Karst Development Characteristics and Water Inrush Risk Assessment of Railway Tunnel in a Difficult and Dangerous Mountain Area
-
摘要:
某艰险山区铁路隧道是重要的控制工程,区域构造运动活跃、工程地质环境极为复杂,需穿越上三叠统波里拉组灰岩条带,岩溶突涌水问题突出。为了准确评价隧道涌突水的危险性,通过地质调绘、深孔钻探等手段,对隧道水文地质特征进行精细的调查和深入的分析,探明隧道岩溶发育特征及范围,将隧址区地下水径流系统分为局部表层、浅层和区域深层径流系统,并遵循多元、多层次的分析评价思路,选取不同评价指标,构建非可溶岩段和可溶岩段隧道涌突水危险性评价体系。评价结果显示,隧道涌突水问题总体以较低危险性为主,高和极高危险段仅约占隧道总长的4%和1%,主要受控于波里拉组灰岩条带和额艾顿断裂带。
Abstract:A railway tunnel in a difficult and dangerous mountain area is an important control project. The regional tectonic movement is active, and the engineering geological environment is extremely complex. In order to prepare to evaluate the risk of water inrush in the tun–nel, the hydrogeological characteristics of the Tunnel were investigated and analyzed in depth by means of geological mapping, deep hole drilling, etc. The groundwater runoff system in the site area is roughly divided into local surface runoff system, shallow runoff system and regional deep run off system, and following the multiple and multilevel analysis and evaluation ideas, different evaluation indicators are selected to construct tunnel surges in the insoluble rock section and the soluble rock section. According to the evaluation system of water inrush risk, it is concluded that the water inrush problem in the Tunnel is mainly of low risk, and the high and extremely high risk sections only account for about 4% and 1% of the total length of the tunnel, which is mainly controlled by limestone (T3b) and Eaideng fault zone.
-
Keywords:
- railway tunnel /
- karst /
- water inrush /
- risk assessment
-
蛇绿岩通常被认为是构造侵位于大陆边缘造山带或陆缘的非原地的上地幔和已消失的古大洋地壳的岩石碎片,它是研究人员研究古洋盆和造山带构造演化、恢复和重建区域地质演化过程的最佳样品(Pearce et al.,1984;臧遇时等,2013;杨剑洲等,2019;Liu et al.,2020,2021)。中亚造山带(Central Asian Orogenic Belt)是古亚洲洋经历早新元古代的裂解、古生代的俯冲增生拼贴以及晚古生代碰撞闭合造山而形成的世界最大的增生型造山带之一(图1a)(Windley et al.,2007;Xiao et al.,2009;张治国等,2019;Zhang et al.,2021;张向飞等,2023)。中亚造山带东段内蒙古造山带内部发育多条不连续的NE–NEE向蛇绿岩带、从北向南依次为二连浩特–贺根山蛇绿岩带、交其尔–锡林浩特蛇绿岩带、索伦–林西蛇绿岩带和温都尔庙蛇绿岩带(图1b)(张旗等,2001;Miao et al.,2008;党智财等,2022)。最北部的二连浩特–贺根山蛇绿岩带普遍被认为是华北板块和西伯利亚板块最后碰撞的缝合线向东延伸的部分(Miao et al.,2008;黄波等,2016),但该蛇绿岩带形成环境争议较大,主要观点有洋中脊成因(包志伟等,1994;Nozaka et al.,2002)和俯冲带成因(洋内弧后盆地和岛弧边缘盆地)(Li,2006;Miao et al.,2008;王成等,2018)。前人亦对贺根山蛇绿岩带的镁铁质岩的岩体野外地质特征、岩石学及岩石地球化学特征开展了大量研究(Miao et al.,2008;Jian et al.,2012;Wang et al.,2020;黄波等,2021),但对镁铁质岩石的矿物学工作还鲜有涉及。
图 1 中亚造山带主要构造单元构造图(a)及研究区大地构造位置示意图(b)(据王树庆等,2008)Figure 1. (a) Tectonic map of the main tectonic units of the Central Asian Orogenic Belt and (b) Geological map showing the tectonic units of study area单斜辉石是超镁铁质–镁铁质岩体中较为常见的造岩矿物,其化学成分记录了岩浆成因、岩浆物理化学条件以及岩浆形成的构造环境等多方面的重要信息(Nisbet et al.,1977;邱家骧,1987;白志民,2000;鄢全树等,2007;闫纪元等,2014),因而单斜辉石是研究超镁铁质–镁铁质岩体成因的重要物质?笔者对内蒙地区朝克山蛇绿岩中辉长岩中单斜辉石开展了系统的矿物学和矿物地球化学研究,旨在揭示该辉长岩的单斜辉石矿物化学特征,约束其岩浆性质、演化过程及其物理化学条件,探讨其岩石所属系列和成因特征,为朝克山蛇绿岩的成因提供约束。
1. 地质背景和样品来源
朝克山蛇绿岩地处中亚造山带东段的内蒙–大兴安岭造山带,属于二连浩特–贺根山蛇绿岩带的一部分(图1b)。朝克山蛇绿岩带出露面积约为100 km2,以构造混杂状产出为主,岩石层序不完整,主要由蛇纹石化的超镁铁质岩、火成堆晶结构的块状辉长岩、辉绿岩墙及深海沉积物等组成。围岩主要为晚侏罗世—早白垩世的基性和酸性火山岩、二叠纪—白垩纪基性和中酸性侵入体(黄波等,2021)。蛇绿岩单元由蛇纹石化方辉橄榄岩、二辉橄榄岩、层状和块状辉长岩、辉绿岩、辉绿岩墙(脉)、斜长花岗岩、基性熔岩和硅质岩组成(图2、图3a、图3b)。
图 2 朝克山地区地质简图(据王树庆等,2008)Figure 2. Geological sketch of the Chaokeshan region文中辉长岩样品采集于朝克山西南及北部。辉长岩呈辉长结构,交代假象结构,块状构造。主要造岩矿物为辉石、斜长石、角闪石、黑云母、磁铁矿、钛铁矿和磷灰石等,蚀变矿物为绢云母、绿帘石、绿泥石(Chl)等组成(图3c~图3f)。辉石呈自形、柱状,无色,辉石解理,主要为单斜辉石中的普通辉石,解理弯曲变形,主要粒径为0.5~2 mm,含量约为30%。斜长石呈半自形、柱状,强烈的蚀变为高岭石、方柱石等矿物的集合体,轻微的蚀变为绢云母化、绿帘石化,与辉石呈辉长结构、嵌晶含长结构,主要粒径为0.2~2 mm,部分粒径为2~5 mm,含量约为55%。角闪石呈自形,柱状,浅绿-褐色,闪石解理,部分在辉石边部呈反应边,粒径为0.2~2 mm,部分粒径为2~5 mm,含量约为12%。黑云母呈他形、片状,强烈的绿泥石化,保留其特征残留,粒径为0.2~0.5 mm,含量约为2%。副矿物主要为磁铁矿、钛铁矿,磷灰石等,粒径为0.1~1 mm。在电子背散射图像中,单斜辉石颗粒具有无环带的特征(图3g~图3h)。
2. 分析方法
矿物主量元素分析、原位微量元素分析,以及全岩样品的主量元素分析均在桂林理工大学广西隐伏金属矿产勘查重点实验室完成。
2.1 电子探针单矿物主量元素分析
矿物主量元素分析所用的仪器为:JEOLJXA8230型电子探针(EPMA)。分析前用透反射偏光显微镜(NIKONECLIPSE50iPOL)镜观察电子探针片并标记待分析的矿物颗粒。仪器分析条件为:加速电压为15 kV,束流为20 nA,束斑直径为5 μm,使用ZAF法校正处理。矿物主量元素的详细操作流程以及分析方法参见Huang等(2007)。
2.2 单矿物原位微量元素分析
原位微量元素分析所用的的仪器为:ICP–MS为Agilent 7500型四级杆质谱仪。进样系统为GeoLas HD 193 nm ArF准分子激光剥蚀系统。测试分析方法同单矿物锆石LA–ICP MS 锆石U–Pb定年,矿物微量元素的详细操作流程以及分析方法参见Liu等(2010)。
3. 地球化学特征
3.1 矿物主量元素
朝克山辉长岩中单斜辉石电子探针分析结果见表1。朝克山单斜辉石SiO2含量为50.75%~52.99 %,TiO2含量为0.27%~0.86 %,FeO*含量为5.08%~9.69 %,MgO含量为13.13%~15.81%,Mg#值为71~84(Mg# = molar Mg/[Mg +Fe2+] × 100;Mg和Fe2+均为原子数),Na2O含量为0.26%~0.43%,CaO含量为21.50%~24.39 %和Al2O3含量为2.03%~3.77 %。根据Morimoto(1988)提出的辉石分类命名方案,朝克山单斜辉石均位于Q-J 图解(Q=Ca+Mg+Fe2+, J=2Na+)的Ca-Mg-Fe 区域内(图4a)。它们的En (100 × Mg/[Mg + Ca + Fe])、Wo(100 × Ca/[Mg + Ca + Fe])和Fs(100 × Fe/[Mg + Ca + Fe])(各元素均为原子数)值分别为 39~45、45~51和8~16,在En-Wo-Fs三元图解中落在透辉石范围内(图4b)。
