ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    高级检索

    顾及构造改造的胶西北大尹格庄金矿床三维成矿预测

    毛先成, 王春锬, 刘占坤, 陈进, 邓浩, 王金利

    毛先成, 王春锬, 刘占坤, 等. 顾及构造改造的胶西北大尹格庄金矿床三维成矿预测[J]. 西北地质, 2023, 56(5): 72-84. DOI: 10.12401/j.nwg.2023108
    引用本文: 毛先成, 王春锬, 刘占坤, 等. 顾及构造改造的胶西北大尹格庄金矿床三维成矿预测[J]. 西北地质, 2023, 56(5): 72-84. DOI: 10.12401/j.nwg.2023108
    MAO Xiancheng, WANG Chuntan, LIU Zhankun, et al. Three−Dimensional Metallogenic Prediction with Integration of Structural Reconstruction at the Dayingezhuang Gold Deposit, Northwestern Jiaodong Peninsula[J]. Northwestern Geology, 2023, 56(5): 72-84. DOI: 10.12401/j.nwg.2023108
    Citation: MAO Xiancheng, WANG Chuntan, LIU Zhankun, et al. Three−Dimensional Metallogenic Prediction with Integration of Structural Reconstruction at the Dayingezhuang Gold Deposit, Northwestern Jiaodong Peninsula[J]. Northwestern Geology, 2023, 56(5): 72-84. DOI: 10.12401/j.nwg.2023108

    顾及构造改造的胶西北大尹格庄金矿床三维成矿预测

    基金项目: 国家自然科学基金重点项目“矿床时空结构定量表征与智能理解”(42030809)资助
    详细信息
      作者简介:

      毛先成(1963−),男,教授,长期从事三维成矿预测研究。E−mail:mxc@csu.edu.cn

      通讯作者:

      刘占坤(1992−),男,讲师,主要从事成矿系统与三维成矿预测研究。E−mail:zkliu0322@csu.edu.cn

    • 中图分类号: P628

    Three−Dimensional Metallogenic Prediction with Integration of Structural Reconstruction at the Dayingezhuang Gold Deposit, Northwestern Jiaodong Peninsula

    • 摘要:

      矿床在形成后常被构造改造,但现有三维成矿预测中对其关注较少。笔者选择胶东半岛大尹格庄构造蚀变岩型金矿为研究对象,采用基于不规则三角网(TIN)的构造复原方法还原被断裂错断的矿体与控矿断裂的三维结构,开展复原前后的矿化空间/控矿因素对比分析并实现深边部三维成矿预测。结果表明,构造复原方法消除了断裂和矿体被错断产生的空间距离及倾角变化;复原后的矿化分布具有更强的空间自相关性,被错断区域的矿化分布由分散变为连续。此外,相同参数下,复原后的预测模型比复原前模型具有更高的性能,说明对复原后的矿化分布和控矿指标之间的关联关系表达更加显著。因此,顾及构造改造的三维成矿预测有利于预测结果的准确性,可为大尹格庄矿床深部找矿工作提供可靠参考。

      Abstract:

      Mineral deposits are often deformed after mineralization, which is, however, less concerned in the current three−dimensional (3D) prospectivity modeling. This paper selected the Dayingezhuang structural altered rock type gold deposit as a case study and used a structural restoration method based on triangular irregular network (TIN) to reconstruct 3D orebody and ore−controlling fault, analyzed and compared the mineralization structure and ore−controlling factors before and after restoration and finally completed the 3D mineral prospectivity at depth. The results show that the structural restoration method can eliminate the variation of spatial distance and dip angle of fault and orebody caused by deformation. The reconstructed mineralization distribution has a stronger spatial autocorrelation feature that is shown as the change of scattered mineralization distribution to spatially continuous at the offset parts. In addition, the reconstructed prediction model has higher performance than that without restoration under the same parameters, indicating that the correlation between the mineralization distribution and ore control factors is more significant. Therefore, the three−dimensional metallogenic prediction modeling with integration of structural reconstruction has improved the propectivity accuracy and can provide a reliable reference for deep prospecting in the Dayingezhuang deposit.

