ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

某艰险山区铁路隧道岩溶发育特征及涌突水危险性评价

贾杰, 覃礼貌, 于振涛, 谢荣强, 罗元冲

贾杰, 覃礼貌, 于振涛, 等. 某艰险山区铁路隧道岩溶发育特征及涌突水危险性评价[J]. 西北地质, 2023, 56(3): 258-267. DOI: 10.12401/j.nwg.2023099
引用本文: 贾杰, 覃礼貌, 于振涛, 等. 某艰险山区铁路隧道岩溶发育特征及涌突水危险性评价[J]. 西北地质, 2023, 56(3): 258-267. DOI: 10.12401/j.nwg.2023099
JIA Jie, QIN Limao, YU Zhentao, et al. Karst Development Characteristics and Water Inrush Risk Assessment of Railway Tunnel in a Difficult and Dangerous Mountain Area[J]. Northwestern Geology, 2023, 56(3): 258-267. DOI: 10.12401/j.nwg.2023099
Citation: JIA Jie, QIN Limao, YU Zhentao, et al. Karst Development Characteristics and Water Inrush Risk Assessment of Railway Tunnel in a Difficult and Dangerous Mountain Area[J]. Northwestern Geology, 2023, 56(3): 258-267. DOI: 10.12401/j.nwg.2023099

某艰险山区铁路隧道岩溶发育特征及涌突水危险性评价

详细信息
    作者简介:

    贾杰(1989−),男,工程师,硕士,主要从事铁路工程地质研究。E–mail:1198006930@qq.com

  • 中图分类号: P642.25;U453.6+1

Karst Development Characteristics and Water Inrush Risk Assessment of Railway Tunnel in a Difficult and Dangerous Mountain Area

  • 摘要:

    某艰险山区铁路隧道是重要的控制工程,区域构造运动活跃、工程地质环境极为复杂,需穿越上三叠统波里拉组灰岩条带,岩溶突涌水问题突出。为了准确评价隧道涌突水的危险性,通过地质调绘、深孔钻探等手段,对隧道水文地质特征进行精细的调查和深入的分析,探明隧道岩溶发育特征及范围,将隧址区地下水径流系统分为局部表层、浅层和区域深层径流系统,并遵循多元、多层次的分析评价思路,选取不同评价指标,构建非可溶岩段和可溶岩段隧道涌突水危险性评价体系。评价结果显示,隧道涌突水问题总体以较低危险性为主,高和极高危险段仅约占隧道总长的4%和1%,主要受控于波里拉组灰岩条带和额艾顿断裂带。

    Abstract:

    A railway tunnel in a difficult and dangerous mountain area is an important control project. The regional tectonic movement is active, and the engineering geological environment is extremely complex. In order to prepare to evaluate the risk of water inrush in the tun–nel, the hydrogeological characteristics of the Tunnel were investigated and analyzed in depth by means of geological mapping, deep hole drilling, etc. The groundwater runoff system in the site area is roughly divided into local surface runoff system, shallow runoff system and regional deep run off system, and following the multiple and multilevel analysis and evaluation ideas, different evaluation indicators are selected to construct tunnel surges in the insoluble rock section and the soluble rock section. According to the evaluation system of water inrush risk, it is concluded that the water inrush problem in the Tunnel is mainly of low risk, and the high and extremely high risk sections only account for about 4% and 1% of the total length of the tunnel, which is mainly controlled by limestone (T3b) and Eaideng fault zone.

  • 研究区南临祁连造山带,北接中亚造山带,其所处构造环境的特殊性对区域构造演化及板块运动有着重大意义。该地区岩浆演化期次及构造背景研究较为薄弱且存在较大争议,前人通过对合黎山地区五坝和张家窑岩体锆石U-Pb年代学及同位素地球化学特征研究,其年龄介于432~397 Ma,为中志留世—早泥盆世,认为阿拉善地块西南缘早古生代很可能受控于祁连造山带的构造演化,处于后碰撞拉伸环境(王增振等,2020);通过对龙首山西山头窑地区三期岩体锆石U-Pb年代学研究,其年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世,处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022);而强利刚等(2019)认为龙首山地壳在晚古生代处于拉伸的稳定阶段。对合黎山地区岩浆岩形成时代及构造环境研究存在重要意义。龙首山成矿带区内侵入岩发育广泛,主要为酸性、中酸性岩石,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主(张甲民等,2017),前人对龙首山成矿带的研究工作主要以东段为主,且主要集中在早古生代(牛宇奔等,2018刘文恒等,2019王增振等,2020)。而不同构造环境下的侵入岩具有不同的地球化学特征及同位素特征,能有效反映其岩浆源区及构造演化等重要信息。笔者在前人工作基础上对该区花岗闪长岩开展了锆石U-Pb年代学、岩石地球化学及Lu-Hf同位素特征的研究,确定该岩体形成时代并探讨这些黑云母花岗闪长岩的成因问题及龙首山成矿带西南缘构造环境特征。

    合黎山地处阿拉善地块龙首山成矿带西南缘,大地构造位置属于华北板块西南边缘(图1a)(谭文娟等,2012),北以龙首山北缘断裂与潮水中新生代断陷相邻(汤中立等,1999),南以南缘断裂与走廊过渡带分开。区内成矿条件有利(焦建刚等,2007)。龙首山成矿带是中国西北重要的铀成矿带(王承花,2010),同时中国著名的金川镍矿也位于该成矿带内(强利刚等,2019张照伟等,2023)。

    图  1  阿拉善地块大地构造简图(a)及罗城地区地质简图(b)
    Figure  1.  (a) Geostructural map of Alxa Block and (b) geological map of Luocheng Area

    区内地质构造复杂,次级构造发育,逆冲构造及伸展构造叠加,总体构造为NWW向(甘肃省地质局,1974),出露地层包括前震旦系龙首山群的角闪岩相–绿片岩相变质岩等中级区域变质岩系,其与上覆地层均为不整合接触;震旦系下统及中上统的云母石英片岩、变粒岩及变质砂岩、大理岩等为主的浅变质岩,其下统与中—上统之间多为断层接触;侏罗系青土井群的砂岩、砂砾岩等为主的陆源碎屑岩夹煤层,其与上覆地层及下伏地层均为不整合接触;白垩系以砂砾岩、泥岩等为主的碎屑岩;第三系以砾岩、含砾砂岩为主的沉积岩及第四系松散堆积物(图1b)。