表 1 朝克山辉长岩的单斜辉石的主量元素组成分析结果表(%)Table 1. Major element compositions (%) of clinopyroxene in Chaokeshan gabbro样品 CKS-08-
01-1CKS-08-
01-2CKS-08-
01-3CKS-08-
01-4CKS-08-
01-5CKS-08-
01-6CKS-08-
01-7CKS-08-
01-8CKS-08-
01-9CKS-08-
01-10SiO2 52.35 52.57 52.34 52.65 52.34 52.62 52.61 51.86 52.16 52.30 TiO2 0.61 0.50 0.69 0.76 0.46 0.62 0.72 0.69 0.61 0.52 Al2O3 2.62 2.51 2.76 2.64 2.65 2.62 2.61 2.70 2.70 2.90 Cr2O3 0.37 0.28 0.38 0.39 0.35 0.35 0.36 0.38 0.38 0.38 FeO* 5.92 6.42 6.20 6.15 5.89 6.07 5.95 6.20 5.86 5.73 MnO 0.19 0.20 0.20 0.16 0.17 0.18 0.17 0.18 0.19 0.15 MgO 13.69 14.12 13.79 13.69 13.68 13.80 13.90 14.01 13.81 13.98 CaO 23.92 23.59 23.87 24.05 24.23 24.04 24.12 24.00 23.95 24.03 Na2O 0.37 0.36 0.39 0.37 0.31 0.38 0.36 0.40 0.40 0.36 K2O 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 Toal 100.03 100.55 100.62 100.84 100.08 100.67 100.80 100.43 100.06 100.34 Si 1.937 1.937 1.928 1.934 1.936 1.935 1.932 1.917 1.930 1.927 AlⅣ 0.063 0.063 0.072 0.066 0.064 0.065 0.068 0.083 0.070 0.073 AlⅥ 0.051 0.046 0.048 0.048 0.052 0.049 0.045 0.035 0.048 0.053 Ti 0.017 0.014 0.019 0.021 0.013 0.017 0.020 0.019 0.017 0.015 Cr 0.011 0.008 0.011 0.011 0.010 0.010 0.011 0.011 0.011 0.011 Fe2+ 0.183 0.198 0.191 0.189 0.182 0.187 0.183 0.192 0.181 0.176 Mn 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.006 0.006 0.005 Mg 0.755 0.775 0.757 0.750 0.754 0.756 0.761 0.772 0.762 0.768 Ca 0.948 0.931 0.942 0.946 0.960 0.947 0.949 0.950 0.949 0.949 Na 0.026 0.026 0.028 0.026 0.022 0.027 0.025 0.029 0.029 0.026 Mg# 80.46 79.69 79.86 79.89 80.54 80.22 80.65 80.11 80.79 81.32 Fs 9.72 10.38 10.11 10.02 9.61 9.87 9.65 10.02 9.57 9.32 En 40.02 40.72 40.06 39.78 39.77 40.02 40.21 40.34 40.26 40.56 Wo 50.26 48.90 49.83 50.21 50.62 50.12 50.13 49.64 50.16 50.12 样品 CKS-08-
01-11CKS-08-
01-12CKS-08-
01-13CKS-08-
01-14CKS-08-
01-15CKS-08-
02-1CKS-08-
02-2CKS-08-
02-3CKS-08-
02-4CKS-08-
02-5SiO2 52.29 52.42 52.23 52.72 52.00 52.02 52.86 52.46 52.38 52.99 TiO2 0.77 0.78 0.75 0.57 0.51 0.53 0.65 0.67 0.64 0.62 Al2O3 2.82 2.68 2.67 2.59 2.40 2.68 2.49 2.50 2.64 2.31 Cr2O3 0.40 0.38 0.33 0.35 0.41 0.27 0.24 0.23 0.31 0.24 FeO* 5.93 6.10 5.70 5.73 6.33 5.98 6.44 6.48 6.04 5.81 MnO 0.16 0.19 0.19 0.17 0.21 0.21 0.17 0.20 0.18 0.21 MgO 13.95 13.98 13.85 13.78 14.25 13.63 14.12 14.13 14.30 14.10 CaO 24.03 23.61 24.39 24.38 23.55 23.73 23.74 23.31 23.14 24.17 Na2O 0.37 0.35 0.35 0.29 0.36 0.30 0.34 0.34 0.35 0.33 K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Toal 100.71 100.48 100.46 100.58 100.02 99.35 101.05 100.32 99.97 100.79 Si 1.923 1.930 1.926 1.939 1.929 1.937 1.937 1.936 1.935 1.944 AlⅣ 0.077 0.070 0.074 0.061 0.071 0.063 0.063 0.064 0.065 0.056 Toal 100.71 100.48 100.46 100.58 100.02 99.35 101.05 100.32 99.97 100.79 Si 1.923 1.930 1.926 1.939 1.929 1.937 1.937 1.936 1.935 1.944 AlⅣ 0.077 0.070 0.074 0.061 0.071 0.063 0.063 0.064 0.065 0.056 续表1 样品 CKS-08-
01-11CKS-08-
01-12CKS-08-
01-13CKS-08-
01-14CKS-08-
01-15CKS-08-
02-1CKS-08-
02-2CKS-08-
02-3CKS-08-
02-4CKS-08-
02-5AlⅥ 0.045 0.047 0.042 0.051 0.033 0.055 0.045 0.045 0.050 0.044 Ti 0.021 0.021 0.021 0.016 0.014 0.015 0.018 0.019 0.018 0.017 Cr 0.012 0.011 0.010 0.010 0.012 0.008 0.007 0.007 0.009 0.007 Fe2+ 0.182 0.188 0.176 0.176 0.196 0.186 0.197 0.200 0.187 0.178 Mn 0.005 0.006 0.006 0.005 0.007 0.006 0.005 0.006 0.006 0.007 Mg 0.765 0.767 0.761 0.755 0.788 0.757 0.771 0.777 0.788 0.771 Ca 0.947 0.931 0.964 0.960 0.936 0.947 0.932 0.922 0.916 0.950 Na 0.027 0.025 0.025 0.020 0.026 0.022 0.024 0.024 0.025 0.024 Mg# 80.75 80.34 81.24 81.09 80.06 80.25 79.63 79.55 80.84 81.22 Fs 9.63 9.96 9.25 9.31 10.22 9.86 10.38 10.53 9.87 9.39 En 40.39 40.67 40.05 39.93 41.04 40.04 40.58 40.94 41.67 40.59 Wo 49.98 49.37 50.70 50.76 48.74 50.10 49.04 48.54 48.46 50.02 样品 CKS-08-
02-6CKS-08-
02-7CKS-08-
02-8CKS-08-
02-9CKS-08-
02-10CKS-08-
02-11CKS-08-
02-12CKS-08-
02-13CKS-08-
02-14CKS-08-
