ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

湖南天明金矿区云斜煌斑岩年代学、同位素地球化学及成矿意义

陈澍民, 徐宏根, 吴金虹, 缪宇, 曾昊, 彭勃, 潘思远

陈澍民, 徐宏根, 吴金虹, 等. 湖南天明金矿区云斜煌斑岩年代学、同位素地球化学及成矿意义[J]. 西北地质, 2023, 56(6): 285-300. DOI: 10.12401/j.nwg.2023081
引用本文: 陈澍民, 徐宏根, 吴金虹, 等. 湖南天明金矿区云斜煌斑岩年代学、同位素地球化学及成矿意义[J]. 西北地质, 2023, 56(6): 285-300. DOI: 10.12401/j.nwg.2023081
CHEN Shumin, XU Honggen, WU Jinhong, et al. Geochronology, Isotopic Geochemistry of Diorite Porphyrite in Tianming Gold Deposit, Hunan[J]. Northwestern Geology, 2023, 56(6): 285-300. DOI: 10.12401/j.nwg.2023081
Citation: CHEN Shumin, XU Honggen, WU Jinhong, et al. Geochronology, Isotopic Geochemistry of Diorite Porphyrite in Tianming Gold Deposit, Hunan[J]. Northwestern Geology, 2023, 56(6): 285-300. DOI: 10.12401/j.nwg.2023081

湖南天明金矿区云斜煌斑岩年代学、同位素地球化学及成矿意义

基金项目: 中国地质调查局项目“雪峰弧金锑矿资源勘查”(DD20208007),“湖南云台山地区1∶5万矿产地质调查”(DD20220968),中国地质调查局花岗岩成岩成矿地质研究中心开放基金课题(PMGR202106)联合资助。
详细信息
    作者简介:

    陈澍民(1990−),工程师,博士,主要研究方向为矿产资源调查及矿床学研究。E−mail:chenshumin@mail.cgs.gov.cn

    通讯作者:

    徐宏根(1979−),正高级工程师,博士,主要从事遥感地质应用及红外遥感地学应用研究。E–mail:honggen_xu@163.com

  • 中图分类号: P597;P591+.2

Geochronology, Isotopic Geochemistry of Diorite Porphyrite in Tianming Gold Deposit, Hunan

  • 摘要:

    湖南安化天明金矿区的勘查工作中,岩芯揭露隐伏云斜煌斑岩。为探讨脉岩与成矿关系,对云斜煌斑岩开展岩石学、LA−ICP−MS锆石U−Pb年代学、全岩主微量元素和Sr−Nd同位素组成研究。结果显示,云斜煌斑岩遭受强烈的碳酸盐化蚀变;成岩时代不早于104 Ma,可能是晚燕山期华南构造–岩浆事件的响应;(418.79±1.57)Ma与(2506±14)Ma两组谐和年龄分别记录了志留纪扬子地块华夏诸岛弧陆弧碰撞以及太古宙地壳初始大规模增生,表明基底物质来源于上述2次地质事件。云斜煌斑岩属高钾钙碱性系列,轻稀土元素(LREE)富集、重稀土元素(HREE)亏损,具有明显的Eu负异常和Ce正异常;大离子亲石元素和高场强元素亏损,相容元素含量高;全岩εNd(t)=−8.28~−7.61表明壳幔混源;认为云斜煌斑岩由地幔岩浆在源区残留角闪石、钛铁矿和/或金红石,经历以斜长石为主的分离结晶,并受地壳混染,最终在近EW向断裂中侵位形成。对比湘中地区脉岩,赋矿地层,地壳Au、Sb含量,暗示脉岩与锑可能具有深部同源性,天明矿床具有锑成矿潜力。

    Abstract:

    The exploration in the Tianming Mining Area, Anhua, Hunan, has uncovered the concealed mica−plagioclase lamprophyre. In order to study the relationship between the dike and mineralization, we conducted various studies including petrographic, LA−ICP−MS zircon U−Pb chronology, whole−rock major and trace elements and Sr−Nd isotope composition analyses on the mica-plagioclase lamprophyre. The results indicate that the mica−plagioclase lamprophyre underwent significant carbonate alteration. The diagenesis age is estimated to be no earlier than 104 Ma and may be a response to the Late Yanshanian tectonic−magmatic events in South China Block. The concordant ages of (418.79±1.57) Ma and (2506±14 )Ma document the events of Silurian arc−crust collision of the Yangtze plate and the Cathaysia island arc, and Archaean crustal accretion, respectively, indicating the crystal basement material source. The mica−plagioclase lamprophyre belongs to a high−K calcium−alkaline series with an enriched light rare−earth element (LREE) and depleted heavy rare−earth element (HREE), with Eu negative anomalies and Ce positive anomalies. The rock also has large ionic lithophile and high−field strength elements depleted and high compatible element content. Whole−rock εNd(t) values ranging from −8.28 to −7.61 suggest crust−mantle mixing. Our findings suggest that the mica−plagioclase lamprophyre was formed by mantle magma in the source area with residual hornblende, ilmenite, and/or rutile. It underwent fractional crystallization dominant of plagioclase, was mixed by crust, and finally intruded in near−EW faulting tectonics. Comparison of the Au and Sb contents of dikes in central Hunan, ore−bearing formation, and crust, implies that the dikes and antimony may have deep homology. These findings suggest that the Tianming deposit has antimony mineralization potential. Overall, the study highlights the complex geological processes that lead to the formation of mineral deposits. By using a multidisciplinary approach, it is able to unravel the complex history of the mica−plagioclase lamprophyre and its association with mineralization. These findings can provide valuable insights for future exploration activities in the region.

  • 青海东昆仑地区是中国重要的造山带之一(吴树宽等,2023),祁漫塔格成矿带位于该造山带西段(图1a)。近年来,随着该地区众多岩浆热液型多金属矿床(点)的发现,其已逐渐成为中国西部重要的、最具找矿潜力的成矿远景勘查区之一,引起了地质科研者们浓厚的研究兴趣,推动了该地区成矿规律研究工作的不断进行(丰成友等,2011张爱奎,2012高永宝等,2014钟世华等,2017a2017b)。

    图  1  东昆仑造山带地区地质构造简图(a)与祁漫塔格区域地质矿产简图(b)(据丰成友等,2012钟世华等,2017a2017b王新雨等,2021修改)
    Figure  1.  (a) Tectonic sketch map of east Kunlun orogenic beltand geology and (b) mineral deposit distribution in the Qimantage area

    牛苦头多金属矿床位于祁漫塔格成矿带中段野马泉–开木棋河东侧(图1b),前人对牛苦头矿区开展了一系列研究工作,认为牛苦头矿区矽卡岩底部隐伏的花岗闪长岩为成矿岩体(蒋成伍,2013贾建团,2013),其成矿时代与区域大多数铅锌多金属矿床(卡尔却卡、虎头崖、肯德可克、野马泉、尕林格等铁多金属矿床)成矿时代一致,为晚三叠纪。随着牛苦头矿区勘查工作的进展以及研究工作的不断深入,前人逐渐意识到,华力西期(晚泥盆世)可能为矿区主要成矿岩体(李加多等,2019王新雨等,20202021)。然而证据不够充分,尤其是矿石矿物年代学成矿研究工作较为空白。此外,矿区成矿物质来源问题一直没有很好的解决,前人研究仅仅从成矿岩体以及金属中S、Pb的物质来源着手(王新雨等,2021),金属成矿物质来源研究较为匮乏。

    金属矿物Re–Os测年是近年来矽卡岩多金属矿床成矿时代研究较为较为有效的一种测年方法,其中,最为有效的属于辉钼矿Re–Os测年(李超等,2016)。然而,对于辉钼矿含量较低的多金属矿来说,辉钼矿测年具有较大的难度和局限性。而黄铁矿、黄铜矿中Re含量低,并且具有一定的初始Os,其Re–Os等时线年龄不仅能够限定金属矿物成矿时代,而且能够示踪金属矿物成矿物质来源(李超等,2009)。