    • 图  1   胶东半岛区域地质图(修改自杨立强等,2014

      Figure  1.   Simplified geological map for the Jiaodong Peninsula

      图  2   大尹格庄矿床地质简图(Yang et al.,2016

      Figure  2.   Geological map of the Dayingezhuang deposit

      图  3   大尹格庄矿床70号勘探线剖面图

      Figure  3.   No.70 section of the Dayingezhuang deposit

      图  4   顾及构造改造的大尹格庄金矿三维成矿预测流程图

      Figure  4.   Three-dimensional mineral prospectivity modeling flowchart of the Dayingezhuang gold deposit with structural reconstruction

      图  5   断层被错断的剖面表现形式(a)和复原向量计算示意图(b)

      Figure  5.   (a) Profile showing the offset fault and (b) schematic diagram of recovery vectors

      图  6   支持向量机分类示意图

      Figure  6.   Diagram of support vector machine classification

      图  7   大尹格庄金矿区三维模型(a)和被错断的招平主断裂面及金矿体图(b)

      Figure  7.   (a) Three−dimensional models of the Dayingezhuang gold deposit and (b) local models showing the offset Zhaoping fault and gold orebodies

      图  8   复原后的大尹格庄矿区三维模型(a)和复原后的招平主断裂面及金矿体图(b)

      Figure  8.   (a) The reconstructed models of the Dayingezhuang gold deposit and (b) models of the Zhaoping fault and gold orebodies after reconstruction

      图  9   复原前(a)和复原后(b)金品位平均值XOY投影等值线图

      Figure  9.   XOY projection contour map of the mean gold grade (a) without and (b) with the reconstruction

      图  10   复原前后大尹格庄矿床控矿指标图

      a. 控矿指标分布;b. 距离场dF;c. 一级起伏waF;d. 二级起伏wbF;e. 坡度gF;f. 陡缓转换cF

      Figure  10.   Ore−controlling indicators of the Dayingezhuang gold deposit with and without reconstruction

      图  11   大尹格庄矿床复原前后预测模型分类性能对比

      Figure  11.   Comparisons of classification performance of predictive models with and without reconstruction at the Dayingezhuang deposit

      图  12   大尹格庄矿床复原前(a)和复原后(b)的金品位回归预测模型拟合度对比

      Figure  12.   Comparisons of the fit of the gold grade regression prediction model (a) beforeand (b) after reconstruction of the Dayingezhuang deposit

      图  13   大尹格庄金矿床立体找矿靶区空间分布图

      Figure  13.   Spatial distribution of three–dimensional targets of the Dayingzhuang gold deposit

      表  1   大尹格庄金矿矿体预测概念模型表

      Table  1   Conceptual model for gold prediction of the Dayingezhuang gold deposit

      地质体控矿地质因素地质意义表达形式
      矿化分布 自身空间分布(IOre) 反映金的品位(Au)和金属量(AuMet)的空间结构。 建模:克立格法等
      表达:栅格模型
      指标:IOre
      招平主断裂面 距离场(dF) 反映成矿流体从断裂面向两侧的流动程度。 建模:距离分析
      表达:栅格模型
      指标:dF
      形态起伏
      waF、wbF)
      反映断裂面形态起伏变化对矿化的控制作用。 建模:形态分析
      表达:栅格模型
      指标:waF、wbF
      坡度分析(gF) 反映断裂面对含矿流体的圈闭和矿质沉淀的控制作用。 建模:形态分析
      表达:栅格模型
      指标:gF
      陡缓变化(cF) 反映断裂面由陡变缓/由缓变陡部位对矿化的控制作用 建模:形态分析
      表达:栅格模型
      指标:cF
      下载: 导出CSV

      表  2   复原前后变异函数拟合参数表

      Table  2   Parameters for fitting the variance functionbefore/after the reconstruction