02-15SiO2 52.54 52.49 52.12 52.42 52.79 52.49 51.92 52.75 52.91 52.74 TiO2 0.60 0.54 0.77 0.60 0.56 0.57 0.57 0.51 0.47 0.51 Al2O3 2.46 2.03 2.49 2.31 2.56 2.68 2.83 2.39 2.54 2.59 Cr2O3 0.24 0.28 0.27 0.25 0.42 0.36 0.29 0.28 0.20 0.27 FeO* 5.70 5.93 5.80 6.24 5.97 5.88 5.70 5.78 5.87 5.96 MnO 0.18 0.19 0.19 0.19 0.19 0.17 0.16 0.19 0.19 0.18 MgO 14.30 14.10 14.26 14.83 13.99 14.06 13.90 13.91 13.75 13.90 CaO 23.99 23.84 23.60 22.91 23.76 23.85 23.98 23.74 23.93 24.02 Na2O 0.30 0.29 0.28 0.31 0.37 0.38 0.31 0.32 0.36 0.35 K2O 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 Toal 100.31 99.69 99.78 100.07 100.61 100.44 99.68 99.86 100.24 100.52 Si 1.936 1.948 1.931 1.936 1.940 1.933 1.927 1.950 1.950 1.940 AlⅣ 0.064 0.052 0.069 0.064 0.060 0.067 0.073 0.050 0.050 0.060 AlⅥ 0.043 0.037 0.040 0.037 0.051 0.049 0.051 0.054 0.060 0.053 Ti 0.017 0.015 0.021 0.017 0.015 0.016 0.016 0.014 0.013 0.014 Cr 0.007 0.008 0.008 0.007 0.012 0.011 0.009 0.008 0.006 0.008 Fe2+ 0.176 0.184 0.180 0.193 0.184 0.181 0.177 0.179 0.181 0.183 Mn 0.005 0.006 0.006 0.006 0.006 0.005 0.005 0.006 0.006 0.006 Mg 0.786 0.780 0.787 0.816 0.767 0.772 0.769 0.767 0.755 0.762 Ca 0.947 0.948 0.937 0.906 0.935 0.941 0.953 0.940 0.945 0.947 Na 0.021 0.021 0.020 0.022 0.026 0.027 0.023 0.023 0.026 0.025 Mg# 81.73 80.92 81.41 80.90 80.68 80.99 81.30 81.11 80.68 80.60 Fs 9.21 9.62 9.44 10.06 9.73 9.56 9.31 9.47 9.62 9.70 En 41.17 40.81 41.35 42.62 40.65 40.74 40.50 40.66 40.15 40.28 Wo 49.63 49.57 49.21 47.32 49.61 49.69 50.19 49.87 50.23 50.02 续表1 样品 CKS-08-
02-16CKS-08-
02-17CKS-08-
04-1CKS-08-
04-2CKS-08-
04-3CKS-08-
04-4CKS-08-
04-5CKS-08-
04-6CKS-08-
04-7CKS-08-
04-8SiO2 52.32 52.54 52.91 52.73 51.99 52.04 51.67 52.25 52.04 51.57 TiO2 0.58 0.74 0.45 0.43 0.60 0.76 0.59 0.51 0.51 0.56 Al2O3 2.53 2.82 2.44 2.38 2.74 2.75 2.88 2.40 2.26 2.67 Cr2O3 0.21 0.23 0.48 0.42 0.41 0.50 0.45 0.41 0.38 0.50 FeO* 5.97 5.88 5.48 5.72 5.33 5.33 5.57 5.17 5.92 5.33 MnO 0.20 0.20 0.17 0.18 0.16 0.15 0.17 0.15 0.17 0.15 MgO 13.76 13.84 15.11 15.36 15.41 15.39 15.65 15.25 15.56 15.18 CaO 24.12 24.09 23.52 23.28 23.91 23.35 23.30 23.01 23.09 23.95 Na2O 0.40 0.37 0.38 0.42 0.31 0.32 0.34 0.30 0.35 0.32 K2O 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.00 Toal 100.09 100.70 100.93 100.94 100.87 100.60 100.61 99.45 100.27 100.23 Si 1.936 1.930 1.934 1.929 1.906 1.909 1.899 1.934 1.920 1.904 AlⅣ 0.064 0.070 0.066 0.071 0.094 0.091 0.101 0.066 0.080 0.096 AlⅥ 0.046 0.052 0.039 0.032 0.024 0.028 0.024 0.039 0.018 0.020 Ti 0.016 0.020 0.012 0.012 0.017 0.021 0.016 0.014 0.014 0.016 Cr 0.006 0.007 0.014 0.012 0.012 0.014 0.013 0.012 0.011 0.015 Fe2+ 0.185 0.181 0.167 0.175 0.163 0.164 0.171 0.160 0.183 0.165 Mn 0.006 0.006 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.005 Mg 0.759 0.758 0.823 0.838 0.842 0.842 0.857 0.841 0.856 0.836 Ca 0.956 0.948 0.921 0.912 0.939 0.918 0.917 0.912 0.912 0.948 Na 0.029 0.027 0.027 0.029 0.022 0.022 0.024 0.021 0.025 0.023 Mg# 80.42 80.76 83.10 82.72 83.76 83.73 83.36 84.02 82.40 83.55 Fs 9.72 9.57 8.76 9.09 8.40 8.51 8.80 8.36 9.37 8.45 En 39.95 40.17 43.07 43.52 43.32 43.77 44.06 43.97 43.87 42.90 Wo 50.33 50.26 48.17 47.40 48.29 47.72 47.14 47.67 46.77 48.65 样品 CKS-08-
04-8CKS-08-
04-10CKS-08-
04-11CKS-08-
04-12CKS-08-
04-13CKS-08-
04-14CKS-08-
06-1CKS-08-
06-2CKS-08-
06-3CKS-08-
06-4SiO2 51.92 52.08 51.97 52.50 52.40 51.76 51.20 51.29 50.75 51.80 TiO2 0.56 0.38 0.53 0.78 0.52 0.65 0.67 0.68 0.27 0.42 Al2O3 2.55 2.40 2.97 2.85 2.79 2.64 2.84 2.85 3.22 3.30 Cr2O3 0.41 0.38 0.35 0.48 0.43 0.42 0.01 0.01 0.03 0.11 FeO* 5.08 5.63 6.12 5.67 5.50 5.59 9.14 9.13 9.69 7.16 MnO 0.17 0.18 0.20 0.21 0.19 0.15 0.12 0.22 0.29 0.18 MgO 15.36 15.52 15.81 14.99 15.14 15.66 13.14 13.74 13.13 14.28 CaO 23.71 23.52 22.00 23.04 23.07 22.86 21.53 21.52 21.53 22.40 Na2O 0.33 0.33 0.33 0.35 0.36 0.29 0.39 0.39 0.38 0.31 K2O 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 Toal 100.10 100.41 100.28 100.88 100.39 100.02 99.03 99.82 99.29 99.97 Si 1.915 1.918 1.911 1.920 1.924 1.910 1.930 1.919 1.915 1.919 AlⅣ 0.085 0.082 0.089 0.080 0.076 0.090 0.070 0.081 0.085 0.081 AlⅥ 0.026 0.022 0.040 0.043 0.045 0.025 0.056 0.044 0.059 0.063 续表1 样品 CKS-08-
04-8CKS-08-
04-10CKS-08-
04-11CKS-08-
04-12CKS-08-
04-13CKS-08-
04-14CKS-08-
06-1CKS-08-
06-2CKS-08-
06-3CKS-08-
06-4Ti 0.015 0.011 0.015 0.022 0.014 0.018 0.019 0.019 0.008 0.012 Cr 0.012 0.011 0.010 0.014 0.013 0.012 0.000 0.000 0.001 0.003 Fe2+ 0.157 0.173 0.188 0.173 0.169 0.173 0.288 0.286 0.306 0.222 Mn 0.005 0.006 0.006 0.007 0.006 0.005 0.004 0.007 0.009 0.006 Mg 0.845 0.852 0.867 0.817 0.829 0.862 0.738 0.767 0.738 0.789 Ca 0.937 0.928 0.867 0.903 0.908 0.904 0.869 0.863 0.870 0.889 Na 0.024 0.023 0.023 0.025 0.025 0.021 0.028 0.028 0.028 0.023 Mg# 84.34 83.08 82.17 82.50 83.08 83.32 71.92 72.86 70.72 78.06 Fs 8.09 8.88 9.79 9.15 8.86 8.90 15.20 14.92 15.97 11.67 En 43.58 43.61 45.11 43.16 43.49 44.46 38.94 40.04 38.57 41.52 Wo 48.34 47.51 45.10 47.68 47.65 46.64 45.86 45.05 45.46 46.81 样品 CKS-08-