    测区内岩浆岩发育广泛,主要为酸性、中酸性岩石为主,侵入活动主要是在加里东中期及华力西期,以华力西期侵入岩最为发育,主要岩性以花岗岩、花岗闪长岩、英云闪长岩等为主,其中以花岗闪长岩出露最为广泛,其次为英云闪长岩。罗城岩体主要为花岗闪长岩发育,其中可见花岗岩、闪长岩呈脉状发育。区内五坝和张家窑岩体锆石U-Pb年代学年龄介于432~397 Ma,为中志留世—早泥盆世(王增振等,2020);西山头窑地区岩体锆石U-Pb年代学年龄介于304.3~281.2 Ma,为晚石炭世—早二叠世。

    罗城岩体主要位于甘肃省高台县罗城镇北侧,其岩性主要为黑云母花岗闪长岩,野外岩体出露较为完整,笔者选取了合黎山地区高台县罗城幅的黑云母花岗闪长岩进行锆石U-Pb定年分析,共采集样品5件,其中岩石年龄同位素样品1件,并在岩石年龄同位素样品采集处配套采集岩石地球化学样品4件。样品采集地理坐标:E 99°43′39″,N 39°46′30″和E 99°41′43″,N 39°48′20″。为确保锆石数据准确性,样品均为未风化蚀变的新鲜岩石。

    岩石新鲜面为灰白色,具半自形粒状结构,块状构造(图2a)。主要矿物及含量:斜长石(45%),石英(20%),碱性长石(15%),普通角闪石(15%),黑云母(5%)。斜长石粒径约0.30~1.30 mm,呈半形粒状、板状,具聚片双晶,表面浑浊,微裂隙发育,次生绢云母化,均匀分布。碱性长石粒径约0.20~1.10,呈半自形板状,具卡式双晶,少量分布。石英粒径约0.10~2.00 mm,呈他形粒状,波状消光,沿长石粒间分布。普通角闪石粒径约0.20~1.60 mm,呈他形柱状,黄褐色,截面呈菱面体状,具角闪石式解理,绿泥石化,沿长英质粒间定向分布。黑云母粒径约0.15~2.25 mm,呈鳞片状、片状,褐黄色-红褐色,沿长英质粒间定向分布。副矿物有磷灰石、绿帘石(图2b、图2c、图2d)。

    图  2  黑云母花岗闪长岩手标本及镜下照片
    a.黑云母花岗闪长岩手标本; (b,d).正交偏光镜下特征; c.单偏光镜下特征;Qtz.石英; Bt.黑云母; P1.斜长石; Kfs.钾长石; Hbl.角闪石
    Figure  2.  Biotite granodiorite hand specimen and microscopic photograph

    样品的锆石挑选、制靶、CL照相由西安瑞石地质科技有限公司完成,采用标准重矿物分离技术分选出重矿物,随后在双目镜下挑选出锆石颗粒,将不同特征的锆石颗粒粘在双面胶上,并用无色透明的环氧树脂固定,待其固化之后将表面抛光至锆石内部暴露。然后拍摄阴极发光图像、透射光图像和反射光图像,选取分析点位。

    锆石U-Pb定年和Hf同位素组成分析在中国地质调查局西安地质调查中心岩浆作用成矿与找矿重点实验室完成。锆石U-Pb定年在LA-ICP-MS仪器上用标准测定程序进行,样品采用激光剥蚀等离子体质谱仪原位分析锆石微区的铀铅比值(206Pb/238U、207Pb/235U和207Pb/206Pb)(李艳广等,2015)并通过Glitter计算程序计算锆石的年龄及标准偏差;应用Isoplot(Ludwig, 2003)计算程序对锆石样品的206Pb/238U年龄和207Pb/235U年龄在谐和图上进行投图,并计算谐和年龄测点的加权平均值。

    锆石Hf同位素组成运用Neptune型多接收电感耦合等离子体质谱仪和GeolasPro型激光剥蚀系统联用的方法完成(袁洪林等,2007),所选测试位置均与锆石U-Pb测点位置相近,测试束斑直径为32 μm,采用国际标准锆石91500进行监控和样品外部校正。

    主量元素和微量元素分析测试在中国地质调查局西安矿产资源调查中心完成,主量元素采用X荧光光谱仪进行分析,稀土和微量元素采用等离子质谱仪进行分析,测试结果见表1

    表  1  罗城黑云母花岗闪长岩主量元素(%)、微量元素(10−6)、稀土元素(10−6)分析结果表
    Table  1.  Analysis results of major elements (%), trace elements (10−6) and rare earth elements (10−6) in Luocheng biotite granodiorite
    样品编号LCYT03LCYT04LCYT05LCYT06
    SiO2 59.84 58.75 58.52 59.09
    Al2O3 16.91 17.25 17.28 17.28
    Fe2O3 7.13 7.82 7.55 7.61
    CaO 6.33 6.70 6.93 6.68
    MgO 3.13 3.38 3.53 3.34
    K2O 1.87 1.49 1.49 1.54
    Na2O 2.52 2.60 2.55 2.60
    P2O5 0.13 0.15 0.15 0.15
    TiO2 0.68 0.74 0.77 0.75
    MnO 0.13 0.14 0.14 0.14
    LOI 1.03 0.74 0.85 0.60
    总和 99.70 99.76 99.75 99.79
    K2O+Na2O 4.40 4.09 4.04 4.15
    K2O/Na2O 0.74 0.57 0.59 0.59
    δ 1.15 1.06 1.05 1.07
    A/NK 2.74 2.93 2.98 2.9
    A/CNK 0.97 0.97 0.96 0.97
    Rb 61.1 49.2 40.6 46.9
    Th 3.37 4.58 5.70 8.46
    U 0.79 0.72 0.74 0.75
    Nb 4.48 4.76 4.64 4.64
    Sr 376 429 413 403
    Zr 84.3 112 88.6 118
    Hf 2.34 2.79 2.23 2.97
    F 454 320 663 360
    Sn <1.80 <1.80 <1.80 <1.80
    Cr 12.9 17.6 14.1 14.1
    Li 16.8 18.3 17.3 17.4
    Be 0.76 0.87 0.86 0.79
    V 166 186 180 174
    Co 15.3 16.2 15.6 15.3
    Ni 8.36 10.9 11.2 10.4
    Ga 16.6 17.7 16.3 16.4
    Cs 2.52 2.92 2.69 3.15
    Ta 0.33 0.35 0.34 0.35
    W 2.30 1.91 1.81 1.80
    Bi 0.073 0.070 <0.050 0.057
    La 12.0 14.3 12.5 12.5
    Ce 27.1 28.9 25.5 25.7
    Pr 3.60 3.59 3.32 3.21
    Nd 16.4 15.3 14.6 14.1
    Sm 3.91 3.37 3.28 3.14
    Eu 1.05 1.07 1.05 1.03
    Gd 4.14 3.54 3.49 3.41
    Tb 0.66 0.55 0.54 0.52
    Dy 4.04 3.28 3.24 3.15
    Ho 0.83 0.68 0.67 0.65
    Er 2.54 2.03 2.02 1.95
    Tm 0.36 0.29 0.29 0.28
    Yb 2.33 1.88 1.87 1.84
    Lu 0.36 0.30 0.30 0.29
    Y 21.3 17.2 16.9 16.4
    ΣREE 79.32 79.08 72.67 71.77
    LREE 64.06 66.53 60.25 59.68
    HREE 15.26 12.55 12.42 12.09
    LREE/HREE 4.20 5.30 4.85 4.94
    (La/Yb)N 3.69 5.46 4.79 4.87
    δEu 0.80 0.95 0.95 0.96
    δCe 1.01 0.99 0.97 0.99
    下载: 导出CSV 
    | 显示表格

