Geological, Tectonic Evolution Characteristics and Uranium Mineralization of the Damara Orogenic Belt in Namibia
-
摘要:
纳米比亚达马拉造山带是新元古代—早古生代泛非造山活动在西南非洲的体现,笔者系统梳理达马拉造山带内地质单元、岩浆作用、变质活动、构造动力学机制和铀矿成矿作用特征。该造山带主要由北部地体、北带边缘、北部带、中央带、南部带、南带边缘及南部前陆7个地质单元组成。依据板块运动特征,将其构造演化划分为板内裂谷期(750 Ma)、持续扩张期(730~600 Ma)、洋陆俯冲期(580~560 Ma)、俯冲碰撞期(550~540 Ma)及碰撞晚期(530~460 Ma)5个阶段。造山带内赋存大量的铀矿资源,主要形成于510~490 Ma,其成因与碰撞晚期构造及岩浆活动密切相关,成矿专属性特征明显。根据对现有资料的分析及总结,笔者认为富U的前达马拉基底是白岗岩型铀矿成矿物质的主要来源,成矿母岩浆是同化混染与分离结晶共同作用的结果,构造活动为富U岩浆的侵位及富集沉淀提供有利场所。
Abstract:The Damara orogeny in Namibia is part of the Neoproterozoic to early Paleozoic Pan–African orogeny in Southwest Africa. This paper systematically combs the characteristics of geological units, magmatism, metamorphism, tectonic dynamics mechanism and uranium mineralization in the Damara orogenic belt. The orogenic belt is mainly composed of seven geological units: the northern terrane, the northern margin, the northern zone, the central zone, the southern zone, the southern margin, and the southern foreland. Based on the characteristics of plate movement, the tectonic evolution of this orogenic belt has been divided into five stages, mainly including intraplate rift (750 Ma), continuous expansion (730~600 Ma), ocean–continent subduction (580~560 Ma), subduction collision (550~540 Ma) and late collision (530~460 Ma). This orogenic belt is endowed with plenty of uranium resources, mainly formed at 510~490 Ma, closely related to tectonic and magmatic activities in origin, with a peculiar metallogenic specialization. According to the analysis and summary of existing data, this article believes that the pre–Damara basement, which is rich in uranium, is the main source of ore–forming materials of the alaskaite type uranium deposit. The parent magma related to mineralization is the result of combined action of assimilation, contamination and fractional crystallization. The tectonic activity provides a favorable site for the emplacement, enrichment and precipitation of the uranium–rich magma.
-
Keywords:
- Damara orogenic belt /
- tectonic evolution /
- uranium ore /
- Namibia
-
稀土元素(REE)被称为“工业维生素”,可显著改善材料的光、电、磁等重要性能,被世界各主要国家列为战略性矿产资源(毛景文等,2019;陈其慎等,2021)。稀土金属是中国优势矿产资源,已探明储量约占全球57.7%(毛景文等,2022)。其中,白云鄂博稀土-铌-铁多金属矿床是世界上最大的稀土金属矿床(She et al.,2021;毛景文等,2022),主要的稀土矿化以独居石、氟碳铈矿和 Ba-REE 氟碳酸盐矿物系列为代表。在中国南方,离子吸附型稀土矿也占据了重要的地位,是重稀土元素的重要来源(王登红等,2016;毛景文等,2022)。在世界范围内,稀土矿产主要赋存在碳酸盐岩、碱性火成岩、伟晶岩、IOCG矿床、矿脉和矽卡岩矿床、砂矿、红土带、离子吸附型黏土和近海区(Batapola et al.,2020)。最近,在中国四川、云南和贵州发现的古陆相沉积型稀土矿显示了极大的开发前景(龚大兴等,2023)。
稀土氟碳酸盐矿物是世界轻稀土元素的主要赋存矿物(Gysi et al.,2015;Batapola et al.,2020),获取准确的矿物化学成分是确定其矿物种属、研究其成矿机理、指导区域找矿勘探、研制产品开发工艺必需的前提条件。但目前文献中关于钙稀土氟碳酸盐矿物的成分数据非常有限,部分数据不完整或质量参差不齐。这主要是因为钙稀土氟碳酸盐矿物是作为副矿物分散于花岗伟晶岩、碱性岩、火成碳酸盐等岩体中,颗粒小,单矿物分选不易,常规湿法化学分析难以实现。
电子探针技术是目前为止分析微小、分散矿物成分的最有效手段之一(程秀花等,2022),但对钙稀土氟碳酸盐矿物进行分析仍有实际困难:①电子探针分析束斑直径可小于1 um,但其实际作用区域约0.5~5 um,样品硬度越低,实际作用区域越大。钙稀土氟碳酸盐矿物结构及成分变化复杂,常有共晶格取向连生或体衍生特征(Landuyt et al.,1975;吴秀玲等,1993;杨学明等,1998),在目前常规电子探针设备的分辨率下仍难以对细小的单体进行分析。②电子探针分析中对于超轻元素(Z<10)测定电压一般选择≤10 kV,但这个电压不足以充分激发其他元素的特征X射线,若采取15 kV或20 kV的较高电压,则会导致超轻元素(如C、F元素)测试误差增大。③镀碳是分析不导电样品的必需步骤,但这会导致样品表面人为增加C元素,现行《电子探针定量分析方法通则》(GB/T 15074–2008)规定可以不测喷涂导电层元素。然而,对于碳酸盐矿物来说,C是主要组成元素,样品中大量C元素的存在也会对其他元素的测定产生ZAF效应,其测试误差是不可预计的(Zhang et al.,2019;万建军等,2021)。④稀土元素具有相似的地球化学性质及相近的原子序数,其不同线系、不同级次的特征X射线之间重叠干扰严重,若不能合理选择分析线系并适当扣除重叠干扰,测试结果将显著偏高(Pyle et al.,2002;范晨子等,2015;张迪等,2019;张文兰等,2022)。
