Identification of Produced Water and Characteristics of Hydrochemistry and Stable Hydrogen−Oxygen Isotopes of Contaminated Groundwater
-
摘要:
识别地下水污染来源、认识受该类污染源污染的地下水化学特征是地下水污染防治工作的重中之重。产出水作为石油、天然气工业的废水,具有组分复杂、危害性大的特点。针对受产出水污染的地下水研究较少,受污染地下水的特征以及识别该污染源的方法尚不明确的问题,笔者以延安某地下水污染场地为研究区,利用水文地球化学和氢氧稳定同位素的方法探讨受产出水污染的地下水的水化学和同位素特征,并通过对比地下水和油层水的钠氯系数、氯镁系数、脱硫系数和碳酸盐平衡系数对产出水进行识别。研究结果表明,该区域受产出水污染的地下水表现为高TDS和贫化的氢氧稳定同位素特征;其水化学类型以Cl−Na型、Cl−Mg·Ca·Na型为主,且随着受产出水影响程度降低,地下水由Cl−Na型转化为Cl−Mg·Ca·Na型,再到HCO3·SO4−Na·Ca·Mg型;离子比例关系较正常地下水混乱,无线性规律;受产出水污染的地下水的钠氯系数、氯镁系数、脱硫系数和碳酸盐平衡系数大小均在长6油层水的范围内,表明判断油气成藏条件的相关参数可以用来识别产出水污染。该研究探讨了受产出水污染的地下水的水化学特征和氢氧稳定同位素特征,提出对比地下水和油层水的相关参数来识别产出水污染的方法,对产出水污染场地的识别、认识、调查、监测、和修复具有重要意义。
Abstract:Identifying the source of pollution in groundwater and understanding the hydrochemical characteristics of contaminated groundwater by such pollution are very important for pollution prevention of groundwater. As the waste water of petroleum and natural gas industry, the produced water has the characteristics of complex components and great harmfulness. In view of the problems that there was less research on the contaminated groundwater by produced water, and the characteristics of the contaminated groundwater and the method to identify the pollution source were still unclear, the paper toke a polluted groundwater site in Yan’an as the research area, applied the methods of hydrogeochemistry and stable hydrogen−oxygen isotopes to describe the hydrochemical and isotopic characteristics of the groundwater contaminated by produced water, and compared the sodium−chloride coefficients, magnesium−chloride coefficients, desulfurization coefficients and carbonate balance coefficients of groundwater and reservoir water to identify the produced water. The results showed that the contaminated groundwater by produced water in this area was characterized by high TDS and depleted stable hydrogen−oxygen isotope; The chemical types were mainly Cl−Na type and Cl−Mg·Ca·Na type, and with the decrease of the influence of produced water, the groundwater changes from Cl−Na type to Cl−Mg·Ca·Na type and then to HCO3·SO4−Na·Ca·Mg type. The relationship of ion proportions was more chaotic than that of normal groundwater and had no linear law. The sodium−chloride coefficients, magnesium−chloride coefficients, desulfurization coefficients and carbonate balance coefficients of polluted groundwater by produced water were all within the range of Chang 6 reservoir water, indicating that the relevant parameters for judging the conditions of oil and gas accumulation could be used to identify produced water. This study described the hydrochemical and stable hydrogen−oxygen isotopic characteristics of contaminated groundwater by produced water, and proposed a method to identify produced water by comparing the relevant parameters of groundwater and reservoir water, which were of great significance to the identification, recognition, investigation, monitoring and repair of polluted sites by produced water.
