ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系

吴兴源, 刘晓阳, 赵晓博, 任军平, 许康康, 孙宏伟, 周佐民, 龚鹏辉

吴兴源, 刘晓阳, 赵晓博, 等. 中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系[J]. 西北地质, 2023, 56(5): 1-19. DOI: 10.12401/j.nwg.2023077
引用本文: 吴兴源, 刘晓阳, 赵晓博, 等. 中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系[J]. 西北地质, 2023, 56(5): 1-19. DOI: 10.12401/j.nwg.2023077
WU Xingyuan, LIU Xiaoyang, ZHAO Xiaobo, et al. Geochronology, Petrogeochemical Characteristics, Tectonic Setting of the Leucogranites (~1.0 Ga) in Central Africa and Its Relationship with Mineralization[J]. Northwestern Geology, 2023, 56(5): 1-19. DOI: 10.12401/j.nwg.2023077
Citation: WU Xingyuan, LIU Xiaoyang, ZHAO Xiaobo, et al. Geochronology, Petrogeochemical Characteristics, Tectonic Setting of the Leucogranites (~1.0 Ga) in Central Africa and Its Relationship with Mineralization[J]. Northwestern Geology, 2023, 56(5): 1-19. DOI: 10.12401/j.nwg.2023077

中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系

基金项目: 国家自然科学基金项目“花岗伟晶岩岩浆−热液演化及成岩成矿机制研究:以卢旺达Gatumba地区稀有金属花岗伟晶岩为例”(42003041),商务部援外项目“援卢旺达地质矿产调查”(jsyz20180051)联合资助。
详细信息
    作者简介:

    吴兴源(1985−),男,硕士,高级工程师,主要从事岩石地球化学及矿床学研究。E−mail:wuxy0156@126.com

  • 中图分类号: P581;P597

Geochronology, Petrogeochemical Characteristics, Tectonic Setting of the Leucogranites (~1.0 Ga) in Central Africa and Its Relationship with Mineralization

  • 摘要:

    中部非洲的传统中元古代基巴拉造山带内发育大量与花岗岩−伟晶岩体系相关的金属矿产,尤其是以标志性的稀有金属(Nb−Ta−Li)、钨、锡和金等成矿作用为特色,成矿地质过程往往和罗迪尼亚超大陆聚合事件相对应。通常 认为,与成矿直接密切相关的花岗岩是新元古代早期的一套淡色花岗岩(G4花岗岩),即含Sn花岗岩。G4花岗岩过去通常被视作成矿母岩,长期以来受到广泛关注,但是前人的研究表明基巴拉带不同地区的G4花岗岩在野外判别标志、形成时限、地球化学特征等方面存在一定差异,导致对岩石类型、岩石成因及其产出的构造背景的认识还不统一。因此,笔者在系统收集、整理前人资料的基础上,详细总结G4花岗岩的野外岩石类型、年代学研究、全岩地球化学数据及同位素等方面特征,初步探讨成岩成矿过程。结果显示,G4花岗岩的源区物质以变泥质岩为主,岩浆形成方式主要是局部的部分熔融或深熔作用,并不像过去认为的那样来源于一个深部较大岩浆房的长期分异演化,而G4花岗岩的演化则与区域成矿作用存在直接关联。结合区域构造演化研究,推测G4花岗岩可能形成于基巴拉造山作用的同碰撞‒后碰撞阶段。

    Abstract:

    A large number of mineral resources related to granite−pegmatite system that are found in the traditional Mesoproterozoic Kibaran belt in Central Africa, especially characterized by the distinctive mineralization of rare metals (Nb−Ta−Li), tungsten, tin and gold. The metallogenic events can be associated with the process of Rodinia amalgamation. Most of these mineral occurrences are linked to the early Neoproterozoic G4 leucogranitic intrusions, also termed “tin (−bearing) granites”. G4 granites have been extensively scrutinised because they are considered as the parental rocks to the ore mineralization in the region. The field identification criteria, timing, geochemical characteristics for G4 granites in different parts of Kibaran belt, however, have been shown to vary in previous studies. As a result, the type of rock, the petrogenesis of these parental granites and the geodynamic context is still a matter of debate. Combined with the disparate nature of datasets in the literature (e.g. field outcrops, petrography, geochronology, geochemistry and isotopes), the results show that the derivation of G4 granite is consistent with a meta−pelitic source, and these leucocratic granites could be considered more like anatectic migmatites rather than actual highly fractionated granites formed by fractionation out of large magma chambers. It has been largely established via the research of diagenetic and metallogenic processes that the protracted differentiation of G4 granites is the primary driver of diverse mineralization in the Kibaran belt. It’s hypothesized that the G4 granite was probably emplaced in the syncollisional to post−collisional stage of Kibaran orogeny when considering the regional tectonic background.

  • 造山带中的淡色花岗岩或高分异花岗岩经常在时空上与花岗伟晶岩密切相关并构成花岗岩−伟晶岩岩浆−热液体系,这一体系中的伟晶岩和/或花岗岩通常以稀有金属成矿(Li、Rb、Be、Nb、Ta等)为显著特征。此外,它们也被视作工业玻璃、陶瓷和宝石(绿柱石、黄玉、电气石等)的唯一或者重要来源(Černý et al.,2005Glover et al.,2012Shaw et al.,2016)。中部非洲地区的传统中元古代基巴拉造山带(Kibara Belt)形成于罗迪尼亚超大陆聚合时期(朱清等,2023),其中发育大量中元古代—新元古代早期的过铝质花岗岩及与花岗岩−伟晶岩相关的矿产,并以标志性的稀有金属(Nb−Ta−Li)、W、Sn和W等成矿作用为特色,被称为基巴拉成矿省(Dewaele et al.,20112016Pohl et al.,2013)。据现有资料可知,这一地区在过去已经累计产出80万t锡石(SnO2)、3万t铌钽铁矿(50% Ta2O5)、3万t黑钨矿(WO3)和600 t黄金,伴生有少量辉铋矿、辉钼矿、绿柱石和软锰矿等矿石(Pohl et al.,2013),历来都是中部非洲备受关注的经典研究区之一(Peeters,1956Varlamoff,1969Pohl et al.,1991Dewaele et al.,20082009Van Daele et al.,2018)。

    通常认为,在基巴拉成矿省内部,与成矿直接相关的花岗岩是新元古代早期的淡色花岗岩(即所谓的G4花岗岩),而G4花岗岩在刚果(金)、布隆迪和卢旺达等国家均有不同程度的出露,往往被认为是区域上含稀有金属花岗伟晶岩的成矿母岩,同时也被证实与石英脉型W−Sn−Au成矿作用具有密切的成因联系,因此长期以来获得了极大的关注(Cahen et al.,1979a1979bGünther et al.,1989Ikingura,1989Tack et al.,2010Goldmann et al.,2013Hulsbosch et al.,201420162017Lehmann et al.,2014)。然而,尽管过去数十年来前人已经对中部非洲地区的G4花岗岩开展了大量研究,包括Rb−Sr测年、全岩/单矿物地球化学分析、包裹体测试等方面的工作,但是长期缺乏高精度的U−Pb同位素测年和Nd−Hf同位素等高质量的地球化学数据支撑,总体上来看各个阶段的研究成果比较分散、不系统,再加上不同地区的G4花岗岩研究程度也不尽相同,导致对G4花岗岩的野外判别标志、形成时限、岩石类型、岩石成因以及产出的构造背景仍存在不同的认识(Liégeois et al.,1982Lehmann et al.,1987Pohl et al.,1991Rumvegeri et al.,2004Kokonyangi et al.,2006Tack et al.,2010Pohl et al.,2013Debruyne et al.,2015),直接限制对本地区与花岗岩有关的Nb−Ta−Sn−W成矿体系的进一步理解。近年来,De Clercq等(2021)Nambaje等(2021a)基于对卢旺达境内的G4花岗岩开展的系统研究,就G4花岗岩的岩石类型特征、成因和形成的构造背景等问题提出一些不同于前人的新认识,从而对传统观点形成了挑战。鉴于此,笔者结合正在执行的国家自然科学基金青年基金项目及商务部援外项目的工作,对以往各个阶段关于G4花岗岩的文献、专著或学位论文等各方面资料进行了综合整理和概括总结,形成了G4花岗岩最新的研究进展,以期能为国内研究者开展花岗岩(花岗伟晶岩)相关矿产的中外对比研究提供一定的参考,并且为在该地区进一步寻找相关类型矿产提供一定的线索或启示。

    传统的中元古代基巴拉造山带(Kibara Belt)是一个夹持于刚果克拉通、坦桑尼亚克拉通和班韦乌卢地块之间的楔形逆冲−褶皱变形带(Tack et al.,2010),其走向总体呈北东−北北东向,涵盖的地理范围从刚果(金)东南部、经过布隆迪和卢旺达,一直延伸到坦桑尼亚西北部和乌干达西南部,总长约为1500 km,最宽处可达400 km(图1)(Cahen et al.,1984Brinckmann et al.,2001Fernandez-Alonso et al.,2012Debruyne et al.,2015刘晓阳等,2020王杰等,2022),该造山带的构造演化通常被认为与1.3~0.9 Ga期间的罗迪尼亚超大陆聚合过程密切相关(Li et al.,2008Villeneuve et al.,2019)。Tack等(2010)以北东−南西向延伸的古元古代Rusizian−Ubende带为界,将最初定义的基巴拉带划分为卡拉戈维−安科连带(KAB,北东段)和狭义的基巴拉带(KIB,南西段)。近年来,法国学者Villeneuve等(20192022)进一步提出,在传统基巴拉带北段(卡拉戈维−安科连带以西)还存在一个与卡拉戈维−安科连带同等级别的构造单元,并将其命名为基伍带(KVB)。然而,不管是卡拉戈维−安科连带、狭义的基巴拉带亦或是基伍带,它们的主体都是由古元古代—中元古代的变质碎屑沉积地层(包括石英岩、页岩及片岩等)夹少量变质火山岩构成,并且这些变质表壳岩常常被一系列同造山−后造山期的S型花岗岩和基性岩侵入(图1)(Cahen et al.,1984Kokonyangi et al.,200120042006Dewaele et al.,2016De Clercq et al.,2021)。

    图  1  中部非洲传统基巴拉带区域地质简图 (据Debruyne et al.,2015修改)
    Figure  1.  Simplified geological map of the Kibaran belt region, Central Africa