在偏光显微镜观察和扫描电镜–能谱分析的基础上,利用电子探针对赋存在金川正长花岗岩中的钙稀土氟碳酸盐矿物进行了定量分析,通过优化测试条件、校正计算C元素含量,可提供完整的钙稀土氟碳酸盐矿物成分数据,为稀土矿物的成因研究以及稀土矿产的高效开发利用提供必要支撑。
1. 样品特征
1.1 样品来源
研究样品源自金川正长花岗岩。该岩体出露于金川超大型岩浆Cu-Ni-PGE矿床18行勘探线附近,出露面积约为0. 2 km2,上部已遭剥蚀,岩体露头呈现明艳的肉红色,与区域内灰白色片麻状花岗岩(TIMS单颗粒锆石U-Pb年龄为1914±9 Ma)(修群业等,2002)及墨绿色赋矿镁铁–超镁铁岩(SHRIMP锆石U-Pb年龄为~825 Ma)(李献华等,2004)形成鲜明对比。该岩体形成于志留纪,是区域板内伸展环境下岩浆作用的产物(锆石LA-ICP-MS年龄为433.4±3.7 Ma;锆石SHRIMP年龄为425.7±2.5 Ma)(Zeng et al., 2016;张晓旭等,2021)。
1.2 钙稀土氟碳酸盐矿物的化学特征
稀土氟碳酸盐矿物是世界轻稀土矿床的主要赋存矿物(Gysi et al., 2015; Batapola et al., 2020),分为钙系列和钡系列两大系列(张培善,1998)。其中,钙系列稀土氟碳酸盐矿物具球霰石型结构,由氟碳铈矿(Bast)、氟碳钙铈矿(Par)、伦琴钙铈矿(Roe)和新奇钙铈矿(Syn,又称直氟钙铈矿)组成(Donnay et al.,1953;张培善,1998)。前人通过X射线衍射、电子选区衍射、透射电镜等技术发现了22种以氟碳铈矿和新奇钙铈矿为端元的BmSn型规则混层钙稀土氟碳酸盐矿物,识别出31种多型,认为钙-铈氟碳酸盐矿物系列中矿物衍生体的微观结构及其变化非常复杂,是由不同组分的氟碳铈矿(B)和新奇钙铈矿(S)的结构单元层在c轴方向通过不同比例堆垛方式形成的(吴秀玲等,1991,1992,1993,1996;杨光明等,1992,1993;孟大维等,1994,1996;王鲜华等,1996;杨学明等,1998;杨主明等,2002)。
虽然钙稀土氟碳酸盐矿物具有不同的晶体结构性质,但在光学显微镜下难以准确区分。借助于电子探针、扫描电镜等设备的背散射电子图像是识别不同矿物共生的较方便的手段(修迪等,2017),但要进一步准确判定这4种矿物,利用电子探针这种微区原位的定量化学成分分析是必不可少的。笔者整理了4种常见钙稀土氟碳酸盐矿物的化学成分(表1)(Donnay et al., 1953;张培善等,1998)。
Table 1. Chemical composition of four common calcium rare earth fluoro-carbonate Minerals矿物名称 英文名称 代号 理想化学式 化学成分(%) REE2O3 CaO CO2 F 氟碳铈矿 Bastnaesite B (Ce,La) [CO3]F 74.77 − 20.17 8.73 氟碳钙铈矿 Parisite BS (Ce,La)2Ca[CO3]3F2 60.97 10.42 24.58 7.07 伦琴钙铈矿 Roentgenite-Ce BS2 (Ce,La)3Ca2[CO3]5F3 57.24 13.12 25.77 6.63 新奇钙铈矿 Synchysite S (Ce,La) Ca[CO3]2F 51.25 17.62 27.67 5.97 2. 实验条件
全部实验在中国地质调查局西安地质调查中心实验测试室完成,其主要目的在于利用电子探针准确进行钙稀土氟碳酸盐矿物的微区成分分析。在电子探针分析前,利用偏光显微镜和扫描电镜对研究样品进行了观察和初步分析。在获取电子探针分析结果后,对部分分析点进行了拉曼光谱结构分析,以验证根据电子探针成分分析判断矿物种属的可靠性。
2.1 分析测试设备
岩相学观察:德国蔡司Axio 40型偏光显微镜。了解矿物特征及伴生关系。
扫描电镜-能谱分析:日本电子JSM-7500F型扫描电镜;英国牛津X-Max能谱仪。通过X射线能谱分析确定矿物类型。
电子探针分析:日本电子JXA-
8230 型电子探针。对目标矿物先进行定性分析,再选择合适的条件进行微区矿物元素组成分析,判别其矿物种属。拉曼光谱分析:英国雷尼绍inVia型激光拉曼光谱仪。分析矿物结构,验证其种属。
2.2 电子探针分析标准物质
稀土元素采用国产稀土五磷酸盐(REEP5O14)系列标准物质:La-GBW07527;Ce-GBW07528;Pr-GBW07529;Nd-GBW07530;Sm-GBW07531;Eu-X25(中国地质科学院研制);Gd-GBW07532;Y-GSB 01-1007-2003(中国地质科学院研制)。U和Th分别采用核工业北京地质研究院提供的晶质铀矿和钍石标准物质。其他元素采用美国SPI公司提供的电子探针分析标准物质(SPI#02753-AB)。具体如下:F-萤石;C-方解石;Ca-萤石;Mg-方镁石;Fe-赤铁矿;Zr-斜锆石。
2.3 电子探针分析条件
文中用电子探针波谱仪定性分析了样品中主要存在的元素,查明了重叠干扰元素的种类及含量范围,审慎选择每个元素的分析谱线。在此基础上,先后选择15 kV和20 kV加速电压,10 nA和20 nA束流,1 μm束斑直径,对部分样品区域进行预分析。分析发现,样品硬度比较低,20 kV加速电压和20 nA束流下样品损伤严重,剥蚀坑显著。综合考虑样品特性以及分析元素范围,笔者选定15 kV加速电压,10 nA束流和1 μm束斑直径,对标准物质和样品进行分析。在测试前,先进行了标准物质点分析,再在同样的条件下对样品进行点分析。各元素选择的分析晶体及相应检出限(背景计数最大偏差值平方根,1σ)见表2。
表 2 钙稀土氟碳酸盐矿物电子探针分析晶体选择及检出限Table 2. Analytical crystal selection and element detection limits for calcium rare earth fluoro-carbonate in EPMA analysis分析元素 选择晶体 检出限(10–6) 分析元素 选择晶体 检出限(10–6) F LDE1 344 Ce LiF 819 C LDE2 1654 Pr LiFH 913 Mg TAP 96 Nd LiFH 812 Fe LiF 303 Sm LiFH 871 Ca PETH 80 Eu LiFH 916 U PETH 226 Gd LiFH 972 Th PETH 206 Y TAP 272 La LiF 923 Zr PETH 233 根据定性分析结果,样品中主要富集轻稀土元素La,Ce,Nd,含少量Pr和Y,Sm、Eu、Gd等元素含量甚微。因此,微区点分析中,La、Ce和Y采用Lα线,Pr、Nd、Sm、Eu、Gd则采用Lβ线以避开其他元素谱线对其产生的严重重叠干扰。
此外,样品在分析前喷镀了20 nm厚的碳膜以保证样品的导电性,但在点分析过程中,仍将C元素作为待测元素进行分析,并参与ZAF校正。CO2含量根据校正计算获得,并加和到分析总量中(表3)。
