ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系

吴兴源, 刘晓阳, 赵晓博, 任军平, 许康康, 孙宏伟, 周佐民, 龚鹏辉

吴兴源, 刘晓阳, 赵晓博, 等. 中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系[J]. 西北地质, 2023, 56(5): 1-19. DOI: 10.12401/j.nwg.2023077
引用本文: 吴兴源, 刘晓阳, 赵晓博, 等. 中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系[J]. 西北地质, 2023, 56(5): 1-19. DOI: 10.12401/j.nwg.2023077
WU Xingyuan, LIU Xiaoyang, ZHAO Xiaobo, et al. Geochronology, Petrogeochemical Characteristics, Tectonic Setting of the Leucogranites (~1.0 Ga) in Central Africa and Its Relationship with Mineralization[J]. Northwestern Geology, 2023, 56(5): 1-19. DOI: 10.12401/j.nwg.2023077
Citation: WU Xingyuan, LIU Xiaoyang, ZHAO Xiaobo, et al. Geochronology, Petrogeochemical Characteristics, Tectonic Setting of the Leucogranites (~1.0 Ga) in Central Africa and Its Relationship with Mineralization[J]. Northwestern Geology, 2023, 56(5): 1-19. DOI: 10.12401/j.nwg.2023077

中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系

基金项目: 国家自然科学基金项目“花岗伟晶岩岩浆−热液演化及成岩成矿机制研究:以卢旺达Gatumba地区稀有金属花岗伟晶岩为例”(42003041),商务部援外项目“援卢旺达地质矿产调查”(jsyz20180051)联合资助。
详细信息
    作者简介:

    吴兴源(1985−),男,硕士,高级工程师,主要从事岩石地球化学及矿床学研究。E−mail:wuxy0156@126.com

  • 中图分类号: P581;P597

Geochronology, Petrogeochemical Characteristics, Tectonic Setting of the Leucogranites (~1.0 Ga) in Central Africa and Its Relationship with Mineralization

  • 摘要:

    中部非洲的传统中元古代基巴拉造山带内发育大量与花岗岩−伟晶岩体系相关的金属矿产,尤其是以标志性的稀有金属(Nb−Ta−Li)、钨、锡和金等成矿作用为特色,成矿地质过程往往和罗迪尼亚超大陆聚合事件相对应。通常 认为,与成矿直接密切相关的花岗岩是新元古代早期的一套淡色花岗岩(G4花岗岩),即含Sn花岗岩。G4花岗岩过去通常被视作成矿母岩,长期以来受到广泛关注,但是前人的研究表明基巴拉带不同地区的G4花岗岩在野外判别标志、形成时限、地球化学特征等方面存在一定差异,导致对岩石类型、岩石成因及其产出的构造背景的认识还不统一。因此,笔者在系统收集、整理前人资料的基础上,详细总结G4花岗岩的野外岩石类型、年代学研究、全岩地球化学数据及同位素等方面特征,初步探讨成岩成矿过程。结果显示,G4花岗岩的源区物质以变泥质岩为主,岩浆形成方式主要是局部的部分熔融或深熔作用,并不像过去认为的那样来源于一个深部较大岩浆房的长期分异演化,而G4花岗岩的演化则与区域成矿作用存在直接关联。结合区域构造演化研究,推测G4花岗岩可能形成于基巴拉造山作用的同碰撞‒后碰撞阶段。

    Abstract:

    A large number of mineral resources related to granite−pegmatite system that are found in the traditional Mesoproterozoic Kibaran belt in Central Africa, especially characterized by the distinctive mineralization of rare metals (Nb−Ta−Li), tungsten, tin and gold. The metallogenic events can be associated with the process of Rodinia amalgamation. Most of these mineral occurrences are linked to the early Neoproterozoic G4 leucogranitic intrusions, also termed “tin (−bearing) granites”. G4 granites have been extensively scrutinised because they are considered as the parental rocks to the ore mineralization in the region. The field identification criteria, timing, geochemical characteristics for G4 granites in different parts of Kibaran belt, however, have been shown to vary in previous studies. As a result, the type of rock, the petrogenesis of these parental granites and the geodynamic context is still a matter of debate. Combined with the disparate nature of datasets in the literature (e.g. field outcrops, petrography, geochronology, geochemistry and isotopes), the results show that the derivation of G4 granite is consistent with a meta−pelitic source, and these leucocratic granites could be considered more like anatectic migmatites rather than actual highly fractionated granites formed by fractionation out of large magma chambers. It has been largely established via the research of diagenetic and metallogenic processes that the protracted differentiation of G4 granites is the primary driver of diverse mineralization in the Kibaran belt. It’s hypothesized that the G4 granite was probably emplaced in the syncollisional to post−collisional stage of Kibaran orogeny when considering the regional tectonic background.