-
钾盐作为钾肥的主要原料一直是中国最为紧缺的战略性矿产资源之一(李文光,1998;张宇轩等,2022),其广泛应用于农肥、化工、医药、纺织、印染、制革、玻璃、陶瓷、炸药等领域,特别是大量被用于制造复合肥。中国钾资源占世界总储量的2.6%,2008~2016年中国钾盐自给率维持在50%左右,耗量巨大。作为世界人口最多的农业大国,钾盐对中国至关重要,积极开拓国外钾盐市场十分必要。
1. 区域地质
万象平原位于中国南方–东印支板块之东印板块内,属呵叻盆地的一部分。呵叻盆地是世界上重要的钾盐矿分布区之一,呵叻盆地位于泰国东北部和老挝中部,盆地四周被深大断裂控制,北为湄公河断裂(F15)、西为南乌江断裂(F8)、南为北柬埔寨断裂(F13)、东为边和断裂(F9),盆地总面积约17万 km2(图1)。
呵叻盆地由普潘(Phu Phan)隆起将呵叻盆地分成2个次一级盆地,即北部的沙空那空(Sakon Nakhon)盆地和南部的呵叻(Khorat)盆地,盆地矿产以钾镁盐矿为主。万象平原具体位于沙空那空盆地西北三角形地带,西起班农阿布,东至班南罗,北自班当坎,南到湄公河,面积约5 452 km2;出露二叠系—第四系,受近东西向的挤压或引张;区内构造较发育,以北北西向纵断层、褶皱及近北东向横断层为主。其中,塔贡背斜为控矿构造;岩浆活动不发育。
2. 矿区地质特征
矿区位于万象盆地东北部,地表大面积被第四系所覆盖,除了河流切割外,未见典型的地形、地貌构造特征,构造不发育;矿区无岩浆岩出露。万象盆地基底为下白垩统班塔拉组(K1bt2)砂岩,盖层为古近系古新统塔贡组(E1tg)。矿区大面积被第四系沉积物覆盖;古近系班塔博组(E1−2bt)粉砂质泥岩、砂岩局部出露,但钻孔中未见到该层;下白垩统班塔拉组(K1bt)在详查区地表未见出露,只在钻孔中见到。
古近系古新统塔贡组(E1tg)为矿区含盐地层(冯明刚等,2005),主要由膏盐岩和碎屑岩组成,发育3个成盐旋回(严城民等,2006),可划分为3个岩性段,6个亚段,15个岩性层。钾镁盐矿层(E1tg1-1-3):岩性主要为桔红色、桔黄色、白色半透明–透明中厚层状光卤石岩,灰白色、白色半透明–透明中厚层状钾石盐岩次之;由下向上依次为:钾石盐矿层、光卤石矿层和钾石盐矿层。光卤石中见多层石盐夹石,钾石盐中少见夹石,个别钻孔见钾石盐中夹有薄层光卤石(王少华,2012)。光卤石矿石KCl品位大于8%的厚度为2.00~176.00 m,矿石KCl品位大于15%的厚度为0.65~165.00 m。钾镁盐矿层(E1tg2-1-2)岩性主要为淡紫色、浅红色、白色、灰白色半透明–透明状中厚层状钾石盐岩,白色半透明–透明中厚层状光卤石岩次之。
3. 物探测量方法
3.1 重力异常
依据前期吉林大学通过1∶5万重力测量(宋小超等,2015),在矿区内圈定剩余负异常约101 km2(图2)。以等值线−1×10−5m/s2圈闭的低值区域,可作为寻找钾盐矿有利部位;共圈定7个寻找钾盐矿的I类找矿靶区(图3)和11个寻找钾盐矿的II类找矿靶区(图4)。各个靶区分述如下。
3.1.1 I类找矿靶区
A1靶区呈北西向展布,异常面积约3 km2,预测有利成矿目标延深范围为50~400 m;A2异常面积约5 km2,预测有利成矿目标延深范围为50~600 m;A3呈东西转南北的马鞍形,异常面积约2 km2,预测有利成矿目标延深范围为100~300 m;A4呈穹窿状,异常面积约呈1 km2,深部向北延伸出勘查区,预测有利成矿目标范围为100~200 m;A5呈穹窿状,异常面积约2 km2,预测有利成矿目标延深范围为100~400 m;A6面积约面积约1 km2,预测有利成矿目标延深范围为50~400 m;A7面积约1 km2,预测有利成矿目标延深范围为100~300 m。
3.1.2 Ⅱ类找矿靶区