    样品的锆石颗粒的CL图像(图3)显示所选的锆石为透明的自形晶体,为无色透明或浅黄色,大部分锆石结晶较好,短柱状晶形,阴极发光电子图像特征均显示出典型的岩浆结晶韵律环带结构。

    图  3  锆石样品测点CL照片
    Figure  3.  CL photograph of the zircon sample

    本次所选锆石样品25颗,均为有效样品,黑云母花岗闪长岩锆石U-Pb分析测试结果见表2,锆石Th含量为34.81×10−6~129.66×10−6,U含量为52.88×10−6~147.36×10−6,Th/U值为0.55~0.97,均大于0.4,说明锆石为岩浆成因(吴元保等,2004)。锆石微量元素测试结果见表3,其显示出重稀土富集,相对亏损轻稀土元素的特征,显示典型的岩浆锆石成因特征(Hoskin,2000)。锆石谐和图反映出锆石U-Pb年龄数据分布比较集中且谐和程度较好(图4a),所有数据协和度均符合要求,证明数据均有效。通过数据分析得到206Pb/238U加权平均年龄为(289±3)Ma,(MSWD=0.57),代表岩浆结晶年龄(图4b)。

    表  2  罗城花岗闪长岩(LCYT01)锆石LA-ICP-MS测年结果
    Table  2.  Zircon LA-ICP-MS dating results of Luocheng granodiorite (LCYT01)
    测点号含量(10−6Th/U同位素比值同位素年龄
    PbThU207Pb/206Pb±1δ207Pb/235U±1δ206Pb/238U±1δ208Pb/232Th±1δ207Pb/206Pb±1δ207Pb/235U±1δ206Pb/238U±1δ208Pb/232Th±1δ
    LCYT00115.9679.2881.670.970.051530.004230.320790.025510.045110.001020.014520.00048264.4177.81282.519.61284.56.28291.39.56
    LCYT00214.2547.2872.220.650.052020.00460.329390.028270.045890.001080.012690.00063286.1189.7289.121.59289.26.6825512.64
    LCYT00312.0434.8163.550.550.05240.006970.324630.042270.04490.001340.013750.00088302.7277.82285.532.4283.28.26276.117.48
    LCYT00419.9293.9998.060.960.049230.004980.317720.031380.046780.001140.014320.00059158.7220.85280.124.18294.77.05287.511.7
    LCYT00511.3741.9157.970.720.05170.007620.333650.048170.046780.001520.016110.00095272.2306.78292.436.67294.79.3932318.95
    LCYT00616.7980.9285.360.950.050210.004380.312610.026510.045130.001030.013450.00049204.9190.68276.220.51284.66.352709.73
    LCYT00727.09129.66147.360.880.054120.003560.3420.02160.045820.000960.013840.00042375.8141.54298.716.34288.85.93277.88.4
    LCYT00812.5145.5565.960.690.050290.00430.320150.02660.046160.001060.015350.00062208.3187.1628220.46290.96.51307.812.31
    LCYT00913.6945.6872.340.630.051530.004440.330810.027630.046560.001090.015190.00068264.4186.14290.221.08293.36.73304.713.59
    LCYT01012.6846.0266.650.690.051150.004720.330380.02970.046850.001110.014570.00063247.4199.46289.922.67295.16.83292.512.53
    LCYT01113.0949.9268.970.720.047920.005630.309370.035630.046820.001220.014730.0008794.2257.92273.727.632957.49295.617.3
    LCYT01212.5347.865.530.730.05210.004820.336830.030330.046890.001120.016060.00063289.7198294.823.04295.46.8732212.57
    LCYT01318.3192.7198.110.940.051780.00390.329560.023990.046180.0010.013620.00044275.6163.56289.218.322916.19273.38.78
    LCYT0141993.38105.350.890.053290.003980.32730.023580.044570.000990.014330.00046340.9160.32287.518.04281.16.09287.69.21
    LCYT01515.1651.5380.720.640.049480.004120.305210.024720.044760.000980.014240.00055170.8183.56270.519.23282.36.06285.711.06
    LCYT01614.0155.4376.330.730.05030.005370.308480.032080.044510.001180.012860.00065209229.9627324.9280.77.27258.212.91
    LCYT01711.345.8860.720.760.052390.004990.332310.030790.046040.001150.012880.0006302.4203.45291.323.47290.17.1258.611.9
    LCYT01816.3873.4288.240.830.053210.00370.32920.022010.04490.000960.014090.00044337.7149.5228916.81283.25.92282.78.81
    LCYT01915.8176.5880.920.950.051660.003780.328130.023170.04610.000990.014660.00044270.4159.18288.117.72290.66.07294.28.75
    LCYT02013.253.4268.410.780.050230.004230.315340.025820.045570.001030.01510.00054205.7184.61278.319.93287.36.36302.910.68
    LCYT02110.7736.8552.880.700.050950.00440.322250.027020.045920.001050.013670.00064238.6187.4283.620.75289.46.46274.312.67
    LCYT02213.9547.6168.780.690.052830.003880.343720.024360.047240.001020.013890.00055321.3157.9430018.41297.66.25278.810.94
    LCYT02323.03103.73117.270.880.052350.003130.336940.019260.046730.000940.014210.00041300.6130.55294.914.63294.45.77285.28.1
    LCYT02416.8156.8885.690.660.053870.003470.341950.021130.046090.000950.013370.00048365.6138.52298.615.99290.55.83268.49.65
    LCYT02514.867.0576.380.880.052030.003840.330110.023590.046080.000990.014190.00047286.8160.34289.718290.46.11284.89.33
    下载: 导出CSV 
    | 显示表格
    表  3  罗城花岗闪长岩锆石分析点位微量元素(10−6)测试结果
    Table  3.  Test results of trace elements (10−6) at zircon analysis points of Luocheng granodiorite
    测点号NbLaCePrNdSmEuGdTbDyHoErTmYbLuTa
    LCYT0011.100.068.230.050.230.491.2827.740.78107.2740.27181.1235.88339.1766.630.28
    LCYT0020.490.046.690.032.073.330.4011.138.8267.1426.56126.0227.32290.7857.980.24
    LCYT0030.610.006.260.020.492.640.297.434.6545.1617.3587.1319.02192.3638.240.27
    LCYT0040.630.069.250.080.440.691.1525.903.00112.8844.64196.4439.56377.0971.610.26
    LCYT0050.550.006.420.031.794.980.368.459.9940.5119.2787.5319.76189.5237.300.23
    LCYT0060.520.019.030.050.631.340.9124.923.67102.5838.80175.9835.30323.6465.730.28
    LCYT0070.460.0217.040.111.552.650.8524.046.96113.4945.17206.5843.34418.8482.250.41
    LCYT0081.370.007.310.031.493.080.4610.508.6950.8520.8697.3221.63218.5042.570.30
    LCYT0090.530.047.760.020.671.580.247.994.0643.0818.5685.8119.58193.5236.740.31
    LCYT0100.650.007.390.030.401.280.2411.383.4352.6720.9798.2122.28213.9442.280.26
    LCYT0110.670.017.650.050.442.140.4311.654.0854.2422.14101.0221.59221.8241.650.21
    LCYT0120.580.247.210.070.731.880.489.624.4351.7020.95100.7022.19222.3343.830.39
    LCYT0133.010.019.210.081.562.820.9524.933.94113.5645.37198.1541.36399.3271.970.38
    LCYT0140.660.019.650.071.793.631.1528.879.60117.6544.48198.8541.00392.0576.110.34
    LCYT0150.580.008.440.022.164.680.3310.509.8352.8820.95100.9822.47230.3244.420.31
    LCYT0160.740.007.730.040.491.290.4012.464.0861.4326.20120.9726.57261.9652.640.38
    LCYT0170.730.006.930.020.872.130.4312.065.0454.0723.41106.0523.33232.8844.250.33
    LCYT0180.840.018.090.060.571.820.8320.894.5892.5836.57172.3935.31347.5267.400.29
    LCYT0190.610.008.040.061.533.320.9726.287.25103.3341.09175.9336.48349.5666.290.23
    LCYT0200.470.007.310.021.725.060.3914.228.7863.2324.83115.4925.21238.9145.300.22
    LCYT0210.570.015.700.020.691.870.5310.945.1553.1621.38104.6222.91221.5645.690.30
    LCYT0220.530.046.600.030.271.730.4612.333.8967.2425.79122.8627.12273.0052.930.28
    LCYT0230.700.049.560.090.571.921.1827.415.00122.9649.00227.3746.39456.0789.130.38
    LCYT0241.140.048.630.021.854.190.289.3010.4948.6820.0695.2320.74214.1041.880.34
    LCYT0251.120.027.630.071.412.911.0422.234.0193.4736.23160.6534.00327.8865.050.25
    下载: 导出CSV 
    | 显示表格
    图  4  锆石样品U-Pb谐和图
    Figure  4.  U-Pb Concord diagram of zircon samples