  • 图  1   中部非洲传统基巴拉带区域地质简图 (据Debruyne et al.,2015修改)

    Figure  1.   Simplified geological map of the Kibaran belt region, Central Africa

    图  2   卢旺达G4花岗岩的锆石阴极发光图

    a~h. 资料来源于De Clercq等(2021); i~u. 资料来源于Nambaje等(2021a)

    Figure  2.   Zircon CL–images of the G4 granite samples from Rwanda

    图  3   卢旺达G4花岗岩手标本、野外露头及镜下显微特征图(a~b据De Clercq et al.,2021;c~f据Nambaje et al.,2021a

    Bt. 黑云母;Fsp. 长石;Ms. 白云母;Qz. 石英

    Figure  3.   Hand specimen, field exposures and thin section petrography of the G4 granite from Rwanda

    图  4   G4花岗岩岩石地球化学分类判别图

    a. SiO2–全碱图解(Middlemost,1994);b. A/CNK–A/NK图解(Maniar et al.,1989);c. ACF图解(Chappell et al.,1992); d. SiO2–FeOt/(FeOt + MgO)图解(Frost et al.,2001);e. SiO2–(Na2O + K2O–CaO)图解(Frost et al.,2001

    Figure  4.   Geochemical classification diagrams for the G4 granites from the Kibara and Karagwe–Ankole Belt, Central Africa

    图  5   G4花岗岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蜘蛛图(b)

    球粒陨石和原始地幔标准化数值引自Sun等(1989);G4花岗岩图例同图4

    Figure  5.   (a) Chondrite–normalized REE patterns and (b) primitive mantle normalized spider diagram for the G4 granites

    图  6   G4花岗岩岩石成因类型判别图(据Whalen et al.,1987

    A型花岗岩及I/S型花岗岩边界线据吴福元等(2017);G4花岗岩图例同图4

    Figure  6.   Genetic discrimination diagrams of the G4 granites

    图  7   G4花岗岩锆石测点年龄–Th/U值图

    数据来自De Clercq等(2021)Nambaje等(2021a)

    Figure  7.   Zircon Th/U ratio vs age plot of all the data–points from the G4 granites

    图  8   G4花岗岩源区成分判别图

    a. 底图据Sylvester(1998);b. 底图据Claire等(2019);G4花岗岩图例同图4

    Figure  8.   Magma source discrimination diagram of the G4 granites

    图  9   含锂铝硅酸盐P–T相图 (据London,2018修改)

    Figure  9.   The lithium aluminosilicate phase diagram

    图  10   G4花岗岩构造环境判别图

    a. (Y + Nb) – Rb图解;b. (Yb + Ta) – Rb 图解;c. Y– Nb 图解 (据Pearce et al.,1984);d. Ta/Yb– Th/Yb图解 (据Pearce,1983);G4花岗岩图例同图4

    Figure  10.   Tectonic discrimination plots for the G4 granites from the Kibara and Karagwe–Ankole Belt

    表  1   基巴拉带(狭义)和卡拉戈维−安科连带中G4花岗岩、伟晶岩年龄数据及铌钽铁矿成矿年龄数据统计表

    Table  1   Summary age data of the G4 granites, pegmatites and columbite−tantalite mineralization from the Kibara belt (sensu stricto) and Karagwe−Ankole belt

