ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

准噶尔盆地中拐地区致密砂岩气成藏特征及富集规律

赵飞, 韩宝, 钟磊, 潘越扬, 马尚伟, 许海红, 韩小锋, 郭望, 魏东涛

赵飞,韩宝,钟磊,等. 准噶尔盆地中拐地区致密砂岩气成藏特征及富集规律[J]. 西北地质,2024,57(5):142−155. doi: 10.12401/j.nwg.2023109
引用本文: 赵飞,韩宝,钟磊,等. 准噶尔盆地中拐地区致密砂岩气成藏特征及富集规律[J]. 西北地质,2024,57(5):142−155. doi: 10.12401/j.nwg.2023109
ZHAO Fei,HAN Bao,ZHONG Lei,et al. Accumulation Characteristics and Enrichment Regularity of Tight Sandstone Gas Reservoirs in Zhongguai Area, Junggar Basin[J]. Northwestern Geology,2024,57(5):142−155. doi: 10.12401/j.nwg.2023109
Citation: ZHAO Fei,HAN Bao,ZHONG Lei,et al. Accumulation Characteristics and Enrichment Regularity of Tight Sandstone Gas Reservoirs in Zhongguai Area, Junggar Basin[J]. Northwestern Geology,2024,57(5):142−155. doi: 10.12401/j.nwg.2023109

准噶尔盆地中拐地区致密砂岩气成藏特征及富集规律

基金项目: 陕西省自然科学基础研究计划面上项目“基于地球物理多元属性的银额盆地西部火成岩识别方法研究”(2023-JC-YB-273),中国地质调查局项目“河西走廊盆地群油气调查评价”(DD20230261),国家油气重大专项“准噶尔盆地致密油形成条件、资源潜力及有利区优选”(2016ZX05046-006)联合资助
详细信息
    作者简介:

    赵飞(1978−),男,高级工程师,主要从事油气地质资源调查与评价。E−mail:66583685@qq.com

    通讯作者:

    马尚伟(1985−),男,博士,工程师,从事油气地质学研究。E−mail:mashangwei123@163.com

  • 中图分类号: P618.13

Accumulation Characteristics and Enrichment Regularity of Tight Sandstone Gas Reservoirs in Zhongguai Area, Junggar Basin

  • 摘要:

    致密砂岩气作为一种清洁高效的低碳能源,对能源消费结构转型升级和实现“双碳”目标具有重要意义。准噶尔盆地西北缘中拐地区二叠系佳木河组致密砂岩气的成藏特征及富集规律认识不清。基于钻井、测井、三维地震、岩心和实验分析测试资料,综合分析研究区致密砂岩气成藏地质特征、富集规律及高产主控因素。研究结果表明:中拐地区二叠系佳木河组致密砂岩气类型主要由油型气、煤型气及混合气组成,气源主要来自沙湾凹陷风城组及下乌尔禾组烃源岩,佳木河组烃源岩可能供烃,具有多源供烃特征;气藏类型为岩性–地层圈闭型,具有远源运移,多期次聚集成藏特征;致密储层受浊沸石矿物等溶蚀作用在局部地区形成物性相对较好的储层“甜点”,其主要分布在研究区东部,纵向上主要发育在43204640 m和48304900 m深度段,高产层段主要集中在上部“甜点”带。致密砂岩气藏的富集及高产受控于有利成岩相带上的储层“甜点”和局部发育的古凸起及构造裂缝。

    Abstract:

    As a kind of clean and efficient low-carbon energy, ight sandstone gas is of great significance to the transformation and upgrading of energy consumption structure and the realization of the goal of “carbon peaking and carbon neutrality”. The formation characteristics and enrichment laws of tight sandstone gas in the Permian Jiamuhe Formation in Zhongguai area, northwest margin of the Junggar basin, are unclear. Based on drilling, logging, 3D seismic, core and experimental analysis and testing data, the geological characteristics, enrichment laws and main controlling factors for high production of tight sandstone gas reservoirs in the study area are comprehensively analyzed. The research results show that the tight sandstone gas type of the Permian Jiamuhe Formation in Zhongguai area is mainly composed of oil type gas, coal type gas and mixed gas. The gas source is mainly from the source rock of Fengcheng Formation and Lower Wuerhe Formation in Shawan Sag. The source rock of the Jiamuhe Formation may supply hydrocarbon, which has the characteristics of multi-source hydrocarbon supply; The gas reservoir type is a lithologic stratigraphic trap type, with characteristics of distant source migration and multi-stage accumulation and accumulation; The dense reservoir is eroded by turbidite minerals and other minerals, forming relatively good physical properties in local areas as reservoir “sweet spots”. They are mainly distributed in the eastern part of the study area, and vertically, they mainly develop in the depths of 43204640 m and 48304900 m, with high yield layers mainly concentrated in the upper “sweet spots” zone. The enrichment and high production of tight sandstone gas reservoirs are controlled by the favorable diagenetic facies zones of reservoir “sweet spots” and locally developed paleo-uplift and structural fractures.

  • 月牙泉湖地处敦煌市南部的鸣沙山之中,处于一个北西南三面沙山环抱东面开口的半封闭形洼地中,总的地形南北部高,中东部低,形酷似一弯新月(李平平等,2020)。敦煌鸣沙山月牙泉是甘肃省著名风景名胜区,以“山泉共处,沙水共生”的奇妙景观著称于世,被誉为“塞外风光之一绝”。月牙泉湖形成距今约为12 ka(许朋柱等,2002)。对于月牙泉湖的形成研究者有上升泉、断层泉、风成泉、基岩裂隙泉、沙漠地下水溢出泉和古河道残留湖等6种观点(孙显科等,2006尹念文等,2010),由于缺乏充分的资料和专门性的研究,对上述观点仍存在较大分歧(张号等,2014),没有形成科学的定论。从20世纪70年代开始,由于党河水库的修建、渠道衬砌及垦荒造田大面积抽水灌溉引起区域地下水位急剧下降,从而导致月牙泉湖水位急剧下降,逐渐威胁月牙泉存亡(安志山等,20132016),以致于从1986年开始月牙泉湖底多次露出水面,形成2个小泉成葫芦形,造成月牙泉周围环境地质的恶化,导致敦煌市旅游资源的衰竭(张克存等,2012)。近年来,国内虽有学者对月牙泉泉域沉积环境及泉水的形成、水位下降等原因进行探讨分析,这些研究结果对月牙泉湖的形成及治理具有重要意义。笔者梳理前人研究成果,分析月牙泉形成的水文地质条件,探讨月牙泉湖水位下降的原因,论证月牙泉水位下降过程中不同时期的治理措施与效果。

    月牙泉湖地处河西走廊西端内陆敦煌盆地,气候干燥,多年平均降水量仅39.1 mm,蒸发量高达2487.7 mm,蒸发量为降水量的62倍。月牙泉湖在党河洪积扇与西水沟洪积扇之间的风蚀沙漠洼地之中形成,因地形低洼风蚀切割地下水出露,为第四系松散岩类孔隙潜水含水层,含水层厚度达数百米(图1),砂质纯净,富水性丰富,水质良好。党河是补给月牙泉湖唯一的一条河流(图2),河道距月牙泉湖最近处约为4.5 km,地下水自西南向东北径流,泉域水力坡度为0.2%~0.3%(杨俊仓等,2003Tu,2009),单井涌水量一般小于1000 m3/d,渗透系数为0.50~6.43 m/d,矿化度为0.60~1.0 g/L,月牙泉地下水化学类型以SO4–HCO3–Na–Mg– Ca型或SO4–Cl–Na型为主(黎涛等,2013)。

    图  1  敦煌月牙泉地区地下水埋深及等水位线图
    Figure  1.  Groundwater depth and water level map in the Yueyaquan area of Dunhuang
    图  2  党河河道地下水与月牙泉水位关系剖面图
    Figure  2.  Section diagram of relationship between water level of the Danghe river and groundwater of the Yueyaquan