    笔者拟从成矿岩体锆石U–Pb年代学、矿石矿物Re–Os年代学入手,探讨成岩时代与成矿时代的耦合关系,为矿区铅锌矿床成矿时代提供新的有力证据。尝试采用黄铁矿的同位素初始比值对其成矿物质来源进行示踪,以解决牛苦头多金属矿床的成矿时代以及成矿来源等成矿相关问题,为研究野马泉–牛苦头–四角羊地区矽卡岩型铁锌多金属矿床成矿地质特征、矿床成因以及找矿预测工作提供相关理论依据。

    东昆仑造山带西侧的祁漫塔格成矿带位于青藏高原中北部,成矿条件较为优越(毛景文等,2012Yu et al.,2017刘渭等,2021)(图1a图1b)。成矿带地区出露地层复杂,主要包括以下地层与岩性:新元古界金水口群主要为一套夹片岩、大理岩、片麻岩的混合岩;上奥陶统滩间山群岩组主要为一套夹火山岩组的碎屑岩地层;下石炭统大干沟组与缔敖苏组为一套沉积碳酸盐地层,岩性包括生物碎屑灰岩、大理岩、白云岩、鲕粒状灰岩和砂岩;下—中二叠统打柴沟组为一套灰岩夹炭质条带岩的岩石组合;第四系包括风积、冲积物和亚砂土。该地区构造活动发育较为复杂,构造受昆中、那陵郭勒断裂影响,产状主要呈NWW、NW向,局部近EW向,也常常发育近EW向的褶皱构造。区内岩浆岩被第四系覆盖严重,侵入岩发育强烈,时代分为华力西期和印支期2组,受NWW和N向构造断裂控制明显。

    牛苦头矿区出露地层为上奥陶统滩间山群岩组与第四系(图2)。滩间山群在本矿区表现为一套浅海相沉积地层(碳酸盐岩、碎屑岩),岩性表现为灰岩、大理岩、条带状灰岩、碳质灰岩、粉砂岩、泥质粉砂岩。矿区内断裂分为NWW和NE向,以NWW向为主,为昆北断裂的次级分支断裂,但NE向也同样明显,NE向构造代表主要为牛苦头沟和四角羊沟断裂。矿区内岩浆岩种类复杂,包括辉长闪长岩、石英闪长岩、二长花岗岩、正长花岗岩、似斑状花岗岩以及富石英花岗岩类等,空间穿插关系复杂。

    图  2  牛苦头矿区地质图
    Figure  2.  Geological map of the Niukutou ore district

    矿区M1矿段作为其主要开采地段,其矿体类型主要为层状或不规则脉状矿体,矿石成分主要为磁黄铁矿、闪锌矿、磁铁矿、方铅矿、黄铜矿、黄铁矿,可见少量毒砂与赤铁矿。矿石构造主要呈块状、浸染状、细脉浸染状、条带状以及班杂状。M4矿段矿体产状、矿石结构构造与M1基本类似,但其矿石成分与M1矿段有所区别,矿石中磁铁矿含量较大,其次为磁黄铁矿、闪锌矿、黄铁矿,方铅矿含量较少。

    矿区主要矿体顺层产出,受地层和硅钙面控制明显(图3),局部受导矿构造影响,可切穿地层。脉石矿物与区域上其他矽卡岩矿床有所区别,局部矽卡岩Mn含量较高,与铅锌矿化关系密切。脉石矿物包括(锰)阳起石、(锰)黑柱石、(锰)钙铁辉石、石榴子石、硅辉石、石英、方解石、绿帘石、绿泥石等(图4)。花岗岩体位于矿体与矽卡岩之下,为二长花岗岩–花岗闪长岩组合,蚀变为绿泥石化、钾化及少量辉石化,局部花岗岩中可见星点状闪锌矿化与黄铁矿化。

    图  3  牛苦头M1磁异常区10号地质勘探线剖面图
    Figure  3.  Geological profile of No.10 exploration line n in M1 magnetic anomaly area of Niukutou deposit
    图  4  岩石、矿石手标本图
    a. 块状磁黄铁矿矿石;b. 斑杂状闪锌矿化,产于锰钙辉石矽卡岩中;c. 块状闪锌矿、磁黄铁矿石;d. 磁黄铁矿化石榴子石矽卡岩;e. 闪锌矿化含方解石黑柱石辉石矽卡岩;f. 闪锌矿化锰钙辉石矽卡岩;Q. 石英;Cal. 方解石;Ilv. 黑柱石; Jo. 锰钙辉石;Px. 辉石;Sp. 闪锌矿;Po. 磁黄铁矿;Grt. 石榴子石
    Figure  4.  Specimens of rocks and ores

    研究样品采自M1矿段10线钻孔底部,岩性分别为花岗闪长岩和二长花岗岩(图5a、图5b),取样位置见图3

    图  5  牛苦头矿区花岗岩类手标本及镜下照片
    a. M1矿段钻孔ZK1007底部强蚀变花岗闪长岩手标本;b. M1矿段钻孔ZK1009底部蚀变二长花岗岩发育绢云母化;c. M1矿段钻孔底部强蚀变花岗闪长岩中发育的绢云母化长石(正交偏光);d. M1矿段钻孔底部蚀变二长花岗岩中发育的绢云母化长石与环带状中长石(正交偏光)
    Figure  5.  Specimen and microscope photo of the granites from the Niukutou deposit

    M1矿段钻孔底部花岗闪长岩,经鉴定岩性为中粒钾化黑云母花岗闪长岩(图5a),石英含量约为25%,自形–半自形结构,粒径为0.6~1.5 mm。斜长石,自形结构,含量约为55%,粒径为1~1.5 mm,斜长石表面多发生泥化、绢云母化。钾长石含量约为10%~15%,粒径为0.5~0.8 mm,多为正长石,局部表面发育泥化。黑云母含量约为3%~5%,片状,局部为泥化。花岗闪长岩中普遍发育钾化、硅化、绢云母化,表明M1底部岩体发生较强的热液蚀变(图5c)。

    M1矿段钻孔底部二长花岗岩一般为中细粒结构(图5b),块状构造,其主要由石英(35%)、正长石(35%)、斜长石(25%)和黑云母(5%)组成。斜长石中可发现具有环带结构的中长石。蚀变主要为长石的钾化和绢云母化,同时普遍发育浸染状黄铁矿化(图5d)。

    选取M1矿段10线钻孔ZK1007、ZK1009底部的2件花岗闪长岩(NZC01、NZC13)进行锆石U–Pb定年分析(图3)。Re–Os测年样品则选择M1矿段ZK1004钻孔底部黄铁矿闪锌矿矿石样品6件作为测试对象(图3)。

    花岗岩锆石测年在合肥工业大学矿物原位分析实验室完成,分析仪器为Agilent7900电感耦合等离子质谱仪(美国),与之配套的为美国生产的Analyte气态准分子激光剥蚀系统。激光以He为载气,统一剥蚀半径为30 um。标样采用91500、PLE为外标的锆石进行校正,每测10个样品,用2个91500标样和1个PLE标样进行校正。随时观察仪器的信号,以保证数据的精确有效。数据处理及普通Pb校正采用CP–MS–Da–Ta–Cal(Liu,2010李艳广等,2023)和EXCEL宏程序ComPbCorr#3-17(Andersen,2002),年龄谐和图解使用Isoplot3.0获取(王新雨等,2021)。

    用于黄铁矿 Re–Os 同位素测试的样品采自牛苦头M1矿段ZK1004钻孔底部块状矿石,共 6 件,其中块状矿石中黄铁矿与磁黄铁矿、闪锌矿共生,为同阶段硫化物。将包含黄铁矿的闪锌矿矿石进行粉碎,剔除杂物,保证实验的黄铁矿样品纯度高于99%。

    在中国地质科学院国家测试中心进行了黄铁矿 Re–Os 同位素组成测定。对于黄铁矿含量低的样品,采用逐级剥谱法扣除O同位素的干扰。其中Re同位素质量分馏校正采用的普通Re的185Re/187Re值为0.59738。而Os同位素质量分馏校正采用192Os/188Os值作为内标(杜安道等,2009)。详细测定方法及流程见2009李超等(2016)