    样品号采样地点构造位置岩性/矿物测年方法年龄(Ma)数据来源
    Kasika狭义基巴拉带含锡花岗岩全岩Rb−Sr976±10Cahen et al.,1979a
    Ki22Kasika狭义基巴拉带含锡花岗岩锆石U−Pb986±10Tack et al.,2010
    Nzombe狭义基巴拉带含锡花岗岩全岩Rb−Sr~976Cahen et al.,1979a
    Nyamakubi狭义基巴拉带含锡花岗岩全岩Rb−Sr976Cahen et al.,1979a
    Kalima−Moga狭义基巴拉带含锡花岗岩全岩Rb−Sr989±28Cahen et al.,1979a
    Mount Bia Massif狭义基巴拉带含锡花岗岩全岩/单矿物Rb−Sr966±21Cahen et al.,1979a
    Mwanza Massif狭义基巴拉带含锡花岗岩全岩Rb−Sr977±18Cahen et al.,1984
    Kamituga狭义基巴拉带淡色花岗岩全岩Rb−Sr1020±50Ledent et al.,1965
    Maleba狭义基巴拉带淡色花岗岩全岩Rb−Sr1006±44Ikingura,1989
    Kirengo卡拉戈维−安科连带淡色花岗岩全岩Rb−Sr972±15Cahen et al.,1984
    CR181Uwinkingi卡拉戈维−安科连带白云母花岗岩锆石U−Pb988±19Nambaje et al.,2021a
    CR186Musambira卡拉戈维−安科连带白云母二长花岗岩锆石U−Pb958±20Nambaje et al.,2021a
    CR203Muhanda卡拉戈维−安科连带白云母花岗岩锆石U−Pb945±31Nambaje et al.,2021a
    CR159Ruyenzi卡拉戈维−安科连带白云母花岗岩独居石U−Pb1011±18Nambaje et al.,2021a
    CR175Busasamana卡拉戈维−安科连带白云母花岗岩独居石U−Pb979±10Nambaje et al.,2021a
    CR181Uwinkingi卡拉戈维−安科连带白云母花岗岩独居石U−Pb976±11Nambaje et al.,2021a
    CR186Musambira卡拉戈维−安科连带白云母二长花岗岩独居石U−Pb997±8Nambaje et al.,2021a
    CR203Muhanda卡拉戈维−安科连带白云母花岗岩独居石U−Pb980±8Nambaje et al.,2021a
    CR209Kigali (Gisozi)卡拉戈维−安科连带白云母花岗岩独居石U−Pb1010±9Nambaje et al.,2021a
    SDC18gr02Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb1014±53De Clercq et al.,2021
    SDC18gr05Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb959±43De Clercq et al.,2021
    SDC18gr07Mushubati卡拉戈维−安科连带二长花岗岩锆石U−Pb993±26De Clercq et al.,2021
    SDC18gr08Runda卡拉戈维−安科连带二长花岗岩锆石U−Pb999±46De Clercq et al.,2021
    SDC18gr15Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb974±15De Clercq et al.,2021
    SDC18gr18Rukondo卡拉戈维−安科连带二长花岗岩锆石U−Pb~1000De Clercq et al.,2021
    SDC18gr20Nyanza卡拉戈维−安科连带二长花岗岩锆石U−Pb985±11De Clercq et al.,2021
    SDC18gr21Kibuye卡拉戈维−安科连带正长花岗岩锆石U−Pb~1000De Clercq et al.,2021
    Nyabugogo卡拉戈维−安科连带伟晶岩白云母Rb−Sr975±29Monteyne-Poulaert et al.,1962Cahen,1964
    Bijyojyo卡拉戈维−安科连带伟晶岩白云母Rb−Sr945±28
    Gatumba卡拉戈维−安科连带伟晶岩白云母Rb−Sr940± 28
    Rwinkwavu卡拉戈维−安科连带伟晶岩白云母Rb−Sr955±29
    Gakara卡拉戈维−安科连带伟晶岩全岩−白云母Rb−Sr969±8Brinckmann et al.,1983
    Gakara卡拉戈维−安科连带伟晶岩白云母Rb−Sr969±17Lehmann et al.,1994
    Atondo deposit狭义基巴拉带伟晶岩白云母Ar−Ar986.6±5.3Dewaele et al.,2015
    Yubuli deposit狭义基巴拉带伟晶岩白云母Ar−Ar992.4±5.4Dewaele et al.,2015
    Lutshurukuru狭义基巴拉带伟晶岩白云母Ar−Ar1024.3±55Dewaele et al.,2015
    RG 9699Manono−Kitotolo狭义基巴拉带伟晶岩白云母Ar−Ar938.8±5.1Dewaele et al.,2016
    RG 15993Manono−Kitotolo狭义基巴拉带伟晶岩白云母Ar−Ar934.0±5.9Dewaele et al.,2016
    RG 3554Manono-Kitotolo狭义基巴拉带伟晶岩(云英岩)白云母Ar−Ar923.3±8.3Dewaele et al.,2016
    下载: 导出CSV
    续表1
    样品号采样地点构造位置岩性/矿物测年方法年龄(Ma)数据来源
    Kivuvu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb963±9/−5Romer et al.,1995
    Ruhembe卡拉戈维−安科连带铌钽铁矿TIMS U−Pb968+33/−29Romer et al.,1995
    Sample 45Mazakala狭义基巴拉带铌钽铁矿TIMS U−Pb971.1±1.5Melcher et al.,2008b2009
    Sample 110Bassin Obea狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb971.8±7.0Melcher et al.,2008a
    Coltan 48Gatumba plant卡拉戈维−安科连带铌钽铁矿TIMS U−Pb1029±19Dewaele et al.,2011
    Coltan 84Ruhanga卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb938+9.3/−8.5Dewaele et al.,2011
    Coltan 87Buranga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb936±14Dewaele et al.,2011
    Coltan 89Shori (Gateko)卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb974.8±8.2Dewaele et al.,2011
    Coltan 93Nyambisindu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb951±15Dewaele et al.,2011
    Coltan 216Nkegete卡拉戈维−安科连带铌钽铁矿TIMS U−Pb939±4Dewaele et al.,2011
    Coltan 219Nkegete卡拉戈维−安科连带铌钽铁矿TIMS U−Pb958±0.4Dewaele et al.,2011
    Coltan 233Bijyojyo卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb965+8.7/−8.6Dewaele et al.,2011
    Sample 155Mobra卡拉戈维−安科连带铌钽铁矿TIMS U−Pb934.5±3.9Melcher et al.,2015
    Sample 40Camp Bisengo狭义基巴拉带铌钽铁矿TIMS U−Pb973.8±2.2、Melcher et al.,2015
    Sample 235Ntunga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb949.2±2.7Melcher et al.,2008a
    Sample 43Kakelo狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb962.8+8.7/−8.5Melcher et al.,2015
    Sample 44Mapimo Mulungu狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb960±9Melcher et al.,2015
    Sample 45Shabunda狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb964.3±5.4Melcher et al.,2015
    Sample 105Kamisuku, Pangi狭义基巴拉带铌钽铁矿TIMS U−Pb992.2±7.8Melcher et al.,2015
    Sample 106Kibeke狭义基巴拉带铌钽铁矿TIMS U−Pb960±5Melcher et al.,2015
    Sample 112Masisi狭义基巴拉带铌钽铁矿TIMS U−Pb950.2±4.4Melcher et al.,2015
    Sample 115Mwenga狭义基巴拉带铌钽铁矿TIMS U−Pb972.3±3.0Melcher et al.,2015
    Sample 119Manono狭义基巴拉带铌钽铁矿TIMS U−Pb940.2±5.1Melcher et al.,2015
    Sample 122Manono狭义基巴拉带铌钽铁矿TIMS U−Pb947.3±2.8Melcher et al.,2015
    Sample 156Mwenga狭义基巴拉带铌钽铁矿TIMS U−Pb937.1±2.4Melcher et al.,2015
    Sample 41Muhanga卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb971.9±4.9Melcher et al.,2015
    Sample 125Nzida卡拉戈维−安科连带铌钽铁矿TIMS U-Pb936.5±6.6Melcher et al.,2015
    Sample 153Ntunga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb935±13Melcher et al.,2015
    Sample 136Nemba卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb960.7±7.6Melcher et al.,2015
    Sample 169Nemba卡拉戈维−安科连带铌钽铁矿TIMS U−Pb951±13Melcher et al.,2015
    Sample 150Kibingo卡拉戈维−安科连带铌钽铁矿TIMS U−Pb929.4±6Melcher et al.,2015
    Sample 743Myatano 1卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb940±21Melcher et al.,2015
    Sample 381Kanungu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb983.4±0.6Melcher et al.,2015
    Sample 383Mbulema卡拉戈维−安科连带铌钽铁矿TIMS U−Pb958.5±3.2Melcher et al.,2015
    下载: 导出CSV