06-5CKS-08-
06-6CKS-08-
06-7CKS-08-
06-8CKS-08-
06-9CKS-08-
06-10CKS-08-
06-11CKS-08-
06-12CKS-08-
06-13CKS-08-
06-14SiO2 51.34 50.95 52.18 51.95 52.18 50.99 52.03 51.41 51.50 51.50 TiO2 0.79 0.54 0.47 0.59 0.49 0.83 0.64 0.86 0.66 0.75 Al2O3 3.32 3.77 3.09 2.99 3.17 3.58 2.74 2.78 3.36 3.52 Cr2O3 0.07 0.09 0.13 0.13 0.22 0.13 0.03 0.02 0.02 0.10 FeO* 7.93 6.13 5.69 5.66 6.03 8.45 8.68 9.52 8.14 7.15 MnO 0.21 0.18 0.16 0.14 0.18 0.20 0.20 0.23 0.21 0.18 MgO 13.84 14.50 14.82 14.79 15.11 13.45 13.84 13.32 14.02 14.37 CaO 21.86 22.05 22.38 22.55 22.32 21.88 21.80 21.50 22.18 22.24 Na2O 0.38 0.26 0.26 0.26 0.36 0.43 0.38 0.39 0.39 0.36 K2O 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Toal 99.72 98.48 99.18 99.04 100.06 99.93 100.34 100.03 100.46 100.17 Si 1.913 1.908 1.934 1.930 1.922 1.902 1.931 1.922 1.908 1.905 AlⅣ 0.087 0.092 0.066 0.070 0.078 0.098 0.069 0.078 0.092 0.095 AlⅥ 0.059 0.074 0.069 0.061 0.059 0.060 0.051 0.045 0.054 0.058 Ti 0.022 0.015 0.013 0.016 0.014 0.023 0.018 0.024 0.018 0.021 Cr 0.002 0.003 0.004 0.004 0.006 0.004 0.001 0.000 0.001 0.003 Fe2+ 0.247 0.192 0.176 0.176 0.186 0.264 0.269 0.298 0.252 0.221 Mn 0.007 0.006 0.005 0.004 0.006 0.006 0.006 0.007 0.006 0.005 Mg 0.769 0.809 0.819 0.819 0.829 0.748 0.766 0.742 0.774 0.792 Ca 0.873 0.884 0.889 0.897 0.880 0.874 0.867 0.861 0.880 0.881 Na 0.027 0.019 0.019 0.018 0.025 0.031 0.027 0.028 0.028 0.026 Mg# 75.68 80.84 82.27 82.32 81.70 73.93 73.98 71.39 75.45 78.18 Fs 13.08 10.17 9.37 9.29 9.80 13.98 14.16 15.65 13.22 11.67 En 40.71 42.93 43.46 43.28 43.75 39.65 40.27 39.05 40.62 41.82 Wo 46.21 46.90 47.17 47.43 46.45 46.37 45.57 45.30 46.16 46.51 续表1 样品 CKS-08-06-15 CKS-08-06-16 CKS-08-06-17 CKS-08-06-18 SiO2 52.30 52.79 52.25 52.24 TiO2 0.46 0.55 0.49 0.61 Al2O3 2.45 2.32 3.41 3.21 Cr2O3 0.13 0.06 0.24 0.18 FeO* 6.99 6.03 5.79 6.75 MnO 0.16 0.11 0.16 0.17 MgO 14.62 15.22 15.03 14.68 CaO 22.50 22.79 22.38 22.01 Na2O 0.35 0.28 0.33 0.30 K2O 0.00 0.01 0.00 0.01 Toal 99.96 100.17 100.07 100.16 Si 1.937 1.942 1.921 1.925 AlⅣ 0.918 0.918 0.905 0.890 AlⅥ 0.063 0.058 0.079 0.075 Ti 0.013 0.015 0.013 0.017 Cr 0.004 0.002 0.007 0.005 Fe2+ 0.216 0.185 0.178 0.208 Mn 0.005 0.003 0.005 0.005 Mg 0.807 0.835 0.823 0.806 Ca 0.893 0.898 0.881 0.869 Na 0.025 0.020 0.023 0.022 Mg# 78.86 81.82 82.22 79.51 Fs 11.29 9.67 9.46 11.04 En 42.12 43.51 43.73 42.83 Wo 46.58 46.82 46.81 46.14 注:Mg# = 100*Mg/(Mg+Fe2+);Fs= 100*Fe2+/(Mg+Ca+Fe2+);En= 100*Mg/(Mg+Ca+Fe2+);Wo=100*Ca/(Mg+Ca+Fe2+) 。 图 4 朝克山蛇绿岩中辉长岩的单斜辉石图解(据Mahoney et al.,1998)a. Q–J图(Q=Ca+Mg+Fe2+,J=2Na);b. Wo–En–Fs图解Figure 4. Compositional variations of Clinopyroxenes in gabbros from the Chaokeshan ophiolitic3.2 矿物微量元素
朝克山辉长岩中单斜辉石微量结果见表2。稀土总含量(ΣREE含量)为53.53×10-6~94.83×10-6,稀土元素球粒陨石标准化REE配分模式(图5a)表现为轻稀土元素亏损([La/Sm]N = 0.12~0.22),重稀土元素平坦([Gd/Yb]N = 0.83~1.33),无明显Eu异常(Eu/Eu* = EuN/ [LaN*SmN]1/2 = 0.78~1.09),表明原始岩浆在演化过程中经历了程度微弱的斜长石分离结晶作用。在原始地幔标准化微量元素蛛网图中(图5b),所有样品显示大离子亲石元素(LILE)相对富集,高场强元素(HFSE)Nb、Ta、Zr、Hf、Ti相对亏损,与俯冲带岩浆地球化学特征一致。
表 2 朝克山辉长岩的单斜辉石的微量元素数据表(10−6)Table 2. Trace element compositions of clinopyroxene in gabbro from the Chaokeshan(10−6)样品 CKS-08-
01-1CKS-08-
01-2CKS-08-
01-3CKS-08-
01-4CKS-08-
01-5CKS-08-
01-6CKS-08-
01-7CKS-08-
01-8CKS-08-
01-9CKS-08-
01-10Sc 117.7 108.2 112.3 108.0 104.1 109.3 108.0 108.7 98.07 117.7 V 427.25 410.11 417.14 417.82 387.93 416.56 394.93 427.54 376.24 427.25 Cr 2667 2541 2569 2651 2438 2651 2443 3249 2451 2667 Co 33.09 33.20 35.99 33.74 34.98 36.30 34.34 35.52 34.47 33.09 Ni 135.9 139.4 155.9 157.6 179.4 154.2 139.8 131.1 167.7 135.9 Cu 7.24 12.75 14.01 5.87 36.38 7.54 0.58 3.35 21.82 7.24 Zn 27.70 24.85 25.61 27.55 27.00 26.30 26.70 28.50 32.53 27.70 Ga 4.56 4.50 4.84 4.57 4.42 4.62 3.66 4.91 4.50 4.56 Rb 0.44 0.11 0.00 0.16 0.00 0.01 0.00 0.27 0.19 0.44 Sr 7.20 8.21 8.18 6.74 11.11 8.93 6.32 6.93 6.89 7.20 Y 15.48 15.52 16.05 16.79 15.66 16.41 15.85 16.74 14.73 15.48 Zr 8.37 8.41 9.00 8.09 7.69 8.57 9.35 8.96 7.56 8.37 Nb 0.01 0.03 0.01 0.00 0.01 0.03 0.05 0.01 0.02 0.01 Sn 1.58 1.38 1.70 1.13 1.33 1.60 0.91 1.35 1.61 1.58 Sb 0.51 0.52 1.08 0.65 0.62 0.60 0.77 0.19 0.56 0.51 Ba 0.24 0.21 0.60 0.24 1.49 0.31 0.17 0.36 0.84 0.24 La 0.16 0.16 0.15 0.10 0.24 0.13 0.18 0.09 0.14 0.16 Ce 1.03 1.11 1.20 0.76 0.90 1.03 0.80 0.92 0.69 1.03 Pr 0.27 0.24 0.26 0.23 0.19 0.16 0.17 0.28 0.15 0.27 Nd 1.61 1.49 1.71 2.06 1.94 2.33 1.81 1.99 1.95 1.61 Sm 1.23 1.02 1.36 1.34 1.31 0.78 1.02 1.13 1.29 1.23 Eu 0.43 0.46 0.47 0.55 0.54 0.47 0.48 0.42 0.40 0.43 续表2 样品 CKS-08-