    花岗闪长岩和二长花岗岩采样位置见图3,其锆石U–Pb同位素组成见表1。在CL图像下,花岗闪长岩中(NZC01)锆石呈无色透明的长–短柱状(图6)。长约为135~265 μm,宽为45~75 μm。大多数锆石具岩浆震荡环带,局部可见锆石形态残缺不完整,可能为晚阶段热液作用所致。锆石中Th含量为63×10−6~393×10−6,U含量为183×10−6~1085×10−6,Th/U值为0.3~0.56(均大于0.3),属于典型岩浆锆石成因。20个锆石LA–ICP–MS加权平均年龄为(362.2±2.7)Ma(MSWD=3.9,n=20)(图6),均为华力西期晚泥盆纪。

    表  1  牛苦头成矿花岗岩锆石U–Pb数据统计表
    Table  1.  U–Pb isotopic compositions of Niukutou granitoids
    测点号UThTh/U同位素比值年龄(Ma)
    (10−6206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U
    NZC01.110853930.360.057380.00060.425700.00630.053850.000736023653
    NZC01.2225740.330.057580.00060.413790.01060.052150.001336122925
    NZC01.3266810.300.057250.00060.431110.00860.054610.001035923964
    NZC01.4240910.380.060050.00060.445130.01140.053780.001337623625
    NZC01.5201710.350.056150.00060.417800.01020.054030.001335223725
    NZC01.63581730.480.059310.00060.447550.00940.054700.001037124004
    NZC01.7195700.360.059300.00060.441630.01070.054020.001237123725
    NZC01.82701140.420.058560.00060.429620.00870.053270.001136723404
    NZC01.9183630.340.057540.00060.426270.01100.053710.001336123595
    NZC01.10271820.300.057860.00060.432390.00900.054110.001036323764
    NZC01.111981020.520.057830.00060.423050.01070.053120.001336223345
    NZC01.122591190.460.056500.00060.412020.00880.052960.001135423274
    NZC01.133081360.440.058150.00080.421860.01120.052640.001336433135
    NZC01.142841150.410.056960.00070.417950.00970.053370.001235723445
    NZC01.152411020.420.057450.00060.429720.00910.054230.001136023814
    NZC01.16190910.480.057790.00070.427680.01370.053920.001736233686
    NZC01.173171770.560.057960.00070.439760.00980.055010.001136324134
    NZC01.183871950.500.058400.00060.436390.00800.054210.000936623803
    NZC01.193001240.410.057340.00060.416980.00800.052820.000935923214
    NZC01.203321620.490.057550.00060.415500.00790.052340.000936123003
    NZC13.1201800.400.058280.00060.421080.01050.052420.001236543579
    NZC13.22801030.370.056850.00060.412060.00910.052640.001035643508
    NZC13.3185680.370.058790.00070.444500.01290.054760.0014368437311
    NZC13.42081190.570.057960.00060.433360.01140.054190.0013363436610
    NZC13.5228880.390.057210.00060.424240.01170.053940.0014359435910
    NZC13.65651780.320.060000.00070.442180.00840.053550.000837653727
    NZC13.7193660.340.056230.00060.416400.01190.053830.0015353435310
    NZC13.8182850.470.057670.00060.419700.01190.053070.0014361435610
    NZC13.92441200.490.057630.00060.429480.00950.054090.001136143638
    NZC13.10185660.360.059490.00070.434900.01170.052970.0013373436710
    NZC13.11131480.370.056650.00060.419350.01350.053760.0016355435611
    NZC13.12247910.370.057750.00060.417300.00900.052480.001036243548
    NZC13.132511060.420.057730.00060.427490.00900.053710.001036243618
    NZC13.142841070.380.056620.00060.414790.00810.053140.000935543527
    NZC13.15167560.340.058390.00060.431160.01130.053540.0013366436410
    下载: 导出CSV 
    | 显示表格
    图  6  牛苦头矿区成矿花岗闪长岩、二长花岗岩锆石年龄谐和及加权平均年龄图
    Figure  6.  Zircon U–Pb Concordia and weighted average of granitoids in Niukutou ore district

    牛苦头M1矿段二长花岗岩中(NZC013)锆石CL图像晶形较好,呈无色透明短柱状,长约为150~250 μm,宽约为80~100 μm,少数锆石局部出现残缺,可能为晚期岩浆热液所致。锆石Th含量为48×10−6~178×10−6,U含量为131×10−6~565×10−6,Th/U值为0.34~0.57(均大于0.3),为典型岩浆锆石成因(王新雨等,2021)。 测得15个锆石LA–ICP–MS加权平均年龄为(361.8±3.4)Ma(MSWD=2.5,n=15)(图6),均属于华力西期晚泥盆纪。

    黄铁矿Re–Os数据分析结果见表2。矿石样品中黄铁矿与闪锌矿共生关系见图7a。牛苦头铅锌矿床黄铁矿中普Re含量为0.031×10−9~7.887×10−9187Os含量为0.20×10−12~29.96×10−12,普Os含量较低,相对于187Os可忽略不计。黄铁矿187Re/188Os值为61.7~32860,属于低含量、高放射成因硫化物(LLHR),黄铁矿Re–Os等时线年龄为(359.2±6.3)Ma(图7b),个别数据的等时线年龄为(352±15)Ma,初始187OS/188Os值为0.13±0.24(表2)。个别数据的等实线年龄与M4钻孔底部成矿岩体锆石U–Pb年龄一致(353.0±3.6 Ma)(王新雨等,2021)。

    表  2  牛苦头铅锌矿床黄铁矿Re–Os同位素数据统计表
    Table  2.  Re–Os data of pyrite from Niukutou Pb–Zn skarn deposit
    样品号Re (10−9普Os (10−9187Re (10−9187Os(10−9187Re/188Os187Os/188Os模式年龄(Ma)
    测定值不确
    定度
    测定值不确
    定度
    测定值不确
    定度
    测定值不确
    定度
    测定值不确
    定度
    测定值不确
    定度
    测定值不确
    定度
    NKC0737.8870.0580.00120.00004.9570.0370.029960.0002332860381198.01.3361.73.7
    NKC0720.3630.0030.00090.00000.2280.0020.001360.0000119632011.690.02356.03.7
    NZC-1150.8870.0070.00660.00010.5570.0040.003350.00003648.96.73.8800.010
    NKC0740.2140.0020.00280.00000.1350.0010.000790.00001376.24.52.2220.014
    NKC0750.2540.0020.00140.00000.1600.0010.000980.00001852.616.95.1910.078
    NKC0760.0310.0000.00240.00000.0190.0000.000200.0000161.71.40.6110.021  
    下载: 导出CSV 
    | 显示表格
    图  7  闪锌矿与黄铁矿镜下共生的显微照片(a)和牛苦头M1矿段黄铁矿Re–Os同位素等时线图解(b)
    Figure  7.  (a) micrograph of sphalerite intergrowth with pyriteand and (b) Re–Os isotope isochron of pyrite in M1 ore block of Niukutou ore district

    黄铁矿Re–Os同位素定年方法,是解决金属矿床成矿时代问题一种有效的技术手段。牛苦头M1磁异常区铅锌矿与闪锌矿共生的黄铁矿Re–Os加权平均值年龄为(359.2±6.3)Ma,代表了牛苦头铅锌矿床的成矿时代为晚泥盆世。该年龄与矿区M1和M4华力西晚期钻孔底部成矿岩体年龄(363~362 Ma)基本一致,代表了祁漫塔格地区晚泥盆世存在一期重要的矽卡岩型铅锌成矿作用。综上所述,华力西期岩浆作用是祁漫塔格矿区一期重要的岩浆侵入作用,对应于晚泥盆世始特提斯洋后碰撞伸展作用。该期岩浆岩在整个牛苦头矿区普遍都存在,尤其在M3和M5地区。因此,在牛苦头地区M3和M5磁异常区具有寻找华力西期岩浆岩有关的铅锌矿床。

    多数学者认为,中—晚三叠世是祁漫塔格造山带内非常重要的地质演化阶段(丰成友等,2012Yu et al.,2017),是祁漫塔格地区主要的成矿时期。该阶段下,构造环境由挤压变为伸展,有利于岩浆混合作用的发生,并进行分异演化,为矿区内铁锌铜多金属矿化提供了较好的构造条件(高永宝等,2014)。