      成矿空间块金值C0基台值C空间相关度
      C0/ C0+C
      变程a(m)
      复原前0.380.630.38113.82
      复原后0.280.750.27122.86
      下载: 导出CSV

      表  3   复原前后各向异性椭球体参数表

      Table  3   Anisotropic ellipsoidal parameters before/after the reconstruction

      成矿
      空间
      方位
      (°)
      倾伏角
      (°)
      倾角
      (°)
      主轴/
      次主轴
      主轴/
      次轴
      复原前209.64–5.9339.671.473.26
      复原后201.02–3.2235.031.373.07
      下载: 导出CSV
    • 陈进, 毛先成, 刘占坤, 等. 基于随机森林算法的大尹格庄金矿床三维成矿预测[J]. 大地构造与成矿学, 2020a, 44(02): 231-241

      CHEN Jin, MAO Xiancheng, LIU Zhankun, et al. Three-dimensional Metallogenic Prediction Based on Random Forest Classification Algorithm for the Dayingezhuang Gold Deposit[J]. Geotectonica et Metallogenia, 2020a, 44(02): 231-241.

      陈进, 毛先成, 邓浩. 山东大尹格庄金矿床深部三维定量成矿预测[J]. 地球学报, 2020b, 41(02): 179-191

      CHEN Jin, MAO Xian-cheng, DENG Hao. 3D Quantitative Mineral Prediction in the Depth of the Dayingezhuang Gold Deposit, Shandong Province[J]. Acta Geoscientica Sinica, 2020b, 41(02): 179-191.

      陈建平, 吕鹏, 吴文, 等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 2007, 14(05): 54-62.

      CHEN Jianping, LV Peng, WU Wen, et al. A 3D method for predicting blind orebodies, based on a 3D visualization model and its application[J]. Earth Science Frontiers, 2007, 14(5): 054-062.

      邓浩, 郑扬, 陈进, 等. 基于深度学习的山东大尹格庄金矿床深部三维预测模型[J]. 地球学报, 2020, 41(02): 157-165 doi: 10.3975/cagsb.2020.020501

      DENG Hao, ZHENG Yang, CHEN Jin, et al. Deep Learning-based 3D Prediction Model for the Dayingezhuang Gold Deposit, Shandong Province[J]. Acta Geoscientica Sinica, 2020, 41(02): 157-165. doi: 10.3975/cagsb.2020.020501

      邓浩, 魏运凤, 陈进, 等. 基于注意力卷积神经网络的焦家金矿带三维成矿预测及构造控矿因素定量分析[J]. 中南大学学报(自然科学版), 2021, 52(09): 3003-3014

      DENG Hao, WEI Yunfeng, CHEN Jin, et al. Three-dimensional prospectivity mapping and quantitative analysis of structural ore-controlling factors in Jiaojia Au ore-belt with attention convolutional neural networks[J]. Journal of Central South University(Science and Technology), 2021, 52(09): 3003-3014.

      李洪奎, 禚传源, 耿科, 等. 郯-庐断裂带陆内伸展构造: 以沂沭断裂带的表现特征为例[J]. 地学前缘, 2017, 24(02): 73-84

      LI Hongkui, ZHOU Chuanyuan, GENG Ke, et al. Intra-continental extensional tectonics of the Tan-Lu fault zone: an example from the appearance characteristics of the Yishu fault zone[J]. Earth Science Frontiers, 2017, 24(02): 73-84.

      毛先成, 王琪, 陈进, 等. 胶西北金矿集区深部成矿构造三维建模与找矿意义[J]. 地球学报, 2020, 41(02): 166-178 doi: 10.3975/cagsb.2020.020702

      MAO Xian-cheng, WANG Qi, CHEN Jin, et al. Three-dimensional Modeling of Deep Metallogenic Structure in Northwestern Jiaodong Peninsula and Its Gold Prospecting Significance[J]. Acta Geoscientica Sinica, 2020, 41(02): 166-178. doi: 10.3975/cagsb.2020.020702

      邱芹军, 马凯, 朱恒华, 等. 基于BERT的三维地质建模约束信息抽取方法及意义. 西北地质, 2022, 55(4): 124−132.