01-1CKS-08-
01-2CKS-08-
01-3CKS-08-
01-4CKS-08-
01-5CKS-08-
01-6CKS-08-
01-7CKS-08-
01-8CKS-08-
01-9CKS-08-
01-10Gd 2.36 2.13 2.18 1.80 1.71 2.09 1.60 2.14 2.23 2.36 Tb 0.40 0.33 0.53 0.42 0.36 0.44 0.33 0.45 0.40 0.40 Dy 2.99 2.61 3.00 3.08 2.60 2.97 2.68 3.15 2.50 2.99 Ho 0.59 0.66 0.64 0.59 0.70 0.62 0.65 0.64 0.57 0.59 Er 1.85 1.90 1.94 1.83 1.63 1.91 1.81 1.84 1.50 1.85 Tm 0.19 0.28 0.29 0.22 0.26 0.27 0.17 0.24 0.28 0.19 Yb 1.29 1.68 1.66 1.67 1.44 1.87 1.90 2.23 1.78 1.29 Lu 0.27 0.27 0.27 0.25 0.26 0.24 0.27 0.20 0.19 0.27 Hf 0.56 0.59 0.48 0.45 0.22 0.40 0.59 0.55 0.41 0.56 Ta 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 样品 CKS-08-
01-11CKS-08-
01-12CKS-08-
02-1CKS-08-
02-2CKS-08-
02-3CKS-08-
02-4CKS-08-
02-5CKS-08-
02-6CKS-08-
02-7CKS-08-
02-8Sc 110.8 95.55 108.2 106.0 123.6 104.9 116.1 112.5 123.9 128.0 V 425.11 370.42 415.3 399.8 428.2 392.8 402.6 396.6 414.4 410.5 Cr 2685 2429 1830 1774 2392 1773 2829 1861 2397 1784 Co 36.69 35.57 36.17 43.21 41.14 40.38 37.99 39.38 35.44 33.79 Ni 134.5 160.6 147.2 194.4 186.6 185.8 158.4 150.1 166.4 148.3 Cu 2.44 50.87 16.32 51.45 46.10 30.53 9.46 8.33 9.65 1.98 Zn 25.93 28.61 27.25 37.25 27.40 35.13 27.33 24.60 30.17 22.60 Ga 4.49 4.36 4.97 5.16 5.53 4.56 4.90 3.41 4.91 3.64 Rb 1.45 0.74 0.14 0.02 0.19 0.44 0.14 0.19 0.14 0.14 Sr 8.11 7.81 6.56 6.39 6.89 6.60 8.36 6.55 6.29 6.18 Y 17.24 14.35 16.44 14.76 15.91 16.16 15.98 15.17 16.39 15.39 Zr 9.85 7.55 8.87 8.41 8.68 7.65 8.84 7.37 9.30 7.50 Nb 0.02 0.00 0.00 0.02 0.03 0.01 0.01 0.00 0.02 0.02 Sn 1.54 1.47 1.47 1.35 1.42 1.77 1.44 1.52 1.18 1.61 Sb 0.47 0.23 1.39 0.59 0.14 0.28 0.35 0.26 0.32 0.74 Ba 0.00 0.96 0.41 0.30 0.25 0.31 0.12 0.25 0.19 0.18 La 0.13 0.16 0.17 0.13 0.18 0.19 0.09 0.15 0.07 0.10 Ce 1.13 0.89 0.83 0.67 0.73 0.90 0.76 0.58 0.78 0.70 Pr 0.33 0.26 0.20 0.21 0.18 0.18 0.18 0.24 0.21 0.15 Nd 1.80 2.13 2.08 2.40 1.56 1.97 1.90 1.55 2.16 1.73 Sm 0.73 1.18 1.36 1.14 1.33 0.94 0.96 1.17 1.22 1.15 Eu 0.34 0.49 0.47 0.33 0.52 0.30 0.58 0.42 0.38 0.40 Gd 2.82 1.86 2.10 2.03 2.37 2.50 1.84 2.03 2.05 2.32 Tb 0.44 0.47 0.48 0.41 0.42 0.39 0.38 0.30 0.37 0.36 Dy 3.10 2.53 2.87 2.74 2.96 2.80 2.53 2.74 3.37 3.09 Ho 0.63 0.58 0.68 0.57 0.64 0.61 0.54 0.61 0.74 0.53 Er 1.75 1.46 2.09 1.68 1.86 1.67 1.86 1.74 1.69 1.56 续表2 样品 CKS-08-
01-11CKS-08-
01-12CKS-08-
02-1CKS-08-
02-2CKS-08-
02-3CKS-08-
02-4CKS-08-
02-5CKS-08-
02-6CKS-08-
02-7CKS-08-
02-8Tm 0.25 0.30 0.30 0.21 0.30 0.24 0.23 0.24 0.25 0.29 Yb 1.85 1.57 1.66 1.73 1.99 1.41 1.72 1.32 2.15 1.77 Lu 0.26 0.23 0.24 0.26 0.25 0.20 0.21 0.19 0.25 0.23 Hf 0.31 0.49 0.54 0.42 0.40 0.52 0.59 0.42 0.52 0.39 Ta 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 样品 CKS-08-
02-9CKS-08-
02-10CKS-08-
02-11CKS-08-
04-1CKS-08-
04-2CKS-08-
04-3CKS-08-
04-4CKS-08-
04-5CKS-08-
04-6CKS-08-
04-7Sc 95.94 107.1 105.8 109.5 113.7 115.2 98.30 92.56 110.4 107.3 V 359.1 404.5 402.1 387.8 347.8 393.9 323.3 325.4 423.9 412.8 Cr 1589 1657 1729 3133 3011 2949 2466 2762 3518 2997 Co 35.95 36.54 39.57 34.71 41.83 34.02 41.42 39.42 32.94 34.16 Ni 130.8 165.0 168.3 133.5 152.7 126.9 179.0 156.7 129.7 131.7 Cu 20.06 11.27 25.10 7.37 15.16 3.87 47.01 11.52 4.02 3.02 Zn 29.02 27.60 25.93 27.35 30.57 28.85 33.61 27.53 27.22 25.04 Ga 4.40 4.68 4.72 4.58 4.07 4.25 4.51 4.57 4.64 4.15 Rb 0.14 0.14 0.36 0.00 0.02 0.68 0.00 0.00 0.00 0.00 Sr 5.58 6.69 6.61 10.24 7.25 6.84 6.01 5.56 8.01 7.59 Y 13.08 14.14 16.19 15.79 13.13 16.85 13.67 13.67 19.44 17.08 Zr 6.48 6.79 6.34 10.51 7.20 10.95 9.88 9.50 11.50 9.56 Nb 0.02 0.02 0.01 0.05 0.04 0.03 0.02 0.00 0.07 0.03 Sn 1.57 0.87 1.57 0.76 0.68 1.56 1.72 1.04 1.47 1.18 Sb 0.40 0.31 0.14 0.47 0.76 0.37 0.51 0.70 0.22 0.82 Ba 0.18 0.54 0.10 0.44 0.28 0.10 0.56 0.47 0.18 0.01 La 0.10 0.08 0.09 0.18 0.13 0.19 0.07 0.17 0.18 0.17 Ce 0.85 0.74 0.79 0.91 0.67 0.99 0.77 0.86 1.01 0.82 Pr 0.16 0.18 0.14 0.20 0.20 0.30 0.21 0.21 0.28 0.20 Nd 1.83 1.56 1.98 1.94 1.62 2.33 2.15 1.60 2.02 2.09 Sm 1.20 1.40 1.10 1.12 0.96 1.14 0.89 1.12 1.21 0.99 Eu 0.45 0.33 0.35 0.49 0.36 0.52 0.43 0.43 0.53 0.51 Gd 2.36 1.85 1.63 2.12 1.49 2.40 1.37 1.96 2.19 1.58 Tb 0.30 0.45 0.37 0.47 0.37 0.47 0.36 0.36 0.46 0.42 Dy 2.38 2.91 2.54 2.62 2.42 3.37 2.67 2.42 2.93 2.81 Ho 0.56 0.65 0.66 0.54 0.55 0.69 0.56 0.54 0.84 0.60 Er 1.50 1.71 1.74 1.58 1.26 1.71 1.15 1.59 2.08 1.87 Tm 0.21 0.19 0.32 0.28 0.16 0.24 0.17 0.24 0.25 0.26 Yb 1.42 1.53 1.50 1.66 1.08 1.49 1.54 1.25 1.79 1.43 Lu 0.20 0.24 0.35 0.25 0.21 0.21 0.16 0.19 0.31 0.22 Hf 0.31 0.41 0.51 0.41 0.33 0.57 0.34 0.41 0.59 0.38 Ta 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 续表2 样品 CKS-08-