    然而,也有部分学者对“印支期作为祁漫塔格地区唯一的矽卡岩成矿期”提出质疑,并通过事实和证据,提出该地区多金属成矿与泥盆纪岩浆作用有关 (高永宝等,2014宋忠宝等,2014李加多等,2019)。但未深层次揭露岩体与矿体时空关系以及成矿作用过程。

    测试结果表明,M1矿段钻孔底部成矿花岗闪长岩年龄为(362.2±2.7)~(361.8±3.4)Ma。 与与闪锌矿密切共生黄铁矿Re–Os等时线年龄为(359.2±6.3)Ma,年龄与矿区M1和M4华力西晚期钻孔底部成矿岩体年龄(363~362 Ma)基本一致,代表了祁漫塔格地区晚泥盆世存在一期重要的矽卡岩型铅锌成矿作用。结合前人发表的有关有关牛苦头矿区成矿岩体年龄(365~352 Ma)(李加多等,2019王新雨等,2021),认为由此确定牛苦头铅锌矿床形成于362~352 Ma,属于华力西期晚泥盆世。

    综合以上分析,认为牛苦头矿区M1、M4矿段大规模铅锌成矿作用时代为华力西期晚泥盆世。华力西期岩浆岩在整个牛苦头矿区普遍都存在,尤其在M3和M5地区。因此,在牛苦头地区M3和M5磁异常区具有寻找华力西期岩浆岩有关的铅锌矿床。

    这个事实也进一步说明了祁漫塔格地区存在大规模“华里西期铅锌成矿作用”,为祁漫塔格地区区别于“印支期成矿作用的”的另一期中酸性岩浆岩找矿标志。

    在岩浆演化及成矿流体运移过程中,由于Os亲铁、亲铜的特性,其可作为示踪成矿物质来源的元素,由于牛苦头矿床闪锌矿矿石中包含大量黄铁矿。因此,可以利用黄铁矿的Os同位素特征示踪牛苦头矿区闪锌矿的物质来源(丰成友等,2007李超等,2009)。其中,地幔中187Os/188Os值约为0.12,而上地壳中的187Os/188Os值约为1,牛苦头黄铁矿–闪锌矿矿石的初始(187Os/188Os)i值为0.13±0.24,显示出幔源岩浆参与了成矿。矽卡岩矿床一般由成矿岩体与地层发生交代而形成,地层和成矿岩体可能同时贡献了成矿物质。牛苦头海西期岩浆岩为祁漫塔格地区晚泥盆世后碰撞造山环境下岩石圈减薄过程中壳幔混合作用的产物(莫宣学等,2007高永宝等,2014),牛苦头铅锌多金属矿床成矿物质可能主要来源于壳幔作用的混合。

    东昆仑造山带经历了4次岩浆构造旋回,形成的岩石构造组合基本上对应于4个时代,分别为:元古宙(前寒武纪)、早古生代、晚古生代—早中生代、晚中生代—新生代,其中以晚古生代—早中生代(华力西期—印支期)的岩浆岩较为发育(莫宣学等,2007田龙等,2023)。各构造旋回相关的成矿作用主要集中在晚古生代—早中生代,其中东昆仑晚古生代成矿包括夏日哈木岩浆岩型铜镍矿床、白干湖矽卡岩–云英岩–石英脉型钨锡多金属矿床,矿床形成时代为430~422 Ma,属于志留世。该期成矿作用形成于志留纪碰撞造山后局部拉张环境(Zhong et al.,2018)。进入泥盆世(410~360 Ma),形成一系列花岗闪长岩–石英闪长岩–二长花岗岩类,与区内的矽卡岩型铁铅锌铜多金属成矿密切相关,这些侵入岩以 I 型花岗岩为主。目前,发现该时期矿床较少,近年来该时代矿床也逐渐被重视,其代表矿床包括牛苦头–四角羊铅锌多金属矿床、野马泉M13磁异常区铁锌矿床等(高永宝等,2014王新雨等,2021),形成于区内早古生代—晚古生代早期构造–岩浆旋回的碰撞–后碰撞阶段,由古老陆壳重熔而成,加入部分地幔物质,壳幔岩浆混合作用可能是其大规模集中成矿的主要因素。

    结合上述Re–Os同位素成矿物质来源分析,可以认为牛苦头矽卡岩型铅锌多金属矿床形成于晚泥盆世祁漫塔格洋俯冲于柴达木地块之下后的碰撞–后碰撞阶段,此时背景下,岩石圈减薄、软流圈上涌,强烈的壳幔相互作用诱发了大规模的岩浆活动,这也与牛苦头矿区成矿岩体中含有大量包体的事实相一致(李加多等,2019王新雨等,2021)。中酸性晚泥盆世花岗闪长岩–二长花岗岩侵入到滩间山群发生了相互交代作用,晚泥盆世花岗岩类提供了成矿物质,岩浆与滩间山群大理岩接触带提供了赋矿空间,从而形成了牛苦头矽卡岩型铅锌多金属矿床。

    (1)牛苦头矿区成矿二长花岗岩与花岗闪长岩时代为(362.2±2.7)~(361.8±3.4)Ma。 Re–Os等时线年龄为(359.2±6.3)Ma。成岩与成矿时代耦合,由此确定牛苦头铅锌矿床形成于362~359 Ma。

    (2)根据黄铁矿初始值(187Os/188Os)i分析,可以认为牛苦头铅锌矿床金属成矿物质可能主要来源于壳幔相互作用的混合岩浆。

    (3)结合已有资料,提出牛苦头铅锌矿床形成于碰撞–后碰撞阶段的拉伸背景之下。

    致谢:野外工作得到了青海鸿鑫矿业有限公司技术中心工作人员郭天军、刘明、王燕的大力支持; Re–Os测试技术得到了中国地质科学院国家测试中心李超教授的悉心指导;审稿专家对论文提出了许多宝贵的意见和建议,对以上人员表示最衷心的谢意。

  • 图  1   大地构造位置图(a)(Chen et al.,1998)及雪峰弧形构造带地质简图(b)(权正钰等,1997

    1.白垩系—新近系;2.上三叠统—侏罗系;3.泥盆系—中三叠统;4.南华系—志留系;5.青白口系(板溪群和冷家溪群);6.断裂构造;7.花岗岩体;8.地名;9.金矿点;10.金矿床;11.锑矿;12.钨矿

    Figure  1.   (a) Simplified map of South China and (b) Geological sketch map of Xuefeng arcuate tectonic zone, Hunan

    图  2   湖南天明金矿区地质简图(a)及3号勘探线图(b)

    1.板溪群马底驿组1段;2.板溪群马底驿组2段;3.冷家溪群小木坪组;4.第四系;5.蚀变带;6.矿脉;7.矿体;8.逆断层;9.云斜煌斑岩;10.推测断层;11.钻孔及编号;12.勘探线

    Figure  2.   (a) Geological sketch map of the Tianming gold deposit and (b) No.3 geological cross−section

    图  3   湖南天明金矿区云斜煌斑岩岩心及透射光镜下照片

    a.岩脉产状;b.露头特征;c、d.岩脉镜下特征(+);Qz.石英;Pl.斜长石;Bt.黑云母

    Figure  3.   Core and transmission light microscopic photographs of mica−plogioclase lamprophyre of Tianming gold deposit, Hunan

    图  4   湖南天明金矿区云斜煌斑岩锆石阴极发光(CL)图(a)、加权平均图(b)与谐和图(c)

    Figure  4.   (a) Zircon cathodoluminescence (CL) image, (b) weighted mean ages and (c) concordia plot ofmica−plogioclase lamprophyre in Tianming gold deposit, Hunan

    图  5   湖南天明金矿区云斜煌斑岩地球化学图解

    a. Nb/Y–Zr/TiO2图解(Winchester et al.,1977);b. Th–Co图解(Hastie et al.,2007

    Figure  5.   Geochemical plots of mica–plogioclase lamprophyre in Tianming gold deposit, Hunan