    20世纪60年代以前,人类活动对月牙泉湖水位影响极小,湖水位一直相对稳定(图3),是一种天然状态下的补给、径流、排泄过程(张文化等,2009),即便是严重干旱的年份,月牙泉湖也没有出现萎缩现象(袁国映等,1997丁宏伟等,2004)。从70年代中期开始,月牙泉湖水位急剧下降,以致于月牙泉湖底几度部分露出水面,到90年代后期,月牙泉接近枯涸。2008年开始,月牙泉湖应急治理工程实施后水位开始缓慢上升(桑学锋等,2007),为月牙泉湖后期的治理赢得了时间;2018年4月,月牙泉湖恢复治理工程实施以来,月牙泉湖水位快速上升,当年上升了1.58 m,遏制了月牙泉湖周边环境地质的进一步恶化。

    图  3  1947~2020年月牙泉湖水位动态变化趋势图
    Figure  3.  Active change trend of water level of the Yueyaquan lake from 1947 to 2020

    月牙泉湖地处河西走廊西端内陆,属典型的大陆性气候(Li et al.,2009张晨等,2016)、温热沙漠型气候区,降水量少(冀钦等,2018柴娟等,2018),蒸发强烈,是干旱气候区的显著特征(岳峰等,2007)。月牙泉湖水面年蒸发消耗量为1.3382×104 m3,月牙泉湖水来自西部党河冲洪积平原区地下水的补给,只要区域地下水位始终保持一定的高度,水面蒸发对泉湖水位的影响微乎其微。

    泉湖域地下水的运动规律大体上受区域地下水位控制,径流方向与党河地表水系状况基本一致,总体泉湖周围地下水径流方向为由西南向东北。党河水库修建前,党河河道处自然径流状态(Phan et al.,2008韩积斌等,2019),通过入渗补给地下水,月牙泉湖处于稳定状态。1975年党河水库的修建及后期高标准输水渠道的修建,党河基本断流,大部分河水被引入灌区,灌溉敦煌绿洲。输水渠道的修建,从而代替了原来以河道流水为主的自然水流输送状态,造成入渗补给地下水量迅速减少,导致区域性地下水位下降,并进一步对月牙泉湖产生影响(安志山等,20132016)。近半个世纪以来,特别是改革开放以来,敦煌随着人口的快速增长和旅游业的快速发展,种植面积不断扩大,区域内用水量剧增,人们开始开采地下水(施锦等,2014)。1971年到1997年再到2007年及2019年,敦煌市地下水开采机井由400余眼发展到1134眼再快速发展到3217眼及3231眼(李平平等,2020),机井数量逐年增加(Zhu et al.,2015祁泽学等,2018),开采地下水量(Katsifarakis,2008Gaur et al.,2011Lan et al.,2015)由小于1000×104 m3增加到4123.72×104 m3,再增加到近13084×104 m3及6440×104 m3图4),地下水严重超采(张明泉等,2004),地下水位持续下降(李平平,2019),造成区内地下水补给、排泄严重失衡和区域地下水位的下降(Garth et al.,2008),月牙泉水域不断萎缩(张克存等,2012)。2007年以后,地下水开采量逐渐减少,月牙泉湖水位开始缓慢上升。

    图  4  敦煌地下水开采量变化曲线图
    Figure  4.  Variation curve of groundwater exploitation in Dunhuang

    月牙泉湖水位持续下降,1986年月牙泉湖中部泉底出露变成“亚铃形”,水域面积缩小到4600.0 m2,最大水深为1.9 m。于当年10月15日开始掏泉工程,历时45 d,掏泉工程只增大水面以下深度,并不能提高泉湖水位的海拔标高。

    1988年10月,在小泉湾利用人工湖开始向月牙泉进行注水(2根100 mm暗管),注水历时15 d,注水量约为28460 m3,期间泉湖水面升高65.2 cm。停止注水约31天后,湖水位下降61 cm。注水工程期间,由于注水水质与月牙泉水质相差较大,导致月牙泉湖水变浑浊。