B1呈北西向串珠状展布,异常面积约5 km2,预测有利成矿目标延深范围为50~400 m;B2异常面积约1 km2,预测有利成矿目标延深范围为100~200 m;B3异常面积约1 km2,预测有利成矿目标延深范围为100~400 m;B4异常面积约1 km2,预测有利成矿目标延深范围为50~300 m;B5呈北西转向串呈北西转向串珠状展布,异常面积约1.5 km2,预测有利成矿目标延深范围为50~400 m;B6异常面积约0.5 km2,深部向北移动超出勘查区范围,预测有利成矿目标延范围为100~200 m;B7异常面积约0.5 km2,预测有利成矿目标延深范围为100~200 m;B8异常面积约0.5 km2,预测有利成矿目标延深范围为100~200 m;B9异常面积约0.5 km2,预测有利成矿目标延深范围为100~200 m;B10异常面积约0.5 km2,预测有利成矿目标延深范围为100~200 m;B11异常面积约0.7 km2,预测有利成矿目标延深范围为100~200 m。
3.2 钻探工程综合测井部署
根据重力测量推断,在I类找矿靶区A3、A4及Ⅱ类找矿靶区B6、B7、B9地区开展Ⅱ号区详查工作,共设计施工18个钻孔;Ⅱ号区及外围钾盐矿部署详查钻探工程综合测井(图5)。
3.3 综合测井
3.3.1 综合测井
综合测井采集选取伽玛、视电阻率、井径参数曲线,对钾盐矿和围岩的特征反映幅值差异大,测井曲线随不同岩层而呈现显著的起伏变化(尉中良,2005);测井曲线能准确定位钾盐矿的位置和厚度,从伽玛曲线的起伏变化可以进一步区分矿层品级的相对差异。测井曲线对地层的细小变化也有反映,综合实测的几个测井参数,总结、归纳出适合本地区岩性特征,依据多个测井曲线为判别岩性的基本准则,提升测井曲线的应用效果(表1)。
表 1 主要岩性的物性特征表Table 1. Physical properties of main lithologies参数
岩性伽玛(PA/kg) 视电阻(Ω·m) 井径(mm) 泥 岩 140~180 5~10 150~180 石盐岩 5~15 300~550 120~130 光卤石 170~230 200~300 140~180 钾石盐 300~650 260~500 120~140 3.3.2 综合测井成果
图6是ZK62-12钻孔综合测井成果图。通过综合测井曲线可见,伽玛、视电阻率、井径参数曲线对钾盐矿和围岩的特征反映幅值差异大,测井曲线随不同岩层而呈现显著的起伏变化。测井曲线能准确定位钾盐矿的位置和厚度;光卤石矿体为411.60~492.10 m,矿体厚度为80.50 m。
由图6可看出,钻孔揭露的岩性为泥岩、含盐泥岩、石盐、光卤石。泥岩具有较高放射性,低电阻率,井径变化平缓;含盐泥岩具有略低放射性,较低电阻率,井径变化大;石盐具有低放射性,较高电阻率,井径变化趋于直线;光卤石具有较高放射性,较高电阻率,井径变化大。
3.4 矿石密度
测量采用蜡封样品的体积。测量综合化学分析结果,光卤石平均密度为1.73 g/cm3,钾石岩平均密度为2.04 g/cm3。
3.5 矿石品位
矿体平均品位由该工程中各矿层内的所有单个样品的KCl测试值用厚度加权平均法求得,矿体KCL品位见表2。
表 2 Ⅱ区钻孔见矿表Table 2. List of ore occurrences in area II孔号 矿层编号 位 置(m) 矿层视厚度(m) KCl品位(%) 矿石
类型含矿
层位备注 起 止 ZK30-0 Ⅵ 247.46 249.78 2.32 16.61 光卤石 E1tg3-1 Ⅴ 306.80 308.94 2.14 14.89 钾石盐 E1tg2-1 Ⅱ 385.37 485.06 79.21 17.97 光卤石 E1tg1-1 含夹石 ZK34-44 Ⅴ 418.39 419.40 0.50 20.46 钾石盐 E1tg2-1 Ⅱ 489.40 534.56 27.39 16.27 光卤石 E1tg1-1 含夹石 Ⅰ 534.56 535.50 0.94 17.18 钾石盐 E1tg1-1 ZK40-40 Ⅶ 267.09 267.53 0.44 33.46 钾石盐 E1tg3-1 Ⅵ 267.53 273.33 3.21 16.00 光卤石 E1tg3-1 Ⅴ 362.91 365.04 0.54 28.60 钾石盐 E1tg2-1 Ⅱ 439.37 466.83 13.60 15.59 光卤石 E1tg1-1 Ⅰ 466.83 471.18 