    图  6   湖南天明金矿区云斜煌斑岩原始地幔标准化微量元素标准化蛛网图(a)及球粒陨石标准化稀土元素配分模式图(b)(标准化数据来自Sun et al.,1989

    Figure  6.   (a) Primitive mantle–normalized trace element patterns and (b) chondrite–normalized REE of the mica–plogioclaselamprophyre in Tianming gold mining zone, Hunan

    图  7   湖南天明金矿区云斜煌斑岩(La/Yb)N–δEu(a)及La/Sm–La二元图解(b)(Davidson et al.,2007

    Figure  7.   (a) (La/Yb)N–δEu and (b) La/Sm–La diagram for the mica–plogioclase lamprophyre in Tianming gold mining zone, Hunan

    图  8   湖南天明金矿区云斜煌斑岩εNdt)–年龄(Ma)判别图解(Zindler et al.,1986

    Figure  8.   εNd(t)–Age (Ma) diagram for the mica–plogioclase lamprophyre in Tianming gold mining zone, Hunan

    图  9   湖南湘中地区脉岩、赋矿地层、地壳Au和Sb含量图解

    脉岩数据引自(刘继顺(1996);地层数据引自刘继顺(1996)李智明,1993);地壳数据引自Taylor等(1995);天明金矿钻孔数据引自曾昊等(2020

    Figure  9.   The content of Au and Sb of the dikes in middle Hunan and ore formations and crust

    表  1   湖南天明金矿区云斜煌斑岩锆石U−Pb同位素数据表

    Table  1   Zircon U−Pb isotopic datas of the mica−plogioclase lamprophyre in Tianming gold deposit, Hunan

    编号质量分数(10−6Th/U同位素比值年龄 (Ma)谐和
    PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    TM21
    11065334041.320.18000.00523.78990.13420.14890.0013265447159128895743%
    2193224437970.590.31900.00571.06420.01530.02420.000335652873681542−31%
    382742141.280.04990.00300.17590.00860.02570.00061911431657163499%
    441240613531.780.04880.00110.13140.00310.01950.0002139541253124299%
    5103282740.100.11270.00225.25170.10000.33700.005018433718611618722499%
    6189817801.260.04850.00150.10840.00330.01620.0002120691043104199%
    78858110350.560.05600.00070.54490.00640.07040.0006454234424439399%
    892412770.870.10290.00260.30630.00780.02150.00031677452716137234%
    92502424680.520.14230.00158.39040.09600.42650.004222551722741022901999%
    10807958750.910.09930.00310.87070.02720.06330.000516136263615395353%
    1192914210.220.18560.00413.65800.08660.14200.001327063156219856741%
    12881221230.990.17800.003912.29040.20840.49850.006426353726271626072799%
    13471502200.680.07440.00131.79060.02620.17410.00161052351042101035999%
    14234658820.070.12250.00153.95900.06370.23370.003819942316261313542081%
    15203913851.020.05090.00150.27240.00760.03870.0005239692456245399%
    161043907690.510.21210.00692.29180.09160.07740.0009292253121028481513%
    17122732611.050.05000.00210.23270.00940.03370.00051981012128213399%
    18282975150.580.08940.00180.50820.01000.04100.00041413374177259253%
    19221023.020.84560.01817994.8204817.363470.21387.1622912510427498649−1%
    2092175017401.010.07040.00110.36620.00590.03780.0005943313174239372%
    214313197271.810.09860.00360.48290.02100.03470.000315986840014220241%
    22591761061.670.12510.00196.31100.09020.36390.003020312620201320011499%
    232941265410.230.15630.00179.84780.11030.45420.004224171924211024141999%
    247729617370.170.06960.00130.37560.00660.03890.0003917383245246272%
    2538921580.580.07960.00162.19540.04500.19930.002411874111801411721399%
    261951303340.390.16570.002410.87130.16510.47360.006025152425121424992699%
    27237564210.130.16400.001610.77160.10760.47400.00372498162504925011699%
    28100661690.390.16290.001910.71760.11900.47600.005024871924991025102299%
    291091601640.980.15880.001910.47920.10970.47620.004224441624781025111898%
    306495960.990.16160.002010.63530.12820.47540.004124732124921125071899%
    312022593150.820.15930.002110.49390.12080.47590.004424482224791125091998%
    32555810.690.05300.00390.36250.02480.05020.001232816531418316899%
    3382871320.660.16470.002010.81660.13720.47450.004625062025071225032099%
    34674484411.020.06140.00070.95970.01390.11260.0011654266837688699%
    35571302200.590.13110.00283.26450.10280.17620.002821133714732410461566%
    36459600.980.09250.00480.51580.02590.04090.000814809842217259551%
    下载: 导出CSV
    续表1
    编号质量分数(10-6Th/U同位素比值年龄 (Ma)谐和
    PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    37448630.760.05230.00450.32460.02710.04530.001129819628521286799%
    38341470.880.09000.00520.51580.02980.04190.0008142610542220264554%
    39258650.880.00000.00000.00000.00000.02070.004313227
    40337380.970.15660.01001.10080.05530.05230.0015241910975427329921%
    41346560.820.04090.00810.28570.06170.04080.000825549258599%
    42151471800.820.07510.00300.63670.02470.06140.000510728050015384373%
    43456630.880.05410.00250.32090.01340.04400.00073767328310277498%
    44455640.860.05520.00580.32350.03150.04330.0021420235285242731395%
    452071793670.490.14890.00158.97460.12850.43570.004823331723351323322299%
    46234605000.920.05090.00100.24330.00540.03460.0004239442214219399%
    47513136330.490.05680.00120.52280.01300.06640.0009483444279414597%
    48292873030.950.09000.00290.81060.02770.06500.000814286160316406560%
    49421374730.290.10890.00250.97400.02290.06450.000517814169112403347%
    50371085120.210.05350.00100.50450.01510.06800.00163504341510424997%
    51513115920.530.06960.00120.65360.01180.06800.0011917375117424681%
    52411745120.340.06120.00110.56750.01010.06700.0007656394567418491%
    53726847460.920.07350.00120.71830.01970.07000.001210283355012436776%
    54342703980.680.05570.00080.51470.00740.06680.0005439314225417398%
    558245910230.450.05500.00080.51140.00940.06710.0008409334196419599%
    56281193540.340.05510.00090.51550.00850.06760.0006417324226421499%
    57333053490.870.05580.00090.52100.00850.06740.0006443354266420498%
    589241311870.350.05570.00070.53090.00800.06890.0008443324325429599%
    下载: 导出CSV

    表  2   湖南天明金矿区云斜煌斑岩全岩地球化学数据表

    Table  2   Whole−rock geochemical data of the mica−plogioclase lamprophyre in Tianming gold deposit, Hunan