      QIU Qinjun, MA Kai, ZHU Henghua, et al. BERT-based Method and Significance of Constraint Information Extraction for 3D Geological Modelling. Northwestern Geology, 2022, 55(4): 124-132.

      宋明春, 李杰, 李世勇, 等. 鲁东晚中生代热隆-伸展构造及其动力学背景[J]. 吉林大学学报(地球科学版), 2018, 48(04): 941-964

      SONG Mingchun, LI Jie, LI Shiyong, et al. Late Mesozoic Thermal Upwelling-Extension Structure and Its Dynamics Background in Eastern Shandong Province[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(04): 941-964.

      肖克炎, 李楠, 孙莉, 等. 基于三维信息技术大比例尺三维立体矿产预测方法及途径[J]. 地质学刊, 2012, 36(03): 229-236 doi: 10.3969/j.issn.1674-3636.2012.03.229

      XIAO Ke-yan, LI Nan, SUN Li, et al. Large scale 3D mineral prediction methods and channels based on 3D information technology[J]. Journal of Geology, 2012, 36(03): 229-236. doi: 10.3969/j.issn.1674-3636.2012.03.229

      徐述平, 杨立强, 张蜀冀, 等. 胶东招平断裂带金矿成矿指示元素特征及找矿应用[J]. 黄金科学技术, 2010, 18(05): 7-11 doi: 10.3969/j.issn.1005-2518.2010.05.002

      XU Shuping, YANG Liqiang, ZHANG Shuji, et al. Metallogenic Indication Element Characteristics and Application of Gold De-posit in Zhaoyuan-Pingdu Fault Zone[J]. Gold Science and Technology, 2010, 18(05): 7-11. doi: 10.3969/j.issn.1005-2518.2010.05.002

      杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(09): 2447-2467

      YANG Liqiang, DENG Jun, WANG Zhongliang, et al. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 2014, 30(9): 2447-2467.

      赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(05): 1-10 doi: 10.3321/j.issn:1005-2321.2007.05.001

      ZHAO Pengda. Quantitative miniral prediction and deep mineral exploration[J]. Earth Science Frontiers, 2007, 14(05): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001

      Bray E, John D, Cousens B. Petrologic, tectonic, and metallogenic evolution of the southern segment of the ancestral Cascades magmatic arc, California and Nevada[J]. Geosphere, 2014, 10(1): 1-39. doi: 10.1130/GES00944.1

      Chen J, Jiang L, Peng C, et al. Quantitative resource assessment of hydrothermal gold deposits based on 3D geological modeling and improved volume method: Application in the Jiaodong gold Province, Eastern China[J]. Ore Geology Reviews, 2022, 105282.

      Deng J, Yang L, Li R, et al. Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province, China[J]. Geological Journal, 2019, 54: 378-391. doi: 10.1002/gj.3186

      Hronsky J M A. Deposit-scale structural controls on orogenic gold deposits: an integrated, physical process-based hypothesis and practical targeting implications[J]. Mineralium Deposita, 2019, 55(2): 197-216.

      Huston D L, Blewett R S, Champion D C. Australia through time: A summary of its tectonic and metallogenic evolution[J]. Episodes, 2012, 35(1): 23-43. doi: 10.18814/epiiugs/2012/v35i1/004

      Jiang N, Guo J, Fan W, et al. Archean TTGs and sanukitoids from the Jiaobei terrain, North China craton: Insights into crustal growth and mantle metasomatism[J]. Precambrian Research, 2016, 281: 656-672. doi: 10.1016/j.precamres.2016.06.019

      Lebrun E, Miller J, Thebaud N, et al. Structural Controls on an Orogenic Gold System: The World-Class Siguiri Gold District, Siguiri Basin, Guinea, West Africa[J]. Economic Geology, 2017, 112(1): 73-89. doi: 10.2113/econgeo.112.1.73

      Liu L M, Peng S L. Key strategies for predictive exploration in mature environment: model innovation, exploration technology optimization and information integration[J]. Journal of Central South University of Technology(English Edition), 2005, (02): 186-191.