    在狭义的基巴拉带中,Cahen等(1984)基于花岗岩的变质变形程度和Rb−Sr年龄研究结果,将该地区的花岗质岩浆活动划分为5个不同的阶段(A~E group),而侵入卡拉戈维−安科连带的花岗岩则被划分成4个或5个期次(Gerards et al.,1970Klerkx et al.,1984),并且逐渐形成了G1~G4期花岗岩划分方案的主流认识(Cahen et al.,1979a)。在卡拉戈维−安科连带中,G1花岗岩往往是一些变形特征明显的大型岩基,其年龄大约为1375 Ma(Tack et al.,2010),基伍带的G1花岗岩(花岗片麻岩和变形花岗岩)侵位时代则约为(1350±50)Ma(Rumvegeri et al.,1990)。G2花岗岩在卡拉戈维−安科连带中被认为是变形的A型花岗岩,其形成年代跨度较大(1360~1260 Ma)(Ledent,1978Liégeois et al.,1982Tack et al.,1994);在狭义的基巴拉带中,G2花岗岩则是定年结果约为(1265±15)Ma的似斑状花岗闪长岩(Rumvegeri et al.,1990)。侵入卡拉戈维−安科连带的G3花岗岩属于亚碱性的变形花岗岩,其年龄为1111~1220 Ma(Lavreau et al.,1982),基伍带中的G3花岗岩则是年龄约为(1189±69)Ma(Rumvegeri et al.,1990)的二长花岗岩。最晚期、也是最重要的一期花岗岩就是通常所说的G4花岗岩,也叫淡色花岗岩或者含锡花岗岩,其定年结果显得较为分散,为950~1020 Ma(Cahen et al.,1979aBrinckmann et al.,1983Cahen et al.,1984Dewaele et al.,2015)。虽然G1~G4期花岗岩的划分方案长期以来已经深入人心,但它主要是基于较老的全岩或单矿物Rb−Sr法建立起来的,因而其精度和准确性都需要注意。随着研究的深入,在狭义的基巴拉带中,Kokonyangi等(20042006)通过高精度的单颗粒锆石SHRIMP U−Pb定年结果提出这些花岗岩主要可以划分为2个期次,早期花岗岩(A~D group或G1~G3)的侵位时代约为(1381±8)Ma,而晚期花岗岩(E group或G4)与Rb−Sr测定的年龄相差不大。在卡拉戈维−安科连带中,Tack等(2010)通过锆石SHRIMP U−Pb测年表明,前人划分的G1~G3花岗岩实际上可以归并为3个期次,第一期是约1375 Ma的双峰式岩浆组合(S型花岗岩与同期的基性火山−侵入岩),第二期是约1205 Ma的A型花岗岩,第三期则是约986 Ma的含Sn花岗岩(G4花岗岩)。最近,Villeneuve等(2022)将基伍带中那些1050~1070 Ma的年龄结果也归并为G4花岗岩范畴。

    由此可见,传统的基巴拉造山带中的花岗质岩浆作用并不像早期研究所揭示的那样具有4~5个期次,而最多可能只有3个期次,但是新元古代早期的G4花岗岩的存在是毋庸置疑的,并且由于它们与稀有金属花岗伟晶岩及石英脉型W−Sn−Au矿床之间的密切成因联系,一直以来都是研究人员关注的焦点或重点。由于最新的研究并没有对花岗岩的岩浆活动期次进行重新划分或命名,再加上长期以来形成的习惯性用法,文中依然沿用了G4花岗岩的旧称。

    笔者系统收集目前已有的关于G4花岗岩形成年代的实验数据。例如:全岩或单矿物Rb−Sr等时线年龄、锆石U−Pb年龄和独居石U−Pb年龄。鉴于G4花岗岩与伟晶岩之间的密切成因联系,笔者也查阅了区域上有关花岗伟晶岩形成时代及其稀有金属成矿作用的年代学数据来进行比较(表1),包括伟晶岩全岩/单矿物Rb−Sr年龄或Ar−Ar年龄、铌钽铁矿U−Pb年龄。

    表  1  基巴拉带(狭义)和卡拉戈维−安科连带中G4花岗岩、伟晶岩年龄数据及铌钽铁矿成矿年龄数据统计表
    Table  1.  Summary age data of the G4 granites, pegmatites and columbite−tantalite mineralization from the Kibara belt (sensu stricto) and Karagwe−Ankole belt
    样品号采样地点构造位置岩性/矿物测年方法年龄(Ma)数据来源
    Kasika狭义基巴拉带含锡花岗岩全岩Rb−Sr976±10Cahen et al.,1979a
    Ki22Kasika狭义基巴拉带含锡花岗岩锆石U−Pb986±10Tack et al.,2010
    Nzombe狭义基巴拉带含锡花岗岩全岩Rb−Sr~976Cahen et al.,1979a
    Nyamakubi狭义基巴拉带含锡花岗岩全岩Rb−Sr976Cahen et al.,1979a
    Kalima−Moga狭义基巴拉带含锡花岗岩全岩Rb−Sr989±28Cahen et al.,1979a
    Mount Bia Massif狭义基巴拉带含锡花岗岩全岩/单矿物Rb−Sr966±21Cahen et al.,1979a
    Mwanza Massif狭义基巴拉带含锡花岗岩全岩Rb−Sr977±18Cahen et al.,1984
    Kamituga狭义基巴拉带淡色花岗岩全岩Rb−Sr1020±50Ledent et al.,1965
    Maleba狭义基巴拉带淡色花岗岩全岩Rb−Sr1006±44Ikingura,1989
    Kirengo卡拉戈维−安科连带淡色花岗岩全岩Rb−Sr972±15Cahen et al.,1984
    CR181Uwinkingi卡拉戈维−安科连带白云母花岗岩锆石U−Pb988±19Nambaje et al.,2021a
    CR186Musambira卡拉戈维−安科连带白云母二长花岗岩锆石U−Pb958±20Nambaje et al.,2021a
    CR203Muhanda卡拉戈维−安科连带白云母花岗岩锆石U−Pb945±31Nambaje et al.,2021a
    CR159Ruyenzi卡拉戈维−安科连带白云母花岗岩独居石U−Pb1011±18Nambaje et al.,2021a
    CR175Busasamana卡拉戈维−安科连带白云母花岗岩独居石U−Pb979±10Nambaje et al.,2021a
    CR181Uwinkingi卡拉戈维−安科连带白云母花岗岩独居石U−Pb976±11Nambaje et al.,2021a
    CR186Musambira卡拉戈维−安科连带白云母二长花岗岩独居石U−Pb997±8Nambaje et al.,2021a
    CR203Muhanda卡拉戈维−安科连带白云母花岗岩独居石U−Pb980±8Nambaje et al.,2021a
    CR209Kigali (Gisozi)卡拉戈维−安科连带白云母花岗岩独居石U−Pb1010±9Nambaje et al.,2021a
    SDC18gr02Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb1014±53De Clercq et al.,2021
    SDC18gr05Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb959±43De Clercq et al.,2021
    SDC18gr07Mushubati卡拉戈维−安科连带二长花岗岩锆石U−Pb993±26De Clercq et al.,2021
    SDC18gr08Runda卡拉戈维−安科连带二长花岗岩锆石U−Pb999±46De Clercq et al.,2021
    SDC18gr15Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb974±15De Clercq et al.,2021
    SDC18gr18Rukondo卡拉戈维−安科连带二长花岗岩锆石U−Pb~1000De Clercq et al.,2021
    SDC18gr20Nyanza卡拉戈维−安科连带二长花岗岩锆石U−Pb985±11De Clercq et al.,2021
    SDC18gr21Kibuye卡拉戈维−安科连带正长花岗岩锆石U−Pb~1000De Clercq et al.,2021
    Nyabugogo卡拉戈维−安科连带伟晶岩白云母Rb−Sr975±29Monteyne-Poulaert et al.,1962Cahen,1964
    Bijyojyo卡拉戈维−安科连带伟晶岩白云母Rb−Sr945±28
    Gatumba卡拉戈维−安科连带伟晶岩白云母Rb−Sr940± 28
    Rwinkwavu卡拉戈维−安科连带伟晶岩白云母Rb−Sr955±29
    Gakara卡拉戈维−安科连带伟晶岩全岩−白云母Rb−Sr969±8Brinckmann et al.,1983
    Gakara卡拉戈维−安科连带伟晶岩白云母Rb−Sr969±17Lehmann et al.,1994
    Atondo deposit狭义基巴拉带伟晶岩白云母Ar−Ar986.6±5.3Dewaele et al.,2015
    Yubuli deposit狭义基巴拉带伟晶岩白云母Ar−Ar992.4±5.4Dewaele et al.,2015
    Lutshurukuru狭义基巴拉带伟晶岩白云母Ar−Ar1024.3±55Dewaele et al.,2015
    RG 9699Manono−Kitotolo狭义基巴拉带伟晶岩白云母Ar−Ar938.8±5.1Dewaele et al.,2016
    RG 15993Manono−Kitotolo狭义基巴拉带伟晶岩白云母Ar−Ar934.0±5.9Dewaele et al.,2016
    RG 3554Manono-Kitotolo狭义基巴拉带伟晶岩(云英岩)白云母Ar−Ar923.3±8.3Dewaele et al.,2016
    下载: 导出CSV 
    | 显示表格
    续表1
    样品号采样地点构造位置岩性/矿物测年方法年龄(Ma)数据来源
    Kivuvu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb963±9/−5Romer et al.,1995
    Ruhembe卡拉戈维−安科连带铌钽铁矿TIMS U−Pb968+33/−29Romer et al.,1995
    Sample 45Mazakala狭义基巴拉带铌钽铁矿TIMS U−Pb971.1±1.5Melcher et al.,2008b2009
    Sample 110Bassin Obea狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb971.8±7.0Melcher et al.,2008a
    Coltan 48Gatumba plant卡拉戈维−安科连带铌钽铁矿TIMS U−Pb1029±19Dewaele et al.,2011
    Coltan 84Ruhanga卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb938+9.3/−8.5Dewaele et al.,2011
    Coltan 87Buranga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb936±14Dewaele et al.,2011
    Coltan 89Shori (Gateko)卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb974.8±8.2Dewaele et al.,2011
    Coltan 93Nyambisindu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb951±15Dewaele et al.,2011
    Coltan 216Nkegete卡拉戈维−安科连带铌钽铁矿TIMS U−Pb939±4Dewaele et al.,2011
    Coltan 219Nkegete卡拉戈维−安科连带铌钽铁矿TIMS U−Pb958±0.4Dewaele et al.,2011
    Coltan 233Bijyojyo卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb965+8.7/−8.6Dewaele et al.,2011
    Sample 155Mobra卡拉戈维−安科连带铌钽铁矿TIMS U−Pb934.5±3.9Melcher et al.,2015
    Sample 40Camp Bisengo狭义基巴拉带铌钽铁矿TIMS U−Pb973.8±2.2、Melcher et al.,2015
    Sample 235Ntunga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb949.2±2.7Melcher et al.,2008a
    Sample 43Kakelo狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb962.8+8.7/−8.5Melcher et al.,2015
    Sample 44Mapimo Mulungu狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb960±9Melcher et al.,2015
    Sample 45Shabunda狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb964.3±5.4Melcher et al.,2015
    Sample 105Kamisuku, Pangi狭义基巴拉带铌钽铁矿TIMS U−Pb992.2±7.8Melcher et al.,2015
    Sample 106Kibeke狭义基巴拉带铌钽铁矿TIMS U−Pb960±5Melcher et al.,2015
    Sample 112Masisi狭义基巴拉带铌钽铁矿TIMS U−Pb950.2±4.4Melcher et al.,2015
    Sample 115Mwenga狭义基巴拉带铌钽铁矿TIMS U−Pb972.3±3.0Melcher et al.,2015
    Sample 119Manono狭义基巴拉带铌钽铁矿TIMS U−Pb940.2±5.1Melcher et al.,2015
    Sample 122Manono狭义基巴拉带铌钽铁矿TIMS U−Pb947.3±2.8Melcher et al.,2015
    Sample 156Mwenga狭义基巴拉带铌钽铁矿TIMS U−Pb937.1±2.4Melcher et al.,2015
    Sample 41Muhanga卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb971.9±4.9Melcher et al.,2015
    Sample 125Nzida卡拉戈维−安科连带铌钽铁矿TIMS U-Pb936.5±6.6Melcher et al.,2015
    Sample 153Ntunga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb935±13Melcher et al.,2015
    Sample 136Nemba卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb960.7±7.6Melcher et al.,2015
    Sample 169Nemba卡拉戈维−安科连带铌钽铁矿TIMS U−Pb951±13Melcher et al.,2015
    Sample 150Kibingo卡拉戈维−安科连带铌钽铁矿TIMS U−Pb929.4±6Melcher et al.,2015
    Sample 743Myatano 1卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb940±21Melcher et al.,2015
    Sample 381Kanungu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb983.4±0.6Melcher et al.,2015
    Sample 383Mbulema卡拉戈维−安科连带铌钽铁矿TIMS U−Pb958.5±3.2Melcher et al.,2015
    下载: 导出CSV 
    | 显示表格