06-1CKS-08-
06-2CKS-08-
06-3CKS-08-
06-4CKS-08-
06-5CKS-08-
06-6CKS-08-
06-7CKS-08-
06-8CKS-08-
06-9CKS-08-
06-10Sc 135.2 128.9 133.5 130.9 128.6 119.3 113.1 129.9 135.2 128.9 V 403.7 460.0 462.1 337.9 443.4 475.0 410.2 521.3 403.7 460.0 Cr 1863 506.1 593.6 3334 607.2 264.9 1046 268.6 1863 506.1 Co 42.67 48.40 47.82 37.80 47.52 51.55 43.55 48.49 42.67 48.40 Ni 201.7 125.8 132.6 207.3 121.1 116.3 162.7 99.69 201.7 125.8 Cu 21.15 8.99 24.50 1.88 0.00 2.15 0.44 6.07 21.15 8.99 Zn 29.23 42.54 37.28 21.24 37.23 50.13 30.46 46.96 29.23 42.54 Ga 7.01 6.72 7.29 5.85 7.29 6.74 7.04 8.38 7.01 6.72 Rb 0.70 0.00 0.56 0.01 0.00 0.00 0.23 0.00 0.70 0.00 Sr 14.67 13.85 14.57 11.14 12.12 12.60 13.73 12.45 14.67 13.85 Y 15.12 19.10 18.31 13.29 20.75 22.25 17.23 22.97 15.12 19.10 Zr 14.41 14.25 14.56 10.60 14.78 14.16 12.17 17.56 14.41 14.25 Nb 0.03 0.01 0.01 0.00 0.00 0.00 0.03 0.01 0.03 0.01 Sn 1.45 1.59 1.81 1.27 1.52 1.63 1.19 1.33 1.45 1.59 Sb 0.00 0.00 0.07 0.01 0.00 0.01 0.06 0.04 0.00 0.00 Ba 1.91 2.67 2.27 0.00 0.00 1.87 0.31 2.66 1.91 2.67 La 0.22 0.32 0.21 0.19 0.29 0.20 0.38 0.28 0.22 0.32 Ce 1.29 1.23 1.23 0.71 1.42 1.52 1.27 1.29 1.29 1.23 Pr 0.20 0.34 0.30 0.24 0.40 0.42 0.24 0.48 0.20 0.34 Nd 1.78 3.09 2.59 1.62 0.00 3.28 2.52 3.88 1.78 3.09 Sm 1.09 1.84 1.72 0.96 1.88 1.50 1.59 1.91 1.09 1.84 Eu 0.48 0.65 0.77 0.47 0.69 0.74 0.68 0.71 0.48 0.65 Gd 2.24 3.12 3.05 1.80 2.70 2.61 2.79 3.38 2.24 3.12 Tb 0.39 0.54 0.52 0.34 0.54 0.54 0.50 0.56 0.39 0.54 Dy 2.58 3.85 3.59 2.55 3.61 3.95 2.93 4.10 2.58 3.85 Ho 0.59 0.81 0.72 0.43 0.89 0.90 0.68 1.05 0.59 0.81 Er 1.65 1.87 2.51 1.29 1.88 2.09 2.09 2.81 1.65 1.87 Tm 0.21 0.28 0.33 0.20 0.31 0.32 0.29 0.38 0.21 0.28 Yb 1.10 1.63 1.76 1.15 1.62 1.93 1.68 2.31 1.10 1.63 Lu 0.23 0.26 0.26 0.16 0.27 0.37 0.23 0.39 0.23 0.26 Hf 0.92 0.84 0.67 0.70 0.52 0.79 0.48 1.07 0.92 0.84 Ta 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 图 5 朝克山蛇绿岩中辉长岩的单斜辉石REE球粒陨石标准化图(a)和不相容元素原始地幔标准化图解(b)标准化数据据Sun等(1989);意大利亚平宁山脉北部辉长岩中单斜辉石数据来源于Sanfippo等(2011)Figure 5. (a)Chondrite–normalized rare earth element (REE) and(b) primitive mantle–normalized multi–element variation patterns for clinopyroxenes within the gabbroic rocks from the Chaokeshan ophiolitic4. 讨论
4.1 单斜辉石的演化
根据矿物和地球化学组成特征,火成岩中单斜辉石的组成变化可以很好地记录母岩浆初始组成的差异,主要由巨晶单斜辉石、堆积岩中的单斜辉石和斑晶-微晶单斜辉石3种类型,它们具有不同来源深度和成分(Nisbet et al.,1977)。单斜辉石中的Al 的配位与温压关系密切,具有特殊意义。即高温低压条件下有利于Al在四次配位中代替Si,而低温高压条件下有利于Al在六次配位中代替其他阳离子。岩浆结晶分异的演化过程,由地幔到地壳,伴随高温向低温或高压向低压变化,是Al 由六次配位向四次配位转化的过程(陈光远等,1987)。根据AlⅥ/AlⅣ可以定性衡量单斜辉石的结晶压力(Aoki et al.,1968;Thompson,1974;Wass,1979),划分不同压力下形成的单斜辉石(Aoki et al.,1973)。在AlⅥ-AlⅣ图中(图6a),所有单斜辉石中AlⅥ变化范围为0.18~0.23,AlⅣ变化范围为0.18~0.23;AlⅥ/AlⅣ变化范围为0.18~0.23,单斜辉石主要落在玄武岩包体中的单斜辉石区域内,表明该套岩石形成于相对高温低压环境(Sherafat et al.,2012)。此外,单斜辉石具有相对高Si、低Al 的特征,单斜辉石在Si–Al 图中(图6b)均落入碱性或拉斑玄武岩中辉石斑晶区域。
火成岩中单斜辉石的Si 与Al 具有互不相容性,故其组合能反映其母岩浆性质(Le Bas,1962)。来自SiO2不饱和碱性玄武质岩浆中的单斜辉石,其四面体中Si 的含量较低,而Al 的含量较高,相反过饱和的拉斑玄武质岩浆中结晶出的单斜辉石,其四面体中Si 的含量较高,而Al 的含量较低(Kushiro,1960)。透辉石中Al2O3 的含量通常为1%~3% (赖绍聪等,2005)。本研究区的单斜辉石具有相对高的Al2O3(2.03%~3.77 %)含量和较低的SiO2(50.75%~52.99%),与不饱和碱性岩浆系列具有明显的对应关系。在Al2O3–SiO2 图中(图7a),样品全部落入亚碱性岩区域,暗示其母岩浆可能为亚碱性岩浆。同时在Ti–(Ca+Na)图中(图7b),除样品(CKS-08-06)为拉斑玄武系列,其余均属于碱性玄武系列。综上所述,朝克山岩体的母岩浆可能为亚碱性的拉斑玄武质岩浆向碱性玄武质岩浆演化的趋势。
图 7 朝克山蛇绿岩中辉长岩的单斜辉石图解(据邱家骧等,1996)a. Al2O3–SiO2图解;b.Ti–(Ca+Na)图解Figure 7. Compositional variations of Clinopyroxenes in gabbros from the Chaokeshan ophiolitic4.2 单斜辉石结晶温度和压力
确定单斜辉石与寄主岩石是否达到平衡,可由单斜辉石与熔体间的Fe–Mg分配系数也可用来探讨斑晶是否与全岩Mg#值平衡(Streck, 2005)。该分配系数计算如下:KD(Fe–Mg)cpx-melt=(FeO/MgO)cpx/(FeO/MgO)melt。朝克山辉长岩中的单斜辉石斑晶与熔体之间的Fe–Mg 分配系数计算结果见表3。众多学者认为该分配系数为0.2~0.4 时即可视为达到了平衡(Irving et al.,1984;Kinzler,1997)。Putirka(2008)通过实验标定单斜辉石-熔体平衡温度和压力计算公式,并测定了KD(Fe–Mg)cpx-melt=0.28±0.08 达到平衡。Putirka(2008)通过实验标定单斜辉石–熔体之间的平衡温度和压力计算了朝克山辉长岩中单斜辉石的温度和压力。由计算结果(表3)可知,虽然4个样品(CKS-08-01、CKS-08-02、CKS-08-04和CKS-08-06)同为朝克山辉长岩,但它们中的单斜辉石结晶温度、压力以及与熔体之间的平衡系数却不相同,CKS-08-01辉长岩中的单斜辉石结晶温度为1099~1184 ℃,与熔体之间的平衡系数为0.289~0.298,平衡压力为3.2~5.8 kbar,深度相当于11~19 km,平均值为14 km。CKS-08-02辉长岩中的单斜辉石结晶温度为1122~1194 ℃,与熔体之间的平衡系数为0.292~0.296,平衡压力为2.8~5.6 kbar,深度相当于9~18 km,平均值为15 km。CKS-08-04辉长岩中的单斜辉石结晶温度为1169~1242 ℃,与熔体之间的平衡系数为0.293~0.299,平衡压力为2.1~6.4 kbar,深度相当于7~21 km,平均值为14 km。CKS-08-06辉长岩中的单斜辉石结晶温度为1168~1193 ℃,与熔体之间的平衡系数为0.275~0.282,平衡压力为1.5~5.6 kbar,深度相当于5~18 km,平均值为13 km。所有辉长岩样品中的单斜辉石与熔体达到了平衡,且所有辉长岩中单斜辉石–熔体平衡深度相似。单斜辉石结晶温度较高,深度变化区间较大,辉石结晶深度(5~21 km)明显大于大洋地壳的平均厚度(5~6 km),反映了明显的深源特征。