    在LA-ICP-MS锆石U-Pb测年的基础上,对黑云母花岗闪长岩样品25颗锆石测点进行了锆石微区Hf同位素测定。测点的数据分析结果(表4)。176Yb/177Hf值介于0.0122223510.042050552176Lu/177Hf值介于0.000424710.001378472,均小于0.002,说明锆石在形成后具有很少的放射成因Hf的积累。因此,锆石 176Hf/177Hf值可能代表该锆石形成时的176Hf/177Hf值(吴福元等,2007),176Hf/177Hf值介于0.2827260480.282787588εHf(t)值均为正值,介于+4.37~+6.88,平均为+5.6,通过锆石Hf同位素εHf(t)-U-Pb年龄t(Ma)图解(图5a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或新生地壳,Hf同位素一阶段模式年龄T(DM1)分布范围为615.4~703.0 Ma,平均值为660.5 Ma,地壳模式年龄T(DMC)分布范围为808.6~952.5 Ma,平均值为882.8 Ma,地壳模式年龄T(DMC)较集中(图5b)。

    表  4  黑云母花岗闪长岩锆石Hf同位素分析结果
    Table  4.  Zircon Hf isotope analysis results of biotite granodiorite
    分析点t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σHfiεHf (0εHf (t±1σT(DM1T(DMC±1σfLu/Hf
    LCYT01-01284.50.0185586530.0006254970.2827722620.00001941500.2827690.0799942726.141620.679525634.4846.80.06673-0.9583
    LCYT01-02289.20.0213508130.000729880.2827422290.00001733430.282738-0.9821200125.160500.606701676.8910.50.065471-0.95134
    LCYT01-03283.20.0185419030.00063320.2827615260.00001621770.282758-0.2996866935.732140.56762649.0871.00.062774-0.95779
    LCYT01-04294.70.0220882280.0007384730.2827875880.00001740890.2827840.6219991686.882540.609311615.4808.60.063449-0.95077
    LCYT01-05294.70.0164732050.0006104080.2827343750.00001781010.282731-1.2598643495.024450.623354685.4922.90.066228-0.95931
    LCYT01-06284.60.030878080.001030040.2827487010.00001693800.282743-0.7532266325.233860.59283673.2902.50.065308-0.93133
    LCYT01-07288.80.0197257310.0006696610.2827592090.00001664090.282756-0.3816205935.764270.582432652.8873.10.063558-0.95536
    LCYT01-08290.90.0257500310.0008673350.2827429880.00001806780.282738-0.9552588135.197570.632374678.1909.30.066791-0.94218
    LCYT01-09293.30.0218180770.000740690.2827526590.00001701880.282749-0.613269935.615880.595659662.8885.40.06456-0.95062
    LCYT01-10295.10.0318103150.0010723330.2827600720.00001852730.282754-0.351094865.852240.648455658.3872.00.067113-0.92851
    LCYT01-112950.0323206950.001060830.2827700290.00001875880.2827640.0010278596.204710.656558644.5850.30.066935-0.92928
    LCYT01-12295.40.0257539410.000840720.2827446190.00001950560.28274-0.8975709255.357100.682698675.5902.80.068675-0.94395
    LCYT01-132910.0420505520.0013784720.2827446020.00001883510.282737-0.8981748115.158400.659227684.9911.50.069048-0.9081
    LCYT01-14281.10.0259173880.0008951120.2827772580.00001732290.2827730.2566710656.194730.606302631.9840.90.064172-0.94033
    LCYT01-15282.30.0122223510.000424710.2827306610.00001858930.282728-1.3911864274.659460.650625687.1936.40.06705-0.97169
    LCYT01-16280.70.0260717950.000893780.2827260480.00001877770.282721-1.55432734.374300.65722701.7952.50.068661-0.94041
    LCYT01-17290.10.0263774940.0008923340.2827533610.00001776710.282749-0.5884351115.542650.621848664.4887.50.065933-0.94051
    LCYT01-18283.20.0249169180.0008804570.2827789380.00002032120.2827740.3160932876.301970.711244629.4835.90.068288-0.9413
    LCYT01-19290.60.0182103230.0006337710.2827818010.00001753640.2827780.4173397936.609510.613775621.6822.40.063668-0.95775
    LCYT01-20287.30.018020850.0006154230.2827727750.00001705720.2827690.0981199366.222220.597003633.5843.90.06338-0.95897
    LCYT01-21289.40.0203842770.0007181130.2827423720.00001847100.282738-0.97704095.172150.646485676.4909.90.067032-0.95213
    LCYT01-22297.60.025947460.0008813540.2827600120.00001615870.282755-0.3532357355.941050.565556655.2868.50.063322-0.94124
    LCYT01-23294.40.0294271320.0010148530.2827266720.00002064820.282721-1.5322865044.666560.722688703.0944.40.071574-0.93234
    LCYT01-24290.50.0185395080.0006411150.2827699110.00001629770.282766-0.0031621896.185170.570421637.8848.50.062508-0.95726
    LCYT01-25290.40.0218810360.0007494570.2827411580.00001557880.282737-1.0199706465.144730.545259678.6912.30.063102-0.95004
    下载: 导出CSV 
    | 显示表格
    图  5  罗城黑云母花岗闪长岩锆石εHft)-t(Ma)图解(a)(据李良等,2018)和地壳模式年龄T(DMC)统计直方图(b)
    Figure  5.  (a)Zircon εHf(t)-t (Ma) diagram (According to LI Liang et al., 2018) and (b) crustal model age T (DMC) statistical histogram (b) of Luocheng biotite granodiorite