    表  2   G4花岗岩Sr–Nd同位素数据统计表

    Table  2   Summary of Sr–Nd isotope data of the G4 granites

    样品号/采样地点年龄(Ga)143Nd/144Nd)0εNd(0)εNdtTDM(Ga)87Sr/86Sr)087Sr/86Sr)i数据来源
    Maleba1.000.807Ikingura,1989
    Kirengo0.9720.778Cahen et al.,1984
    Mwanza0.9770.7002~0.731
    CR1751.000.512135−9.8−12.40.917440.744555Nambaje et al.,2021a
    CR1811.000.511672−18.8−9.92.520.8050430.73339
    CR2031.000.511963−13.2−10.81.0443170.728935
    CR2091.000.511834−15.7−11.23.810.8407740.744413
    CR1861.000.511758−17.2−11.13.260.8323530.739304
    KR61.000.51196−13−93.54Debruyne et al.,2015
    KR91.000.5112−28−152.440.823610.73216
    KR171.000.51194−14−115.271.51541
    KR231.000.51165−19−112.640.961880.77202
    KR241.000.51177−17−102.761.294810.85948
    下载: 导出CSV
  • 刘晓阳, 龚鹏辉, 许康康, 等. 坦桑尼亚乌本迪活动带西北部元古宙沉积盆地碎屑锆石U-Pb年龄及其地质意义[J]. 地质调查与研究, 2020, 1: 5–18. doi: 10.3969/j.issn.1672-4135.2020.01.002

    LIU Xiaoyang, GONG Penghui, XU Kangkang, et al. U-Pb age of detrital ziron and its geological significance in the Proterozoic sediments basin in the northwestern Ubendian belt of Tanzania[J]. Geological Survey and Research, 2020, 1: 5–18. doi: 10.3969/j.issn.1672-4135.2020.01.002

    WANG Jie, LIU Xiaoyang, REN Junping, et al. Precambrian mineralization in Tanzania[J]. 华北地质, 2022, 45(1): 101-110.

    王杰, 刘晓阳, 任军平, 等. 坦桑尼亚前寒武纪成矿作用[J]. North China Geology, 2022, 45(1): 101-110.

    吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47: 745–765.

    WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 2017, 47: 745–765.

    吴兴源, 刘晓阳, 周佐民, 等. 卢旺达Gatumba地区花岗伟晶岩的地质、地球化学特征及其成因研究综述[J]. 地质调查与研究, 2020, 43(01): 42-54. doi: 10.3969/j.issn.1672-4135.2020.01.005

    WU Xingyuan, LIU Xiaoyang, ZHOU Zuomin, et al. Overview on geological, geochemical features and genesis of the granitic pegmatites in Gatumba ara, Rwanda[J]. Geological Survey and Research, 2020, 43(01): 42-54. doi: 10.3969/j.issn.1672-4135.2020.01.005

    赵振华, 增田彰正 M B 夏巴尼. 稀有金属花岗岩的稀土元素四分组效应[J]. 地球化学, 1992, 3: 221–233. doi: 10.3321/j.issn:0379-1726.1992.03.003

    ZHAO Zhenhua, Akimasa Masuda M B Shabani. Tetrad effects of rare-earth elements in rare-metal granites[J]. Geochimica, 1992, 3: 221–233. doi: 10.3321/j.issn:0379-1726.1992.03.003

    朱清, 顾本杰, 邹谢华, 等. 试论中非矿业合作的机遇与挑战[J]. 西北地质, 2023, 56(1): 174−185.

    ZHU Qing, GU Benjie, ZOU Xiehua, et al. On the Opportunities and Challenges of China–Africa Mining Cooperation[J]. Northwestern Geology, 2023, 56(1): 174-185.

    Best M G. Igneous and metamorphic petrology[M]. Oxford: Blackwell Science, 2003.

    Boehnke P, Watson E B, Trail D, et al. Zircon saturation re-revisited[J]. Chemical Geology, 2013, 351: 324–334. doi: 10.1016/j.chemgeo.2013.05.028

    Brinckmann J, Lehmann B. Exploration de la Bastnaesite-Monazite dans la Région de Gakara-Burundi[R]. German Geological Survey, Hannover, Germany, 1983, 157.

    Brinckmann J, Lehmann B, Hein U, et al. La géologie et la minéralisation primaire de l’or de la Chaîne Kibarienne, nord-ouest du Burundi, Afrique orientale[J]. Geologisches Jahrbuch Reihe E Geophysik, 2001, 101: 3–195

    Cahen L & Ledent D. Précisions sur l’age, la pétrogénèse et la position stratigraphique des granites à étain de l’est de l’Afrique Centrale[J]. Bulletin de la Société belge de géologie, 1979, 88: 33–49.