1.09 22.15 钾石盐 E1tg1-1 ZK40-2 Ⅴ 312.79 313.86 0.54 21.71 钾石盐 E1tg2-1 Ⅱ 390.80 459.10 53.55 17.27 光卤石 E1tg1-1 含夹石 ZK44-48 Ⅴ 326.40 328.44 2.05 20.66 钾石盐 E1tg2-1 Ⅳ 328.44 331.20 2.76 18.63 光卤石 E1tg2-1 Ⅱ 356.39 432.70 37.93 15.26 光卤石 E1tg1-1 含夹石 ZK48-2 Ⅱ 294.51 333.12 35.75 18.36 光卤石 E1tg1-1 Ⅰ 333.70 349.00 4.51 17.32 钾石盐 E1tg1-1 含夹石 ZK52-5 Ⅲ 237.74 240.19 2.45 36.95 钾石盐 E1tg1-1 Ⅱ 240.19 296.30 10.13 18.26 光卤石 E1tg1-1 含夹石 Ⅰ 296.30 298.43 1.12 19.60 钾石盐 E1tg1-1 ZK52-8 Ⅱ 445.80 465.41 9.81 19.08 光卤石 E1tg1-1 含夹石 ZK54-2 Ⅴ 171.07 172.67 1.60 24.12 钾石盐 E1tg2-1 Ⅱ 269.19 287.86 1.16 17.74 光卤石 E1tg1-1 Ⅰ 298.54 311.53 6.25 16.74 钾石盐 E1tg1-1 ZK60-8 Ⅱ 250.59 321.30 38.03 17.81 光卤石 E1tg1-1 含夹石 Ⅰ 323.52 326.00 1.80 21.62 钾石盐 E1tg1-1 含夹石 ZK62-12 Ⅲ 410.60 411.30 0.70 15.50 钾石盐 E1tg1-1 Ⅱ 411.30 492.00 65.70 18.29 光卤石 E1tg1-1 含夹石 ZK64-6 Ⅱ 330.51 351.34 3.47 14.58 光卤石 E1tg1-1 ZK74-12 Ⅴ 170.52 172.32 1.80 22.05 钾石盐 E1tg2-1 Ⅲ 293.35 299.72 4.20 24.88 钾石盐 E1tg1-1 含夹石 Ⅱ 328.00 385.91 28.34 16.58 光卤石 E1tg1-1 含夹石 ZK1 Ⅶ 287.57 289.37 0.74 29.97 钾石盐 E1tg3-1 Ⅲ 545.70 546.70 1.00 20.25 钾石盐 E1tg1-1 Ⅱ 546.70 553.70 2.00 16.82 光卤石 E1tg1-1 ZK5 Ⅴ 351.38 353.28 1.90 23.06 钾石盐 E1tg2-1 Ⅳ 354.14 357.02 1.79 15.79 光卤石 E1tg2-1 Ⅱ 425.92 484.54 38.22 17.67 光卤石 E1tg1-1 含夹石 ZK7 Ⅴ 97.17 101.17 2.00 15.66 钾石盐 E1tg2-1 Ⅳ 105.74 127.06 19.32 21.34 光卤石 E1tg2-1 Ⅱ 156.25 157.55 0.65 15.46 光卤石 E1tg1-1 ZK10 Ⅱ 126.57 303.57 165.00 20.04 光卤石 E1tg1-1 ZK11 Ⅱ 195.51 306.51 103.00 20.38 光卤石 E1tg1-1 4. 矿体特征
Ⅱ区钾盐矿详查共施工18个钻孔,经综合测井及取样分析验证均为见矿孔。按照矿层产出的层位及矿石类型,可划分为7个矿(层)体,由下至上依次划分为:Ⅰ号钾石盐矿体、Ⅱ号光卤石矿体、Ⅲ号钾石盐矿体、Ⅳ号光卤石矿体、Ⅴ号钾石盐矿体、Ⅵ号光卤石矿体、Ⅶ号钾石盐矿体。其中,Ⅶ是本次工作新发现矿体(李占游等,2018)。各钻孔均见到多层矿体,矿体指标采用12%~15%指标(表2)。
(1)Ⅰ号钾石盐矿层:产于塔贡组下岩段盐岩层(E1tg1-1),为本区产出的第一层钾盐矿体,矿石矿物主要为钾石盐、石盐、光卤石,矿体呈透镜状产出,局部分布,厚度较小,无夹石;本次工作只在ZK60-8中见到该层。