    合黎山地区罗城黑云母花岗闪长岩的主量元素分析结果见表1,其SiO2含量介于58.52%~59.84%,Al2O3含量介于16.91%~17.28%。全碱含量Na2O+K2O介于4.04%~4.40%,相对富碱,Na2O含量介于2.52%~2.60%,K2O含量介于1.49%~1.87%,富钠贫钾。里特曼指数δ介于1.05~1.15。根据CIPW标准矿物计算(Le Maitre,1979),石英(Qtz)含量介于18.97%~20.69%,碱性长石(A)含量介于11.6%~14.66%,斜长石(Pl)含量介于47.86%~50.76%,在Q-A-P图解中(图6a),处在花岗闪长岩区域中。SiO2-(Na2O+K2O-CaO)图解(图6b)反应岩石属于钙性系列。SiO2-K2O图解(图6c)反映岩石主体属于钙碱性系列。铝饱和指数A/CNK比较集中,介于0.96~0.97,A/NK介于2.74~2.98,在A/CNK-A/NK图解中(图6d),处在准铝质范围内。

    图  6  罗城黑云母花岗闪长岩Q-A-P图解(a)(据Streckeisen, 1976)、SiO2-(Na2O+K2O-CaO)图解(b)(据Peccerillo et al., 1976)、SiO2-K2O图解(c)(据Peccerillo et al., 1976)及A/NK-A/CNK图解(d)(据Maniar et al.,1989
    Figure  6.  (a) Q-A-P diagram of Luocheng biotite granodiorite, (b) SiO2- (Na2O+K2O-CaO) diagram, (c) SiO2-K2O diagram and (d) A/NK-A/CNK diagrams

    合黎山地区罗城黑云母花岗闪长岩的稀土元素分析结果见表1,其稀土元素总量ΣREE在71.77×10−6~79.32×10−6之间,平均为75.71×10−6。LREE/HREE值在4.20~5.30之间,平均为4.82,相对富集轻稀土,亏损重稀土。(La/Yb)N在3.69~5.46之间,平均为4.70,稀土元素球粒陨石标准化配分曲线图(图4a)中显示稀土元素为右倾型配分模式。δEu值在0.80~0.96之间,平均值为0.91,Eu具轻度负异常,说明在岩浆演化过程中有少量的斜长石分离结晶作用。

    合黎山地区罗城黑云母花岗闪长岩的微量元素分析结果见表1,在微量元素原始地幔标准化蛛网图(图7b)上可见,岩石均相对富集Rb、Th、K等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素。

    图  7  罗城黑云母花岗闪长岩的稀土元素球粒陨石标准化配分曲线图(a)(据Taylor et al., 1985)和微量元素原始地幔标准化蛛网图(b)(据Sun et al., 1989
    Figure  7.  (a) Normalized distribution curve of rare earth element chondrites and (b) Primitive mantle-normalized trace element diagrams of Luocheng biotite granodiorite

    合黎山地区罗城岩体锆石自形程度好,具有典型的岩浆结晶韵律环带结构(图5),且Th/U值均大于0.4,为典型的岩浆锆石(王新雨等,2023李平等,2024),其锆石数据谐和度较高,206Pb/238U加权平均年龄为(289±3) Ma ,可代表岩浆结晶年龄,因此,合黎山地区罗城岩体形成于早二叠世。

    合黎山地区罗城花岗闪长岩Ga含量为16.3×10−6~17.7×10−6,Al2O3含量为16.91%~17.28%,10000Ga/Al值为1.78~1.93,平均为1.84,小于A型花岗岩下限2.6(Whalen et al., 1987),在Zr-10000Ga/Al、Ce-10000Ga/Al、Y-10000Ga/Al图解(图8b、 图8c、图8d)中,罗城岩体均投影在I&S花岗岩区域,在K2O-Na2O图解(图8a)中,罗城岩体均处于I型花岗岩区域。根据岩石主量元素特征可知,罗城花岗闪长岩具有钙碱性、准铝质特征,其A/CNK比较集中,介于0.96~0.97,均小于1.1,与I型花岗岩一致(Chappell et al., 1992李宏卫等,2021),且P2O5含量与SiO2含量存在负线性关系,与I型花岗岩演化趋势一致(Wolf et al., 1994)。综合判断分析,罗城花岗闪长岩属于结晶分异I型花岗岩。

    图  8  罗城黑云母花岗闪长岩K2O-Na2O图解(a)及Zr、Ce、Y-10000Ga图解(b、c、d)(据Whalen et al.,1987
    Figure  8.  (a) K2O-Na2O and (b, c, d) Zr, Ce, Y-10000 Ga diagram of Luocheng biotite granodiorite