    早期报道的G4花岗岩年龄数据为全岩或单矿物Rb–Sr等时线年龄,这些年龄结果中最老的年龄约为1020 Ma(Ledent et al.,1965Ikingura,1989),但绝大多数为966~989 Ma(Cahen et al.,1979a1984)。

    通常认为,花岗岩全岩Rb–Sr同位素体系的封闭温度较低(约600 ℃),而锆石U–Pb同位素体系的封闭温度高(大于850 ℃),相比前者,后者更接近岩浆体系的温度。因此,锆石U–Pb年龄结果也往往具有更高的可信度和精度。关于G4花岗岩的锆石U–Pb年龄记录,最早是由Tack等(2010)对刚果(金)东部Itombwe地区的Kasika花岗岩进行锆石U−Pb测年时提供的,这也是区域上首次报道较为精确的G4花岗岩形成年龄数据(986±10 Ma)。De Clercq等(2021)对来自卢旺达Masango、Mushubati等地的 G4花岗岩进行了详细地锆石U–Pb测年,结果显示这些G4花岗岩的形成年代为959~1014 Ma。 通过对比可知,以上锆石U–Pb年龄结果与Nambaje等(2021a2021b)报道的卢旺达G4花岗岩锆石U–Pb测年分析数据极为一致(945~1011 Ma)。此外,Nambaje等(2021a2021b)还对卢旺达Uwinkingi、 Musambira等地的G4花岗岩样品进行了独居石U–Pb定年测试,获得这些独居石的年龄为971~1021 Ma。总体来看,G4花岗岩全岩Rb–Sr等时线年龄、锆石U–Pb年龄与独居石U–Pb年龄数值在误差范围内基本保持一致,可能暗示后期的热事件(如热液蚀变、变质作用)对Rb–Sr同位素体系的改造或干扰比较有限。仔细观察不难发现,这些锆石在阴极发光图像上一般只显示很弱的振荡环带或者几乎没有显著的振荡环带,其内部常常具有不规则分带,同时发育明显的核–边结构(图2),很可能为局部变质重熔/深熔成因,而不太像是岩浆高度结晶分异后形成的富挥发分残余熔体结晶出来的锆石特征。

    图  2  卢旺达G4花岗岩的锆石阴极发光图
    a~h. 资料来源于De Clercq等(2021); i~u. 资料来源于Nambaje等(2021a)
    Figure  2.  Zircon CL–images of the G4 granite samples from Rwanda

    本地区出露的伟晶岩(尤其是那些具有稀有金属成矿特征的伟晶岩)一直被视为G4花岗岩岩浆经历高度结晶分异演化后的产物,即G4花岗岩与伟晶岩之间为“母体–子体”关系。早在20世纪60年代,陆续有研究人员报道了卢旺达花岗伟晶岩的Rb–Sr等时线年龄数据,结果表明它们的形成时代为940~975 Ma(Monteyne-Poulaert et al.,1962Cahen,1964),而布隆迪的花岗伟晶岩Rb–Sr等时线年龄则极为一致,集中在969 Ma附近(Brinckmann et al.,1983Lehmann et al.,1994)花岗伟晶岩的最大年龄值为Dewaele等(2015)报道的刚果(金)东部Kalima地区的伟晶岩白云母Ar–Ar年龄,其形成年龄为987~1024 Ma, 而最年轻的年龄值则同样来自刚果(金)东部地区,Dewaele等(2016)对Manono–Kitotolo伟晶岩开展了白云母Ar–Ar测年研究,获得该伟晶岩的形成年龄为920~940 Ma。

    铌钽铁矿U–Pb年龄是花岗伟晶岩稀有金属成矿作用的最直接反映,也是判断成岩作用与成矿作用是否具有时间关联的重要证据。前人通过对中部非洲地区不同国家的(包括乌干达、刚果(金)、卢旺达、布隆迪)新元古代早期稀有金属花岗伟晶岩矿床(点)进行铌钽铁矿U–Pb定年(Romer et al.,1995Melcher et al.,2008a2008b2009Dewaele et al.,2011),结果显示它们的成矿年龄为930~1029 Ma,且明显具有一个960~990 Ma的峰值。

    综上所述,不同研究手段所揭示的G4花岗岩形成时代在误差范围内是比较一致的,并且与区域上伟晶岩的年龄以及稀有金属成矿作用时间接近,比较直观地反映了成岩事件及成矿事件二者之间的关联性。如果再结合G4花岗岩与伟晶岩分带在空间上的紧密关系,以上种种证据均指示G4花岗岩是区域上伟晶岩的成矿母岩。

    G4花岗岩是由Gerards等(1970)在研究卢旺达的花岗岩时首次提出并加以命名的,通常被认为是后造山或晚造山期花岗岩,它们往往侵入到中元古代变质碎屑沉积地层及塑性变形的G1~G3过铝质花岗岩中(Pohl, 1994Muchez et al.,2014)。这些花岗岩过去也称为含锡花岗岩(tin granite或 stanniferous granite),且被定义为强过铝质、近等粒结构–细晶结构或伟晶结构、未发生变形的淡色花岗岩(leuco–granite),其内部常发育晶洞构造,也可见电气石脉或石英脉,有时还有少量紫水晶(Gerards et al.,1970Cahen et al.,1979bLavreau et al.,1982Fernandez-Alonso et al.,1986Pohl,1994Pohl et al.,2013Lehmann et al.,2014Hulsbosch,2019)。由于遭受强烈的风化作用,在它们的表面往往形成一层较厚的砖红土覆盖层导致露头往往较差,因此地质学家们至今也未能在区域地质图上准确地勾勒出G4花岗岩在野外的分布范围(Günther et al.,1989Lehmann et al.,2014Hulsbosch,2019Villeneuve et al.,2022)。Muchez等(2014)De Clercq等(2021)指出,卢旺达Gatumba地区的G4花岗岩可见厘米级~分米级的石英和长石晶体,发育伟晶岩结构且含电气石晶体(图3a),也可见石英–长石交互生长形成的文象结构(图3b)。在野外区分G1~G3过铝质花岗岩与G4花岗岩主要依据3个方面的标志:①从空间位置上,G4花岗岩与伟晶岩型铌钽锡矿(Nb–Sn–Ta)及石英脉型钨矿(W)密切相关。②从岩石露头构造上,G4花岗岩基本没有发生变形或者只有轻微变形,一般不发育面理或线理。③G4花岗岩常常沿着背斜构造的核部或转折端侵入。G4花岗岩的主要矿物成分一般为石英、微斜长石、钠长石和白云母(偶见黑云母),副矿物则包括磷灰石、电气石、独居石、石榴子石(铁铝榴石–锰铝榴石)、锆石、钛铁矿及磷钇矿。此外,常见的次生热液蚀变为钠长石化、绢云母化、电气石化和高岭土化等(Cahen et al.,1979aPohl,1994Pohl et al.,2013Lehmann et al.,2014)。

    图  3  卢旺达G4花岗岩手标本、野外露头及镜下显微特征图(a~b据De Clercq et al.,2021;c~f据Nambaje et al.,2021a
    Bt. 黑云母;Fsp. 长石;Ms. 白云母;Qz. 石英
    Figure  3.  Hand specimen, field exposures and thin section petrography of the G4 granite from Rwanda

    Ikingura(1989)对坦桑尼亚西北部(卡拉戈维–安科连带)Bushubi地区的含锡花岗岩(G4花岗岩)进行野外调查的结果表明,该地区G4花岗岩(以 Maleba岩体为代表)的岩石类型主要有2种,即二云母花岗岩和白云母花岗岩。Maleba岩体边部与围岩的接触部位发育一层较薄的接触变质晕,并且以灰色含铁质千枚岩中的红柱石变斑晶及绢云母石英角岩的出现为标志。Maleba岩体内部发育大量的石英脉和电气石条带,局部石英脉中可见锡石。Ikingura(1989)研究指出,Maleba 岩体内部包含4种岩石类型。①粗粒近等粒结构或略具似斑状结构的二云母花岗岩。②粗粒近等粒结构或略具似斑状结构的白云母花岗岩。③中粒等粒结构或略具似斑状结构的电气石–黑云母–白云母花岗岩。④电气石淡色花岗岩。

    近年来,Nambaje 等(2021a)对卢旺达境内的中元古代S型花岗岩(G1~G4花岗岩)进行了野外地质调查和系统采样分析,他们的最新研究结果显示卢旺达G4花岗岩主要包括2种类型,分别是白云母花岗岩和白云母二长花岗岩(图3c~图3f)。其中,白云母花岗岩呈细粒近等粒状结构,通常不发育面理,且矿物均未出现拉伸线理或其他定向构造,在矿物组成上,白云母占绝对优势(可含少量黑云母);白云母二长花岗岩具中粒等粒结构至伟晶结构,不含镁铁质暗色矿物,也同样不发育面理。它们通常侵入那些发育弱片麻状构造的二云母花岗岩中(G1~G3花岗岩),并出现文象结构,可见独居石、磷灰石、锡石等副矿物。

    笔者统计了目前文献或其他报告等资料中已发表的来自中部非洲地区(包括卢旺达、刚果(金)和坦桑尼亚)G4花岗岩的主(常)量元素地球化学数据(Günther et al.,1989Ikingura,1989Hulsbosch et al.,2014Debruyne et al.,2015De Clercq et al.,2021Nambaje et al.,2021a)。通过分析可知,这些G4花岗岩样品的SiO2、全碱(Na2O+K2O)、P2O5含量及Al2O3/TiO2值较高,而TiO2、Fe2O3、MgO、CaO等含量较低,明显与中元古代早期(G1~G3)的过铝质花岗岩有所差异。与Best(2003)推荐的花岗岩平均成分相比,G4花岗岩仍然表现出贫TiO2、Fe2O3、MnO、MgO、CaO含量的特点。在侵入岩TAS图解上(图4a),中部非洲地区G4花岗岩样品大多落入花岗岩的范畴,但也有少数落入石英二长岩或花岗闪长岩区域。同时,绝大部分样品的铝饱和指数(A/CNK值)均大于1.10,表明其属于强过铝质花岗岩(图4b),这种特征也反映在 ACF 图解上所有样品均投到S型花岗岩范围(图4c)。此外,样品的Fe#值[FeOt/(FeOt + MgO)]为0.61~0.96,横跨了铁质–镁质花岗岩区域(图4d);在SiO2–(Na2O + K2O–CaO)图解上(图4e),这些岩石的跨度范围也很大,从钙碱性–碱性均有分布,但主体仍为一套钙碱性–碱钙性系列岩石。

    图  4  G4花岗岩岩石地球化学分类判别图
    a. SiO2–全碱图解(Middlemost,1994);b. A/CNK–A/NK图解(Maniar et al.,1989);c. ACF图解(Chappell et al.,1992); d. SiO2–FeOt/(FeOt + MgO)图解(Frost et al.,2001);e. SiO2–(Na2O + K2O–CaO)图解(Frost et al.,2001
    Figure  4.  Geochemical classification diagrams for the G4 granites from the Kibara and Karagwe–Ankole Belt, Central Africa