表 3 金川正长花岗岩中钙稀土氟碳酸盐矿物电子探针分析结果表(%)Table 3. EPMA results of calcium rare earth fluoro-carbonates in Jinchuan syenogranite化学成分 点1 点2 点3 点4 点5 点6 点7 点8 点9 点10 点11 点12 实测值 F 5.97 7.83 7.10 7.18 6.29 7.91 7.37 6.85 8.29 5.63 5.61 6.94 CO2 24.34 25.68 28.83 24.66 23.17 27.26 26.37 25.14 23.55 22.03 22.25 22.18 MgO − 0.06 0.01 0.03 0.02 0.10 0.02 − 0.02 − 0.02 0.02 Gd2O3 0.31 0.22 1.84 1.82 1.66 − 0.59 0.42 0.64 0.31 − − Eu2O3 − 0.26 − − − − − − − − − 0.11 FeO 3.02 8.23 0.35 1.95 1.48 1.87 1.17 0.62 2.86 0.55 3.03 3.03 Sm2O3 0.64 0.10 40.88 0.74 0.47 0.59 1.19 0.47 1.11 1.03 0.13 0.92 Pr2O3 2.04 2.09 3.11 2.19 2.74 2.03 2.23 2.17 2.58 2.57 2.28 2.52 Ce2O3 26.26 23.80 24.01 20.86 22.98 21.69 21.43 25.14 22.58 24.23 22.91 24.53 La2O3 15.21 11.75 9.07 15.31 13.10 11.48 10.09 12.87 7.91 11.51 11.97 10.97 CaO 12.19 8.98 15.62 15.83 15.91 18.59 18.75 18.55 17.53 19.04 16.32 17.17 UO2 0.04 0.07 − 0.04 0.08 0.15 − 0.02 0.10 0.05 0.02 0.09 ThO2 2.54 4.61 2.23 4.44 3.42 2.19 1.56 1.03 3.41 1.75 2.31 0.60 Nd2O3 7.22 6.85 12.74 5.98 7.47 6.61 9.62 6.33 10.37 8.23 7.92 8.24 ZrO2 − 0.06 − 0.06 − − − − 0.06 0.02 0.07 − Y2O3 0.63 0.24 1.03 0.45 0.39 0.55 1.55 0.43 0.81 0.73 0.48 1.12 Total 97.88 97.52 103.81 98.52 96.52 97.69 98.83 97.16 98.33 95.30 92.99 95.50 ∑REE2O3 52.29 45.30 52.66 47.35 48.81 42.95 46.70 47.84 46.00 48.61 45.74 48.41 理论分子式法 CO21 25.90 25.09 26.97 27.10 27.05 27.79 28.34 27.95 28.48 28.65 27.38 28.52 Total1 99.44 96.93 101.95 100.96 100.40 98.22 100.80 99.97 103.26 101.92 98.12 101.85 电荷平衡法 CO22 26.45 22.89 26.18 25.90 26.88 24.79 26.38 26.62 25.66 28.96 27.44 27.14 Total2 99.99 94.72 101.16 99.76 100.24 95.23 98.84 98.64 100.44 102.24 98.18 100.46 矿物种属判别 Par/Roe Par/Roe Syn Syn Syn Syn Syn Syn Syn Syn Syn Syn 注:−表示低于检出限; 上角标1与 2分别表示按照理论分子式法(方法1)与电荷平衡法(方法2)计算得到的值。 3. 结果与讨论
3.1 岩矿鉴定及扫描电镜分析结果
金川正长花岗岩样品中主要矿物组合为:条纹长石(55±%)、斜长石(10±%)、石英(20±%)和黑云母(10±%),此外有少量的磁铁矿(3%~4%)、赤铁矿(1%~2%)、锆石、独居石、磷灰石、金红石、萤石、榍石、方解石、钙稀土氟碳酸盐等副矿物(图1a~图1c)。条纹长石为不规则粒状,0.25~2.5 mm,主晶钾长石(Or=90%~96%),客晶钠长石(Ab≥95%)呈细脉状,有时可见聚片双晶。斜长石为板状钠长石,0.2~0.5 mm,双晶常见。石英为他形粒状,0. 25~1. 2 mm。黑云母多已叶绿泥石化。
图 1 样品中钙稀土氟碳酸盐矿物的特征a.金川正长花岗岩偏光显微镜下特征(正交偏光,×5);b、c. 金川正长花岗岩偏光显微镜下特征(单偏光,×20);d. 样品背散射电子图及电子探针分析点位1-12;e. 样品中独居石X射线能谱图;f. 钙稀土氟碳酸盐矿物X射线能谱图;Kf. 碱性长石;Pl. 斜长石(偏光显微镜鉴定);Ab. 钠长石(X射线能谱鉴定);Qtz. 石英;Bi. 黑云母;Chl. 绿泥石;Hem. 赤铁矿;Fl. 萤石;Rt. 金红石; Cal. 方解石;Zrn. 锆石;Mnz. 独居石;REEflc-(Ce) . 钙稀土氟碳酸盐矿物;Apa. 磷灰石Figure 1. Characteristics of calcium rare earth fluoro-carbonate in sample钙稀土氟碳酸盐矿物呈浅棕色(图1c),正高突起,高级白干涉色,充填于长石、石英、黑云母等矿物之间,与磷灰石、独居石、方解石、金红石、萤石等矿物密切共生(图1c~图1e)。在钙稀土氟碳酸盐矿物中,有大量微细针状、放射状矿物(背散射图像亮白)沿晶体(背散射图像灰白)生长面及矿物裂隙和边缘分布(图1d)。X射线能谱分析表明,亮白者为低钙的钙稀土氟碳酸盐,灰白者为高钙的钙稀土氟碳酸盐(图1f)。
3.2 电子探针分析结果
电子探针分析结果(表3)表明,金川正长花岗岩钙稀土氟碳酸盐矿物中F含量为5.61%~8.29%,CO2含量为22.03%~28.83%,CaO含量为8.98%~19.04%,La2O3含量为7.91%~15.31%,Ce2O3含量为20.86%~326.26%,Nd2O3含量为5.98%~12.74%,∑REE2O3含量为42.95%~52.66%,分析总和92.99%~103.81%。显然,12个分析点中只有3点的分析总和满足电子探针定量分析总和为98%~102%的要求。单纯从数据来看,这个分析质量并不满意。
如前文所述,对钙稀土氟碳酸盐矿物进行定量分析存在诸多困难。通过反复摸索测试条件,优化F元素测试条件,选择合理的谱线以避免不同稀土元素之间谱峰重叠的影响等,可显著提高F和稀土元素的测试质量。但是,C元素的测定是在样品表面喷碳后进行的,人为带入的C元素会影响C元素含量的准确性,其测定结果被直接应用显然不合理。因此,笔者探讨对C元素的含量进行理论计算,获得的CO2含量加和到样品其他元素组成中,以此来考察样品分析结果的可靠性,并为矿物种属的鉴别提供直接数据。
3.3 C元素含量的校正计算
本研究采取了两种方式进行C元素含量校正计算,分别是理论分子式法(方法1)和电荷平衡法(方法2)。
方法1(理论分子式法):根据前人研究所得,钙稀土氟碳酸盐矿物系列中矿物衍生体是由不同组分的氟碳铈矿(B)和新奇钙铈矿(S)的结构单元层在c轴方向通过不同比例堆垛方式形成的(吴秀玲等,1991,1992,1993,1996;杨光明等,1992,1993;孟大维等,1994,1996;杨学明等,1998;杨主明等,2002)。理论分子式可表示为m REE [CO3]F·nCa [CO3],m和n均为正整数。据此推测,REE元素以及类质同象置换REE位置的U、Th、Zr等元素,与C元素呈1∶1摩尔比存在;Ca以及类质同象置换Ca的Mg、Fe等元素,也与C元素呈1∶1摩尔比存在。因此,可以按C摩尔数=REE摩尔数+U摩尔数+Th摩尔数+Zr摩尔数+Ca摩尔数+Mg摩尔数+Fe摩尔数。据此计算所得样品中CO2含量为25.09%~28.65%,加和到样品全分析中总和为96.93%~103.26%。在12个分析点中,有10点的总和处于98%~102%之间,满足电子探针定量分析总和的允许范围。
