 3 −0.09 2.10 08-72h 0.104 0.70621 6 0.70589 0.174 0.512617 3 0.23 2.04 08-75h 0.184 0.705524 4 0.70495 0.164 0.512694 3 2.02 1.39 表 4 平利辉绿岩Pb 同位素组成
Table 4 Pb composition for diabase in Pingli
样品 206Pb/204Pb ±2σ 207Pb/204Pb ±2σ 208Pb/204Pb ±2σ 238U/204Pb 232Th/204Pb (206Pb/204Pb)t (207Pb/204Pb)t (208Pb/204Pb)t 08-70h 18.035 16 15.501 14 38.455 49 0.15 42.44 18.030 15.482 37.991 08-71h 18.015 17 15.508 15 38.396 44 0.16 43.08 18.009 15.488 37.926 08-72h 18.145 17 15.524 13 38.560 38 0.13 36.16 18.140 15.508 38.165 08-75h 17.891 24 15.527 21 38.052 49 0.08 19.12 17.889 15.517 37.843 -
郭现轻, 王宗起, 闫臻. 北大巴山平利—镇坪地区碱性火山作用及锌-萤石成矿作用研究[J]. 地球学报, 2017, 38(s1): 21-24 GUO Xianqing, WANG Zongqi, YAN Zhen. Alkali Volcanism and Zinc-fluorite Mineralization of Pingli–Zhenping Area, North Daba Mountains[J]. Acta Geoscientica Sinica, 2017, (z1): 21-24.
郭现轻. 北大巴山平利-镇坪地区碱性火山作用及锌-萤石成矿作用研究[D]. 北京: 中国地质科学院, 2012. GUO Xianqing. Alkali Volcanism and Zinc-fluorite Mineralization of Pingli–Zhenping Area, North Daba Mountains[D]. Beijing: Chinese Academy of Geological Sciences, 2012.
黄月华, 任有祥, 夏林圻等. 北大巴山早古时代双模式火山岩套: 以高滩辉绿岩和蒿坪粗面岩为例[J]. 岩石学报, 1992, 8(3): 243-256 HUANG Yuehua, REN youxiang, XIA Linqi, et al. Early Paleozoic Bimodal Igneous Suite on North Daba Mountains—GaoTanDiabashan and Haoping Trachyte As Examples. Acta Petrologica Sinica, 1992, 8(3): 243-256.
李平,陈隽璐,张越,等.商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J].西北地质,2023,56(2):10-27. LI Ping, CHEN Junlu, ZHANG Yue, et al.The Formation Age of Intrusions from Tudigou-Chigou Region in Southern Margin of Shangdan Subduction-Accretion Belt and Its Geological Significance[J].Northwestern Geology, 2023,56(2):10-27.
刘燊, 冯彩霞, 陈晓青, 等. 南秦岭地块紫阳地区早古生代岩石圈伸展规律、动力学机制及基性岩墙成因[J]. 岩石学报, 2023, 39(3): 938-962 doi: 10.18654/1000-0569/2023.03.18 LIU Shen, FENG CaiXia, CHEN XiaoQing, et al. Early Paleozoic lithospheric extension law, dynamic mechanism, origin of mafic dykes in Ziyang, South Qinling Block, China[J]. Acta Petrologica Sinica, 2023, 39(3): 938-962. doi: 10.18654/1000-0569/2023.03.18
卢欣祥, 董有, 尉向东, 等. 东秦岭吐雾山A型花岗岩的时代及其构造意义[J]. 科学通报, 1999, 44(9): 975-978. LU Xingxiang, DONG You, WEI Xiangdong, et al. The Age and Geological Significance of A-Type Granite in Tuwu Mountain, East Qinling Mountains. Chinese Science Bulletin, 1999, 44(9):975-978
鲁显松, 孙腾, 熊意林, 等. 南秦岭南沟寨铌钽矿床粗面岩锆石U-Pb年代学特征及地质意义. 资源环境与工程, 2021, 35(4): 453-457 LU Xiansong, SUN Teng, XIONG Yilin, et al. Ziron U-Pb geochronology characteristics and geological significance of coarse rocks in Nangouzhai Nb-Ta deposit, SouthQinling. Resources Environment and Engineering, 2021, 35(4): 453-457.