    I型花岗岩主要来源于板块边缘陆壳下部,可能与地壳岩石的部分熔融(徐克勤等,1982)、交代岩石圈地幔部分熔融(Jiang et al., 2006)等有关,罗城黑云母花岗闪长岩属于钙碱性系列,富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,指示岩体具有大陆地壳物质的参与,岩石Nb/Ta=13.25~13.65,平均值为13.52,接近大陆地壳Nb/Ta值(=10~14)。在判断源岩的C/MF-A/MF图解(图9a)中,显示岩体源岩可能为基性岩的部分熔融,岩石δEu值具轻度负异常,在0.80~0.96之间,平均值为0.91,说明在岩浆演化过程中有少量的斜长石分离结晶作用,在δEu-(La/Yb)N图解中(图9b),样品投点均落在了壳源与壳幔混合源花岗岩区域,La/Ta值为35.71~40.86,大于起源于岩石圈地幔或受其混染岩浆La/Ta值的下限25,指示其为幔源或者壳幔混合源(Lassiter et al., 1997)。

    图  9  罗城黑云母花岗闪长岩C/MF-A/MF图解(a)(据Alther et al., 2000)及δEu-(La/Yb)N图解(b)(据王钊飞等,2019
    Figure  9.  (a) C/MF-A/MF diagram and (b) δEu-(La/Yb)N diagram of Luocheng biotite granodiorite

    罗城黑云母花岗闪长岩锆石Hf二阶段模式年龄T(DMC)分布范围为808.6~952.5 Ma,εHf(t)值介于+4.37~+6.88,通过锆石εHf(t)-U-Pb年龄t(Ma)图解(图7a),测点均落在球粒陨石–亏损地幔之间,反映其源区为年轻的幔源组分或具有新生地壳演化趋势(李金超等,2021)。

    在野外工作中,在黑云母花岗闪长岩中发现暗色微细粒包体发育(图10),包体形态可见椭圆状、圆状、透镜状以及不规则状,大小差异较大,包体常具淬冷边,证明岩浆发生混合作用(王德滋等,2008张建军等,2012);Mg#值可以指示壳源岩浆作用是否有幔源物质的参与,在地幔组分参与时,才能导致熔体的Mg#值大于40(Rapp et al., 1995),岩石MgO含量介于3.13%~3.53%,Mg#值介于0.64~0.66,明显高于40,表明岩体源岩明显具幔源岩浆加入。

    图  10  罗城黑云母花岗闪长岩中暗色包体的形态
    a. 椭圆状包体; b. 圆状包体; c. 透镜状包体; d. 不规则状包体
    Figure  10.  Field photos showing morphology of Luocheng biotite granodiorite

    基于上述讨论,罗城花岗闪长岩为壳源岩浆与幔源岩浆发生混合作用的产物,这种作用是由于地壳深部存在强烈的地幔岩浆底侵作用,导致新生地壳部分熔融并混入底侵的幔源物质。幔源的高温基性岩浆底侵,为其提供了少量物质来源,使岩石地球化学特征上既表现出壳源特征,也表现出幔源物质的信息。

    罗城黑云母花岗闪长岩富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、P、Ti等高场强元素,具有典型的岛弧岩浆岩特征(王秉璋等,2021),其形成与大洋板片俯冲消减作用有关。通过对黑云母花岗闪长岩构造背景判别,在Rb-(Y+Nb)(图11a)、Nb-Y(图11b)及Hf-Rb/30-3Ta(图11c)图解中,样品均落在火山弧花岗岩区域;在R1-R2图11d)图解中,样品落在地幔分异花岗岩与碰撞前花岗岩交界区域。

    图  11  花岗闪长岩构造背景判别Rb-(Y+Nb)(a)、Nb-Y(b)(据Pearce et al., 1984)、Hf-Rb/30-3Ta(c)(据Harris et al., 1986)图解及R1-R2(d)(据Batchelor et al., 1985)图解
    ① 地幔分异花岗岩;② 破坏性活动板块边缘 (板块碰撞前) 花岗岩;③ 板块碰撞后隆起期花岗岩;④ 晚造期花岗岩;⑤ 非造山区花岗岩;⑥ 同碰撞花岗岩;⑦造山期花岗岩
    Figure  11.  Identification of granodiorite structural background (a) Rb-(Y+Nb), (b) Nb-Y, (c) Hf-Rb/30-3Ta and (d) R1-R2 diagram

    罗城岩体位于龙首山造山带的西南缘大陆边缘活动带和祁连裂谷的发育构成了龙首山成矿带特定的构造环境(王承花,2010)。龙首山地区地壳演化自早古生代至中新生代经历了活动-稳定-再活动-再稳定-又活动的发展阶段,其在晚古生代处于稳定的拉张环境(强利刚等,2019),早古生代祁连造山带经历了北祁连洋向南俯冲,俯冲受阻,转为向北俯冲,引起北祁连岛弧与阿拉善陆块的碰撞,从而形成了一系列火山弧I型花岗岩(夏林圻等,2003刘文恒等,2019王增振等,2020)。罗城二叠纪黑云母花岗闪长岩指示其形成环境为岩浆弧,且R1-R2判别图解指示其形成环境为碰撞前消减花岗岩环境,说明在晚古生代该区还存在一期俯冲碰撞活动,与前人对龙首山晚石炭世—早二叠世西山头窑地区岩体处于弧后洋盆闭合过程,是古亚洲洋向南俯冲的结果(董国强等,2022)相吻合,同时与前人认为的北山地区二叠纪时期仍发生的俯冲–增生造山过程延续可至三叠纪(宋东方等,2018)存在相关性,而并非处于拉张稳定发展期(强利刚等,2019)。

    (1)通过对罗城黑云母花岗闪长岩LA-ICP-MS锆石U-Pb测年得出,岩石锆石结晶年龄为(289±3) Ma ,属于早二叠世,指示了区域上华力西期的强烈构造岩浆事件。

    (2)通过罗城黑云母花岗闪长岩岩相学、岩石地球化学及Hf同位素特征,岩体富集Rb、Th、K等大离子亲石元素和轻稀土元素,亏损Ba、Nb、Ta、P等高场强元素,属于准铝质钙碱性I型花岗岩,是由新生地壳部分熔融并混入底侵幔源物质的产物,指示了地壳深部强烈的地幔岩浆底侵作用。

    (3)罗城黑云母花岗闪长岩地球化学特征指示其形成于碰撞前的消减花岗岩环境,结合龙首山地区构造演化历史,表明该区在晚古生代还存在一期俯冲碰撞,而并非一直处于拉张稳定发展期。

  • 图  1   隧址区地形地貌及水系分布图

    Figure  1.   Topography, geomorphology, and water system distribution map of the tunnel site area