方法2(电荷平衡法):钙稀土氟碳酸盐矿物(m REE [CO3]F·nCa [CO3],m和n均为正整数)中,阴离子(团)为F−和CO32−,则全部阳离子电荷之和减去F−电荷,为CO32−所贡献的电荷,C摩尔数=1/2(CO32−)摩尔数。据此计算样品中CO2含量为22.89%~28.96%,加和到样品全分析中总和为94.72%~102.24%。在12个分析点中,有9点的分析总和处于98%~102%之间。
通过对比CO2含量的实测值、理论分子式法计算值、电荷平衡法计算值(图2,表3),发现CO2含量的实测值并不一定因为镀碳引入的C元素增加而显著高于计算值。相反,12个分析点中9个分析点的CO2含量实测值低于计算值,这也导致分析点的总和低于98%而影响到数据的可靠性。这表明,超轻元素C的电子探针准确分析是困难的,它对其他元素的ZAF影响也是深远而复杂的,测试中不测C元素的方法并不妥,对C元素含量高的样品应直接进行C元素含量测定,至少也应给定预估C元素含量使C元素参与其他元素的ZAF校正。
对比理论分子式法和电荷平衡法计算得到的CO2含量值,发现在多数情况下,两种方法的结果比较接近。出现较大分歧的情况发生在F元素含量高的样品分析点中。这是因为在电荷平衡法中,F元素含量参与了CO2含量的计算,如果其存在测试误差,必将传递到CO2含量的计算中。因而,笔者认为理论分子式法是计算钙稀土氟碳酸盐矿物中CO2含量的较理想方法。
3.4 样品中矿物种属鉴别
本研究中钙稀土氟碳酸盐矿物的电子探针分析结果较之白云鄂博碳酸岩(杨学明等,1998)和牦牛坪碱性花岗岩(杨主明等,2002)中产出的钙稀土氟碳酸盐矿物显著富CaO、CO2、ThO2而低稀土元素(∑REE2O3),与样品中含一定量Th(ThO2含量为0.60%~4.61%)和微量U、Zr有关。由于Th、U、Zr与稀土元素具有相似的地球化学性质,在矿物晶格中类质同象置换REE,故而该样品中REE2O3总量略低。这也表明研究样品中钙稀土氟碳酸盐矿物的种类有所不同。
根据样品实测的F、CaO、∑REE2O3含量以及以理论分子式法计算的CO2含量,对12个分析点的数据进行分析,判别矿物种属(表3)。结果显示,部分分析点F含量的测定仍有可能存在较大偏差,常见钙稀土氟碳酸盐矿物的F含量应不大于7.07%(张培善,1998)。因此,在进行矿物判别时,对F含量过高的分析点,以CaO、∑REE2O3和CO2含量为主要依据。也有部分分析点的∑REE2O3含量低于(点2和点6)或高于(点3)理论值,除了Th、U、Zr类质同象置换外,也不排除测试误差较大的因素。误差来自两个方面,首先是REE测试的仪器误差,这是不可避免的;另一方面,前文已提及,该样品中有大量针状、放射状微细矿物,能谱分析显示其为低钙的钙稀土氟碳酸盐矿物,很可能为氟碳钙铈矿(Par)或伦琴钙铈矿(Roe)。该样品在电子束作用下可观察到显著的剥蚀坑,在50 mW激光束下就可观察到热损伤及结构退化,表明该样品硬度比较低,电子探针分析的电子束实际作用范围很可能大于设置的电子束束斑直径1 um,这就导致点分析中有可能获得的是两种不同矿物相的混合结果。
经与3种主要的钙稀土氟碳酸盐矿物理论分子式对比(表1),表明分析样品主要为新奇钙铈矿,拉曼光谱分析结果也支持这一结论(图3),少数点为氟碳钙铈矿或伦琴钙铈矿。但不能排除部分分析点是两种矿物的混合或者其它BmSn混层结构矿物的可能性。
图 3 钙稀土氟碳酸盐矿物的拉曼光谱特征Bast. 氟碳铈矿;Par. 氟碳钙铈矿;Syn. 新奇钙铈矿;Sample. 本文研究样品BSE图片中灰白色高钙部分;Bast、Par和Syn图谱来自RRUFF数据库(https://rruff.info/),对应矿物编号分别为R050409,R050308和R060210Figure 3. Raman spectra of calcium rare earth fluoro-carbonates3.5 样品中矿物成因简析
含REE矿物的成因一直是矿物学家和矿床学家关注的焦点。REE氟碳酸盐矿物是LREE的主要来源,其成因研究更具有重要的科学意义和经济意义。前人对较常见的氟碳铈矿(Bast)与氟碳钙铈矿(Par)开展了一定的实验矿物学研究和计算,但关于新奇钙铈矿的研究则相对要少得多。黄舜华等(1986)实验表明,氟碳铈矿形成于pH>6.7、温度小于400 ℃和较宽的压力条件下,碱性条件下生成的晶体晶胞更大。在130~400 ℃,pH=6.7~10.0条件下,体系中有F、P、CO2及∑Ce共存时,就可以同时生成氟碳铈矿和独居石,氟碳铈矿与独居石生成比例取决于F−和PO43−离子比值。解港等(2018)实验发现,氟碳铈矿形成于F−离子浓度不太高的条件下,高F−离子浓度下会有氟铈矿同时生成。Williams-Jones等(1992)研究认为,钙稀土氟碳酸盐矿物都形成于低温条件下,氟碳钙铈矿在高温下(<620 ℃)反应生成氟碳铈矿和方解石,新奇钙铈矿形成于低压条件。Gysi等(2015)测得天然氟碳铈矿在大于612 K时分解为氟铈矿,氟碳钙铈矿在大于664 K时分解为REE氟氧化物、CaCO3和CO2。Migdisov等(2016)结合实验资料与热力学计算研究指出,REE在热液运移与沉淀过程中,氯化物和硫酸盐是主要的运输配位体,起重要作用的沉淀配位体很可能是氟化物、碳酸盐和磷酸盐。LREE与HREE的分异,不仅受控于结晶分异,还受控于热液分异。总之,包括新奇钙铈矿在内的钙稀土氟碳酸盐矿物形成于低温(<400 ℃)、低压和较高的pH条件是得到广泛认可的。
借鉴前人关于钙稀土氟碳酸盐矿物的研究认识,根据本研究样品中矿物共生关系,推测在金川正长花岗岩岩浆作用晚期,岩浆分异出的富F−、CO2、PO43−、Ca2+和REE3+流体,在早期结晶的长石与石英颗粒间隙先后结晶生成独居石和磷灰石。当体系温度进一步降低(<400 ℃),在富F−和CO2挥发份的作用下,钙稀土氟碳酸盐矿物、萤石、方解石等沿着磷灰石的边缘和裂隙发生交代反应而晶出。这种现象与Zheng等(2021)在西藏冕宁–德昌稀土矿带观察到的现象相似,与Beland等(2021)在加拿大魁北克Ashram 稀土矿床中观察到的一致。因流体中F−和CO2挥发份随着矿物晶出而动态变化,故本研究样品中同时有高钙和低钙稀土氟碳酸盐矿物交生而成,与Donnay等(1953)进行的大量的天然矿物样品观察分析结果一致。
4. 结论
(1)通过测试条件优选、C元素含量直接测定并校正计算,完善了利用电子探针准确分析钙稀土氟碳酸盐矿物化学成分的定量分析方法,可更好服务于稀土矿物的成因研究以及稀土矿产的高效开发利用。
(2)采取两种方法对样品中C元素含量进行了校正计算,理论分子式法计算结果更合理,也更符合定量分析的要求,为矿物种属的准确鉴别奠定了基础。对矿物中C元素含量直接进行测定的电子探针分析方法表明,超轻元素C的电子探针准确分析是困难的,它对其他元素的ZAF影响也是深远而复杂的,C元素含量高的样品测试中不测C元素的方法不合理。
(3)对赋存在金川正长花岗岩中的钙稀土氟碳酸盐矿物化学成分的电子探针分析和结构拉曼光谱分析表明,该矿物组合存在多种物相,主要为新奇钙铈矿,呈微细针状分布于新奇钙铈矿中的为氟碳钙铈矿或伦琴钙铈矿。由于本次实验所用电子探针分析空间分辨率的限制,以及样品本身硬度低的特性,不排除部分分析点的结果是两种以上矿物的混合结果的可能性。微细针状矿物的准确定名有待进一步研究。
(4)结合矿物之间的共生关系,推测金川正长花岗岩中钙稀土氟碳酸盐矿物为岩浆作用晚期,富F−、CO2、REE3+流体与磷灰石交代反应生成。
致谢:匿名评审专家为本文提供了宝贵意见和建议,在此深表感谢!