    样品号 TM2102 TM2103 TM2104 TM2105 TM2106 TM2107 TM2108 TM2109
    SiO2 43.31 43.27 46.31 46.23 47.67 47.65 44.05 44.11
    主量元素
    TiO2 0.84 0.81 0.84 0.84 0.84 0.87 0.72 0.74
    Al2O3 12.76 12.74 11.9 11.89 11.58 11.59 10.88 10.9
    Fe2O3 0.27 0.28 0.32 0.28 0.56 0.54 0.62 0.54
    FeO 6.59 6.51 5.83 5.86 5.43 5.37 5.78 5.81
    MnO 0.12 0.12 0.11 0.11 0.11 0.11 0.13 0.13
    MgO 7.4 7.38 7.03 7.05 7.1 7.1 7.55 7.53
    CaO 6.64 6.64 6.8 6.8 6.26 6.27 7.91 7.91
    Na2O 1.03 1.03 0.84 0.83 2.04 2.12 0.98 0.97
    K2O 1.09 1.1 1.01 0.99 0.79 0.8 1.35 1.35
    P2O5 0.4 0.41 0.39 0.38 0.39 0.39 0.4 0.4
    LOI 18.92 18.94 17.98 18.08 16.62 16.59 18.99 18.98
    Total 99.37 99.23 99.36 99.34 99.39 99.4 99.36 99.37
    微量元素
    Cr 354 354 532 524 711 701 618 640
    Co 32.7 33.7 31.8 31.1 33.8 33.3 34.4 34.8
    Ni 130 133 129 129 194 196 163 163
    V 151 153 152 147 135 132 145 147
    Rb 57.3 62.5 105.2 92.7 118.5 124.3 86.5 96.2
    Sr 645 660 746 753 890 865 722 734
    Ba 227 234 501 507 395 390 3030 3070
    Nb 8.08 8 7.92 7.84 7.06 6.94 6.67 6.95
    Ta 0.59 0.58 0.56 0.55 0.52 0.49 0.52 0.48
    Zr 224 228 206 209 199 197 190 195
    Hf 6.35 6.39 5.9 5.96 5.85 5.76 5.5 5.64
    U 5.75 5.87 5.4 5.39 4.85 4.78 5.11 5.13
    Th 58 59.2 52.4 52.7 51.4 50.5 49.7 50.2
    La 132 134 116 119 118 115 112 113
    Ce 328 328 287 289 289 281 279 283
    Pr 29.6 30.1 25.8 26.5 26.4 25.6 25.7 26.1
    Nd 102 104 89.7 91.4 92 90.5 89.9 90.8
    Sm 13.4 13.5 11.7 12 11.9 11.5 11.6 11.7
    Eu 2.42 2.46 2.24 2.25 2.16 2.1 3.12 3.06
    Gd 11.1 11.1 10.1 10.1 9.99 9.66 11.2 11.1
    Tb 1.16 1.17 1.04 1.03 1.02 1.01 1.01 1.02
    Dy 4.57 4.71 4.29 4.26 4.09 3.99 3.99 4.07
    Ho 0.8 0.81 0.74 0.75 0.73 0.69 0.69 0.69
    Er 2.36 2.42 2.2 2.2 2.11 2.08 2.1 2.11
    Tm 0.31 0.3 0.27 0.28 0.28 0.27 0.26 0.27
    Yb 1.93 1.96 1.78 1.79 1.79 1.69 1.69 1.7
    Lu 0.28 0.28 0.26 0.26 0.25 0.25 0.24 0.24
    Y 21 21.6 19.3 19.5 18.6 18.5 18.3 18.5
    F 724 759 872 904 1210 1150 948 928
    Ag 0.04 0.04 0.03 0.04 0.05 0.04 0.04 0.03
    Sb 40.1 40.9 46.3 45.3 10.4 10.3 24.2 25.2
    Cu 48.7 48.2 51.1 49.1 52.6 52.2 41.1 42.5
    Pb 19.3 19.1 19.7 19.9 23.5 22.9 19.6 20.2
    Zn 71 72.7 70 72.4 60.6 59.8 69.4 70.7
    W 6.1 6.24 5.9 5.98 3.37 3.37 9.35 9.22
    Sn 2.56 2.51 2.21 2.3 2.36 2.13 2.37 2.11
    Mo 0.17 0.13 0.4 0.52 0.54 0.46 0.54 0.53
    Bi 0.17 0.15 0.18 0.17 0.3 0.3 0.14 0.14
    Au(10−9) 1.7 1.21 1.17 1.35 1.04 1.26 2.02 1.75
     注:主量元素含量为%;微量元素含量为10−6;LOI=烧失量;ΣREE=稀土元素总量(不含Y);ΣLREE=轻稀土元素(La~Eu)总和;ΣHREE=重稀土元素(Gd~Lu)总和,下标N表示球粒陨石标准化;δEu=${\rm{E}}{{\rm{u}}_{\rm{N}}}/\sqrt {{\rm{S}}{{\rm{m}}_{\rm{N}}} \times {\rm{G}}{{\rm{d}}_{\rm{N}}}} $;Mg#=Mg2+/(Mg2++Fe2+)×100;SiO2归一化=SiO2/(Tot-LOI)×100。
    下载: 导出CSV

    表  3   湖南天明金矿区云斜煌斑岩Sr–Nd同位素组成表

    Table  3   Nb–Sr isotopic compositions of the mica–plogioclase lamprophyre in Tianming gold mining zone, Hunan

    样品87Rb/86Sr87Sr/86Sr±σISr147Sm/144Nd143Nd/144NdINd±σεNdtTDM(Ga)
    TM21020.25720.73875890.738380.07940.5121580.5121043−7.811.13
    TM21040.40830.74017450.739570.07890.5121680.5121149−7.611.11
    TM21060.38550.73119630.730630.07820.5121510.5120984−7.931.12
    TM21080.34690.73726170.736750.0780.5121330.512087−8.281.14
    TM21090.37950.73728770.736730.07790.5121620.5121093−7.711.11
      注:表中以t=104 Ma使用Geokit软件计算(路远发,2004),参数含义、计算方法及公式详见路远发等(2021)。
    下载: 导出CSV
  • 柏道远, 贾宝华, 钟响, 等. 湘中南晋宁期和加里东期构造线走向变化成因[J]. 地质力学学报, 2012, 18: 165-177 doi: 10.3969/j.issn.1006-6616.2012.02.007

    BAI Daoyuan, JIA Baohua, ZHONG Xiang, et al. Potential genesis of the trending changes of Jinning period and caledonian structural lineamens in middle-Southern Hunan[J]. Journal of Geomechanics, 2012, 18: 165-177. doi: 10.3969/j.issn.1006-6616.2012.02.007

    柏道远, 李银敏, 钟响, 等. 湖南NW向常德-安仁断裂的地质特征、活动历史及构造性质[J]. 地球科学, 2017, 43: 2496-2517

    BAI Daoyuan, LI Yinmin, ZHONG Xiang, et al. Geological features, activity history and tectonic attribute of NW-trending Changde-Anren fault in Hunan[J]. Earth Science, 2017, 43: 2496-2517.

    柏道远, 熊雄, 杨俊, 等. 雪峰造山带中段地质构造特征[J]. 中国地质, 2014, 41: 399-418 doi: 10.3969/j.issn.1000-3657.2014.02.008

    BAI Daoyuan;XIONG Xiong;YANG Jun, et al. Geological structure characteristics of the middle segment of the Xuefeng orogen[J]. Geology in China, 2014, 41: 399-418. doi: 10.3969/j.issn.1000-3657.2014.02.008

    陈卫锋, 陈培荣, 黄宏业, 等. 湖南白马山岩体花岗岩及其包体的年代学和地球化学研究[J]. 中国科学(D辑: 地球科学), 2007, 37(7): 873−893.
    胡楚南 . 桃江县板溪锑矿床地质特征及成矿构造分析[J]. 湖南地质, 1991, 10(4): 317−320+288.
    胡瑞忠, 毕献武, 苏文超, 等. 华南白垩—第三纪地壳拉张与铀成矿的关系[J]. 地学前缘, 2004, 153-160

    HU Ruizhong, BI Xianwu, SU Wenchao, et al. The relationship between uranium metallogenesis and crustal extension during the cretaceous—tertiary in South China[J]. Earth Science Frontiers, 2004, 153-160.

    黄建中, 孙骥, 周超, 等. 江南造山带(湖南段)金矿成矿规律与资源潜力[J]. 地球学报, 2020 1-22.

    HUANG Jianzhong, SUN Ji, ZHOU Chao, et al. Metallogenic regularity and resource potential of gold deposits of Hunan area in the Jiangnan orogenic belt, South China[J]. Acta Geoscientica Sinica, 2020, 1-22.

    柯昌辉, 王晓霞, 杨阳, 等. 西秦岭地区脉岩成因与金成矿关系——来自李坝金矿年代学、地球化学及Nd-Hf-S同位素的约束[J]. 矿床地质, 2020, 39: 42-62.

    KE Changhui, WANG Xiaoxia, YANG Yang, et al. Petrogenesis of dykes and its relationship to gold mineralization in the western Qinling belt: Constraints from zircon U-Pb age, geochemistry and Nd-Hf-S isotopes of Liba gold deposit[J]. Mineral Deposits, 2020, 39: 42-62.