    Cahen L, Ledent D, Villeneuve M. Existence d'une chaîne plissée protérozoïque supérieur au Kivu oriental (Zaïre): données géochronologiques relatives au Supergroupe de l'Itombwe[J]. Bulletin de la Société belge de géologie, 1979, 88: 71–83.

    Cahen L, Snelling N J, Delhal J, et al. The geochronology and evolution of Africa[D]. Clarendon Press, Oxford, 1984.

    Cahen L. État de la géochronologie du Rwanda[J]. Bulletin du Service Geologique de la Republique du Rwanda, 1964, 1: 35–38.

    Černý P & Ercit T S. Classification of granitic pegmatites revisited[J]. Canadian Mineralogist, 2005, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005

    Chappell B W& White J A R. I- and S-type granites in the Lachlan Fold Belt[J]. Transactions of Royal Society Edinburgh: Earth Sciences, 1992, 83: 1–26. doi: 10.1017/S0263593300007720

    Claire E B & Christopher J S. Strongly Peraluminous Granites across the Archean–Proterozoic transition[J]. Journal of Petrology, 2019, 60: 1299–1348. doi: 10.1093/petrology/egz033

    De Clercq F. Metallogenesis of Sn and W vein-type deposits in the Karagwe-Ankole belt (Rwanda) [D]. KU Leuven: Department of Earth and Environmental Sciences, 2012.

    De Clercq S, Chew D, O’Sullivan G, et al. Characterisation and geodynamic setting of the 1 Ga granitoids of the Karagwe-Ankole belt (KAB), Rwanda[J]. Precambrian Research, 2021, 356, 106124. doi: 10.1016/j.precamres.2021.106124

    Debruyne D, Hulsbosch N, Van Wilderode J, et al. Regional geodynamic context for the Mesoproterozoic Kibara Belt (KIB) and the Karagwe-Ankole Belt: Evidence from geochemistry and isotopes in the KIB[J]. Precambrian Research, 2015, 264: 82–97. doi: 10.1016/j.precamres.2015.04.001

    Dewaele S, Henjes-Kunst F, Melcher F, et al. Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa)[J]. Journal of African Earth Sciences, 2011, 61(1): 10–26. doi: 10.1016/j.jafrearsci.2011.04.004

    Dewaele S, Hulsbosch N, Cryns Y, et al. Geological setting and timing of the world-class Sn, Nb–Ta and Li mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo) [J]. Ore Geology Reviews, 2016, 72: 373–390. doi: 10.1016/j.oregeorev.2015.07.004

    Dewaele S, Muchez P, Burgess R, et al. Geological setting and timing of the cassiterite vein type mineralization of the Kalima area (Maniema, Democratic Republic of Congo) [J]. Journal of African Earth Sciences, 2015, 112 (A): 199–212.

    Dewaele S, Tack L, Fernandez-Alonso M, et al. Geology and mineralisation of the Gatumba area, Rwanda: Present state of knowledge[J]. Etudes Rwandaises, 2008, 16: 6−24.

    Dewaele S, Tack L, Fernandez-Alonso M. Cassiterite and columbite-tantalite (coltan) mineralisation in the Mesoproterozoic rocks of the northern part of the Kibara orogen (Central Africa): preliminary results[J]. Mededelingen der Zittingen van de Koninklijke Academie voor Overzeese Wetenschappen, 2009, 54: 341–357.

    Fernandez-Alonso M & Theunissen K. Airborne geophysics and geochemistry provide new insights in the intercontinental evolution of the Mesoproterozoic Kibaran belt (Central Africa) [J]. Geological Magazine, 1998, 135: 203–216. doi: 10.1017/S0016756898008310

    Fernandez-Alonso M, Cutten H, De Waele B, et al. The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): the result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events[J]. Precambrian Research, 2012, 216–219: 63–86.

    Fernandez-Alonso M, Lavreau J, Klerkx J. Geochemistry and geochronology of the Kibaran granites in Burundi, Central Africa: implications for the Kibaran Orogeny[J]. Chemical Geology, 1986, 57: 217–234. doi: 10.1016/0009-2541(86)90104-X

    Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42: 2033–2048. doi: 10.1093/petrology/42.11.2033

    Gerards J & Ledent D. Grands traits de la géologie du Rwanda, différents types de roches granitiques et premières données sur les âges de ces roches[J]. Annales de la Société géologique de Belgique, 1970, 93: 477–489.

    Glover A S, Rogers W Z, Barton J E. Granitic pegmatites: storehouses of industrial minerals[J]. Elements, 2012, 8: 269-273. doi: 10.2113/gselements.8.4.269

    Goldmann S, Melcher F, Gäbler H E, et al. Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda[J]. Minerals, 2013, 3: 121–144.

    Günther M A, Dulski P, Lavreau J, et al. The Kibaran tin granites: Hydrothermal alteration versus plate tectonic setting[R]. International Geological Correlation Programme, Project n◦255, Newsletter/Bulletin, 1989, 2: 21–27.

    Harris N, Massey J, Inger S. The role of fluids in the formation of High Himalayan leucogranites[A]. In: Treloar P J, Searle M P. (Eds. ), Himalayan Tectonics [C]. London: Geological Society, London, Special Publications, 1993: 391–400.