    图  2   隧址区地质图

    Figure  2.   Geological map of the tunnel site area

    图  3   隧址区构造纲要图

    Figure  3.   Structural outline map of tunnel site area

    图  4   隧道穿越段波里拉组空间分布特征

    Figure  4.   Spatial distribution characteristics of the borila formation in the tunnel crossing section

    图  5   波里拉组可溶岩条带地表岩溶地貌特征

    a. 波里拉组高耸山脊下(4500 m高程)碎屑堆积坡面;b. 江达村地表岩溶地貌(近4500 m高程)c. 邦迪温泉出露处(4000 m高程);d. 隧道南侧索奔大泉处(近4000 m高程)可溶岩地貌

    Figure  5.   Surface karst landform characteristics of soluble rock stripes in the polila formation

    图  6   波里拉组灰岩的溶蚀破碎带

    Figure  6.   The dissolution and fracture zone of the polila formation limestone

    图  7   波里拉组灰岩陡倾溶蚀裂隙

    Figure  7.   Steep dip dissolution fractures in the limestone of the polila formation

    图  8   隧址区地下水径流系统示意图

    Figure  8.   Schematic diagram of groundwater runoff system in the tunnel site area

    图  9   隧址区砂岩为主的碎屑岩内深层径流系统示意图

    Figure  9.   Schematic diagram of deep runoff system in clastic rock dominated by sandstone in tunnel site area

    图  10   隧道涌突水灾害危险性评价剖面图

    Figure  10.   Profile map of risk assessment for water inrush disasters in tunnels

    表  1   钻孔岩溶发育强度、特征表

    Table  1   Strength and characteristics of karst development in boreholes

    溶蚀强度岩 溶 发 育 特 征
    较强 孔内见溶洞发育;导水介质主要为溶洞、溶腔
    中等 多为溶蚀破碎带,岩芯表明发育大量溶孔、溶腔,裂面锈染、夹泥膜,局部夹泥层;主要导水介质为破碎带松散孔隙、溶隙、溶腔,少部分为溶孔
    总体较完整,多无锈染及泥膜夹层,偶见溶孔。导水介质主要为发育较少的裂隙、贯通性较差的溶孔
    下载: 导出CSV

    表  2   非岩溶隧道涌突水风险性评价体系(THR)

    Table  2   Risk assessment system for water inrush in non karst tunnels (THR)

    岩石的渗透性和力学性质(R1渗透系数(m/d)>100.1~100.01~0.1<0.01
    渗透性分级强透水中等透水弱透水微透水
    R11评分值18~2010~186~100~6
    岩石力学性质硬岩较硬岩–软岩软岩
    R12评分值14~2010~146~100~6
    地质构造(R2 断裂构造(R21 导水 破碎带宽(m) >50 10~50 5~10 1~5 <1
    影响带宽(m) >100 20~100 10~20 5~10 <5
    R21评分值 18~20 16~18 12~16 8~12 4~8
    阻水 破碎带宽(m) >10 5~10 1~5 0.2~1 <0.2
    影响带宽(m) >50 20~50 10~20 5~10 1~5
    R21评分值 10~14 6~10 4~6 2~4 0~2
    褶皱核部(R22 褶皱形态 宽缓型 中缓型 紧闭型
    岩层倾角 <30° 30°~60° >60°
    R22评分值 0~10 10~16 16~20
    褶皱两翼及
    单斜地层(R23
    岩层厚度(m) 巨厚层 厚层 中厚层 薄层
    >1 0.5~1 0.1~0.5 <0.1
    R231评分值 0~2 2~6 6~10 10~12
    岩层倾角 <30° 30°~45° 45°~60° >60°
    R232评分值 0~6 6~10 10~14 14~20
    地表汇水条件(R3 地表地貌形态 开口沟谷切割 完整斜坡
    缓坡台地、盆地 陡坡、冰蚀谷
    R31评分值 15~20 10~15 0~10
    地面坡度 0°~15° 15°~30° 30°~45°
    R32评分值 15~20 10~15 5~10
    地下水位(R4 隧道位于地下水位以下(m) 0~20 20~100 100~200 200~500 >500
    R4评分值 18~20 14~18 10~14 6~10 4~6
    冰川补给(R5 冰雪覆盖面积(km2 0~20 20~50 ≥50
    R5评分值 0~12 12~18 18~20
    下载: 导出CSV

    表  3   危险等级划分表

    Table  3   Hazard level classification table

    THR危险性
    等级
    极高中等较低
    评分>7762~7738~6223~380~23
    评级
    单点最大
    涌突水量(m3/d)
    >104103~104102~10310~102<10
    下载: 导出CSV

    表  4   岩溶隧道涌突水风险性评价体系(THK)

    Table  4   Risk assessment system for water inrush in karst tunnels (THK)

    岩石
    可溶性
    K1
    CaCO3含量(%)>7550~7525~505~250~5
    岩石定名灰岩白云质灰岩
    泥质云灰岩
    灰质白云岩
    白云岩
    泥质灰岩
    泥质灰云岩
    泥质
    白云岩
    K11评分值16~2012~168~124~80~4
    岩石的结构生物碎屑结构泥晶结构粒屑结构亮晶结构粗晶结构
    K12评分值16~2012~168~124~80~4
    地质
    构造
    K2
    断裂 导水
    断裂
    破碎带宽(m) ﹥10 2~10 1~2 0.1~1 <0.1
    K2评分 17~20 14~17 10~14 6~10 0~6
    阻水
    断裂
    破碎带宽(m) ﹥10 5~10 1~5 0.2~1 <0.2
    K2评分 14~17 10~14 6~10 4~6 0~4
    褶皱 褶皱形态 宽缓型 中缓型 紧闭型
    岩层倾角 <30° 30°~60° >60°
    K2评分 0~10 10~16 16~20
    单斜 岩层组合类型 厚层状裂隙–
    岩溶含水岩组
    厚层脉状岩溶–
    裂隙含水岩组
    夹层式层岩–
    裂隙含水岩组
    孔隙–裂隙岩
    溶含水岩组
    K21评分 15~20 10~15 4~10 0~4
    岩层倾角 <15° 15°~30° 30°~45° 45°~60° >60°
    K22评分 17~20 14~17 10~14 6~10 0~6
    地表环
    境特征
    K3
    降雨入渗系数 >0.7 0.5~0.7 0.3~0.5 0.1~0.3 <0.1
    K31评分 16~20 12~16 8~12 4~8 0~4
    地面坡度 <10° 20°~10° 30°~20° 45°~30° >45°
    K31评分 16~20 12~16 8~12 4~8 0~4
    隧道岩溶
    分带(K4
    岩溶水垂向分带 垂直渗流带 季节变动带 水平径流带 深部循环带
    K4评分 0~6 6~16 14~18 8~12
    等级划分 THK >77 62~77 38~62 23~38 0~23
    危险性等级 极高风险(Ⅴ) 高风险(Ⅳ) 中等风险(Ⅲ) 较低风险(Ⅱ) 低风险(Ⅰ)
    单点涌突水量(m3/h) >104 103~104 102~103 10~102 <10
    下载: 导出CSV
  • 匡星, 白明洲, 王成亮. 基于模糊评价方法的隧道岩溶突水地质灾害综合预警方法[J]. 公路交通科技, 2010, 27(11): 100-103 doi: 10.3969/j.issn.1002-0268.2010.11.018