-
图 1 纳米比亚达马拉造山带地质特征图(据Miller,1983b;Osterhus et al.,2014修改)
Figure 1. Geological map of the Damara orogeny in Namibia
图 2 达马拉造山带形成过程示意图(据Miller,2008;Anthonissen,2009修改)
Figure 2. The formation process of Damara orogenic belt
图 3 达马拉造山带铀矿成因模式图(据Corvino et al.,2013修改)
Figure 3. Genetic model of uranium deposits in the Damara orogenic belt
图 4 Husab铀矿Ⅰ号矿体剖面示意图(据荣建锋等,2016修改)
Figure 4. Geological section of Zone 1 in Huseb uranium deposit
图 5 Rössing铀矿地质图(据Berning et al.,1976修改)
Figure 5. The geological map of Rössing mine
表 1 达马拉造山带内主要铀矿产出层位特征表
Table 1 Characteristics of main uranium mineralization horizons in Damara orogenic belt
铀矿床 矿化白岗岩产出层位 白岗岩类型 矿化白岗岩类型 Rössing Khan组与Rössing组接触带及其组内 C~E D Husab Khan组与Rössing组接触带及Rössing组内部,少量分布于Chuos组内部 A~F D、E Etango Etusis组与Khan组及Khan组与Rössing组接触带 A~F D、E Hildenhof Khan组与Chuos组及Khan组与Rössing组接触带;Khan组及Rössing组内部 C~F D、E Ida Dome Khan组与Rössing组接触带及其各自组内 A~E D、E Holland’s Dome Khan组与Rössing组接触带,Khan组内部 C~E D、E Valencia Khan组与Rössing组及Karibib组与Kuiseb组接触带 A~F D、E Goanikontes Etusis组与Khan组,Khan组与Rössing组接触带,Khan组内部 B~F D、E -
蔡煜琦, 张金带, 李子颖, 等. 中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6): 1051-1069 doi: 10.3969/j.issn.0001-5717.2015.06.005 CAI Yuqi, ZHANG Jindai, LI Ziying, et al. Outline of uranium resources characteristics and metallogenetic regularity in China[J]. Acta Geologica Sinica, 2015, 89(6): 1051-1069. doi: 10.3969/j.issn.0001-5717.2015.06.005
陈军强, 曾威, 王佳营, 等. 全球和我国铀资源供需形势[J]. 华北地质, 2021, 44(2): 25-34 CHEN Junqiang, ZENG Wei, WANG Jiaying, et al. Analysis of supply and demand situation of uranium resources in the world and China[J]. North China Geology, 2021, 44(2): 25-34.
陈金勇, 范洪海, 陈东欢, 等. 纳米比亚欢乐谷地区白岗岩型铀矿矿物特征研究[J]. 地质论评, 2013, 59(5): 962-970 doi: 10.16509/j.georeview.2013.05.007 CHEN Jinyong, FAN Honghai, CHEN Donghuan, et al. Research on the Characteristics of Uranium Minerals of Alaskite-type Uranium Deposit in the Gaudeanmus Area, Namibia[J]. Geological Review, 2013, 59(5): 962-970. doi: 10.16509/j.georeview.2013.05.007
陈金勇, 范洪海, 陈东欢, 等. 纳米比亚欢乐谷地区白岗岩型铀矿矿石结构构造及其成因意义[J]. 矿物岩石地球化学通报, 2014, 33(1): 91-97 doi: 10.3969/j.issn.1007-2802.2014.01.011 CHEN Jinyong, FAN Honghai, CHEN Donghuan, et al. Texture and Structure of ore and genesis of the alaskite-type uranium deposit in the Gaudeanmus area, Namibia[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1): 91-97. doi: 10.3969/j.issn.1007-2802.2014.01.011
陈金勇, 范洪海, 王生云, 等. 纳米比亚欢乐谷地区白岗岩型铀矿成矿机理剖析[J]. 高校地质学报, 2017, 23(2): 202-212 doi: 10.16108/j.issn1006-7493.2016222 CHEN Jinyong, FAN Honghai, WANG Shengyun, et al. Discussion on mineralization mechanism of leucogranite-type uranium deposit in Gaudeanmus area, Namibia[J]. Geological Journal of China Universities, 2017, 23(2): 202-212. doi: 10.16108/j.issn1006-7493.2016222
陈秀法, 陈喜峰, 张振芳, 等. 非洲铀矿资源分布、地质特征与勘查开发[J]. 地质与勘探, 2021, 57(6): 1191-1202. CHEN Xiufa, CHEN Xifeng, ZHANG Zhenfang, et al. Distribution, geological features, exploration and development of uranium resources in Africa[J]. Geology and Exploration, 2021, 57(6): 1191-1202.
范洪海, 陈金勇, 顾大钊, 等. 纳米比亚欢乐谷地区白岗岩型铀矿流体包裹体特征及成矿作用[J]. 矿床地质, 2015, 34(1): 189-199 FAN Honghai, CHEN Jinyong, GU Dazhao, et al. Fluid inclusions and metallogenesis of alaskite-type uranium deposits in Gaudeanmus area, Namibia[J]. Mineral Deposits, 2015, 34(1): 189-199.
高阳, 范洪海, 陈东欢, 等. 白岗岩型铀矿床: 构造和岩浆作用耦合的产物[J]. 地质与勘探, 2012, 48(5): 1058-1066 GAO Yang, FAN Honghai, CHEN Donghuan, et al. The alaskite-type uranium deposit: A product of coupling of tectonism with magmatism[J]. Geology and Exploration, 2012, 48(5): 1058-1066.
耿涛, 郭培虹, 冯治汉, 等. 北秦岭华阳川地区复杂地形条件下隐伏硬岩型铀矿的地球物理勘查方法[J]. 西北地质, 2023, 56(2): 225−244. GENG Tao, GUO Peihong, FENG Zhihan, et al. Geophysical Exploration Eethod of Concealed Hard Rock Type Uranium Deposit with Complex Topographic Conditions in Huayangchuan Area, North Qinling Mountains[J]. Northwestern Geology, 2023, 56(2): 225−244.
顾大钊, 范洪海, 舒良树, 等. 纳米比亚欢乐谷地区构造演化对铀成矿的制约[J]. 地质论评, 2016, 62(1): 83-93 doi: 10.16509/j.georeview.2016.01.007 GU Dazhao, FAN Honghai, SHU Liangshu, et al. Structural evolution and its restriction on uranium mineralization in Gaudeanmus area, Namibia[J]. Geological Review, 2016, 62(1): 83-93. doi: 10.16509/j.georeview.2016.01.007
韩军, 陈金勇, 范洪海, 等. 纳米比亚罗辛地区白岗岩型铀矿成因研究[J]. 地质学报, 2021, 95(4): 1019-1028 doi: 10.3969/j.issn.0001-5717.2021.04.006 HAN Jun, CHEN Jinyong, FAN Honghai, et al. Research on metallogenesis of the alaskite-type uranium deposits in the Rossing area, Namibia[J]. Acta Geological Sinica, 2021, 95(4): 1019-1028. doi: 10.3969/j.issn.0001-5717.2021.04.006
黄冉笑, 袁国礼, 王果胜, 等. 纳米比亚湖山铀矿床中黑云母伟晶岩型矿石特征及铀矿化机制[J]. 岩石学报, 2021, 37(5): 1587-1610 doi: 10.18654/1000-0569/2021.05.15 HUANG Ranxiao, YUAN Guoli, WANG Guosheng, et al. Characteristics of biotite-pegmatitic ore and metallogenic mechanism of uranium in the Husab uranium deposit, Namibia[J]. Acta Petrologica Sinica, 2021, 37(5): 1587-1610. doi: 10.18654/1000-0569/2021.05.15
黄冉笑, 王果胜, 袁国礼, 等. 伟晶质岩浆的同化混染与分离结晶(AFC)作用及铀成矿效应: 以纳米比亚湖山铀矿为例[J]. 地学前缘, 2022, 29(1): 377-402 HUANG Ranxiao, WANG Guosheng, YUAN Guoli, et al. Assimilation-fractional crystallization (AFC) of pegmatitic magma and its implications for uranium mineralization: A case study of the Husab uranium deposit, Namibia[J]. Earth Science Frontiers, 2022, 29(1): 377-402.
刘晨阳. 纳米比亚湖山铀矿矿床地质特征及成因探讨[D]. 成都: 成都理工大学, 2016 LIU Chenyang. Mineral deposit geological characteristics and genesis of Husab Mine, Namibia[D]. Chengdu: Chengdu University of Technology, 2016.