    Holdaway M J. Stability of andalusite and the aluminum silicate phase diagram[J]. American Journal of Science, 1971, 271 (2): 97–131. doi: 10.2475/ajs.271.2.97

    Hulsbosch N, Boiron M C, Dewaele S, et al. Fluid fractionation of tungsten during granite–pegmatite differentiation and the metal source of peri-batholitic W quartz veins: evidence from the Karagwe-Ankole Belt (Rwanda) [J]. Geochimica et Cosmochimica Acta, 2016, 175: 299–318. doi: 10.1016/j.gca.2015.11.020

    Hulsbosch N, Hertogen J, Dewaele S, et al. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 2014, 132: 349–374. doi: 10.1016/j.gca.2014.02.006

    Hulsbosch N, Van Daele J, Reinders N, et al. Structural control on the emplacement of contemporaneous Nb-Ta-Sn pegmatite intrusions and Sn quartz veins: insights from the Musha and Ntunga deposits of the Karagwe-Ankole Belt. Rwanda[J]. Journal of African Earth Sciences, 2017, 137: 24–32.

    Hulsbosch N. Nb-Ta-Sn-W distribution in granite-related ore systems: fractionation mechanisms and examples from the Karagwe-Ankole Belt of Central Africa[A]. In: Decree S, Robb L, Eds. Ore Deposits Origin Exploration and Exploitation[C]. Wiley, 2019: 75–107.

    Ikingura J R. Geology, geochemistry and genesis of stanniferous granites in the southern part of the Karagwe-Ankolean belt, NW Tanzania[D]. Carleton University, 1989.

    Kampunzu A B, Rumvegeri B T, Kapenda D, et al. Les Kibarides d’Afrique centrale et orientale: une chaîne de collision[J]. Geology for Development Newsletter, 1986, 5: 125–137.

    Klerkx J, Liégeois J P, Lavreau J, et al. Crustal evolution of the northern Kibaran Belt, Eastern and Central Africa[A]. In: Kröner A, Ed. Proterozoic Lithospheric Evolution[C]. American Geophysics Union, Geodynamics Series, 1987, 17: 217–233.

    Klerkx J, Liégeois J P, Lavreau J, et al. Granitoides kibariens précoces et tectonique tangentielle au Burundi: magmatisme bimodal lié a une distention crustale[A]. In: Klerkx J, Michot J, Eds. African Geology, A Volume in Honour of L. Cahen[C]. Tervuren, Royal Museum for Central Africa, 1984: 29–46.

    Koegelenberg C, Kisters A F M, Kramers J D, et al. U-Pb detrital zircon and 39Ar-40Ar muscovite ages from the eastern parts of the Karagwe-Ankole Belt: Tracking Paleoproterozoic basin formation and Mesoproterozoic crustal amalgamation along the western margin of the Tanzania Craton[J]. Precambrian Research, 2015, 269: 147–161. doi: 10.1016/j.precamres.2015.08.014

    Koegelenberg C, Kisters, A F M. Tectonic wedging, back-thrusting and basin development in the frontal parts of the Mesoproterozoic Karagwe-Ankole belt in NW Tanzania[J]. Journal of African Earth Sciences, 2014, 97: 87–98. doi: 10.1016/j.jafrearsci.2014.04.018

    Kokonyangi J W, Kampunzu A B, Armstrong R, et al. The Mesoproterozoic Kibaride belt (Katanga, SE D. R. Congo) [J]. Journal of African Earth Sciences, 2006, 46: 1–35. doi: 10.1016/j.jafrearsci.2006.01.017

    Kokonyangi J, Armstrong R, Kampunzu A B, et al. U-Pb zircon geochronology and petrology of granitoids from Mitwaba (Katanga, Congo): Implications for the evolution of the Meso-proterozoic Kibaran belt[J]. Precambrian Research, 2004, 132(1–2): 79– 106.

    Kokonyangi J, Okudiaira T, Kampunzu A B, et al. Geological evolution of the Kibarides Belt, Mitwaba, Democratic Republic of Congo, central Africa[J]. Gondwana Research, 2001, 4: 663–664. doi: 10.1016/S1342-937X(05)70460-3

    Lavreau J & Liégeois J P. Granites à étain et granito-gneiss burundiens au Rwanda (région de Kibuye): Âge et signification[J]. Annales de la Societe Geologique de Belgique, 1982, 105: 289–294.

    Ledent D, Cahen L. Quelques données géochronologiques nouvelles sur les minéraux et roches du Kivu méridional[R]. Musée Royal d e l'Afrique Centrale, Tervuren. Dépt Géologie Minéralogie, Rapport Annales, 1965, 1: 92–94.

    Ledent D. Données géochronologiques relatives aux granites Kibariens de type A (ou G1) et B (ou G2) du Shaba, du Rwanda, du Burundi et du SW Uganda[R]. Musée Royal d e l'Afrique Centrale, Tervuren. Dépt Géologie Minéralogie, Rapport Annales, 1978, 1: 101–105.

    Lehmann B, Halder S, Ruzindana Munana J, et al. The geochemical signature of rare-metal pegmatites in Central Africa: magmatic rocks in the Gatumba tin–tantalum mining district, Rwanda[J]. Journal of Geochemical Exploration, 2014, 144: 528–538. doi: 10.1016/j.gexplo.2013.11.012

    Lehmann B, Lavreau J. Tin granites of the northern Kibaran belt, Central Africa (Kivu/ Zaire, Rwanda, Burundi) [A]. In: Matheis G, Schandelmeier H, Eds. Current research in African Earth Sciences[C]. Balkema, Rotterdam, 1987: 33–56.