(2)Ⅱ号光卤石矿层:产于塔贡组下岩段(E1tg1-1),Ⅰ号钾石盐矿体或盐岩层上部,为本区产出的第二层钾盐矿体,层状产出,矿体连续性好,厚度大,普遍存在夹石,夹石为石盐岩;矿石矿物组成为光卤石、溢晶石、水氯镁石、石盐;此矿体是本区的主要矿体,为工作区的重点目的矿层。
(3)Ⅲ号钾石盐矿层:产于塔贡组下岩段(E1tg1-1),为本区产出的第三层钾盐矿体,与Ⅱ号光卤石矿体连续沉积,矿体呈透镜状产出,局部分布,矿体连续性差,矿层厚度较小,无夹石;矿石矿物组成为钾石盐、石盐、光卤石。
(4)Ⅳ号光卤石矿层:产于塔贡组中岩段盐岩层(E1tg2-1)上部,矿体连续性差,局部分布,矿层厚度较小,大多无夹石;矿石矿物组成为光卤石、石盐。
(5)Ⅴ号钾石盐矿层:产于塔贡组中岩段盐岩层(E1tg2-1)上部,矿体连续性差,局部分布,矿层厚度较小,大多无夹石;矿石矿物组成为钾石盐、石盐。
(6)Ⅵ号光卤石矿层:产于塔贡组上岩段盐岩层(E1tg3-1)上部,矿体连续性极差,分布范围很有限,矿层厚度较小;矿石矿物组成为光卤石、石盐。
(7)Ⅶ号钾石盐矿层:产于塔贡组上岩段盐岩层(E1tg3-1)上部,为本次工作新发现矿体;矿体连续性极差,分布范围很有限,矿层厚度较小;矿石矿物组成为钾石盐、石盐。
5. 结论
(1)通过重力测量的晕圈和数据资料,圈定了I类7个、Ⅱ类11个的钾盐找矿靶区。
(2)物探综合测井准确定位钾盐矿体位置和厚度,取样分析计算矿层品位、密度等参数。
(3)为钾盐矿体的圈定和资源(储)量的估算,提供了重要的基本参数和依据。
-
表 1 主要离子和TDS浓度统计表(mg/L)
Table 1 The concentrations of major ions and TDS (mg/L)
样品 时间 Na+ Ca2+ Mg2+ K+ Cl− HCO3− SO42− TDS Z1 2018 2 445 1 467 103 7.78 6 795 84.6 10.9 10 871 2019 1 150 627 37 6.63 2 853 85.4 158.2 4 875 Z2 2018 1 308 702 69 6.11 3 540 201 7.99 5 734 2019 669 312 26 8.04 1 530 293 40.8 2 733 2020 164 106 15.4 3.86 177 511 8.8 731 Z3 2018 1 368 567 73 5.47 3 391 153 7.7 5 488 2019 1 484 668 49 15.91 3 721 159 83.1 6 100 2020 1 460 616 55.8 4.26 3 250 149 1.3 5 462 Z4 2019 262 171 146 5.47 639 500 104.8 1 579 2020 286 207 166 3.31 778 665 94 1 867 Z5 2018 304 99 27 1.53 512 238 96.6 1 180 2019 329 112 30 1.98 542 287 89.1 1 247 Z6 2018 258 18 67 21.48 155 513 196.7 1 003 2019 303 104 90 25.53 195 824 228.6 1 358 2020 307 111 89 21.8 272 814 237 1 445 Z7 2018 241 69 32 2.42 236 370 131.3 912 2019 150 45 29 1.62 78 427 75.6 592 2020 167 51.9 28.4 1.80 110 437 83.2 661 H1 2018 59.5 33.2 18.8 4.66 35 196 59.6 309 2019 135.1 52.4 39.1 10.89 107.2 305.1 133.3 631 2020 144 45.1 34.1 9.99 131 271 138 638 H2 2018 69.3 29.4 18.6 3.54 45.6 196 64.2 329 2019 157.7 41 39.8 10.61 119.2 311.2 145.7 670 2020 149 43.4 33.7 8.63 121 295 143 646 注:Z代表地下水,H代表地表水。 表 2 2018~2020年样品 δD(‰)和 δ18O(‰)值