表 3 单斜辉石-熔体平衡温度、压力、深度及其与全岩之间Fe–Mg 分配系数表Table 3. Temperature, pressure, depth of monoclinopyroxene melt equilibrium and Fe–Mg distribution coefficient with the whole rock样品编号 P(kbar) T(℃) KD(Fe-Mg) 深度(km) CKS-08-01 3.2~5.8 1099~1184 0.289~0.298 10.50~19.29 CKS-08-02 2.8~5.6 1122~1194 0.292~0.296 9.36~18.52 CKS-08-04 2.1~6.4 1169~1242 0.293~0.299 7.07~21.05 CKS-08-06 1.5~5.6 1168~1193 0.275~0.282 4.79~18.33 注:按照1 GPa 相当于33 km 深度计算。 4.3 单斜辉石形成的构造环境
前人对贺根山蛇绿岩带从镁铁质侵入岩和火山岩岩石化学和沉积岩及岩石组合角度已做过详细的工作,但是对朝克山研究甚少。王树庆等(2008)对朝克山蛇绿岩的全岩进行地球化学和同位素研究,从稀土配分模式上看,主要显示为LREE的亏损,类似于大洋中脊玄武岩(MORB)的特征。N-MORB标准化的微量元素蛛网图上显示富集LILEs、高场强元素(HFSE)Nb和Ta相对亏损,与岛弧地球化学特征一致。蛇绿岩基性单元的同位素特征具有正的εNd(t)值(+8.4~+9.7),表明它们来自亏损地幔源区。文中朝克山辉长岩中的单斜辉石在球粒陨石标准化REE配分图上表现为轻稀土元素亏损,重稀土元素平坦,无明显Eu异常,类似于大洋中脊玄武岩(N-MORB)的特征。微量元素原始地幔标准化配分图显示大离子亲石元素(LILE)相对富集,高场强元素(HFSE)Nb、Ta、Zr、Hf和Ti相对亏损,表明母岩浆形成过程中受到板片俯冲流体的影响,具有弧后盆地玄武岩的特征。在研究区单斜辉石F1–F2 图解上(图8),大多数样品落入岛弧和洋中脊区域。朝克山辉长岩中单斜辉石化学成分判定成岩构造环境判别结果与朝克山辉长岩的成岩构造环境一致。
图 8 朝克山蛇绿岩中辉长岩的单斜辉石在F1–F2双因子判别图解(据邱家骧等,1987)F1=−0.012*(SiO2)−0.0807*(TiO2)+0.0026*(Al2O3)−0.0012*(FeO)− 0.0026*(MnO)+0.0087*(MgO) −0.0128*(CaO)−0.0419*(Na2O); F2=−0.0469*(SiO2)−0.0818*(TiO2)−0.0212*(Al2O3)−0.0041*(FeO)−0.1435*(MnO)−0.0029*(MgO)+0.0085*(CaO)+0.016*(Na2O);WPT.板块内部拉斑玄武岩;WPA.板块内部碱性玄武岩;VAB.火山弧玄武岩;OFB.洋中脊玄武岩Figure 8. F1–F2 factor discriminant diagram of compositional variations of Clinopyroxenes in gabbros from the Chaokeshan ophiolitic综上所述,笔者所有这些证据均认为朝克山蛇绿岩兼有亏损型洋脊玄武岩(N-MORB)和岛弧玄武岩双重地球化学特征,反映其来源和形成过程受到洋脊扩张作用和俯冲消减作用共同控制,这种特征的蛇绿岩产出的构造环境形成于弧后盆地环境。
5. 结论
(1) 朝克山蛇绿岩中单斜辉石化学成分特征指示岩浆为既有碱性系列特征,也有拉斑系列特征,富集LILE,亏损LREE和HFSE(如Nb、Ta、Zr、Hf和Ti),与辉长岩全岩石的特征程度相一致,共同指示岩体母岩浆可能为亚碱性的拉斑玄武质岩浆向碱性玄武质岩浆演化的趋势。
(2) 朝克山蛇绿岩中单斜辉石的结晶温度范围为1099~1242 ℃,平衡压力为1.5~6.4 kbar,形成深度5~21 km,单斜辉石形成深度明显大于大洋地壳的平均厚度(5~6 km),反映了明显的深源特。
(3) 综合前人的研究和单斜辉石的构造环境判别特征,这套蛇绿岩形成于弧后盆地环境。
-
表 1 钻孔岩溶发育强度、特征表
Table 1 Strength and characteristics of karst development in boreholes
溶蚀强度 岩 溶 发 育 特 征 较强 孔内见溶洞发育;导水介质主要为溶洞、溶腔 中等 多为溶蚀破碎带,岩芯表明发育大量溶孔、溶腔,裂面锈染、夹泥膜,局部夹泥层;主要导水介质为破碎带松散孔隙、溶隙、溶腔,少部分为溶孔 弱 总体较完整,多无锈染及泥膜夹层,偶见溶孔。导水介质主要为发育较少的裂隙、贯通性较差的溶孔 表 2 非岩溶隧道涌突水风险性评价体系(THR)
Table 2 Risk assessment system for water inrush in non karst tunnels (THR)
岩石的渗透性和力学性质(R1) 渗透系数(m/d) >10 0.1~10 0.01~0.1 <0.01 渗透性分级 强透水 中等透水 弱透水 微透水 R11评分值 18~20 10~18 6~10 0~6 岩石力学性质 硬岩 较硬岩–软岩 软岩 R12评分值 14~20 10~14 6~10 0~6 地质构造(R2) 断裂构造(R21) 导水 破碎带宽(m) >50 10~50 5~10 1~5 <1 影响带宽(m) >100 20~100 10~20 5~10 <5 R21评分值 18~20 16~18 12~16 8~12 4~8 阻水 破碎带宽(m) >10 5~10 1~5 0.2~1 <0.2 影响带宽(m) >50 20~50 10~20 5~10 1~5 R21评分值 10~14 6~10 4~6 2~4 0~2 褶皱核部(R22) 褶皱形态 宽缓型 中缓型 紧闭型 岩层倾角 <30° 30°~60° >60° R22评分值 0~10 10~16 16~20 褶皱两翼及
单斜地层(R23)岩层厚度(m) 巨厚层 厚层 中厚层 薄层 >1 0.5~1 0.1~0.5 <0.1 R231评分值 0~2 2~6 6~10 10~12 岩层倾角 <30° 30°~45° 45°~60° >60° R232评分值 0~6 6~10 10~14 14~20 地表汇水条件(R3) 地表地貌形态 开口沟谷切割 完整斜坡 缓坡台地、盆地 陡坡、冰蚀谷 R31评分值 15~20 10~15 0~10 地面坡度 0°~15° 15°~30° 30°~45° R32评分值 15~20 10~15 5~10 地下水位(R4) 隧道位于地下水位以下(m) 0~20 20~100 100~200 200~500 >500 R4评分值 18~20 14~18 10~14 6~10 4~6 冰川补给(R5) 冰雪覆盖面积(km2) 0~20 20~50 ≥50 R5评分值 0~12 12~18 18~20 表 3 危险等级划分表
Table 3 Hazard level classification table
THR 危险性
等级极高 高 中等 较低 低 评分 >77 62~77 38~62 23~38 0~23 评级 Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 单点最大
涌突水量(m3/d)>104 103~104 102~103 10~102 <10 表 4 岩溶隧道涌突水风险性评价体系(THK)
Table 4 Risk assessment system for water inrush in karst tunnels (THK)
岩石
可溶性
(K1)CaCO3含量(%) >75 50~75 25~50 5~25 0~5 岩石定名 灰岩 白云质灰岩
泥质云灰岩灰质白云岩
白云岩泥质灰岩
泥质灰云岩泥质
白云岩K11评分值 16~20 12~16 8~12 4~8 0~4 岩石的结构 生物碎屑结构 泥晶结构 粒屑结构 亮晶结构 粗晶结构 K12评分值 16~20 12~16 8~12 4~8 0~4 地质
构造
(K2)断裂 导水
断裂破碎带宽(m) ﹥10 2~10 1~2 0.1~1 <0.1 K2评分 17~20 14~17 10~14 6~10 0~6 阻水
断裂破碎带宽(m) ﹥10 5~10 1~5 0.2~1 <0.2 K2评分 14~17 10~14 6~10 4~6 0~4 褶皱 褶皱形态 宽缓型 中缓型 紧闭型 岩层倾角 <30° 30°~60° >60° K2评分 0~10 10~16 16~20 单斜 岩层组合类型 厚层状裂隙–
岩溶含水岩组厚层脉状岩溶–
裂隙含水岩组夹层式层岩–
裂隙含水岩组孔隙–裂隙岩
溶含水岩组K21评分 15~20 10~15 4~10 0~4 岩层倾角 <15° 15°~30° 30°~45° 45°~60° >60° K22评分 17~20 14~17 10~14 6~10 0~6 地表环
境特征
(K3)降雨入渗系数 >0.7 0.5~0.7 0.3~0.5 0.1~0.3 <0.1 K31评分 16~20 12~16 8~12 4~8 0~4 地面坡度 <10° 20°~10° 30°~20° 45°~30° >45° K31评分 16~20 12~16 8~12 4~8 0~4 隧道岩溶