    李建华, 张岳桥, 董树文, 等.华南大陆白垩纪构造-岩浆演化与动力学过程[C].中国地球科学联合学术年会, 2014, 2−5.
    李献华, 赵振华, 桂训唐, 等. 华南前寒武纪地壳形成时代的Sm-Nd和锆石U-Pb同位素制约[J]. 地球化学, 1991, (3): 255−264

    LI Xianhua, ZHAO Zhenhua, GUI Xuntang, et al. Sm-Nd isotopic and zircon U-Pb constraints on the age of formation of the precambrian crust in Southeast China[J]. Geochimica, 1991, (3): 255−264.

    李献华. 华南白垩纪岩浆活动与岩石圈伸展———地质年代学与地球化学限制[J]. 北京: 科学出版社, 1999: 264−275.
    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, LÜ Pengrui. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.

    李智明. 锡矿山锑矿成矿机理的探讨[J]. 矿产与地质, 1993, 7(2): 88−93.
    刘继顺. 湘中地区长英质脉岩与锑(金)成矿关系[J]. 有色金属矿产与勘查, 1996, 2-7

    LIU Jishun. Relationship between felsic dikes and antimony-gold mineralization in central Hunan[J]. Mineral Exploration, 1996, 2-7.

    卢作祥, 佘宏全. 国内外层控改造型金锑钨综合矿床的成矿特征与成矿机理[J]. 地质科技情报, 1989, 59-65

    LU Zuoxiang, XU Hongquan. Minerogenetic features and genetic mechanism of strata-bound Au-Sb-W multiple ore deposits home and abroad[J]. Geological Science and Technology Information, 1989, 59-65.

    路远发, 李文霞. Pb-Sr-Nd-Hf同位素参数计算及程序设计[J]. 华南地质, 2021, 37: 233-245

    LU Yuanfa, LI Wenxia. Calculation and Program Design for Pb-Sr-Nd-Hf Isotopic Parameters[J]. South China Geology, 2021, 37: 233-245.

    路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 459-464

    LU Yuanfa. GeoKit——A geochemical toolkit for Microsoft Excel[J]. GEOCHIMICA, 2004, 459-464.

    毛景文, 谢桂青, 李晓峰, 等. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘, 2004, 45-55

    MAO Jingwen, XIE Guiqing, LI Xiaofeng, et al. Mesozoic large scale mineralization and multiple lithospheric extension in South China[J]. Earth Science Frontiers, 2004, 45-55.

    潘灿军, 鲍振襄, 包觉敏. 湘西符竹溪金矿地质特征及成矿作用[J]. 地质找矿论丛, 2015, 30: 53-59 doi: 10.6053/j.issn.1001-1412.2015.01.007

    PAN Chanjun, BAO Zhenxiang, BAO Juemin. Geological characteristics and metallogenesis of Fuahuxi gold deposit in the West Hunan province[J]. Contributions to Geology and Mineral Resources Research, 2015, 30: 53-59. doi: 10.6053/j.issn.1001-1412.2015.01.007

    潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23: 1-23

    PAN Guichang, LU Songnian, XIAO Qinghui, et al. Division of tectonic stages and tectonic evolution in China[J]. Earth Science Frontiers, 2016, 23: 1-23.

    彭渤, 陈广浩. 湖南锑金矿成矿大爆发: 现象与机制[J]. 大地构造与成矿学, 2000, 24(4): 357−364.
    彭建堂. 湖南雪峰地区金成矿演化机理探讨[J]. 大地构造与成矿学, 1999, 3-5

    PENG Jiantang. Gold mineralization and its evolution in the Xuefeng district, Hunan[J]. Geotectonica et Metallogenia, 1999, 3-5.

    权正钰, 王甫仁, 胡能勇, 等. 雪峰弧形构造带与金锑矿成矿关系[R]. 长沙: 湖南省地质研究所, 1997
    任纪舜, 李崇. 华夏古陆及相关问题——中国南部前泥盆纪大地构造[J]. 地质学报, 2016, 90: 607-614 doi: 10.3969/j.issn.0001-5717.2016.04.001

    REN Jishun, LI Chong. Cathaysia old land and relevant problems: pre-devonian tectonics of southern China[J]. Acta Geologica Sinica, 2016, 90: 607-614. doi: 10.3969/j.issn.0001-5717.2016.04.001

    舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31: 1035-1053 doi: 10.3969/j.issn.1671-2552.2012.07.003

    SHU Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31: 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    王川, 彭建堂, 徐接标, 等. 湘中白马山复式岩体成因及其成矿效应[J]. 岩石学报, 2021, 37: 805-829

    WANG Chuan, PENG Jiantang, XU Jiebiao, et al. Petrogenesis and metallogenic effect of the Baimashan granitic complex in central Hunan, South China. Acta Petrologica Sinica, 2021, 37: 805-829.

    王孝磊, 周金城, 陈昕, 等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 2017, 36: 714-735+696 doi: 10.3969/j.issn.1007-2802.2017.05.003

    WANG Xiaolei, ZHOU Jincheng, CHEN Xin, et al. Formation and evolution of the Jiangnan orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36: 714-735+696. doi: 10.3969/j.issn.1007-2802.2017.05.003

    王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600.

    WANG Zitong, WANG Genghou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(5): 586−600.

    文志林, 邓腾, 董国军, 等. 湘东北万古金矿床控矿构造特征与控矿规律研究[J]. 大地构造与成矿学, 2016, 40: 281-294

    WEN Zhilin, DENG Teng, DONG Guojun, et al. Characteristics of ore-controlling structures of Wangu gold deposit in Northeastern Hunan Province[J]. Geotectonica et Metallogenia, 2016, 40: 281-294.

    吴良士, 胡雄伟. 湖南锡矿山地区云斜煌斑岩及其花岗岩包体的意义[J]. 地质地球化学, 2000, 51-55

    WU Liangshi, HU Xiongwei. Xikuangshan mica-plagioclase lamprophyre and its granite inclusions, Hunan Province[J]. Geology-Geochemistry, 2000, 51-55.

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16):1589−1604.
    徐耀明, 蒋少涌, 朱志勇, 等. 九瑞矿集区山上湾矿区石英闪长玢岩和花岗闪长斑岩的年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28: 3306-3324

    XU Yaoming, JIANG Shaoyong, ZHU Zhiyong, et al. Geochronology, geochemistry and mineralization of the quartz diorite-porphyrite and granodiorite porphyry in the Shanshangwan area of the Jiurui ore district, Jiangxi Privince[J]. Acta Petrologica Sinica, 2012, 28: 3306-3324.

    姚振凯, 朱蓉斌. 湖南符竹溪金矿床地质特征和成矿预测[J]. 铀矿地质, 1995,11(6): 344−349+356.
    张国震, 张永, 辛后田, 等. 内蒙古北山老硐沟金多金属矿床闪长玢岩年代学、地球化学及其成矿意义[J]. 矿床地质, 2021, 40: 555-573

    ZHANG Guozhen, ZHANG Yong, XIN Houtian, et al. Geochronology and geochemistry of diorite porphyrite from Laodonggou gold-polymetallic deposit, Beishan, Inner Mongolia, and its metallogenic significance[J]. Mineral Deposits, 2021, 40: 555-573.

    张培烈, 王根厚, 冯翼鹏, 等. 古特提斯洋闭合时限: 来自南羌塘唐古拉岩浆带查吾拉岩体的证据[J]. 成都理工大学学报(自然科学版), 2022, 49(3): 311−323.

    ZHANG Peilie, WANG Genghou, FENG Jipeng, et al. Closure time of the Paleo-Tethys Ocean: Evidence from the southern Qiangtang Tanggula magmatic belt, Tibet, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(3): 311−323.

    张岳桥, 徐先兵, 贾东, 等. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘, 2006, 16: 234-247 doi: 10.3321/j.issn:1005-2321.2006.02.022

    ZHANG Yueqiao, XU Xianbin, JIA Dong, et al. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic[J]. Earth Science Frontiers, 2006, 16: 234-247. doi: 10.3321/j.issn:1005-2321.2006.02.022

    张志远, 谢桂青, 李惠纯, 等. 湖南龙山锑金矿床白云母~(40)Ar-~(39)Ar年代学及其意义初探[J]. 岩石学报, 2018, 34: 2535-2547

    ZHANG Zhiyuan, XIE Guiqing, LI Huichun, et al. Preliminary study on muscovite 40Ar-39Ar geochronology and its significance of the Longshan Sb-Au deposit in Hunan Province[J]. Acta Petrologica Sinica, 2018, 34: 2535-2547.