宁福俊, 王杰, 任军平, 等. 纳米比亚达马拉构造带演化和成矿研究综述[J]. 地质调查与研究, 2018, 41(2): 113-120 doi: 10.3969/j.issn.1672-4135.2018.02.006 NING Fujun, WANG Jie, REN Junping, et al. A Preliminary Study on the Geodynamic Evolution and Mineralization in Damara Belt, Namibia[J]. Geological Survey and Research, 2018, 41(2): 113-120. doi: 10.3969/j.issn.1672-4135.2018.02.006
荣建锋, 林泳钊, 王照良. 纳米比亚湖山铀矿床地质概况. 四川地质学报, 2016, 36(1): 101-106 RONG Jianfeng, LIN Yongzhao, WANG Zhaoliang. Geologic features of the Husab uranium deposit, Namibia[J]. Acta Geologica Sichuan, 2016, 36(1): 101-106.
宋继叶, 蔡煜琦, 林双幸, 等. 非洲铀资源勘查开发动态与经济社会形势分析[J]. 铀矿地质, 2022, 38(2): 283-298 doi: 10.3969/j.issn.1000-0658.2022.38.025 SONG Jiye, CAI Yuqi, LIN Shuangxing, et al. Analysis on the exploration and development trends of uranium resources and economic-social situation in Africa[J]. Uranium Geology, 2022, 38(2): 283-298. doi: 10.3969/j.issn.1000-0658.2022.38.025
孙宏伟, 王杰, 任军平, 等. 中非加丹加-赞比亚多金属成矿带成矿演化及找矿潜力分析[J]. 地质科技情报, 2019, 38(1): 121-131 doi: 10.19509/j.cnki.dzkq.2019.0113 SUN Hongwei, WANG Jie, REN Junping, et al. Metallogenic Evolution and Prospecting Potential of Katanga-Zambia Polymetallic Metallogenic Belt in Central Africa[J]. Geological Science and Technology Information, 2019, 38(1): 121-131. doi: 10.19509/j.cnki.dzkq.2019.0113
孙宏伟, 王杰, 任军平, 等. 中非卢菲里安地区铀矿化特征与资源潜力分析[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1660-1674 doi: 10.13278/j.cnki.jjuese.20190058 SUN Hongwei, WANG Jie, REN Junping, et al. Analysis of uranium mineralization characteristics and resource potential in Lufilian area, Central Africa[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6): 1660-1674. doi: 10.13278/j.cnki.jjuese.20190058
孙宏伟, 王杰, 任军平, 等. 南部非洲花岗岩型与伟晶岩型钽矿床地质特征[J]. 地质论评, 2021, 67(1): 265-278 doi: 10.16509/j.georeview.2021.01.022 SUN Hongwei, WANG Jie, REN Junping, et al. Geological characteristics analysis of granite type and pegmatite type tantalum deposits in southern Africa[J]. Geological Review, 2021, 67(1): 265-278. doi: 10.16509/j.georeview.2021.01.022
唐超, 邵龙义, 邢万里. 中国铀矿资源安全分析[J]. 中国矿业, 2017, 26(5): 1-7 doi: 10.3969/j.issn.1004-4051.2017.05.001 TANG Chao, SHAO Longyi, XING Wanli. Analysis of safety problem of China's uranium resources[J]. China Mining Magazine, 2017, 26(5): 1-7. doi: 10.3969/j.issn.1004-4051.2017.05.001
王生云, 范洪海, 陈金勇, 等. 纳米比亚欢乐谷地区斑状花岗岩成因及构造背景[J]. 世界地质, 2013, 32(4): 773-782 doi: 10.3969/j.issn.1004-5589.2013.04.015 WANG Shengyun, FAN Honghai, CHEN Jinyong, et al. Petrogenesis and tectonic setting of prophyritic granites in Gaudeanmus area, Namibia[J]. Global Geology, 2013, 32(4): 773-782. doi: 10.3969/j.issn.1004-5589.2013.04.015
吴涛涛, 周永恒, 陈聪, 等. 蒙古国铀矿地质特征及资源潜力[J]. 地质与勘探, 2018, 54(6): 1247-1255 doi: 10.13712/j.cnki.dzykt.2018.06.018 WU Taotao, ZHOU Yongheng, CHEN Cong, et al. Geological features and resource potential of uranium deposits in Mongolia[J]. Geology and Exploration, 2018, 54(6): 1247-1255. doi: 10.13712/j.cnki.dzykt.2018.06.018
许康康, 孙凯, 何胜飞, 等. 赞比亚西北省Solwezi地区石榴云母片岩的碎屑锆石U-Pb年龄及其地质意义[J]. 华北地质, 2021, 44(3): 1-3 XU Kangkang, SUN Kai, HE Shengfei, et al. Detrital zircon U-Pb dating of the garnet mica schist and its geological implications in the Solwezi area, Northwestern Zambia[J]. North China Geology, 2021, 44(3): 1-3.
张金带, 李子颖, 蔡煜琦, 等. 全国铀资源潜力评价工作进展与主要成果[J]. 铀矿地质, 2012, 26(6): 321-326 doi: 10.3969/j.issn.1000-0658.2012.06.001 ZHANG Jindai, LI Ziying, CAI Yuqi, et al. The main advance and achievements in the potential Evaluation of Uranium Resourcein China[J]. Uranium Geology, 2012, 26(6): 321-326. doi: 10.3969/j.issn.1000-0658.2012.06.001
张晓, 蔡煜琦, 宋继叶等. 亚洲铀资源勘查开发动态与核能发展战略[J]. 铀矿地质, 2023, 39(1): 84-99 doi: 10.3969/j.issn.1000-0658.2023.39.007 ZHANG Xiao, CAI Yuqi, SONG Jiye, et al. Uranium resources exploration activities and nuclear energy development strategy in Asia[J]. Uranium Geology, 2023, 39(1): 84-99. doi: 10.3969/j.issn.1000-0658.2023.39.007
张怀峰, 陆建军. 纳米比亚湖山铀矿地质特征、控矿因素及其成因探讨[J]. 世界地质, 2018, 37(1): 105-123 doi: 10.3969/j.issn.1004-5589.2018.01.009 ZHANG Huaifeng, LU Jianjun. Geological characteristics, ore-controlling factors and genesis analysis of Husab uranium deposit in Namibia[J]. Global Geology, 2018, 37(1): 105-123. doi: 10.3969/j.issn.1004-5589.2018.01.009
张晓康, 聂凤军, 吴科税, 等. 纳米比亚罗辛大型白岗岩型铀矿床[J]. 矿床地质, 2015, 34(2): 423-426. 赵希刚, 朱西养, 杨永记, 等. 纳米比亚达马拉造山带白岗岩型铀矿成矿规律及找矿思路[J]. 铀矿地质, 2015, 31(4): 445−452 ZHAO Xigang, ZHU Xiyang, YANG Yongji, et al. Metallogenetic regulation of alaskite-type uranium deposit and its prospecting method for Damala orogenic belt in Namibia[J]. Uranium Geology, 31(4): 445-452.
朱清, 顾本杰, 邹谢华, 等. 试论中非矿业合作的机遇与挑战[J]. 西北地质, 2023, 56(1): 174-185. ZHU Qing, GU Benjie, ZOU Xiehua, et al. On the Opportunities and Challenges of China–Africa Mining Cooperation[J]. Northwestern Geology, 2023, 56(1): 174−185.
左立波, 任军平, 王杰, 等. 非洲中南部铀矿床研究现状及资源潜力分析[J]. 地质科技情报, 2017, 36(1): 128-139 doi: 10.19509/j.cnki.dzkq.2017.0116 ZUO Libo, REN Junping, WANG Jie, et al. Research status and potential analysis of uranium deposits in central and southern Africa[J]. Geological science and technology information, 2017, 36(1): 128-139. doi: 10.19509/j.cnki.dzkq.2017.0116
Anderson H, Nash C. Integrated lithostructural mapping of the Rössing area, Namibia using high resolution aeromagnetic, radiometric Landsat data and aerial photographs[J]. Exploration Geophysics, 1997, 28: 185-191. doi: 10.1071/EG997185
Anthonissen C J. The mid-crustal architecture of a continental arc-a transect through the South Central Zone of the Pan-African Damara Belt, Namibia[D]. South Africa, University of Stellenbosch, 2009.