分带(K4)岩溶水垂向分带 垂直渗流带 季节变动带 水平径流带 深部循环带 K4评分 0~6 6~16 14~18 8~12 等级划分 THK值 >77 62~77 38~62 23~38 0~23 危险性等级 极高风险(Ⅴ) 高风险(Ⅳ) 中等风险(Ⅲ) 较低风险(Ⅱ) 低风险(Ⅰ) 单点涌突水量(m3/h) >104 103~104 102~103 10~102 <10 -
匡星, 白明洲, 王成亮. 基于模糊评价方法的隧道岩溶突水地质灾害综合预警方法[J]. 公路交通科技, 2010, 27(11): 100-103 doi: 10.3969/j.issn.1002-0268.2010.11.018 KUANG Xing, BAI Ming-zhou, Wang Cheng-liang. Research of Comprehensive Warning of Wate rInrush Hazards in KarstTunnel Based onF uzzy Evaluation Method[J]. Journal of Highway and Transportation Research and Development, 2010, 27(11): 100-103. doi: 10.3969/j.issn.1002-0268.2010.11.018
李利平, 李术才, 陈军, 等. 2011. 基于岩溶突涌水风险评价的隧道施工许可机制及其应用研究[J]. 岩石力学与工程学报, 30(7): 1345-1355. LI Liping, LI Shucai, CHEN Jun. CONSTRUCTION LICENSE MECHANISM AND ITS APPLICATION BASED ON KARST WATER
李术才, 周宗青, 李利平, 等. 岩溶隧道突水风险评价理论与方法及工程应用[J]. 岩石力学与工程学报, 2013, 32(09): 1858-1867 doi: 10.3969/j.issn.1000-6915.2013.09.018 LI Shucai, ZHOU Zongqing, LI Liping, et al. Theory and method of water inrush risk assessment in karst tunnel and its engineering application [J]. Journal of Rock Mechanics and Engineering, 2013, 32 (09): 1858-1867 doi: 10.3969/j.issn.1000-6915.2013.09.018
罗文艺. 岩溶隧道涌水风险评价体系及应用[J]. 铁道建筑, 2013 (02): 52-56 LUO Wenyi. Risk assessment system and application of water gushing in karst tunnel [J]. Railway Construction, 2013 (02): 52-56.
马致远, 刘方. 陕西渭北东西部隐伏岩溶地下水的差异[J]. 西北地质, 1998(01): 66-68 MA Zhiyuan, LIU Fang. Differences of concealed karst groundwater in eastern and western Weibei of Shaanxi Province[J]. Northwest Geology, 1998(01): 66-68.
毛邦燕, 许模, 蒋良文. 隧道岩溶突水、突泥危险性评价初探[J]. 中国岩溶, 2010, 29(2): 183-189 doi: 10.3969/j.issn.1001-4810.2010.02.013 MAO Bang-yan, XU Mo, JIANG Liang-wen. Preliminary study on risk assessment of water and mud inrush in karst tunne[J]. . CARSOLOGICA SINICA, 2010, 29(2): 183-189. doi: 10.3969/j.issn.1001-4810.2010.02.013
彭建兵, 崔鹏, 庄建琦. CZ铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 2020, (12), 2377-2389 PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, (12), 2377-2389.
沈祥明, 刘坡拉, 汪继锋. 基于层次分析法的铁路岩溶隧道突水风险评[J]. 铁道工程学报, 2010( 12): 56-63 doi: 10.3969/j.issn.1006-2106.2010.12.013 SHEN Xiangming, LIU Pola, Wang Jifeng. Evaluation of water-inrush risks of karst tunnel with analytic hierarchy process[J]. Journal Of Railway Engineering Society, 2010( 12): 56-63. doi: 10.3969/j.issn.1006-2106.2010.12.013
王学平, 李稳哲. 地质构造对鄂尔多斯盆地南缘岩溶地下水的控制作用[J]. 西北地质, 2010, 43(03): 106-112 doi: 10.3969/j.issn.1009-6248.2010.03.014 WANG Xueping, LI Wenzhe. Geological Tectonics Control on the Karstic Water in the South Margin of the Ordos Basin[J]. Northwestn Geology, 2010, 43(03): 106-112. doi: 10.3969/j.issn.1009-6248.2010.03.014
徐钟. 复杂岩溶隧道涌突水演化机理及灾害综合防治研究—以新建叙大铁路为例[D]. 成都: 成都理工大学, 2018. XU Zhong. Study on the evolution mechanism of water inrush in complex karst tunnels and comprehensive disaster prevention and control - taking the newly-built Xuzhou-Dalian Railway as an example [D]. Chengdu: Chengdu University of Technology, 2018.
许振浩, 李术才, 李利平, 等. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. 岩土力学, 2011, 32(6): 1757-1765 doi: 10.3969/j.issn.1000-7598.2011.06.027 XU Zhenhao, LI Shucai, LI Liping, et al. [J]Rock and Soil Mechanics, 2011, 32(6): 1757-1765. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.027
赵勇, 石少帅, 田四明, 李国良, 陶伟明, 郭伟东. CZ铁路雅安至林芝段隧道建造面临的主要工程技术难题与对策建议[J]. 隧道建设(中英文), 2021, 41(07): 1079-1090 ZHAO Yong, SHI Shaoshuai, TIAN Siming, LI Guoliang, TAO Weiming, GUO Weidong. Technical Difficulties and Countermeasure Suggestions in Tunnel Construction of Ya′an-Linzhi Section of Sichuan-Tibet Railway[J]. Tunnel Construction, 2021, 41(07): 1079-1090.
周宗青, 李术才, 李利平, 等. 岩溶隧道突涌水危险性评价的属性识别模型及其工程应用[J]. 岩土力学, 2013, 34(03): 818-826 doi: 10.16285/j.rsm.2013.03.024 ZHOU Zongqing, LI Shucai, LI Liping, et al. Attribute identification model and its engineering application for risk assessment of water inrush in karst tunnels [J]. Geotechnical Mechanics, 2013, 34 (03): 818-826 doi: 10.16285/j.rsm.2013.03.024
朱珍, 王旭春, 袁永才, 等. 2015. 基于加权平均法的岩溶隧道突涌水风险评估[J]. 公路工程, 40(6): 51-54 ZHU Zhen, WANG Xuchun, YUAN Yongcai. Risk Assessment of Water Inrush in Karst Tunnels Based on Weighted Average Method[J]. Highway Engineering, 40(6): 51-54.
Bogardi I. 1982. Bayesian Analysis of Underground Flooding[J]. Water Resources Research, 18(04): 1110-1116.
-
期刊类型引用(2)
1. 钟宏伟,秦鹏飞,卢再光,张颖. 富水砂土隧道注浆加固效果评价研究:以郑州地铁7号线砂土隧道为例. 西北地质. 2025(01): 315-322 . 本站查看
2. 王彬彬,赖勇,陆陈,张帅,徐国意. 考虑初始损伤与填充荷载影响的岩溶隧道围岩稳定性分析. 中国科技论文. 2024(11): 1223-1229 . 百度学术
其他类型引用(0)