    从球粒陨石标准化稀土元素配分型式图中可以看出(图5a),与G1~G3过铝质花岗岩相比,G4花岗岩的稀土元素总量(ΣREE= 4.62×10–6~354.21×10–6)以及轻、重稀土元素的分异程度[(La/Yb)N =1.78~171.26]均比较低,并且其配分曲线整体呈现为较平坦的分布型式,而没有表现出G1~G3花岗岩明显富集轻稀土元素的右倾型特点,部分样品的稀土元素配分型式具有类似“四分组”效应的特征。通常来说,稀土元素的“四分组”效应通常被认为是岩浆富含挥发分,进而形成熔体–流体共存的体系并发生相互作用的结果(赵振华等, 1992)。此外,大部分G4花岗岩样品表现为中等–明显的负Eu异常(δEu = 0.18~0.96),少量样品具有微弱的正Eu异常(δEu = 1.09~5.99)很可能是由于含有较大的碱性长石晶体导致的长石“堆晶效应”。在原始地幔标准化微量元素蜘蛛图上(图5b),G4花岗岩明显富集Cs、Rb、Th、U、K、Pb、 P和Sm等元素,明显亏损Ba、Nb、Ta、La、Ce、Sr、Zr、Hf和Ti等元素。与不含矿的低Ca花岗岩平均成分相比(Turekian et al.,1961),这些G4花岗岩样品表现出相对富集Rb、Cs、U、B、Ga、Ge、Y、Sc 和 Pb等元素,同时相对亏损Ba、REE、Nb、Ta、Zr、Hf、V和 W等元素的特征。Ikingura(1989)Hulsbosch(2019)均在研究中指出,与低钙花岗岩的平均成分相比(B = 10×10–6,F = 850×10–6)(Turekian et al.,1961),来自中部非洲地区的G4花岗岩具有富B(平均含量为40×10–6)、相对低F(平均含量为1020×10–6)的特征。此外,与典型的含Sn稀有金属花岗岩相比(通常Sn>15×10–6)( Lehmann,1990aDe Clercq,2012),大多数G4花岗岩样品的Sn元素并不显示强富集或高含量特征,造成这种结果的原因可能是Sn元素在晚期的热液事件改造或交代过程中被重新溶解,进而发生了活化、迁移(Lehmann,1990b)。

    图  5  G4花岗岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蜘蛛图(b)
    球粒陨石和原始地幔标准化数值引自Sun等(1989);G4花岗岩图例同图4
    Figure  5.  (a) Chondrite–normalized REE patterns and (b) primitive mantle normalized spider diagram for the G4 granites

    笔者对前人已经报道的G4花岗岩Sr–Nd同位素分析结果进行了系统收集和整理(表2)。不难发现,不同地区G4花岗岩样品的87Sr/86Sr初始比值变化较大,为0.7002~0.859,那些异常高的87Sr/86Sr初始比值反映样品具有较高的Rb/Sr值,可能来源于富含黏土矿物的源岩或由于后期事件的改造所致。Nambaje等(2021a)首次对卢旺达境内的G4花岗岩样品进行Sm–Nd同位素分析,样品的143Nd/144Nd值为0.510739~0.510874,计算的147Sm/144Nd值为0.125~0.217,Nd同位素初始比值为0.510105~0.510203,εNd(t)值为−12.40~−9.90(t = 1.00 Ga),平均值约为−11.08,这些特征与Debruyne 等(2015)在刚果(金)报道的G4花岗岩基本一致。但是,由于样品的Sm/Nd值普遍较高,从而计算得出的模式年龄(TDM)不合理,明显偏大。此外,Tack等(2010)在刚果(金)东部Itombwe地区获得G4花岗岩(Kasika岩体)的锆石εHft值为−19~−3,而这种特征与Nambaje等(2021a)报道的卢旺达G4花岗岩Nd同位素特征是比较一致的,反映了源区以古老地壳物质为主。

    表  2  G4花岗岩Sr–Nd同位素数据统计表
    Table  2.  Summary of Sr–Nd isotope data of the G4 granites
    样品号/采样地点年龄(Ga)143Nd/144Nd)0εNd(0)εNdtTDM(Ga)87Sr/86Sr)087Sr/86Sr)i数据来源
    Maleba1.000.807Ikingura,1989
    Kirengo0.9720.778Cahen et al.,1984
    Mwanza0.9770.7002~0.731
    CR1751.000.512135−9.8−12.40.917440.744555Nambaje et al.,2021a
    CR1811.000.511672−18.8−9.92.520.8050430.73339
    CR2031.000.511963−13.2−10.81.0443170.728935
    CR2091.000.511834−15.7−11.23.810.8407740.744413
    CR1861.000.511758−17.2−11.13.260.8323530.739304
    KR61.000.51196−13−93.54Debruyne et al.,2015
    KR91.000.5112−28−152.440.823610.73216
    KR171.000.51194−14−115.271.51541
    KR231.000.51165−19−112.640.961880.77202
    KR241.000.51177−17−102.761.294810.85948
    下载: 导出CSV 
    | 显示表格

    长期以来,G4花岗岩独特的地球化学特征常常被归结为岩浆长期分异与热液流体联合作用(Lehmann,1987Lehmann et al.,1987)或者Rusizian期变质基底(~2.0 Ga)与G1~G3过铝质S型花岗岩作为混合的源区物质发生部分熔融并经历强烈分离结晶作用的结果(Güntheret al.,1989Pohl,1994Tack et al.,2010)。笔者将已经发表且数据较配套的G4花岗岩投图可知(图6a、图6b),除了一部分G4花岗岩样品落入分异的花岗岩区域外,剩下的G4花岗岩却并未表现出明显分异的特征。本次统计结果显示,绝大多数卢旺达G4花岗岩(950~1000 Ma)的锆石或锆石增生边的Th/U值均小于0.1(图7),主要表现为变质锆石的特点(Rubatto,2017),与混合岩化作用形成的锆石Th/U值大多在0.1附近或者低于0.1的特征相似(Rubatto et al.,20092013)。De Clercq等(2021)指出,卢旺达G4花岗岩的化学成分不均一并且含有不同年龄的锆石捕掳晶暗示这些花岗岩形成于源区物质极为复杂的局部重熔或深熔作用(类似混合岩化过程),经历了一定程度的结晶分异作用,但却并不像传统观点认为的那样单纯地只是一个深部规模较大的岩浆房长期分异演化最后阶段的产物。

    图  6  G4花岗岩岩石成因类型判别图(据Whalen et al.,1987
    A型花岗岩及I/S型花岗岩边界线据吴福元等(2017);G4花岗岩图例同图4
    Figure  6.  Genetic discrimination diagrams of the G4 granites
    图  7  G4花岗岩锆石测点年龄–Th/U值图
    Figure  7.  Zircon Th/U ratio vs age plot of all the data–points from the G4 granites

    Sylvester(1998)指出,全岩的CaO/Na2O、Rb/Sr和Rb/Ba值可以用来反映强过铝质花岗岩源区不同岩性物质的比例(含量)变化。若考虑到CaO对斜长石熔融的贡献以及风化过程中CaO的损失,那些由富含斜长石/贫粘土成分的源区物质(成熟度较低的杂砂岩)部分熔融产生的岩浆,其CaO/Na2O值将明显高于由富含粘土物质的(成熟度高)泥质岩部分熔融产生的岩浆(Patiño Douce et al.,19911995Claire et al.,2019)。而与此不同的是,由富云母或贫斜长石的源区岩石(变泥质岩)部分熔融产生的熔体将比那些富斜长石或贫云母的变沉积岩(杂砂岩)部分熔融产生的岩浆则具有更高的Rb/Sr值和Rb/Ba值(Harris et al.,1993Sylvester,1998)。卢旺达G4花岗岩的高Rb/Sr值和Rb/Ba值都指示其来自富含黏土的源岩熔融(图8a)(Sylvester,1998)。进一步分析则不难发现,卢旺达G4花岗岩的CaO/Na2O值较低(图8b),同时具有较低的FeOt+MgO+TiO2含量,这些特征也与变泥质岩在含水流体存在条件下的部分熔融产物类似(Sylvester, 1998Patiño Douce,1999Li et al.,2003Wang et al.,2019)。此外,卢旺达G4花岗岩具有较高的U、K、Rb、Pb含量,以及较低的Ca、Sr、Ba含量,也从侧面反映了大陆地壳物质在岩浆成因中的贡献(Nambaje et al.,2021a),这一认识与Ikingura(1989)对坦桑尼亚西北部Bushubi地区的含Sn花岗岩(G4花岗岩)进行研究后得出的结论相一致。此外,来自Nd同位素方面的证据揭示不同地区的G4花岗岩源区性质相似,具有较稳定的εNd(t)值(平均值约为−10),反映了古老地壳物质的贡献,而较高的初始87Sr/86Sr值也暗示了岩浆形成过程中陆源碎屑沉积物的贡献。但是,那些具有异常高初始87Sr/86Sr值的样品则很可能是受后期事件改造的影响,因而不具有明确的指示意义(表2)。综上所述,以上分析表明G4花岗岩的源区物质以变沉积岩为主,并且岩浆形成方式应该是局部的部分熔融或深熔作用。

    图  8  G4花岗岩源区成分判别图
    a. 底图据Sylvester(1998);b. 底图据Claire等(2019);G4花岗岩图例同图4
    Figure  8.  Magma source discrimination diagram of the G4 granites

    从花岗岩全岩Al2O3/TiO2值和Zr含量可以推断出过铝质熔体或岩浆的形成温度和深度(压力范围)。与低温岩浆相比,高温岩浆的Al2O3/TiO2含量更低、Zr含量更高(Watson et al.,1983Boehnke et al.,2013Claire et al.,2019)。前人的部分熔融实验结果表明(Sylvester,1998),熔体的Al2O3/TiO2值主要受熔融温度控制,在沉积物部分熔融形成过铝质花岗岩熔体的过程中,由于含Ti矿物相(黑云母和钛铁矿)的逐步分解将导致岩浆中的TiO2含量随着温度的升高而逐渐增加。因为石榴子石、斜长石和铝硅酸盐等难熔的含Al矿物相在部分熔融过程中保持相对稳定,所以熔体中的Al2O3含量也能保持相对稳定(Claire et al.,2019)。通过分析可以看出,G4花岗岩的Al2O3/TiO2值均较高,同时Zr含量均较低,而且许多锆石出现继承核,说明属于低温岩浆体系,这一点也和锆石饱和温度的计算结果相互印证(除少数几个样品超过800 ℃外,主体锆饱和温度为546~780 ℃)。Lehmann等(2014)根据岩体与围岩之间接触变质晕中的压力指示矿物红柱石及空间上紧密共生的稀有金属花岗伟晶岩内部压力指示矿物锂辉石的出现,进而将卢旺达G4花岗岩岩浆体系的侵位压力值为2.5~4.0 kbar,其对应的侵位深度为10~16 km。Pohl等(1991)通过流体包裹体的研究工作,认为卢旺达G4花岗岩的侵位深度为6~12 km,对应的压力值为1.6~3.2 kbar。在的Al2SiO5同质多像变体的P–T相图中,红柱石出现的压力值小于4.0 kbar(Holdaway,1971White et al.,1977),而在London(2018)提出的含锂铝硅酸盐P–T相图上,锂辉石出现的压力值不小于1.5 kbar(图9)。由此可见,上述不同研究者对G4花岗岩岩浆侵位压力(深度)的定量估算结果还是比较接近的。

    图  9  含锂铝硅酸盐P–T相图 (据London,2018修改)
    Figure  9.  The lithium aluminosilicate phase diagram