Abrahams I. The nature, geology and spatial distribution of uranium minerals in the SK anomaly area, Rossing Mine, Namibia[D]. South Africa, Univeristy of the Witwatersrand, 2009.
Basson I, Greenway G. The Rössing Uranium Deposit: A product of late-kinematic localization of uraniferous granites in the Central Zone of the Damara Orogen, Namibia[J]. Journal of African Earth Sciences, 2004, 38: 413-435. doi: 10.1016/j.jafrearsci.2004.04.004
Briqueu L, Lancelot J R, Valois J P, et al. U-Pb radiochronology and genesis of an uraniferous ore type: alaskites and their country rocks in Goanikontes, Namibia[J]. Bulletin Centrale De Recherche Exploration Production, 1980, 4: 759-811.
Brynard H J, Andreoli M A G. An overview of the regional geological and structural setting of the uraniferous granites in the Damara Orogen, Namibia[J]. Proceedings of a Technical Committee Meeting on Recognition of Uranium Provinces, IAEA, Vienna, 1988, 195-212.
Berning J, Cooke R, Hiemstra S A, et al. The Rössing uranium deposit, Southwest Africa[J]. Economic Geology, 1976, 71: 351-368. doi: 10.2113/gsecongeo.71.1.351
Barnes J F H, Hambleton-Jones B B. A review of the geological and geochemical setting of uraniferous granites in the Damara Orogen[R]. Lecture to the IAEA working group meeting, Nancy, France, Report GEA525, Pelindaba, Nuclear Development Corporation of South Africa, 1978.
Corvino A F, Pretorius L E. Uraniferous leucogranites south of Ida Dome, central Damara Belt, Namibia: Morphology, distribution and mineralisation[J]. Journal of African Earth Sciences, 2013, 80: 60-73. doi: 10.1016/j.jafrearsci.2013.01.003
Cuney M, Kyser T K. Recentand not-so-recent developments in uranium deposits and implication for exploration[M]. Quebec, Mineralogical Association of Canada, 2008.
Coward M P. The tectonic history of the Damaran Belt-evolution of the Damara Orogen of South West Africa[J]. Special Publication of the Geological Society of South Africa, 1983, 11: 409-421.
Chakraborty T, Kankuzi C F , Glodny J, et al. The timing and tectonic context of Pan-African gem bearing pegmatites in Malawi: Evidence from Rb-Sr and U-Pb geochronology[J]. Journal of African Earth Sciences, 2023, 197: 104750. doi: 10.1016/j.jafrearsci.2022.104750
Corner B. An interpretation of the aeromagnetic data covering the western portion of the Damara Orogen in South West Africa/Namibia[J]. Geological Society of South Africa, Special Publication, 1983, 11: 339-354.
Cross A, Jaireth S, Rapp R, et al. Reconnaissancestyle EPMA chemical U-Th-Pb dating of uraninite[J]. Australian Journal of Earth Sciences, 2009, 58(6): 675-683.
Downing K N, Coward M P. The Okahandja Lineament and its significance for Damara Tectonics in Namibia[J]. Geologisch Rundschau, 1981, 70: 972-1000. doi: 10.1007/BF01820175
FAN H H, CHEN J Y, WANG S Y, et al. Genesis and uranium sources of leucogranite-hosted uranium deposits in the Gaudeanmus area, Central Damara Belt, Namibia: study of element and Nd isotope geochemistry[J]. Acta Geologica Sinica-English Edition, 2017, 91(6): 2126-2137. doi: 10.1111/1755-6724.13453
Freemantle G G. Petrographic, mineralogical and geochemical characterisation of granite-hosted uranium deposits of the central Damara orogeny, Namibia[D]. South Africa, University of the Witwatersrand Johannesburg, 2010.
Goscombe B D, Foster D A, Gray D, et al. The evolution of the Damara orogenic system: a record of west Gondwana assembly and crustal response[J]. Geology of Southwest Gondwana, 2018, 303-352.
Goscombe B D, Gray D, Hand M. Variation in Metamorphic Style along the Northern Margin of the Damara Orogen, Namibia[J]. Journal of Petrology, 2004, 45(6): 1261-1295. doi: 10.1093/petrology/egh013
Goscombe B D, Gray D, Hand M. Extrusional tectonics in the core of a transpressional orogen: the Kaoko belt, Namibia[J]. Journal of Petrology, 2005, 46(6): 1203-1241. doi: 10.1093/petrology/egi014
Grantham G H, Maboko M, Eglington B M. A review of the evolution of the Mozambique Belt and implications for the amalgamation and dispersal of Rodinia and Gondwana[J]. Special Publication of the Geological Society of South Africa, 2003, 206: 401-425. doi: 10.1144/GSL.SP.2003.206.01.19
Grantham G H, Kramers J D, Eglington B, et al. The Ediacarian-Cambrian uplift history of western dronning Maud Land: new 40Ar-39Ar and Sr/Nd data from Sverdrupfjella and Kirwanveggan, the source of the Urfjell group and tectonic evolution of dronning Maud Land within the Kuunga orogeny and Gondwana amalgamation[J]. Precambrian Research, 2019, 333: 105444. doi: 10.1016/j.precamres.2019.105444
Haack U, Hoefs J, Gohn E. Constraints on the origin of Damaran granites by Rb/Sr and delta 18O data[J]. Contributions to Mineralogy and Petrology, 1982, 79: 279-289. doi: 10.1007/BF00371519
Hartmann O, Hoffer E, Haack U. Regional metamorphism in the Damara Orogen: interaction of crustal motion and heat transfer[J]. Geological Society South Africa, Special Publication, 1983, 11: 233-241.
Henry G, Clendenin C W, Stannistreet I G, et al. Multiple detachment model for the early rifting stage of the Late Proterozoic Damara orogen in Namibia[J]. Geology, 1990, 18: 67-71.
Hoffmann K H, Hawkins D P, Isachsen C E, et al. Precise U-Pb zircon ages for early Damaran magmatism in the Summas Mountains and Welwitschiainlier, northern Damara belt, Namibia[J]. Communications Geological Survey of Namibia, 1996, 11: 47-52.
Hoffmann K H, Condon D J, Bowring S A, et al. U-Pb zircon date from the Neoproterzoic Ghaub Formation, Namibia: Constraints on Marinoan glaciations[J]. Geology, 2004, 32: 817-820.
Jacob R E, Moore J M, Armstrong R A. SHRIMP dating and implications of Au mineralization, Navachab, Namibia[J]. Journal of African Earth Sciences, 2000, 31: 32-33.
Jacob R E. Geology and metamorphic petrology of part of the Damara orogeny along the lower Swakop river, South West Africa[M]. Bulletin 17 Chamber of Mines, Precambrian Research Unit, University of Cape Town, 1974.
Johnson S D. Structural geology of the Usakos dome, Damara Belt, central Namibia[D]. South Africa, University of Stellenbosch, 2005.
Kinnaird J A, Nex P A M. A review of geological controls on uranium mineralisation in sheeted leucogranites within the Damara Orogen, Namibia[J]. Applied Earth Science: Transactions of the Institutions of Mining and Metallurgy, 2007, 116(2): 68- 85.
Kukla P A, Stanistreet I G. Record of the Damaran Khomas Hochland accretionary prism in Central Namibia: refutation of an ensialic origin of a Late Proterozoic orogenic belt[J]. Geology, 1991, 19: 473-476.
Kisters A F M, Jordaan L S, Neumaier K. Thrust-related dome structures in the Karibib district and the origin of orthogonal fabric domains in the south Central Zone of the Pan-African Damara belt, Namibia[J]. Precambrian Research, 2004, 133: 283-303. doi: 10.1016/j.precamres.2004.05.001
Kasch K W. Continental collision, suture progradation and thermal relaxation: A plate tectonic model for the Damara Orogen in central Namibia, evolution of the Damara Orogen of South West Africa/Namibia[J]. Geological Society of South Africa, Special Publication, 1983a, 11: 423-429.