Table 2 The values of δD (‰) and δ18O (‰) from 2018 to 2020
采样时间 2018年 2019年 2020年 样品 δD(‰) δ18O (‰) δD (‰) δ18O (‰) δD (‰) δ18O (‰) Z1 −84.08 −11.32 −74.78 −9.65 − − Z2 −89.64 −11.74 −80.18 −10.67 −70.65 −9.19 Z3 −84.28 −11.53 −88.33 −12.03 − − Z4 − − −65.86 −8.55 −65.39 −8.60 Z5 −72.78 −9.47 −71.28 −9.84 − − Z6 −64 −8.72 −61.34 −8.43 −63.40 −8.66 Z7 −62.32 −8 −60.81 −8.21 −61.60 −7.69 H1 −53.71 −7.38 −56.08 −7.26 −55.36 −7.30 H2 −51.52 −7.39 −55.99 −6.98 −52.36 −7.13 表 3 理想混合模型计算结果
Table 3 The results of ideal mixing
2018~2019年计算结果(mg/L) 混合分数 Na+ Ca2+ Mg2+ K+ Cl− HCO3− SO42- NO3− 以Na+ 计,x=0.5403 669.01 343.21 48.31 6.91 1 678.80 236.87 67.22 8.77 以Cl− 计,x=0.5835 617.92 314.52 46.66 6.98 1 529.99 239.74 71.96 9.23 实测值 669 312 26 8.04 1 530 293 40.8 1.86 2019~2020年计算结果(mg/L) 混合分数 Na+ Ca2+ Mg2+ K+ Cl− HCO3− SO42- NO3− 以Na+ 计,x=0.9289 164.0 57.43 30.38 7.63 197.26 269.22 112.16 12.77 以Cl− 计,x=0.9430 156.33 53.56 30.44 7.62 177.03 268.86 113.24 12.93 实测值 164 106 15.4 3.86 177 511 8.8 0.14 -
焦艳军, 王广才, 崔霖峰, 等. 济源盆地地表水和地下水的水化学及氢、氧同位素特征[J]. 环境化学, 2014, 33(06): 962-968 doi: 10.7524/j.issn.0254-6108.2014.06.023 JIAO Yanjun, WANG Guangcai, CUI Linfeng, et al. Characteristics of hydrochemistry and stable hydrogen, oxygen isotopes in surface water and groundwater in Jiyuan Basin[J]. Environmental Chemistry, 2014, 33(06): 962-968. doi: 10.7524/j.issn.0254-6108.2014.06.023
梁晓伟, 牛小兵, 李卫成, 等. 鄂尔多斯盆地油田水化学特征及地质意义[J]. 成都理工大学学报(自然科学版), 2012, 39(05): 502-508 LIANG Xiaowei, NIU Xiaobing, LI Weicheng, et al. Chemical character of oil-field water in Ordos Basin and geological significance[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(05): 502-508.