汪洋, 姬广义, 孙善平, 等. 北京西山沿河城东岭台组火山岩成因及其地质意义[J]. 地质论评, 2009.55(2): 191-214, WANG Yang, JI Guangyi, LI Jiazhen, et al. Origin of the Volcanic Rocks in the Donglingtai Formation from Yanhecheng Area, Western Hills of Beijing and Its Geological Implications[J]. Geological Review, 2009, 55(2): 191-214
王存智, 杨坤光, 徐扬, 等. 北大巴基性岩墙群地球化学特征、LA-ICP-MS锆石U-Pb定年及其大地构造意义. 地质科技情报, 2009, 28(3): 19-26 WANG Cunzhi, YANG Kunguang, XU Yang, et al. Geochemistry and LA-ICP-MS Zircon U –Pb Age of Basic Dike Swarms in North Daba Mountains and Its Tectonic Significance. Geological Science and Technology Information, 2009, 28(3): 19-26.
王晓霞, 王涛, 卢欣祥, 等. 北秦岭老君山和秦岭梁环斑结构花岗岩及构造环境—一种可能的造山带型环斑花岗岩[J]. 岩石学报2003, 19(04): 650-660 WANG Xiaoxia, WANG Tao, LU Xinxiang, et al. Laojunshan and Qinlingliang rapakivi-textured granitoids in North Qinling and their tectonic setting: A possible orogenic-type rapakivi granitoids. ActaPetrologica Sinica, 2003, 19(4): 650-660.
夏林圻, 夏祖春, 李向民, 等. 南秦岭东段耀岭河群、郧西群、武当山群火山岩和基性岩墙群岩石成因[J]. 西北地质, 2008, 41(3): 01-29. XIA Linqi, XIA Zuchun, LI Xiangmin, et al. Petrogenesis of the Yaolinghe Group, YunxiGroup, Wudangshan Group volcanic rocks and Basic dyke swarms from Eastern part of the South Qingling Mountains. Northwestern Geology, 2008, 41(3):1-29
徐学义, 陈隽璐, 张二朋, 等. 秦岭及邻区地质图及说明书[M]. 西安: 西安地图出版社, 2014. 徐学义, 夏林圻, 夏祖春, 等. 岚皋早古时代碱质煌斑杂岩地球化学特征及成因探讨[J]. 地球化学, 2001, 22(1): 55-60. XU Xueyi, XIA Linqi, XIA Zuchun, et al. 2001. Geochemical characteristics and petrogenesis of the Early Paleozoic alkali lamprophyre complex from Langao County[J]. Acta Geoscientia Sinica, 2001, 22(1): 55-60
宴云翔. 陕西紫阳-岚皋地区碱-基性岩墙群的岩石地球化学及Sr、Nd、Pb同位素地球化学研究[D]. 西安: 西北大学, 2005. YAN Yunxiang. Research on geochemistry and Sr, Nd and Pb isotope of the basic dyke swarms in Ziyang-Langaoarea, Shaanxi Provice[D]. Xi’an: Northwest University, 2005.
杨成, 刘成新, 刘万亮, 等. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿[J]. 岩石矿物学杂志, 2017, 36(5): 605-618 YANG Cheng, LIU Chengxin, LIU Wanliang, et al. Geochemical characteristics of trachyte and Nb mineralization process in TianbaoTown ship, Zhuxi County, South Qinling[J]. Acta Petrologica Et Minerlogica, 2017, 36(3): 605-618.
喻学惠. 秦巴地区碱性岩与造山带构造演化关系及其特征[J]. 中国区域地质, 1992.3: 34-240 YU Xuehui. The Relation of Alkaline Rocks in the Qinling-daba mountains region and the tectonic evolution of the orogen and their features[J]. Reginal Geology of China, 1992.3: 34-240.
张成立, 高山, 张国伟, 等. 南秦岭早古生代碱性岩墙群的地球化学[J]. 中国科学(D辑), 2002, 32(10): 819-829. ZHANG Chengli, GAO Shan, ZHANG Guowei, et al. Geochemistry and Geological Significance of Early Paleozoic Alkaline Rock Wall Group in Southern Qinling Mountains. Science in China (Series D), 2002.32(10):819-829.
张成立, 王晓霞, 王涛, 等. 东秦岭沙湾岩体成因—来自锆石U-Pb定年及其Hf同位素的证据[J]. 西北大学学报, 2009, 39(3): 453-465. ZHANG Chengli, WANG Xiaoxia, WANG Tao, et al. Origin of Shahewan granite intrusion in Eastern Qinling: evidences from zircon U-Pb dating and Hf isotopes[J]. Journal of Northwest University, 2009, 39(3): 453-465.