    Lehmann B, Nakai S, Höhndorf A, et al. REE mineralization at Gakara, Burundi: Evidence for anomalous upper mantle in the western Rift Valley [J]. Geochimica et Cosmochimica Acta, 1994, 58: 985–992. doi: 10.1016/0016-7037(94)90520-7

    Lehmann B. Magmatic enrichment of tin, in Metallogeny of Tin[M]. Berlin-Heidelberg-New York: Springer, 1990a.

    Lehmann B. Regional element distribution patterns and the problem of pregranitic tin enrichments, in Metallogeny of Tin[M]. Berlin‐Heidelberg-New York: Springer, 1990b.

    Lehmann B. Tin granites, geochemical heritage, magmatic differentiation[J]. Geologische Rundschau, 1987, 76(1): 177–185 doi: 10.1007/BF01820581

    Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? [J]. Precambrian Research, 2003, 122: 45–83. doi: 10.1016/S0301-9268(02)00207-3

    Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160: 179–210. doi: 10.1016/j.precamres.2007.04.021

    Liégeois J P, Theunissen K, Nzogibwami E, et al. Granitoides syncinématiques Kibariens au Burundi: étude pétrographique, géochimique et géochronologique préliminaire[J]. Annales de la Societe Geologique de Belgique, 1982, 105: 345–356.

    London D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349–383. doi: 10.1016/j.oregeorev.2018.04.020

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635–643.

    Melcher F, Graupner T, Gäbler H E, et al. Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667 –719. doi: 10.1016/j.oregeorev.2013.09.003

    Melcher F, Graupner T, Sitnikova M, et al. Ein Herkunftsnachweis für Niob-Tantalerze am Beispiel afrikanischer Selten-Element-Pegmatite[J]. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 2009, 155: 231–267.

    Melcher F, Sitnikova M A, Graupner T, et al. Fingerprinting of conflict minerals: columbite–tantalite (“coltan”) ores[N]. SGA News, 2008b, 23: 1–14.

    Melcher M, Graupner T, Henjes-Kunst F, et al. Analytical fingerprint of columbite–tantalite(coltan) mineralization in pegmatites: focus on Africa[A]. Proceedings, Ninth International Congress for Applied Mineralogy (ICAM), Brisbane, QLD[C]. Australasian Institute of Mining and Metallurgy, 2008a: 615–624.

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37: 215–224. doi: 10.1016/0012-8252(94)90029-9

    Monteyne-Poulaert G, Delwiche R, Cahen L. Age de minéralisations pegmatitiques et filoniennnes du Rwanda et du Burundi [J]. Annales de la Société géologique de Belgique, 1962, 71: 272–295.

    Muchez P, Hulsbosch N, Dewaele S. 2014. Geological mapping and implications for Nb-Ta, Sn and W prospection in Geological Mapping and Implications for Nb-Ta, Sn and W Prospection in Rwanda[J]. Mededelingen der Zittingen Van de Koninklijke Academie Voor Overzeese Wetenschappen, 2014, 60(3–4): 515 –530.

    Nambaje C, Satish-Kumar M, Williams I S, et al. Granitic rocks from Rwanda: Vital clues to the tectonic evolution of the Karagwe-Ankole Belt[J]. Lithos, 2021a, 404–405, 106490.

    Nambaje C, Williams I S, Sajeev K. SHRIMP U-Pb dating of cassiterite: Insights into the timing of Rwandan tin mineralisation and associated tectonic processes[J]. Ore Geology Reviews, 2021b, 135: 104185. doi: 10.1016/j.oregeorev.2021.104185

    Nambaje C. Tectonic evolution and tin mineralisation of the Karagwe-Ankole Belt, Rwanda[D]. PhD Thesis, 2021.

    Patiño Douce A E & Beard J S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36: 707–738. doi: 10.1093/petrology/36.3.707

    Patiño Douce A E & Johnston A D. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 1991, 107: 202–218. doi: 10.1007/BF00310707

    Patiño Douce A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? [J]. Geological Society, London, Special Publications, 1999, 168: 55–75. doi: 10.1144/GSL.SP.1999.168.01.05

    Pearce J A, Harris N B, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956–983. doi: 10.1093/petrology/25.4.956

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[C]. In: Hawkesworth C J, Norry M J (Eds. ), Continental Basalts and Mantle Xenoliths. Shiva Press Limited, Cheshire, 1983, 230–249.

    Peeters L. Contribution à la géologie des terrains anciens du Ruanda-Urundi et du Kivu. Annales du Musée Royale du Congo belge, Tervuren, série in 8°[J]. Sciences Géologiques, 1956, 16: 1–197.

    Pohl W & Günther M A. The origin of Kibaran (late Mid‐Proterozoic) tin, tungsten and gold quartz vein deposits in Central Africa: a fluid inclusions study[J]. Mineralium Deposita, 1991, 26(1): 51–59.