楼章华, 苏一哲, 朱蓉, 等. 四川盆地新场构造带上三叠统须家河组二段地层水化学动态特征及其成因[J]. 石油与天然气地质, 2021, 42(04): 841-851 doi: 10.11743/ogg20210406 LOU Zhanghua, SU Yizhe, ZHU Rong, et al. Dynamic chemical characteristics and origin of formation water in the second member of Xujiahe Formation, Xinchang structural belt, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(04): 841-851. doi: 10.11743/ogg20210406
张茂省, 孙传尧, 校培喜, 等. 延安市宝塔区地质灾害详细调查示范[J]. 西北地质, 2007,40(02): 29-55 doi: 10.3969/j.issn.1009-6248.2007.02.002 ZHANG Maosheng, SUN Chuanyao, XIAO Peixi, et al. A Demonstration Project for Detailed Geo-hazard Survey in Baota District, Yan’ an[J]. Northwestern Geology, 2007,40(02): 29-55. doi: 10.3969/j.issn.1009-6248.2007.02.002
曾溅辉, 吴琼, 杨海军, 等. 塔里木盆地塔中地区地层水化学特征及其石油地质意义[J]. 石油与天然气地质, 2008(02): 223-229 doi: 10.3321/j.issn:0253-9985.2008.02.011 ZENG Jianhui, WU Qiong, YANG Haijun, et al. Chemical characteristics of formation water in Tazhong area of the Tarim Basin and their petroleum geological significance[J]. Oil & Gas Geology, 2008(02): 223-229. doi: 10.3321/j.issn:0253-9985.2008.02.011
战常武. 曲塘次凹油田地层水特征及其石油地质意义[J]. 承德石油高等专科学校学报, 2020, 22(04): 21-23+34 doi: 10.3969/j.issn.1008-9446.2020.04.006 ZHAN Changwu. Characteristics of Formation Water and Its Petroleum Geological Significance in Qutang Sub Sag[J]. Journal of Chengde Petroleum College, 2020, 22(04): 21-23+34. doi: 10.3969/j.issn.1008-9446.2020.04.006
张景涛, 史浙明, 王广才, 等. 柴达木盆地大柴旦地区地下水水化学特征及演化规律[J]. 地学前缘, 2021, 28(04): 194-205 doi: 10.13745/j.esf.sf.2020.6.40 ZHANG Jingtao, SHI Zheming, WANG Guangcai, et al. Hydrochemical characteristics and evolution of groundwater in the Dachaidan area, Qaidam Basin[J]. Earth Science Frontiers, 2021, 28(04): 194-205. doi: 10.13745/j.esf.sf.2020.6.40
张俊, 尹立河, 顾小凡, 等. 同位素水化学指示的新疆孔雀河流域地下水与地表水关系[J]. 西北地质, 2021, 54(01): 185-195 doi: 10.19751/j.cnki.61-1149/p.2021.01.016 ZHANG Jun, YIN Lihe, GU Xiaofan, et al. Study on the Relationship Between Groundwater and Surface Water in Xinjiang Kongque River Basin Using Isotopes and Hydrochemistry method[J]. Northwestern Geology, 2021, 54(01): 185-195. doi: 10.19751/j.cnki.61-1149/p.2021.01.016
张治波, 刘腾, 李丽荣, 等. 鄂尔多斯盆地CD区块长6地层水化学性质及其地质意义[J]. 矿物岩石, 2017, 37(03): 61-68 doi: 10.19719/j.cnki.1001-6872.2017.03.009 ZHANG Zhibo, LIU Teng, LI Lirong, et al. Chemical Characteristics and Geological Significance of Chang 6 Formation Water in CD Area of Ordos Basin[J]. Journal of Mineralogy and Petrology, 2017, 37(03): 61-68. doi: 10.19719/j.cnki.1001-6872.2017.03.009
周新平, 邓秀芹, 李士祥, 等. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(01): 109-120 doi: 10.12108/yxyqc.20210111 ZHOU Xinping, DENG Xiuqin, LI Shixiang, et al. Characteristics of formation water and its geological significance of lower combination of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2021, 33(01): 109-120. doi: 10.12108/yxyqc.20210111
周训, 胡伏生, 何江涛, 等. 地下水科学概论[M]. 北京: 地质出版社, 2014 ZHOU Xun, HU Fusheng, HE Jiangtao, et al. Introduction to Groundwater Science[M]. Beijing: Geological Publishing House, 2014.
Al-Ghouti M A, Al-Kaabi M A, Ashfaq M Y, et al. Produced water characteristics, treatment and reuse: A review[J]. Journal of Water Process Engineering, 2019, 28: 222-239. doi: 10.1016/j.jwpe.2019.02.001
Amakiri K T, Canon A R, Molinari M, et al. Review of oilfield produced water treatment technologies[J]. Chemosphere, 2022, 298: 134064. doi: 10.1016/j.chemosphere.2022.134064
Atekwana E A, Seeger E J. Carbonate and carbon isotopic evolution of groundwater contaminated by produced water brine with hydrocarbons[J]. Applied Geochemistry, 2015, 63: 105-115. doi: 10.1016/j.apgeochem.2015.08.001
Benko K L, Drewes J E. Produced Water in the Western United States: Geographical Distribution, Occurrence, and Composition[J]. Environmental engineering science, 2008, 25(2): 239–246. doi: 10.1089/ees.2007.0026
Chen X L, Sheng Y Z, Wang G C, et al. Microbial compositional and functional traits of BTEX and salinity co-contaminated shallow groundwater by produced water[J]. Water Research, 2022, 215.