    KUANG Xing, BAI Ming-zhou, Wang Cheng-liang. Research of Comprehensive Warning of Wate rInrush Hazards in KarstTunnel Based onF uzzy Evaluation Method[J]. Journal of Highway and Transportation Research and Development, 2010, 27(11): 100-103. doi: 10.3969/j.issn.1002-0268.2010.11.018

    李利平, 李术才, 陈军, 等. 2011. 基于岩溶突涌水风险评价的隧道施工许可机制及其应用研究[J]. 岩石力学与工程学报, 30(7): 1345-1355.

    LI Liping, LI Shucai, CHEN Jun. CONSTRUCTION LICENSE MECHANISM AND ITS APPLICATION BASED ON KARST WATER

    李术才, 周宗青, 李利平, 等. 岩溶隧道突水风险评价理论与方法及工程应用[J]. 岩石力学与工程学报, 2013, 32(09): 1858-1867 doi: 10.3969/j.issn.1000-6915.2013.09.018

    LI Shucai, ZHOU Zongqing, LI Liping, et al. Theory and method of water inrush risk assessment in karst tunnel and its engineering application [J]. Journal of Rock Mechanics and Engineering, 2013, 32 (09): 1858-1867 doi: 10.3969/j.issn.1000-6915.2013.09.018

    罗文艺. 岩溶隧道涌水风险评价体系及应用[J]. 铁道建筑, 2013 (02): 52-56

    LUO Wenyi. Risk assessment system and application of water gushing in karst tunnel [J]. Railway Construction, 2013 (02): 52-56.

    马致远, 刘方. 陕西渭北东西部隐伏岩溶地下水的差异[J]. 西北地质, 1998(01): 66-68

    MA Zhiyuan, LIU Fang. Differences of concealed karst groundwater in eastern and western Weibei of Shaanxi Province[J]. Northwest Geology, 1998(01): 66-68.

    毛邦燕, 许模, 蒋良文. 隧道岩溶突水、突泥危险性评价初探[J]. 中国岩溶, 2010, 29(2): 183-189 doi: 10.3969/j.issn.1001-4810.2010.02.013

    MAO Bang-yan, XU Mo, JIANG Liang-wen. Preliminary study on risk assessment of water and mud inrush in karst tunne[J]. . CARSOLOGICA SINICA, 2010, 29(2): 183-189. doi: 10.3969/j.issn.1001-4810.2010.02.013

    彭建兵, 崔鹏, 庄建琦. CZ铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 2020, (12), 2377-2389

    PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, (12), 2377-2389.

    沈祥明, 刘坡拉, 汪继锋. 基于层次分析法的铁路岩溶隧道突水风险评[J]. 铁道工程学报, 2010( 12): 56-63 doi: 10.3969/j.issn.1006-2106.2010.12.013

    SHEN Xiangming, LIU Pola, Wang Jifeng. Evaluation of water-inrush risks of karst tunnel with analytic hierarchy process[J]. Journal Of Railway Engineering Society, 2010( 12): 56-63. doi: 10.3969/j.issn.1006-2106.2010.12.013

    王学平, 李稳哲. 地质构造对鄂尔多斯盆地南缘岩溶地下水的控制作用[J]. 西北地质, 2010, 43(03): 106-112 doi: 10.3969/j.issn.1009-6248.2010.03.014

    WANG Xueping, LI Wenzhe. Geological Tectonics Control on the Karstic Water in the South Margin of the Ordos Basin[J]. Northwestn Geology, 2010, 43(03): 106-112. doi: 10.3969/j.issn.1009-6248.2010.03.014

    徐钟. 复杂岩溶隧道涌突水演化机理及灾害综合防治研究—以新建叙大铁路为例[D]. 成都: 成都理工大学, 2018.

    XU Zhong. Study on the evolution mechanism of water inrush in complex karst tunnels and comprehensive disaster prevention and control - taking the newly-built Xuzhou-Dalian Railway as an example [D]. Chengdu: Chengdu University of Technology, 2018.

    许振浩, 李术才, 李利平, 等. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. 岩土力学, 2011, 32(6): 1757-1765 doi: 10.3969/j.issn.1000-7598.2011.06.027

    XU Zhenhao, LI Shucai, LI Liping, et al. [J]Rock and Soil Mechanics, 2011, 32(6): 1757-1765. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.027

    赵勇, 石少帅, 田四明, 李国良, 陶伟明, 郭伟东. CZ铁路雅安至林芝段隧道建造面临的主要工程技术难题与对策建议[J]. 隧道建设(中英文), 2021, 41(07): 1079-1090

    ZHAO Yong, SHI Shaoshuai, TIAN Siming, LI Guoliang, TAO Weiming, GUO Weidong. Technical Difficulties and Countermeasure Suggestions in Tunnel Construction of Ya′an-Linzhi Section of Sichuan-Tibet Railway[J]. Tunnel Construction, 2021, 41(07): 1079-1090.

    周宗青, 李术才, 李利平, 等. 岩溶隧道突涌水危险性评价的属性识别模型及其工程应用[J]. 岩土力学, 2013, 34(03): 818-826 doi: 10.16285/j.rsm.2013.03.024

    ZHOU Zongqing, LI Shucai, LI Liping, et al. Attribute identification model and its engineering application for risk assessment of water inrush in karst tunnels [J]. Geotechnical Mechanics, 2013, 34 (03): 818-826 doi: 10.16285/j.rsm.2013.03.024

    朱珍, 王旭春, 袁永才, 等. 2015. 基于加权平均法的岩溶隧道突涌水风险评估[J]. 公路工程, 40(6): 51-54

    ZHU Zhen, WANG Xuchun, YUAN Yongcai. Risk Assessment of Water Inrush in Karst Tunnels Based on Weighted Average Method[J]. Highway Engineering, 40(6): 51-54.

    Bogardi I. 1982. Bayesian Analysis of Underground Flooding[J]. Water Resources Research, 18(04): 1110-1116.

图(10)  /  表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  21
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2023-03-31
  • 录用日期:  2023-05-17
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2023-06-19

目录

/

返回文章
返回