Kasch K W. Folding and thrust tectonics in the south-eastern portion of the Damara Orogen around Omitara, Namibia. Evolution of the Damara Orogen of South West Africa/Namibia[J]. Geological Society of South Africa, Special Publication, 1983b, 11: 175-184.
Longridge L, Gibson R L, Kinnaird J A, et al. Timing of deformation and granite emplacement in the Central Zone of the Damara Orogen, Namibia[R]. School of Geosciences, University of the Witwatersrand Johannesburg, 2008 (Unpublished report).
Martin H, Porada H. The intracratonic branch of the Damara Orogen in Southwest Africa. I. Discussion of geodynamic models[J]. Precambrian Research, 1977, 5: 311-338. doi: 10.1016/0301-9268(77)90039-0
Masberg H P, Hoffer E, Hoernes S. Microfabrics indicating granulite-facies metamorphism in the low-pressure central Damara Orogen, Namibia[J]. Precambrian Research, 1992, 55: 243-257. doi: 10.1016/0301-9268(92)90026-K
Martin H. Alternative geodynamic models for the Damara Orogeny: critical discussion [M]. Berlin, Heidelberg, Springer-Verlag, 1983: 913-945.
Marlow A G. Remobilisation and primary uranium genesis in the Damaran Orogenic Belt, Namibia[D]. England, University of Leeds, 1981.
Miller R M G. The Okahandja Lineament, a fundamental tectonic boundary in the Damara Orogen of South West Africa/Namibia[J]. Transactions of the Geological Society of South Africa, 1983a, 82: 349-361.
Miller R M G. The Pan-African Damara Orogen of South West Africa/Namibia, Evolution of the Damara Orogen of South West Africa/Namibia[J]. Geological Society of South Africa, Special Publications, 1983b, 11: 431-515.
Miller R M G. The Geology of Namibia[R]. Geological Survey of Namibia Special Publication, 2008.
Nex P A M, Kinnaird J A, Oliver G J H, et al. Petrology, geochemistry and uranium mineralisation of post-collisional magmatism around Goanikontes, southern Central Zone, Damara Orogen, Namibia[J]. Journal of African Earth Sciences, 2001, 33(3/4): 481-502.
Nex P A M. Tectono-metamorphic setting and evolution of granitic sheets in the Goanikontes area, Namibia[D]. Galway, National University of Ireland, 1997.
Nex P A M, Herd D, Kinnaird J A. Fluid extraction from quartz in sheeted leucogranites as a monitor to styles of uranium mineralisation: an example from the Rössing area, Namibia[J]. Geochemistry: Exploration, Environment, Analysis, 2002, 2: 83-96. doi: 10.1144/1467-787302-009
Nash C R. Metamorphic petrology of the SJ area, Swakopmund District, South West Africa[J]. Bulletin of the Precambrian Research, 1971, 9: 77.
Oriolo S, Oyhantçabal P, Wemmer K, et al. Contemporaneous assembly of Western Gondwana and final Rodinia break-up: implications for the supercontinent cycle[J]. Geoscience Frontiers, 2017, 8: 1431-1445. doi: 10.1016/j.gsf.2017.01.009
Osterhus L, Jung S, Berndt J, et al. Geochronology, geochemistry and Nd, Sr and Pb isotopes of syn- orogenic granodiorites and granites(Damara orogeny, Namibia)-Arc-related plutonism or melting of mafic crustal sources? [J]. Lithos, 2014, 200/201: 386-401. doi: 10.1016/j.lithos.2014.05.002
Oliver G J H. Mid-crustal detachment and domes in the central zone of the Damaran Orogen, Namibia[J]. Journal of African Earth Sciences, 1994, 19: 331-344. doi: 10.1016/0899-5362(94)90018-3
Prave A R. Tale of three cratons: ectonostratigraphic anatomy of the Damara orogeny in northwestern Namibia and the assembly of Gondwana[J]. Geology, 1996, 24: 1115-1118.
Poli L C, Oliver G J H. Constrictional deformation in the Central Zone of the Damara Orogen Namibia[J]. Journal of African Earth Sciences, 2001, 33: 303-312. doi: 10.1016/S0899-5362(01)80065-8
Ramsberg H. Theoretical models of density stratification and diapirism in the Earth[J]. Journal of Geophysical Research, 1972, 77: 877-889. doi: 10.1029/JB077i005p00877
Shanyengana S H, Fan H H, Xue C J, et al. An example of uraniferous leucogranites in the Rössing South-West Deposit, Namibia[J]. Journal of African Earth Sciences, 2020, 162: 103698. doi: 10.1016/j.jafrearsci.2019.103698
Stanistreet I G, Kukla P A, Henry G. Sedimentary basinal responses to a Late Precambrian Wilson Cycle: the Damara Orogen and Nama Foreland, Namibia[J]. Journal of African Earth Sciences, 1991, 13: 141-156. doi: 10.1016/0899-5362(91)90048-4
Steven N M. A study of epigenetic mineralization in the central zone of the Damara orogen, Namibia, with special reference to gold, tungsten, tin and rare earth elements[J]. Memoirs of the Geological Survey of Namibia, 1993, 16: 166.
Smith D A M. The Geology of the Area around the Khan and Swakop Rivers in South West Africa[D]. South Africa, University of the Witwatersrand, 1961.
Smith D A M. The geology of the area around the Khan and Swakop rivers in South West Africa[M]. Geological Survey of South West Africa/Namibia, 1965, 3: 113.
Sun H W, Ren J P, Wang J, et al. Age and geochemistry of the granitoids from the Lunte area, Northeastern Zambia: implications for magmatism of the Columbia supercontinent[J]. China Geology, 2021, 4(4): 658-672.
Unrug R. The supercontinent cycle and gondwanaland assembly: component cratons and the timing of suturing events [J]. Journal of Geodynamics, 1992, 16(4): 215-240. doi: 10.1016/0264-3707(92)90011-G
Ward R A. Fluid and deformation induced partial melting and melt volumes in low-temperature granulite-facies metasediments, Damara Belt, Namibia[D]. South Africa, University of the Stellenbosch, 2009.
-
期刊类型引用(5)
1. 凡韬,赖翔,程文斌,郎兴海,陈翠华,张海军,向杨燕,张燕,蔡姬敏,马天祺,王春林,彭中山,张超,潘亮,金山. 四川丹巴独狼沟金矿成因矿物学及指针矿物学特征. 西北地质. 2025(02): 209-224 . 本站查看
2. 孟五一,张振,高永宝,魏立勇,贾彬,郑鑫,刘宁波. 南秦岭新发现王庄金矿床矿物成分及其地质意义. 西北地质. 2024(04): 157-169 . 本站查看
3. 葛战林,顾雪祥,章永梅,高永宝,郝迪,郑艳荣,刘明,王辉. 南秦岭柞水-山阳矿集区金盆梁金矿床成因——来自流体包裹体及C-H-O-S-Pb同位素的制约. 矿床地质. 2024(04): 877-898 . 百度学术
4. 王立峰,薛志强,王振强,王鹏飞,张苏坤,孙保花,王社全,杨智超,张鹏. 小秦岭金矿田杨砦峪–樊岔矿段黄铁矿LA-ICP-MS微量元素特征及其指示意义. 西北地质. 2024(05): 74-87 . 本站查看
5. 赵江林,唐利,田浩浩,赵凤芸,盛渊明,曾涛,陈龙龙,张寿庭. 南秦岭双元沟铜矿床成矿斑岩的黑云母和角闪石成分特征及成矿意义. 成都理工大学学报(自然科学版). 2024(05): 867-879 . 百度学术
其他类型引用(0)