    赵军红, 彭建堂, 胡瑞忠, 等. 湖南板溪脉岩的年代学、岩石学、地球化学及其构造环境[J]. 地球学报, 2005, 525-534

    ZHAO Junhong, PENG Jiantang, HU Ruizhong, et al. Chronology, petrology, geochemistry and tectonic environment of Banxi quartz porphyry dikes, Hunan Province[J]. Acta Geocientica Sinica, 2005, 525-534.

    赵玉锁, 杨立强, 陈永福, 等. 黑龙江金厂铜金矿床闪长玢岩地球化学及锆石U-Pb年代学[J]. 岩石学报, 2012, 28: 451-467

    ZHAO Yusuo, YANG Liqiang, CHEN Yongfu, et al. Geochemisry and zircon U-Pb geochronology of the diorite porphyry associated with the Jinchang Cu-Au deposit, Heilongjiang Province[J]. Acta Petrologica Sinica, 2012, 28: 451-467.

    曾昊, 吴绍安, 陈澍民, 等. 雪峰弧金锑矿资源勘查年度进展报告[R]. 长沙: 中国地质调查局长沙自然资源综合调查中心, 2020.

    CHEN J, Jahn B-M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 1998, 284: 101-133. doi: 10.1016/S0040-1951(97)00186-8

    CHEN S-M, ZHOU Y-X, LI B, et al. Genesis of Chaxi Gold Deposit in Southwestern Hunan Province, Jiangnan Orogen (South China): Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations[J]. Minerals, 2022, 12: 867.

    Compston W, Williams I, Kirschvink J, et al. Zircon U-Pb ages for the Early Cambrian time-scale[J]. Journal of the Geological Society, 1992, 149: 171-184. doi: 10.1144/gsjgs.149.2.0171

    Creaser R A, Erdmer P, Stevens R A, et al. . Tectonic affinity of Nisutlin and Anvil assemblage strata from the Teslin tectonic zone, northern Canadian Cordillera: Constraints from neodymium isotope and geochemical evidence[J]. Tectonics, 1997, 16: 107-121. doi: 10.1029/96TC03317

    Davidson J, Turner S, Handley H, et al. Amphibole “sponge” in arc crust? [J] Geology, 2007, 35: 787-790.

    DENG J, QING F-W. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2015, 36: 219-274.

    FENG Y, ZHANG Y, XIE Y, et al. Ore-forming mechanism and physicochemical evolution of Gutaishan Au deposit, South China: Perspective from quartz geochemistry and fluid inclusions[J]. Ore Geology Reviews, 2020, 119: 103382. doi: 10.1016/j.oregeorev.2020.103382

    Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: a global synthesis [J]. Ore Geology Reviews, 2001 18: 1-75. doi: 10.1016/S0169-1368(01)00016-6

    Hastie A R, Kerr A C, Pearce J A, et al. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram[J]. Journal of Petrology, 2007, 48: 2341-2357. doi: 10.1093/petrology/egm062

    Hoskin P, Black L. Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon[J]. Journal of metamorphic Geology, 2000, 18: 423-439. doi: 10.1046/j.1525-1314.2000.00266.x

    Kay R W, Mahlburg-Kay S. Creation and destruction of lower continental crust[J]. Geologische Rundschau, 1991, 80: 259-278. doi: 10.1007/BF01829365

    LI W, XIE G-Q, MAO J-W, et al. Muscovite 40Ar/39Ar and in situ sulfur isotope analyses of the slate-hosted Gutaishan Au–Sb deposit, South China: Implications for possible Late Triassic magmatic-hydrothermal mineralization[J]. Ore Geology Reviews, 2018, 101: 839-853. doi: 10.1016/j.oregeorev.2018.08.006

    LI X-H. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Sciences, 2000, 18: 293-305. doi: 10.1016/S1367-9120(99)00060-7

    LIU W-G, WEI S, ZHANG J, et al. An improved separation scheme for Sr through fluoride coprecipitation combined with a cation-exchange resin from geological samples with high Rb/Sr ratios for high-precision determination of Sr isotope ratios[J]. Journal of Analytical Atomic Spectrometry, 2020, 35: 953-960. doi: 10.1039/D0JA00035C

    LIU Y, HU Z, ZONG K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55: 1535-1546. doi: 10.1007/s11434-010-3052-4

    Ludwig R. Isoplot a plotting and regression program for radiogenic-isotope data, version 2.57[R]. U.S . Geologic Survey, 1992, 40.

    Mcdonough W F, SUN S-S. The composition of the Earth[J]. Chemical Geology, 1995, 120: 223-253. doi: 10.1016/0009-2541(94)00140-4

    Rollinson H R. Using geochemical data: evaluation, presentation, interpretation London Longman Scientific and Technical[J]. Mineralogical Magazine, 1994, 58: 523-523.

    Schmidberger S S, Simonetti A, Heaman L M, et al. Lu–Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada[J]. Earth and Planetary Science Letters, 2007, 254: 55-68. doi: 10.1016/j.jpgl.2006.11.020

    SUN S-S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Taylor S R, McLennan S M. The continental crust, its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks[M]. Blackwell Scientific Publishinq, Oxford,1985: 12−29.

    Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of geophysics, 1995, 33: 241-265. doi: 10.1029/95RG00262

    Unterschutz J L, Creaser R A, Erdmer P, et al. North American margin origin of Quesnel terrane strata in the southern Canadian Cordillera: Inferences from geochemical and Nd isotopic characteristics of Triassic metasedimentary rocks[J]. Geological Society of America Bulletin, 2002, 114: 462-475. doi: 10.1130/0016-7606(2002)114<0462:NAMOOQ>2.0.CO;2

    Vermeesch P. IsoplotR: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9: 1479-1493.

    Wasserburg G J, Jacobsen S B, Depaolo D J, et al. Precise determination of SmNd ratios, Sm and Nd isotopic abundances in standard solutions[J]. Geochimica et Cosmochimica Acta, 1981, 45: 2311-2323.

    Winchester J A, Floyd P A. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28: 459-469. doi: 10.1016/0012-821X(76)90207-7

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    XIAO J, PENG J, HU A, et al. Characteristics of fluid inclusions of the Xingfengshan Gold Deposit, central Hunan, and its genetic implications[J]. GEOLOGICAL REVIEW, 2020, 66: 1376.

    XU D, DENG T, CHI G, et al. Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting[J]. Ore Geology Reviews, 2017, 88: 565-618. doi: 10.1016/j.oregeorev.2017.02.004

    ZHANG L, YANG L-Q, Groves D I, et al. An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 2019, 115: 103173. doi: 10.1016/j.oregeorev.2019.103173

    ZHANG S-B, ZHENG Y-F. Formation and evolution of Precambrian continental lithosphere in South China[J]. Gondwana Research, 2013, 23: 1241-1260. doi: 10.1016/j.gr.2012.09.005

    ZHAO G. Jiangnan Orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 2015, 27: 1173-1180. doi: 10.1016/j.gr.2014.09.004

    ZHENG Y-F, ZHAO Z-F, WU Y-B, et al. . Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 2006, 231: 135-158. doi: 10.1016/j.chemgeo.2006.01.005

    Zindler A, Hart S. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425

  • 期刊类型引用(2)

    1. 向浩予,刘松,康波,陈昌军,邓伟,邓修林,陈浩如. 班公湖-怒江成矿带西段白板地北部晚侏罗世花岗闪长岩锆石U-Pb年龄、微量元素组成及地质意义. 西北地质. 2025(01): 43-51 . 本站查看
    2. 吴金虹,章志明,陈澍民,潘思远,曾昊,肖涛,彭勃. 湖南天明金矿床Cu-Zn合金矿物的发现及地质意义. 矿产勘查. 2024(12): 2226-2233 . 百度学术

    其他类型引用(0)

图(9)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2023-01-15
  • 网络出版日期:  2023-07-23
  • 刊出日期:  2023-12-19

目录

/

返回文章
返回