    早期研究认为,传统的中元古代基巴拉造山带是形成于刚果克拉通和坦桑尼亚克拉通–班韦乌卢地块之间的碰撞–缝合带,并经历了多期造山和花岗质岩浆活动(Kampunzu et al.,1986Rumvegeri,1991)。最新的研究将该造山带划分为狭义基巴拉带、卡拉戈维–安科连带和基伍带3个部分,并以发育大量~1380 Ma和~1000 Ma的岩浆活动为特征(Villeneuve et al.,2019)。在狭义基巴拉带中[刚果(金)东南部],那些早期的花岗岩及少量基性岩(1376~1417 Ma)被认为形成于一种活动大陆边缘环境,G4花岗岩则形成于大陆碰撞–造山后伸展阶段,整个过程涉及经典的板块构造机制,包括最初的大洋岩石圈俯冲和最终的陆–陆碰撞作用(Kampunzu et al.,1986Rumvegeri,1989Kokonyangi et al.,20042006Debruyne et al.,2015)。前人在基伍带的工作基础相对较薄弱,但是有限的研究结果表明基伍带的构造演化过程与狭义基巴拉带类似(Rumvegeri,1987Villeneuve et al.,2022)。与此不同,在相邻的卡拉戈维–安科连带中,同期的岩浆活动(~1375 Ma的双峰式岩浆作用)却被认为形成于一种陆内环境(Klerkx et al.,1987; Pohl,1994Fernandez-Alonso et al.,19982012Tack et al.,2010)。Fernandez-Alonso等(2012)提出,随着原刚果克拉通(proto–Congo Craton;~1.80 Ga)的形成,狭义基巴拉带和卡拉戈维–安科连带都位于克拉通内,处于一种陆内盆地的构造背景,并且在狭义基巴拉带中并未发现相应的蛇绿岩及远洋深水沉积,认为俯冲–碰撞模型是不合理的。在Tack等(2010)Fernandez-Alonso等(2012)的模型中,G4花岗岩的形成是由于赞比亚伊鲁米德造山运动(~1.0 Ga)的应力传导“远程效应”引发地壳增厚的结果,而岩浆作用发生在随后的地壳伸展–松弛阶段。随着研究的不断深入,越来越多的证据表明卡拉戈维–安科连带同样经历了与狭义基巴拉带类似的俯冲–碰撞造山过程,从而对Tack等(2010)的模型提出了挑战(Koegelenberg et al.,2015Nambaje,2021Nambaje et al.,2021aVan Daele et al.,2021)。例如,Koegelenberg等(2014)指出,卡拉戈维–安科连带中大约1.0 Ga时的碰撞挤压事件导致一系列紧闭褶皱和逆冲断层的发育,这次新元古代早期的变形事件(D2)被认为是与G4花岗岩侵位同期的。Günther等(1989)认为传统基巴拉带中的含锡花岗岩(G4花岗岩)与产出于非造山环境裂谷带内的尼日利亚含锡花岗岩及后造山伸展背景的欧洲中部厄尔士山(Erzgebirge)地区的含锡花岗岩明显不同,基巴拉带的G4花岗岩很可能形成于一种挤压构造背景,对应同造山阶段。为此,笔者对前人已经发表的刚果(金)、布隆迪、卢旺达和乌干达等国家的G1~G3花岗岩以及G4花岗岩样品进行了地球化学投图。结果显示,G1~G3花岗岩与G4花岗岩基本上落入同碰撞花岗岩或火山弧花岗岩范围(图10a~图10c),并属于活动大陆边缘环境(图10d)。但是,从构造演化阶段的角度来看,G1~G3花岗岩应该属于同碰撞花岗岩,而G4花岗岩属于同碰撞–后碰撞花岗岩,对应罗迪尼亚超大陆的最终聚合事件。此外,少数来自卢旺达的A型花岗岩(~1370 Ma)落入板内花岗岩区域则可能反映了弧后伸展环境,说明发生了岩石圈拆沉及软流圈上涌,这个动力学过程与Debruyne等(2015)的模型也是比较吻合的。

    图  10  G4花岗岩构造环境判别图
    a. (Y + Nb) – Rb图解;b. (Yb + Ta) – Rb 图解;c. Y– Nb 图解 (据Pearce et al.,1984);d. Ta/Yb– Th/Yb图解 (据Pearce,1983);G4花岗岩图例同图4
    Figure  10.  Tectonic discrimination plots for the G4 granites from the Kibara and Karagwe–Ankole Belt

    G4花岗岩是区域上稀有金属花岗伟晶岩的成矿母岩,并且也与热液石英脉型W–Sn矿具有密切的成因联系(Pohl et al.,19912013Pohl,1994Romer et al.,1995)。已有研究表明,在工作程度较高的卢旺达Gitarama–Gatumba地区,花岗伟晶岩与G4花岗岩在时间–空间上紧密相连。如果以G4花岗岩的成分为起始点,通过瑞利分离结晶模拟岩浆演化过程,结果显示从黑云母伟晶岩、二云母伟晶岩、白云母伟晶岩到矿化伟晶岩的演化程度越来越高,它们分别代表母岩浆(G4花岗岩熔体)发生0~69%、69%~92%、92%~98%及98%分离结晶作用的产物(Hulsbosch et al.,2014吴兴源等,2020)。在G4花岗岩分异演化形成伟晶岩的过程中,与造岩矿物不相容的成矿元素Sn、W、Nb和Ta在残余熔体中不断富集,当体系中的水达到饱和后,发生熔体–流体不混溶作用,随即开始出溶中等盐度岩浆流体(Hulsbosch et al.,2016)。W由于较高的溶解度倾向于进入流体,并以钨酸根络合物的形式迁移,而Sn则倾向于进入熔体相中,只有当体系的Cl含量足够高时才会选择性地进入流体相中(Hulsbosch,2019)。因此,尽管这种岩浆流体同时具有W和Sn的成矿潜力,但是随着G4花岗岩岩浆体系的不断演化,出溶的流体形成W矿的潜力越来越低,而形成Sn矿的潜力则越来越高。这些出溶的流体沿着早期的构造薄弱带(断裂、节理、层理)侵位,并与不同岩性的围岩发生水–岩反应,成矿元素最终沉淀、富集成矿,形成石英脉型矿床(Muchez et al.,2014Hulsbosch,2019)。在G4花岗岩体系出溶含W流体的同时,已经过渡为岩浆–热液体系,此时残余熔体极为富集一些被称为“结构调节剂”的元素(Nb、Ta、Sn、B和 P),使熔体具有极低的密度、粘度和表面张力,以及较高的扩散率、反应活性和流动性,它们进一步分异演化就形成了从黑云母伟晶岩一直到含稀有金属伟晶岩的分带组合。

    (1)G4花岗岩年龄为921~1021 Ma,G4花岗岩的形成时代与伟晶岩年龄以及伟晶岩内部稀有金属(Sn‒Nb‒Ta‒Li)成矿作用时间接近,反映了成岩事件及成矿事件二者之间的关联性,指示G4花岗岩是区域上伟晶岩的成矿母岩。

    (2)G4花岗岩为近等粒结构–细晶结构或伟晶结构的淡色花岗岩,岩石类型包括二云母花岗岩、白云母二长花岗岩、白云母花岗岩等,由于强烈风化导致难以在野外准确圈定范围。

    (3)G4花岗岩的SiO2、全碱(Na2O+K2O)、P2O5含量及Al2O3/TiO2值较高,而TiO2、TFe2O3、MgO、CaO等含量较低,铝饱和指数较高,主体为一套铁质、钙碱性–碱钙性系列岩石;G4花岗岩的稀土元素配分曲线整体较为平坦,明显富集Cs、Rb、Th、U、K、Pb、 P和Sm,亏损Ba、Nb、Ta、La、Ce、Sr、Zr、Hf和Ti。

    (4)G4花岗岩的初始87Sr/86Sr值较高、全岩εNd(t)值均为负值,锆石多含捕掳晶并且锆石Th/U比值显示变质来源的特征,其源区物质以变泥质岩为主,岩浆形成方式主要是局部的部分熔融或深熔作用,而并不像过去认为的那样是一个深部规模较大的岩浆房长期分异演化最后阶段的产物,G4花岗岩的演化与区域成矿作用存在直接关联。结合区域构造演化研究,推测这些花岗岩很可能形成于基巴拉造山作用的同碰撞‒后碰撞阶段。

  • 图  1   中部非洲传统基巴拉带区域地质简图 (据Debruyne et al.,2015修改)

    Figure  1.   Simplified geological map of the Kibaran belt region, Central Africa

    图  2   卢旺达G4花岗岩的锆石阴极发光图

    a~h. 资料来源于De Clercq等(2021); i~u. 资料来源于Nambaje等(2021a)

    Figure  2.   Zircon CL–images of the G4 granite samples from Rwanda

    图  3   卢旺达G4花岗岩手标本、野外露头及镜下显微特征图(a~b据De Clercq et al.,2021;c~f据Nambaje et al.,2021a

    Bt. 黑云母;Fsp. 长石;Ms. 白云母;Qz. 石英

    Figure  3.   Hand specimen, field exposures and thin section petrography of the G4 granite from Rwanda

    图  4   G4花岗岩岩石地球化学分类判别图

    a. SiO2–全碱图解(Middlemost,1994);b. A/CNK–A/NK图解(Maniar et al.,1989);c. ACF图解(Chappell et al.,1992); d. SiO2–FeOt/(FeOt + MgO)图解(Frost et al.,2001);e. SiO2–(Na2O + K2O–CaO)图解(Frost et al.,2001

    Figure  4.   Geochemical classification diagrams for the G4 granites from the Kibara and Karagwe–Ankole Belt, Central Africa

    图  5   G4花岗岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蜘蛛图(b)

    球粒陨石和原始地幔标准化数值引自Sun等(1989);G4花岗岩图例同图4

    Figure  5.   (a) Chondrite–normalized REE patterns and (b) primitive mantle normalized spider diagram for the G4 granites

    图  6   G4花岗岩岩石成因类型判别图(据Whalen et al.,1987

    A型花岗岩及I/S型花岗岩边界线据吴福元等(2017);G4花岗岩图例同图4

    Figure  6.   Genetic discrimination diagrams of the G4 granites

    图  7   G4花岗岩锆石测点年龄–Th/U值图

    数据来自De Clercq等(2021)Nambaje等(2021a)

    Figure  7.   Zircon Th/U ratio vs age plot of all the data–points from the G4 granites

    图  8   G4花岗岩源区成分判别图

    a. 底图据Sylvester(1998);b. 底图据Claire等(2019);G4花岗岩图例同图4

    Figure  8.   Magma source discrimination diagram of the G4 granites

    图  9   含锂铝硅酸盐P–T相图 (据London,2018修改)

    Figure  9.   The lithium aluminosilicate phase diagram

    图  10   G4花岗岩构造环境判别图

    a. (Y + Nb) – Rb图解;b. (Yb + Ta) – Rb 图解;c. Y– Nb 图解 (据Pearce et al.,1984);d. Ta/Yb– Th/Yb图解 (据Pearce,1983);G4花岗岩图例同图4

    Figure  10.   Tectonic discrimination plots for the G4 granites from the Kibara and Karagwe–Ankole Belt

    表  1   基巴拉带(狭义)和卡拉戈维−安科连带中G4花岗岩、伟晶岩年龄数据及铌钽铁矿成矿年龄数据统计表

    Table  1   Summary age data of the G4 granites, pegmatites and columbite−tantalite mineralization from the Kibara belt (sensu stricto) and Karagwe−Ankole belt