Craig H. Isotopic Variations in Meteoric Waters[J]. Science (New York, N. Y. ), 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702
Dolan F C, Cath T Y, Hogue T S. Assessing the feasibility of using produced water for irrigation in Colorado[J]. Science of the Total Environment, 2018, 640-641: 619-628. doi: 10.1016/j.scitotenv.2018.05.200
Fakhru’l-Razi A, Pendashteh A, Abdullah L C, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2): 530-551.
Huang X J, Wang G C, Liang X Y, et al. Hydrochemical and Stable Isotope (δD and δ18O) Characteristics of Groundwater and Hydrogeochemical Processes in the Ningtiaota Coalfield, Northwest China[J]. Mine Water and the Environment, 2018, 37(1): 119-136. doi: 10.1007/s10230-017-0477-x
Jiang W B, Xu X S, Hall R, et al. Characterization of produced water and surrounding surface water in the Permian Basin, the United States[J]. Journal of Hazardous Materials, 2022, 430.
McDevitt B, McLaughlin M C, Blotevogel J, et al. Oil & gas produced water retention ponds as potential passive treatment for radium removal and beneficial reuse[J]. Environmental science. Processes & impacts, 2021, 23(3): 501-518.
Miller H, Dias K, Hare H, et al. Reusing oil and gas produced water for agricultural irrigation: Effects on soil health and the soil microbiome[J]. Science of the Total Environment, 2020, 722.
Ozgun H, Ersahin M E, Erdem S, et al. Effects of the pre-treatment alternatives on the treatment of oil-gas field produced water by nanofiltration and reverse osmosis membranes[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(8): 1576-1583.
Patterson L A, Konschnik K E, Wiseman H, et al. Unconventional oil and gas spills: risks, mitigation priorities, and state reporting requirements[J]. Environmental science & technology, 2017, 51(5): 2563–2573.
Sanchez-Rosario R, Hildenbrand Z L. Produced Water Treatment and Valorization: A Techno-Economical Review[J]. Energies, 2022, 15(13): 4319.
Shariq L. Health Risks Associated With Arsenic and Cadmium Uptake in Wheat Grain Irrigated With Simulated Hydraulic Fracturing Flowback Water[J]. Journal of Environmental Health, 2019, 81(6): E1-E9.
Shih J S, Saiers J, Anisfeld S, et al. Characterization and analysis of liquid waste from Marcellus Shale gas development[J]. Abstracts of Papers of the Amercian Chemical Society, 2015, 49(16): 9557-9565.
Shores A, Laituri M. The state of produced water generation and risk for groundwater contamination in Weld County, Colorado[J]. Environmental science and pollution research international, 2018, 25(30): 30390-30400. doi: 10.1007/s11356-018-2810-8
Warner N R, Jackson R B, Darrah T H, et al. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(30): 11961-11966. doi: 10.1073/pnas.1121181109
Xu B Y, Wang G C. Surface water and groundwater contaminations and the resultant hydrochemical evolution in the Yongxiu area, west of Poyang Lake, China[J]. Environmental Earth Sciences, 2016, 75(3): 1-16.
Zheng Z X, Zhang H D, Chen Z Y, et al. Hydrogeochemical and Isotopic Indicators of Hydraulic Fracturing Flowback Fluids in Shallow Groundwater and Stream Water, derived from Dameigou Shale Gas Extraction in the Northern Qaidam Basin. [J]. Environmental science & technology, 2017, 51(11): 5889-5898.
-
期刊类型引用(1)
1. 张寿庭,邹灏,方乙,曹华文,裴秋明,唐利,王亮,高永璋,张伟,徐旃章. 热液脉型萤石矿床隐伏矿体定位预测综合技术方法. 矿床地质. 2024(04): 785-801 . 百度学术
其他类型引用(0)