张成立, 周鼎武, 金海龙, 等. 武当地块基性岩墙群及耀岭河群基性火山岩的Sr-Nd-Pb-O同位素研究[J]. 岩石学报, 1999, 15(3): 430-437 ZHANG Chengli, ZHOU Dingwu, JIN Hailong, et al. Study on the Sr/Nd/Pb and O isotopes of basic dyke swarms in the Wudang block and basic volcanics of the Yaolinghe Group[J]. Acta Petrologica Sinica, 1999, 15(3): 430-437.
张方毅, 赖绍聪, 秦江峰, 等. 北大巴山早古生代辉绿岩地球化学特征及其地质意义[J]. 岩石矿物学杂志, 2020, 39(1): 35-46 ZHANG Fangyi, LAI Shaocong, QIN Jiangfeng, et al. Geochemical characteristics and geological significance of Early Paleozoic alkali diabases in North Daba Mountain[J]. Acta Petrologica Et Minerlogica, 2020, 39 (1): 35-46.
张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带[J]. 地质力学学报, 25 (5): 746-768 ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al. , 2019. RETHINKING OF THE QINLING OROGEN[J]. Journal of Geomechanics, 25 (5): 746-768.
张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社. 2001. ZHANG Guowei, ZHANG Benren, YUAN Xuecheng, et al. Qinling orogenic beit and continental dynamics[M]. Beijing China: Science Press, 2001.
Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59–79.
CAMPBELL H. Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the depleted mantle[J]. Geochemica et Cosmochimica Acta, 2002, 66(9): 1651-1661. doi: 10.1016/S0016-7037(01)00856-0
Fitton J G. Coupled molybdenum and niobium depletion in continental basalts[J]. Earth And Planetary Science Letters, 1995: 715–721.
Fitton J G. James D, Leeman W P. Basic magmatism associated with the late Cenozoic extension in the western United States compositionl variations in space and time[J]. Journal of Geophysical Research, 1991, 96: 13693–13711
Foley S, Tiepolo M, Vannucci R. Groeth of early continental crust controlled by melting of amphibolite in subduction zone[J]. Nature, 2022, 417(20): 837-840.
Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79(1-2): 33–45. doi: 10.1016/0012-821X(86)90038-5
Kieffer B, Arndt N, Lapierre H, et al. Flood and shield basalts from Ethiopia magams from the African superswell[J]. Journal of Petrology, 2004, 45(4):793–834
MIYASHIRO A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355 doi: 10.2475/ajs.274.4.321
Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[A]. In: Hawkesworth C J, Norry M J (eds.). Continental Basalts and Mantle Xenoliths[M]. Cambridge: Shiva Publishing Ltd., 1983
Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32kbar: Implication for the continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4):891−931
Saunders A D, Storey M, Kent R W, et al. Consequences of plume-lithosphere interaction[A]. In Storey B C, et al (eds.). Magmatism and the Causes of Continental Breakup[C].Geological Society, London, Special Publications,1992, 68: 41–60.
Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes [A]. In: Saunders A D, Norry M J (eds) Magmatism in the Ocean Basins[M]. Geological Society, London, Special Publications, 1989, 42: 313-345
Shimoda G. Genetic link between EMI and EMII: An adakite connection[J]. Lithos, 2009, 112: 591–602
Taylor S R, McLennan S M. The Continental Crusts: Its Composition and Evolution [M]. Oxford: Blackwell Scientific Publications, 1985.
TREVOR H G. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 12: 347-359.
Wilson M. Igneous petrogenesis[M]. London: Unwin Hyman, 1989,1–323
WINCHESTER P A and FLOYD. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343 doi: 10.1016/0009-2541(77)90057-2
YAN Shuang, NIU He-Cai, ZHAO Xu, et al. Rare metal enrichment of the Tianbao trachytic complex, North Daba Mountains (South Qinling): Insights from textures and geochemistry of trachytes and Nb-REE minerals[J]. Ore Geology Reviews, 2022, 146: 104948 doi: 10.1016/j.oregeorev.2022.104948
Yang Hang, Lai Shaocong , Qin Jiangfeng, et al. Petrogenetic evolution of early Paleozoic trachytic rocks in the South Qinling Belt, Central China: Insights from mineralogy, geochemistry, and thermodynamic modeling[J]. Lithos: An International Journal of Mineralogy, Petrology, and Geochemistry, 2022: 418/419: 106683.