    样品号采样地点构造位置岩性/矿物测年方法年龄(Ma)数据来源
    Kasika狭义基巴拉带含锡花岗岩全岩Rb−Sr976±10Cahen et al.,1979a
    Ki22Kasika狭义基巴拉带含锡花岗岩锆石U−Pb986±10Tack et al.,2010
    Nzombe狭义基巴拉带含锡花岗岩全岩Rb−Sr~976Cahen et al.,1979a
    Nyamakubi狭义基巴拉带含锡花岗岩全岩Rb−Sr976Cahen et al.,1979a
    Kalima−Moga狭义基巴拉带含锡花岗岩全岩Rb−Sr989±28Cahen et al.,1979a
    Mount Bia Massif狭义基巴拉带含锡花岗岩全岩/单矿物Rb−Sr966±21Cahen et al.,1979a
    Mwanza Massif狭义基巴拉带含锡花岗岩全岩Rb−Sr977±18Cahen et al.,1984
    Kamituga狭义基巴拉带淡色花岗岩全岩Rb−Sr1020±50Ledent et al.,1965
    Maleba狭义基巴拉带淡色花岗岩全岩Rb−Sr1006±44Ikingura,1989
    Kirengo卡拉戈维−安科连带淡色花岗岩全岩Rb−Sr972±15Cahen et al.,1984
    CR181Uwinkingi卡拉戈维−安科连带白云母花岗岩锆石U−Pb988±19Nambaje et al.,2021a
    CR186Musambira卡拉戈维−安科连带白云母二长花岗岩锆石U−Pb958±20Nambaje et al.,2021a
    CR203Muhanda卡拉戈维−安科连带白云母花岗岩锆石U−Pb945±31Nambaje et al.,2021a
    CR159Ruyenzi卡拉戈维−安科连带白云母花岗岩独居石U−Pb1011±18Nambaje et al.,2021a
    CR175Busasamana卡拉戈维−安科连带白云母花岗岩独居石U−Pb979±10Nambaje et al.,2021a
    CR181Uwinkingi卡拉戈维−安科连带白云母花岗岩独居石U−Pb976±11Nambaje et al.,2021a
    CR186Musambira卡拉戈维−安科连带白云母二长花岗岩独居石U−Pb997±8Nambaje et al.,2021a
    CR203Muhanda卡拉戈维−安科连带白云母花岗岩独居石U−Pb980±8Nambaje et al.,2021a
    CR209Kigali (Gisozi)卡拉戈维−安科连带白云母花岗岩独居石U−Pb1010±9Nambaje et al.,2021a
    SDC18gr02Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb1014±53De Clercq et al.,2021
    SDC18gr05Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb959±43De Clercq et al.,2021
    SDC18gr07Mushubati卡拉戈维−安科连带二长花岗岩锆石U−Pb993±26De Clercq et al.,2021
    SDC18gr08Runda卡拉戈维−安科连带二长花岗岩锆石U−Pb999±46De Clercq et al.,2021
    SDC18gr15Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb974±15De Clercq et al.,2021
    SDC18gr18Rukondo卡拉戈维−安科连带二长花岗岩锆石U−Pb~1000De Clercq et al.,2021
    SDC18gr20Nyanza卡拉戈维−安科连带二长花岗岩锆石U−Pb985±11De Clercq et al.,2021
    SDC18gr21Kibuye卡拉戈维−安科连带正长花岗岩锆石U−Pb~1000De Clercq et al.,2021
    Nyabugogo卡拉戈维−安科连带伟晶岩白云母Rb−Sr975±29Monteyne-Poulaert et al.,1962Cahen,1964
    Bijyojyo卡拉戈维−安科连带伟晶岩白云母Rb−Sr945±28
    Gatumba卡拉戈维−安科连带伟晶岩白云母Rb−Sr940± 28
    Rwinkwavu卡拉戈维−安科连带伟晶岩白云母Rb−Sr955±29
    Gakara卡拉戈维−安科连带伟晶岩全岩−白云母Rb−Sr969±8Brinckmann et al.,1983
    Gakara卡拉戈维−安科连带伟晶岩白云母Rb−Sr969±17Lehmann et al.,1994
    Atondo deposit狭义基巴拉带伟晶岩白云母Ar−Ar986.6±5.3Dewaele et al.,2015
    Yubuli deposit狭义基巴拉带伟晶岩白云母Ar−Ar992.4±5.4Dewaele et al.,2015
    Lutshurukuru狭义基巴拉带伟晶岩白云母Ar−Ar1024.3±55Dewaele et al.,2015
    RG 9699Manono−Kitotolo狭义基巴拉带伟晶岩白云母Ar−Ar938.8±5.1Dewaele et al.,2016
    RG 15993Manono−Kitotolo狭义基巴拉带伟晶岩白云母Ar−Ar934.0±5.9Dewaele et al.,2016
    RG 3554Manono-Kitotolo狭义基巴拉带伟晶岩(云英岩)白云母Ar−Ar923.3±8.3Dewaele et al.,2016
    下载: 导出CSV
    续表1
    样品号采样地点构造位置岩性/矿物测年方法年龄(Ma)数据来源
    Kivuvu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb963±9/−5Romer et al.,1995
    Ruhembe卡拉戈维−安科连带铌钽铁矿TIMS U−Pb968+33/−29Romer et al.,1995
    Sample 45Mazakala狭义基巴拉带铌钽铁矿TIMS U−Pb971.1±1.5Melcher et al.,2008b2009
    Sample 110Bassin Obea狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb971.8±7.0Melcher et al.,2008a
    Coltan 48Gatumba plant卡拉戈维−安科连带铌钽铁矿TIMS U−Pb1029±19Dewaele et al.,2011
    Coltan 84Ruhanga卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb938+9.3/−8.5Dewaele et al.,2011
    Coltan 87Buranga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb936±14Dewaele et al.,2011
    Coltan 89Shori (Gateko)卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb974.8±8.2Dewaele et al.,2011
    Coltan 93Nyambisindu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb951±15Dewaele et al.,2011
    Coltan 216Nkegete卡拉戈维−安科连带铌钽铁矿TIMS U−Pb939±4Dewaele et al.,2011
    Coltan 219Nkegete卡拉戈维−安科连带铌钽铁矿TIMS U−Pb958±0.4Dewaele et al.,2011
    Coltan 233Bijyojyo卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb965+8.7/−8.6Dewaele et al.,2011
    Sample 155Mobra卡拉戈维−安科连带铌钽铁矿TIMS U−Pb934.5±3.9Melcher et al.,2015
    Sample 40Camp Bisengo狭义基巴拉带铌钽铁矿TIMS U−Pb973.8±2.2、Melcher et al.,2015
    Sample 235Ntunga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb949.2±2.7Melcher et al.,2008a
    Sample 43Kakelo狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb962.8+8.7/−8.5Melcher et al.,2015
    Sample 44Mapimo Mulungu狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb960±9Melcher et al.,2015
    Sample 45Shabunda狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb964.3±5.4Melcher et al.,2015
    Sample 105Kamisuku, Pangi狭义基巴拉带铌钽铁矿TIMS U−Pb992.2±7.8Melcher et al.,2015
    Sample 106Kibeke狭义基巴拉带铌钽铁矿TIMS U−Pb960±5Melcher et al.,2015
    Sample 112Masisi狭义基巴拉带铌钽铁矿TIMS U−Pb950.2±4.4Melcher et al.,2015
    Sample 115Mwenga狭义基巴拉带铌钽铁矿TIMS U−Pb972.3±3.0Melcher et al.,2015
    Sample 119Manono狭义基巴拉带铌钽铁矿TIMS U−Pb940.2±5.1Melcher et al.,2015
    Sample 122Manono狭义基巴拉带铌钽铁矿TIMS U−Pb947.3±2.8Melcher et al.,2015
    Sample 156Mwenga狭义基巴拉带铌钽铁矿TIMS U−Pb937.1±2.4Melcher et al.,2015
    Sample 41Muhanga卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb971.9±4.9Melcher et al.,2015
    Sample 125Nzida卡拉戈维−安科连带铌钽铁矿TIMS U-Pb936.5±6.6Melcher et al.,2015
    Sample 153Ntunga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb935±13Melcher et al.,2015
    Sample 136Nemba卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb960.7±7.6Melcher et al.,2015
    Sample 169Nemba卡拉戈维−安科连带铌钽铁矿TIMS U−Pb951±13Melcher et al.,2015
    Sample 150Kibingo卡拉戈维−安科连带铌钽铁矿TIMS U−Pb929.4±6Melcher et al.,2015
    Sample 743Myatano 1卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb940±21Melcher et al.,2015
    Sample 381Kanungu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb983.4±0.6Melcher et al.,2015
    Sample 383Mbulema卡拉戈维−安科连带铌钽铁矿TIMS U−Pb958.5±3.2Melcher et al.,2015
    下载: 导出CSV

    表  2   G4花岗岩Sr–Nd同位素数据统计表

    Table  2   Summary of Sr–Nd isotope data of the G4 granites

    样品号/采样地点年龄(Ga)143Nd/144Nd)0εNd(0)εNdtTDM(Ga)87Sr/86Sr)087Sr/86Sr)i数据来源
    Maleba1.000.807Ikingura,1989
    Kirengo0.9720.778Cahen et al.,1984
    Mwanza0.9770.7002~0.731
    CR1751.000.512135−9.8−12.40.917440.744555Nambaje et al.,2021a
    CR1811.000.511672−18.8−9.92.520.8050430.73339
    CR2031.000.511963−13.2−10.81.0443170.728935
    CR2091.000.511834−15.7−11.23.810.8407740.744413
    CR1861.000.511758−17.2−11.13.260.8323530.739304
    KR61.000.51196−13−93.54Debruyne et al.,2015
    KR91.000.5112−28−152.440.823610.73216
    KR171.000.51194−14−115.271.51541
    KR231.000.51165−19−112.640.961880.77202
    KR241.000.51177−17−102.761.294810.85948
    下载: 导出CSV
  • 刘晓阳, 龚鹏辉, 许康康, 等. 坦桑尼亚乌本迪活动带西北部元古宙沉积盆地碎屑锆石U-Pb年龄及其地质意义[J]. 地质调查与研究, 2020, 1: 5–18. doi: 10.3969/j.issn.1672-4135.2020.01.002

    LIU Xiaoyang, GONG Penghui, XU Kangkang, et al. U-Pb age of detrital ziron and its geological significance in the Proterozoic sediments basin in the northwestern Ubendian belt of Tanzania[J]. Geological Survey and Research, 2020, 1: 5–18. doi: 10.3969/j.issn.1672-4135.2020.01.002

    WANG Jie, LIU Xiaoyang, REN Junping, et al. Precambrian mineralization in Tanzania[J]. 华北地质, 2022, 45(1): 101-110.

    王杰, 刘晓阳, 任军平, 等. 坦桑尼亚前寒武纪成矿作用[J]. North China Geology, 2022, 45(1): 101-110.

    吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47: 745–765.

    WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 2017, 47: 745–765.

    吴兴源, 刘晓阳, 周佐民, 等. 卢旺达Gatumba地区花岗伟晶岩的地质、地球化学特征及其成因研究综述[J]. 地质调查与研究, 2020, 43(01): 42-54. doi: 10.3969/j.issn.1672-4135.2020.01.005

    WU Xingyuan, LIU Xiaoyang, ZHOU Zuomin, et al. Overview on geological, geochemical features and genesis of the granitic pegmatites in Gatumba ara, Rwanda[J]. Geological Survey and Research, 2020, 43(01): 42-54. doi: 10.3969/j.issn.1672-4135.2020.01.005

    赵振华, 增田彰正 M B 夏巴尼. 稀有金属花岗岩的稀土元素四分组效应[J]. 地球化学, 1992, 3: 221–233. doi: 10.3321/j.issn:0379-1726.1992.03.003

    ZHAO Zhenhua, Akimasa Masuda M B Shabani. Tetrad effects of rare-earth elements in rare-metal granites[J]. Geochimica, 1992, 3: 221–233. doi: 10.3321/j.issn:0379-1726.1992.03.003

    朱清, 顾本杰, 邹谢华, 等. 试论中非矿业合作的机遇与挑战[J]. 西北地质, 2023, 56(1): 174−185.