      Liu Z K, Mao X C, Wang F Y, et al. Deciphering anomalous Ag enrichment recorded by galena in Dayingezhuang Au (-Ag) deposit, Jiaodong Peninsula, Eastern China[J]. Transactions of Nonferrous Metals Society of China, 2021a, 31(12): 3831-3846. doi: 10.1016/S1003-6326(21)65768-0

      Liu Z K, Chen J, Mao X C, et al. Spatial Association Between Orogenic Gold Mineralization and Structures Revealed by 3D Prospectivity Modeling: A Case Study of the Xiadian Gold Deposit, Jiaodong Peninsula, China[J]. Natural Resources Research, 2021b, 30: 3987-4007. doi: 10.1007/s11053-021-09956-9

      Lu Y, Liu L, Xu G. Constraints of deep crustal structures on large deposits in the Cloncurry district, Australia: Evidence from spatial analysis[J]. Ore Geology Reviews, 2016, 79: 316-331. doi: 10.1016/j.oregeorev.2016.05.022

      Mao X, Ren J, Liu Z, et al. Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit, Jiaodong Peninsula, Eastern China: A case study of the Dayingezhuang deposit[J]. Journal of Geochemical Exploration, 2019, 203: 27-44. doi: 10.1016/j.gexplo.2019.04.002

      Song M, Li S, Santosh M, et al. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton[J]. Ore Geology Reviews, 2015, 65: 612-625. doi: 10.1016/j.oregeorev.2014.06.019

      Wang J, Mao X, Peng C, et al. Three-Dimensional Refined Modelling of Deep Structures by Using the Level Set Method: Application to the Zhaoping Detachment Fault, Jiaodong Peninsula, China[J]. Mathematical Geosciences, 2022, 55(2): 229-262.

      Xie S, Xie H, Wang S, et al. Ca. 2. 9 Ga granitoid magmatism in eastern Shandong, North China Craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry[J]. Precambrian Research, 2014, 255: 538-562. doi: 10.1016/j.precamres.2014.09.006

      Yang L Q, Deng J, Goldfarb R J, et al. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research, 2014, 25(4): 1469-1483.

      Yang L Q, Deng J, Wang Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111: 105-126. doi: 10.2113/econgeo.111.1.105

      Yu S Y, Deng H, Liu Z K, et al. Identifying multivariate geochemical anomalies via tensor dictionary learning over spatial-elemental dimensionalities[J]. Computers & Geosciences, 2022, 165: 105153.

      Yu X, Shan W, Xiong Y, et al. Deep structural framework and genetic analysis of gold concentration areas in the Northwestern Jiaodong Peninsula, China: A new understanding based on high-resolution reflective seismic survey[J]. Acta Geol Sin-Engl, 2018, 92(5): 1823-1840. doi: 10.1111/1755-6724.13679

      Zuo R, Carranza E. Support vector machine: A tool for mapping mineral prospectivity[J]. Computers&Geosciences, 2011, 37(12): 1967-1975.

    • 期刊类型引用(1)

      1. 师学耀,高超利,孟旺才,赵逸,陈立军,王彩霞,冷丹凤,马洪志,马裕武,孙宁亮. 鄂尔多斯盆地东缘成家庄地区二叠系山西组三角洲前缘露头构型分析. 西北地质. 2025(01): 135-149 . 本站查看

      其他类型引用(0)

    图(13)  /  表(3)
    计量
    • 文章访问数:  203
    • HTML全文浏览量:  22
    • PDF下载量:  131
    • 被引次数: 1
    出版历程
    • 收稿日期:  2023-02-22
    • 修回日期:  2023-06-01
    • 录用日期:  2023-06-08
    • 网络出版日期:  2023-07-28
    • 刊出日期:  2023-10-19

    目录

      /

      返回文章
      返回