    Pohl W L, Biryabarema M, Lehmann B. Early Neoproterozoic rare metal (Sn, Ta, W) and gold metallogeny of the Central Africa Region: a review[J]. Applied Earth Science, 2013, 122(2): 66–82. . doi: 10.1179/1743275813Y.0000000033

    Pohl W. Metallogeny of the northeastern Kibara belt, Central Africa–recent perspectives[J]. Ore Geology Reviews, 1994, 9: 105–130. doi: 10.1016/0169-1368(94)90024-8

    Romer R L & Lehmann B. U-Pb columbite age of Neoproterozoic Ta-Nb mineralization in Burundi[J]. Economic Geology, 1995, 90: 2303–2309. doi: 10.2113/gsecongeo.90.8.2303

    Rubatto D, Chakraborty S, Dasgupta S. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology[J]. Contributions to Mineralogy and Petrology, 2013, 165: 349–372. doi: 10.1007/s00410-012-0812-y

    Rubatto D, Hermann J, Berger A, et al. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps[J]. Contributions to Mineralogy and Petrology, 2009, 158 (6): 703–722. doi: 10.1007/s00410-009-0406-5

    Rubatto D. Zircon: The Metamorphic Mineral[J]. Reviews In Mineralogy & Geochemistry, 2017, 83 (1): 261–295.

    Rumvegeri B T & Katabarwa J B. Géochimie des granitoïdes kibariens du Kivu (Est-Zaire) et du Rwanda: Implications géodynamiques[J]. Comptes Rendus L’Académie Sci. Sér. IIa Sci. Terre Planètes, 1990, 311: 959–961.

    Rumvegeri B T, Bingen B. Derron M H. Tectonomagmatic evolution of the Kibaran Belt in Central Africa and its relationships with mineralizations: a review[J]. Africa Geoscience Review, 2004, 11: 65–73.

    Rumvegeri B T. Le Précambrien de l’Ouest du lac Kivu (Zaïre) et sa place dans l’évolution géodynamique de l’Afrique centrale et orientale[J]. IGCP 255, Newsletter, 1989, 2: 73–76.

    Rumvegeri B T. Le Précambrien de l'Ouest du lac Kivu (Zaı̈re) et sa place dans l'évolution géodynamique de l'Afrique centrale et orientale[D]. Thèse Doctoral, Université de Lubumbashi, 1987.

    Rumvegeri B T. Tectonic significance of Kibaran structures in Central and Eastern Africa[J]. Journal of African Earth Sciences, 1991, 13: 267–276. doi: 10.1016/0899-5362(91)90010-V

    Shaw R A, Goodenough KM, Roberts NMW, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281: 338-362. doi: 10.1016/j.precamres.2016.06.008

    Sun S S & McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313–345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45 (1-4): 29–44. doi: 10.1016/S0024-4937(98)00024-3

    Tack L, Liégeois J P, Deblond A, et al. Kibaran A-Type Granitoids and Mafic Rocks Generated by Two Mantle Sources in a Late Orogenic Setting (Burundi)[J]. Precambrian Research, 1994, 68: 323–356. doi: 10.1016/0301-9268(94)90036-1

    Tack L, Wingate M T D, Waele B D, et al. The 1375 Ma “ Kibaran event ” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime[J]. Precambrian Research, 2010, 180 (1–2): 63–84.

    Turekian K K & Wedepohl K H. Distribution of the Elements in Some Major Units of the Earth’s Crust[J]. Geological Society of America Bulletin, 1961, 72: 175–192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    Van Daele J, Hulsbosch N, Dewaele S, et al. Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda[J]. Ore Geology Reviews, 2018, 101: 481–501. doi: 10.1016/j.oregeorev.2018.07.020

    Van Daele J, Jacques D, Hulsbosch N, et al. Integrative structural study of the Kibuye-Gitarama-Gatumba area (West Rwanda): A contribution to reconstruct the Meso- and Neoproterozoic tectonic framework of the Karagwe-Ankole Belt[J]. Precambrian Research, 2021, 353, 106009. doi: 10.1016/j.precamres.2020.106009

    Varlamoff N. Transitions entre les filons de quartz et les pegmatites stannifères de la région de Musha-Ntunga (Ruanda) [J]. Annales de la Société Géologique de Belgique, 1969, 92: 193–213.

    Villeneuve M, Gärtner A, Kalikone C, et al. U-Pb Ages and Provenance of Detrital Zircon from Metasedimentary Rocks of the Nya-Ngezie and Bugarama Groups (D. R. Congo): A Key for the Evolution of the Mesoproterozoic Kibaran-Burundian Orogen in Central Africa[J]. Precambrian Research, 2019, 328: 81–98. doi: 10.1016/j.precamres.2019.04.003

    Villeneuve M, Wazi N, Kalikone C, et al. A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events[J]. Minerals, 2022, 12(6): 737. doi: 10.3390/min12060737

    Wang X S, Gao J, Klemd R, et al. From arc accretion to continental collision in the eastern Jiangnan Orogen: evidence from two phases of S-type granites[J]. Precambrian Research, 2019, 321: 199–211. doi: 10.1016/j.precamres.2018.12.010

    Watson E B & Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 1983, 64: 295–304.

    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407–419. doi: 10.1007/BF00402202

    White A J R & Chappell B W. Ultrametamorphism and granitoid genesis[J]. Tectonophysics, 1977, 43: 7–22. doi: 10.1016/0040-1951(77)90003-8

图(10)  /  表(3)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  92
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 修回日期:  2023-04-24
  • 录用日期:  2023-04-25
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-10-19

目录

    /

    返回文章
    返回