    ZHU Qing, GU Benjie, ZOU Xiehua, et al. On the Opportunities and Challenges of China–Africa Mining Cooperation[J]. Northwestern Geology, 2023, 56(1): 174-185.

    Best M G. Igneous and metamorphic petrology[M]. Oxford: Blackwell Science, 2003.

    Boehnke P, Watson E B, Trail D, et al. Zircon saturation re-revisited[J]. Chemical Geology, 2013, 351: 324–334. doi: 10.1016/j.chemgeo.2013.05.028

    Brinckmann J, Lehmann B. Exploration de la Bastnaesite-Monazite dans la Région de Gakara-Burundi[R]. German Geological Survey, Hannover, Germany, 1983, 157.

    Brinckmann J, Lehmann B, Hein U, et al. La géologie et la minéralisation primaire de l’or de la Chaîne Kibarienne, nord-ouest du Burundi, Afrique orientale[J]. Geologisches Jahrbuch Reihe E Geophysik, 2001, 101: 3–195

    Cahen L & Ledent D. Précisions sur l’age, la pétrogénèse et la position stratigraphique des granites à étain de l’est de l’Afrique Centrale[J]. Bulletin de la Société belge de géologie, 1979, 88: 33–49.

    Cahen L, Ledent D, Villeneuve M. Existence d'une chaîne plissée protérozoïque supérieur au Kivu oriental (Zaïre): données géochronologiques relatives au Supergroupe de l'Itombwe[J]. Bulletin de la Société belge de géologie, 1979, 88: 71–83.

    Cahen L, Snelling N J, Delhal J, et al. The geochronology and evolution of Africa[D]. Clarendon Press, Oxford, 1984.

    Cahen L. État de la géochronologie du Rwanda[J]. Bulletin du Service Geologique de la Republique du Rwanda, 1964, 1: 35–38.

    Černý P & Ercit T S. Classification of granitic pegmatites revisited[J]. Canadian Mineralogist, 2005, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005

    Chappell B W& White J A R. I- and S-type granites in the Lachlan Fold Belt[J]. Transactions of Royal Society Edinburgh: Earth Sciences, 1992, 83: 1–26. doi: 10.1017/S0263593300007720

    Claire E B & Christopher J S. Strongly Peraluminous Granites across the Archean–Proterozoic transition[J]. Journal of Petrology, 2019, 60: 1299–1348. doi: 10.1093/petrology/egz033

    De Clercq F. Metallogenesis of Sn and W vein-type deposits in the Karagwe-Ankole belt (Rwanda) [D]. KU Leuven: Department of Earth and Environmental Sciences, 2012.

    De Clercq S, Chew D, O’Sullivan G, et al. Characterisation and geodynamic setting of the 1 Ga granitoids of the Karagwe-Ankole belt (KAB), Rwanda[J]. Precambrian Research, 2021, 356, 106124. doi: 10.1016/j.precamres.2021.106124

    Debruyne D, Hulsbosch N, Van Wilderode J, et al. Regional geodynamic context for the Mesoproterozoic Kibara Belt (KIB) and the Karagwe-Ankole Belt: Evidence from geochemistry and isotopes in the KIB[J]. Precambrian Research, 2015, 264: 82–97. doi: 10.1016/j.precamres.2015.04.001

    Dewaele S, Henjes-Kunst F, Melcher F, et al. Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa)[J]. Journal of African Earth Sciences, 2011, 61(1): 10–26. doi: 10.1016/j.jafrearsci.2011.04.004

    Dewaele S, Hulsbosch N, Cryns Y, et al. Geological setting and timing of the world-class Sn, Nb–Ta and Li mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo) [J]. Ore Geology Reviews, 2016, 72: 373–390. doi: 10.1016/j.oregeorev.2015.07.004

    Dewaele S, Muchez P, Burgess R, et al. Geological setting and timing of the cassiterite vein type mineralization of the Kalima area (Maniema, Democratic Republic of Congo) [J]. Journal of African Earth Sciences, 2015, 112 (A): 199–212.

    Dewaele S, Tack L, Fernandez-Alonso M, et al. Geology and mineralisation of the Gatumba area, Rwanda: Present state of knowledge[J]. Etudes Rwandaises, 2008, 16: 6−24.

    Dewaele S, Tack L, Fernandez-Alonso M. Cassiterite and columbite-tantalite (coltan) mineralisation in the Mesoproterozoic rocks of the northern part of the Kibara orogen (Central Africa): preliminary results[J]. Mededelingen der Zittingen van de Koninklijke Academie voor Overzeese Wetenschappen, 2009, 54: 341–357.

    Fernandez-Alonso M & Theunissen K. Airborne geophysics and geochemistry provide new insights in the intercontinental evolution of the Mesoproterozoic Kibaran belt (Central Africa) [J]. Geological Magazine, 1998, 135: 203–216. doi: 10.1017/S0016756898008310

    Fernandez-Alonso M, Cutten H, De Waele B, et al. The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): the result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events[J]. Precambrian Research, 2012, 216–219: 63–86.

    Fernandez-Alonso M, Lavreau J, Klerkx J. Geochemistry and geochronology of the Kibaran granites in Burundi, Central Africa: implications for the Kibaran Orogeny[J]. Chemical Geology, 1986, 57: 217–234. doi: 10.1016/0009-2541(86)90104-X

    Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42: 2033–2048. doi: 10.1093/petrology/42.11.2033

    Gerards J & Ledent D. Grands traits de la géologie du Rwanda, différents types de roches granitiques et premières données sur les âges de ces roches[J]. Annales de la Société géologique de Belgique, 1970, 93: 477–489.

    Glover A S, Rogers W Z, Barton J E. Granitic pegmatites: storehouses of industrial minerals[J]. Elements, 2012, 8: 269-273. doi: 10.2113/gselements.8.4.269

    Goldmann S, Melcher F, Gäbler H E, et al. Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda[J]. Minerals, 2013, 3: 121–144.

    Günther M A, Dulski P, Lavreau J, et al. The Kibaran tin granites: Hydrothermal alteration versus plate tectonic setting[R]. International Geological Correlation Programme, Project n◦255, Newsletter/Bulletin, 1989, 2: 21–27.

    Harris N, Massey J, Inger S. The role of fluids in the formation of High Himalayan leucogranites[A]. In: Treloar P J, Searle M P. (Eds. ), Himalayan Tectonics [C]. London: Geological Society, London, Special Publications, 1993: 391–400.

    Holdaway M J. Stability of andalusite and the aluminum silicate phase diagram[J]. American Journal of Science, 1971, 271 (2): 97–131. doi: 10.2475/ajs.271.2.97

    Hulsbosch N, Boiron M C, Dewaele S, et al. Fluid fractionation of tungsten during granite–pegmatite differentiation and the metal source of peri-batholitic W quartz veins: evidence from the Karagwe-Ankole Belt (Rwanda) [J]. Geochimica et Cosmochimica Acta, 2016, 175: 299–318. doi: 10.1016/j.gca.2015.11.020

    Hulsbosch N, Hertogen J, Dewaele S, et al. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 2014, 132: 349–374. doi: 10.1016/j.gca.2014.02.006

    Hulsbosch N, Van Daele J, Reinders N, et al. Structural control on the emplacement of contemporaneous Nb-Ta-Sn pegmatite intrusions and Sn quartz veins: insights from the Musha and Ntunga deposits of the Karagwe-Ankole Belt. Rwanda[J]. Journal of African Earth Sciences, 2017, 137: 24–32.

    Hulsbosch N. Nb-Ta-Sn-W distribution in granite-related ore systems: fractionation mechanisms and examples from the Karagwe-Ankole Belt of Central Africa[A]. In: Decree S, Robb L, Eds. Ore Deposits Origin Exploration and Exploitation[C]. Wiley, 2019: 75–107.

    Ikingura J R. Geology, geochemistry and genesis of stanniferous granites in the southern part of the Karagwe-Ankolean belt, NW Tanzania[D]. Carleton University, 1989.

    Kampunzu A B, Rumvegeri B T, Kapenda D, et al. Les Kibarides d’Afrique centrale et orientale: une chaîne de collision[J]. Geology for Development Newsletter, 1986, 5: 125–137.

    Klerkx J, Liégeois J P, Lavreau J, et al. Crustal evolution of the northern Kibaran Belt, Eastern and Central Africa[A]. In: Kröner A, Ed. Proterozoic Lithospheric Evolution[C]. American Geophysics Union, Geodynamics Series, 1987, 17: 217–233.

    Klerkx J, Liégeois J P, Lavreau J, et al. Granitoides kibariens précoces et tectonique tangentielle au Burundi: magmatisme bimodal lié a une distention crustale[A]. In: Klerkx J, Michot J, Eds. African Geology, A Volume in Honour of L. Cahen[C]. Tervuren, Royal Museum for Central Africa, 1984: 29–46.

    Koegelenberg C, Kisters A F M, Kramers J D, et al. U-Pb detrital zircon and 39Ar-40Ar muscovite ages from the eastern parts of the Karagwe-Ankole Belt: Tracking Paleoproterozoic basin formation and Mesoproterozoic crustal amalgamation along the western margin of the Tanzania Craton[J]. Precambrian Research, 2015, 269: 147–161. doi: 10.1016/j.precamres.2015.08.014

    Koegelenberg C, Kisters, A F M. Tectonic wedging, back-thrusting and basin development in the frontal parts of the Mesoproterozoic Karagwe-Ankole belt in NW Tanzania[J]. Journal of African Earth Sciences, 2014, 97: 87–98. doi: 10.1016/j.jafrearsci.2014.04.018

    Kokonyangi J W, Kampunzu A B, Armstrong R, et al. The Mesoproterozoic Kibaride belt (Katanga, SE D. R. Congo) [J]. Journal of African Earth Sciences, 2006, 46: 1–35. doi: 10.1016/j.jafrearsci.2006.01.017

    Kokonyangi J, Armstrong R, Kampunzu A B, et al. U-Pb zircon geochronology and petrology of granitoids from Mitwaba (Katanga, Congo): Implications for the evolution of the Meso-proterozoic Kibaran belt[J]. Precambrian Research, 2004, 132(1–2): 79– 106.

    Kokonyangi J, Okudiaira T, Kampunzu A B, et al. Geological evolution of the Kibarides Belt, Mitwaba, Democratic Republic of Congo, central Africa[J]. Gondwana Research, 2001, 4: 663–664. doi: 10.1016/S1342-937X(05)70460-3

    Lavreau J & Liégeois J P. Granites à étain et granito-gneiss burundiens au Rwanda (région de Kibuye): Âge et signification[J]. Annales de la Societe Geologique de Belgique, 1982, 105: 289–294.

    Ledent D, Cahen L. Quelques données géochronologiques nouvelles sur les minéraux et roches du Kivu méridional[R]. Musée Royal d e l'Afrique Centrale, Tervuren. Dépt Géologie Minéralogie, Rapport Annales, 1965, 1: 92–94.

    Ledent D. Données géochronologiques relatives aux granites Kibariens de type A (ou G1) et B (ou G2) du Shaba, du Rwanda, du Burundi et du SW Uganda[R]. Musée Royal d e l'Afrique Centrale, Tervuren. Dépt Géologie Minéralogie, Rapport Annales, 1978, 1: 101–105.

    Lehmann B, Halder S, Ruzindana Munana J, et al. The geochemical signature of rare-metal pegmatites in Central Africa: magmatic rocks in the Gatumba tin–tantalum mining district, Rwanda[J]. Journal of Geochemical Exploration, 2014, 144: 528–538. doi: 10.1016/j.gexplo.2013.11.012

    Lehmann B, Lavreau J. Tin granites of the northern Kibaran belt, Central Africa (Kivu/ Zaire, Rwanda, Burundi) [A]. In: Matheis G, Schandelmeier H, Eds. Current research in African Earth Sciences[C]. Balkema, Rotterdam, 1987: 33–56.

    Lehmann B, Nakai S, Höhndorf A, et al. REE mineralization at Gakara, Burundi: Evidence for anomalous upper mantle in the western Rift Valley [J]. Geochimica et Cosmochimica Acta, 1994, 58: 985–992. doi: 10.1016/0016-7037(94)90520-7

    Lehmann B. Magmatic enrichment of tin, in Metallogeny of Tin[M]. Berlin-Heidelberg-New York: Springer, 1990a.

    Lehmann B. Regional element distribution patterns and the problem of pregranitic tin enrichments, in Metallogeny of Tin[M]. Berlin‐Heidelberg-New York: Springer, 1990b.

    Lehmann B. Tin granites, geochemical heritage, magmatic differentiation[J]. Geologische Rundschau, 1987, 76(1): 177–185 doi: 10.1007/BF01820581

    Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? [J]. Precambrian Research, 2003, 122: 45–83. doi: 10.1016/S0301-9268(02)00207-3

    Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160: 179–210. doi: 10.1016/j.precamres.2007.04.021

    Liégeois J P, Theunissen K, Nzogibwami E, et al. Granitoides syncinématiques Kibariens au Burundi: étude pétrographique, géochimique et géochronologique préliminaire[J]. Annales de la Societe Geologique de Belgique, 1982, 105: 345–356.

    London D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349–383. doi: 10.1016/j.oregeorev.2018.04.020

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635–643.

    Melcher F, Graupner T, Gäbler H E, et al. Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667 –719. doi: 10.1016/j.oregeorev.2013.09.003

    Melcher F, Graupner T, Sitnikova M, et al. Ein Herkunftsnachweis für Niob-Tantalerze am Beispiel afrikanischer Selten-Element-Pegmatite[J]. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 2009, 155: 231–267.

    Melcher F, Sitnikova M A, Graupner T, et al. Fingerprinting of conflict minerals: columbite–tantalite (“coltan”) ores[N]. SGA News, 2008b, 23: 1–14.

    Melcher M, Graupner T, Henjes-Kunst F, et al. Analytical fingerprint of columbite–tantalite(coltan) mineralization in pegmatites: focus on Africa[A]. Proceedings, Ninth International Congress for Applied Mineralogy (ICAM), Brisbane, QLD[C]. Australasian Institute of Mining and Metallurgy, 2008a: 615–624.

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37: 215–224. doi: 10.1016/0012-8252(94)90029-9

    Monteyne-Poulaert G, Delwiche R, Cahen L. Age de minéralisations pegmatitiques et filoniennnes du Rwanda et du Burundi [J]. Annales de la Société géologique de Belgique, 1962, 71: 272–295.

    Muchez P, Hulsbosch N, Dewaele S. 2014. Geological mapping and implications for Nb-Ta, Sn and W prospection in Geological Mapping and Implications for Nb-Ta, Sn and W Prospection in Rwanda[J]. Mededelingen der Zittingen Van de Koninklijke Academie Voor Overzeese Wetenschappen, 2014, 60(3–4): 515 –530.

    Nambaje C, Satish-Kumar M, Williams I S, et al. Granitic rocks from Rwanda: Vital clues to the tectonic evolution of the Karagwe-Ankole Belt[J]. Lithos, 2021a, 404–405, 106490.

    Nambaje C, Williams I S, Sajeev K. SHRIMP U-Pb dating of cassiterite: Insights into the timing of Rwandan tin mineralisation and associated tectonic processes[J]. Ore Geology Reviews, 2021b, 135: 104185. doi: 10.1016/j.oregeorev.2021.104185

    Nambaje C. Tectonic evolution and tin mineralisation of the Karagwe-Ankole Belt, Rwanda[D]. PhD Thesis, 2021.

    Patiño Douce A E & Beard J S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36: 707–738. doi: 10.1093/petrology/36.3.707

    Patiño Douce A E & Johnston A D. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 1991, 107: 202–218. doi: 10.1007/BF00310707

    Patiño Douce A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? [J]. Geological Society, London, Special Publications, 1999, 168: 55–75. doi: 10.1144/GSL.SP.1999.168.01.05

    Pearce J A, Harris N B, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956–983. doi: 10.1093/petrology/25.4.956

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[C]. In: Hawkesworth C J, Norry M J (Eds. ), Continental Basalts and Mantle Xenoliths. Shiva Press Limited, Cheshire, 1983, 230–249.

    Peeters L. Contribution à la géologie des terrains anciens du Ruanda-Urundi et du Kivu. Annales du Musée Royale du Congo belge, Tervuren, série in 8°[J]. Sciences Géologiques, 1956, 16: 1–197.

    Pohl W & Günther M A. The origin of Kibaran (late Mid‐Proterozoic) tin, tungsten and gold quartz vein deposits in Central Africa: a fluid inclusions study[J]. Mineralium Deposita, 1991, 26(1): 51–59.

    Pohl W L, Biryabarema M, Lehmann B. Early Neoproterozoic rare metal (Sn, Ta, W) and gold metallogeny of the Central Africa Region: a review[J]. Applied Earth Science, 2013, 122(2): 66–82. . doi: 10.1179/1743275813Y.0000000033

    Pohl W. Metallogeny of the northeastern Kibara belt, Central Africa–recent perspectives[J]. Ore Geology Reviews, 1994, 9: 105–130. doi: 10.1016/0169-1368(94)90024-8

    Romer R L & Lehmann B. U-Pb columbite age of Neoproterozoic Ta-Nb mineralization in Burundi[J]. Economic Geology, 1995, 90: 2303–2309. doi: 10.2113/gsecongeo.90.8.2303

    Rubatto D, Chakraborty S, Dasgupta S. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology[J]. Contributions to Mineralogy and Petrology, 2013, 165: 349–372. doi: 10.1007/s00410-012-0812-y

    Rubatto D, Hermann J, Berger A, et al. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps[J]. Contributions to Mineralogy and Petrology, 2009, 158 (6): 703–722. doi: 10.1007/s00410-009-0406-5

    Rubatto D. Zircon: The Metamorphic Mineral[J]. Reviews In Mineralogy & Geochemistry, 2017, 83 (1): 261–295.

    Rumvegeri B T & Katabarwa J B. Géochimie des granitoïdes kibariens du Kivu (Est-Zaire) et du Rwanda: Implications géodynamiques[J]. Comptes Rendus L’Académie Sci. Sér. IIa Sci. Terre Planètes, 1990, 311: 959–961.

    Rumvegeri B T, Bingen B. Derron M H. Tectonomagmatic evolution of the Kibaran Belt in Central Africa and its relationships with mineralizations: a review[J]. Africa Geoscience Review, 2004, 11: 65–73.

    Rumvegeri B T. Le Précambrien de l’Ouest du lac Kivu (Zaïre) et sa place dans l’évolution géodynamique de l’Afrique centrale et orientale[J]. IGCP 255, Newsletter, 1989, 2: 73–76.

    Rumvegeri B T. Le Précambrien de l'Ouest du lac Kivu (Zaı̈re) et sa place dans l'évolution géodynamique de l'Afrique centrale et orientale[D]. Thèse Doctoral, Université de Lubumbashi, 1987.

    Rumvegeri B T. Tectonic significance of Kibaran structures in Central and Eastern Africa[J]. Journal of African Earth Sciences, 1991, 13: 267–276. doi: 10.1016/0899-5362(91)90010-V

    Shaw R A, Goodenough KM, Roberts NMW, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281: 338-362. doi: 10.1016/j.precamres.2016.06.008

    Sun S S & McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313–345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45 (1-4): 29–44. doi: 10.1016/S0024-4937(98)00024-3

    Tack L, Liégeois J P, Deblond A, et al. Kibaran A-Type Granitoids and Mafic Rocks Generated by Two Mantle Sources in a Late Orogenic Setting (Burundi)[J]. Precambrian Research, 1994, 68: 323–356. doi: 10.1016/0301-9268(94)90036-1

    Tack L, Wingate M T D, Waele B D, et al. The 1375 Ma “ Kibaran event ” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime[J]. Precambrian Research, 2010, 180 (1–2): 63–84.

    Turekian K K & Wedepohl K H. Distribution of the Elements in Some Major Units of the Earth’s Crust[J]. Geological Society of America Bulletin, 1961, 72: 175–192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    Van Daele J, Hulsbosch N, Dewaele S, et al. Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda[J]. Ore Geology Reviews, 2018, 101: 481–501. doi: 10.1016/j.oregeorev.2018.07.020

    Van Daele J, Jacques D, Hulsbosch N, et al. Integrative structural study of the Kibuye-Gitarama-Gatumba area (West Rwanda): A contribution to reconstruct the Meso- and Neoproterozoic tectonic framework of the Karagwe-Ankole Belt[J]. Precambrian Research, 2021, 353, 106009. doi: 10.1016/j.precamres.2020.106009

    Varlamoff N. Transitions entre les filons de quartz et les pegmatites stannifères de la région de Musha-Ntunga (Ruanda) [J]. Annales de la Société Géologique de Belgique, 1969, 92: 193–213.

    Villeneuve M, Gärtner A, Kalikone C, et al. U-Pb Ages and Provenance of Detrital Zircon from Metasedimentary Rocks of the Nya-Ngezie and Bugarama Groups (D. R. Congo): A Key for the Evolution of the Mesoproterozoic Kibaran-Burundian Orogen in Central Africa[J]. Precambrian Research, 2019, 328: 81–98. doi: 10.1016/j.precamres.2019.04.003

    Villeneuve M, Wazi N, Kalikone C, et al. A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events[J]. Minerals, 2022, 12(6): 737. doi: 10.3390/min12060737

    Wang X S, Gao J, Klemd R, et al. From arc accretion to continental collision in the eastern Jiangnan Orogen: evidence from two phases of S-type granites[J]. Precambrian Research, 2019, 321: 199–211. doi: 10.1016/j.precamres.2018.12.010

    Watson E B & Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 1983, 64: 295–304.

    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407–419. doi: 10.1007/BF00402202

    White A J R & Chappell B W. Ultrametamorphism and granitoid genesis[J]. Tectonophysics, 1977, 43: 7–22. doi: 10.1016/0040-1951(77)90003-8

  • 期刊类型引用(4)

    1. 王志男,王建国,魏生云,邢佳,胡建,李炎. 阿里根刀若地区花岗岩地球化学特征及其地质意义. 青海大学学报. 2024(02): 90-98 . 百度学术
    2. 贵仁高,王驹,周淼,张晓平,唐振平,吴鹏,汪佳伟,孙浩然,李南,段先哲. 甘肃北山算井子花岗岩地球化学特征、成因及对高放废物地质处置的启示. 南华大学学报(自然科学版). 2024(02): 1-10+81 . 百度学术
    3. 郭敏,黄玲玲,孙社良,黄孔文,贺强翔,向安平. 广东韶关红岭黑云母花岗岩和离子吸附型稀土矿床地球化学特征. 成都理工大学学报(自然科学版). 2024(04): 572-589 . 百度学术
    4. 周虎,付于真,胡潜伟,侯明才,陈安清,曹海洋,熊富浩,楚志强. 琼东南盆地潜山晚三叠世辉绿岩的年代学、地球化学及其构造背景. 成都理工大学学报(自然科学版). 2024(04): 554-571 . 百度学术

    其他类型引用(0)

图(10)  /  表(3)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  92
  • PDF下载量:  186
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-03-13
  • 修回日期:  2023-04-24
  • 录用日期:  2023-04-25
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-10-19

目录

/

返回文章
返回