    为了不使月牙泉湖在2001年干凅,于当年3月9日在小泉湾林草地直接利用人工湖地表水进行灌溉渗水,灌水量约为32×104 m3,期间月牙泉湖水位升高0.496 m。渗水期间泉湖水由清变浑浊,pH值由7.8变到9.0,在泉湖周边的林草灌水地出现盐渍化即土壤次生盐碱化迹象。

    2007年4月开始月牙泉湖近期工程,工程包括供水工程、输水工程、水处理工程和渗水工程4部分组成。2007年3月12日开始渗水,日渗水量为10000 m3,到6月15日上升了1.70 m;泉域面积由5333.3 m2扩大到7333.3 m2,9月15日扩大到11200.0 m2。此后,月牙泉湖水位基本稳定且缓慢上升。

    为遏制月牙泉湖水位下降,使月牙泉湖及周边生态恶化趋势得以遏制,不再恶化,提出了月牙泉恢复补水工程,即通过综合治理使月牙泉湖面积和水深实现恢复性转变,逐步恢复水深并提高到2.0 m以上,恢复月牙形状,满足自然景观要求。本研究采用国际上较为流行的FEFLOW软件模拟(吕晓立等,2020),按照研究区地下水的补给、径流与排泄关系,计算地下水流场,根据监测孔水位数据进行拟合(朱亮等,2020),最后通过模型进行预测分析不同地段补水后水位变化及月牙泉上升至2.0 m所需的水量。

    利用鸣沙山前的自然洼地地段进行补水,每年所需补水量为1004.8×104 m3,加上蒸发损耗量约占渗水量30%,每年总补水量为1306.24×104 m3的情况下,月牙泉湖水位由1134.24 m上升到1135.44 m,可提升1.2 m(图5图6)。

    图  5  补水前后地下水流场对比图
    Figure  5.  Comparison of groundwater flow field before and after water replenishment

    黑山嘴子至鱼场段长为5.92 km,单位面积渗水量为1.51 m3/m2·d,包气带厚度为3.595 m,每天可入渗量为32136.424 m3,年补水时间按258 d计,共可入渗量为1658.24×104 m3。在此补给条件下,通过模拟计算,河道入渗补给量为1658.24×104 m3的情况下,月牙泉湖水位可上升2.0 m(图7图8)。

    图  6  月牙泉湖水位变化对比曲线图
    Figure  6.  Comparison curve of water level change in Yueyaquan lake
    图  7  补水前后地下水流场对比图
    Figure  7.  Comparison of groundwater flow field before and after water replenishment
    图  8  月牙泉湖水位变化对比曲线图
    Figure  8.  Comparison curve of water level change in Yueyaquan lake

    研究区地下水初始等水位线可看出,不管在丰水期还是枯水期,研究区南部鸣沙山前黑山嘴子至S6监测孔之间地下水流向基本均为自西向东径流至月牙泉,该段地下水位于月牙泉上游,对月牙泉的补给方式最为直接。

    根据监测数据,党河河道中没有地表水入渗补给时,S5与月牙泉湖形成的天然水力坡降为4.658‰;当党河河道泄水量3887.36×104 m3时,导致S5水位升高,与月牙泉湖之间的水力坡降增大至5.534‰。随着长时间的径流,党河河道下部形成的“水丘”向东南侧的月牙泉湖扩散,最终导致月牙泉水位上升。从S5上游进行补水其效果要好于S5以下段。

    鸣沙山前自然洼地地段每年补水量为1306.24×104 m3,月牙泉湖水位可提升1.2 m。党河河道每年补水量为1658.24×104 m3,月牙泉湖水位可提升2.0 m。在党河河道补水需水量要大于鸣沙山前自然洼地补水需水量但月牙泉湖水位能上升2.0 m,分析表明党河河道补水方案为最佳。

    按照FEFLOW软件模拟补水方案,月牙泉湖恢复补水工程修建于党河河道黑山嘴下游,修建12个渗水场,最大蓄水量为98×104 m3;2017年10月开始蓄水,保证了月牙泉湖地下水的补给来源;补水开始后月牙泉湖水位呈上升趋势,湖水面上升1.58 m,年均上升0.53 m,月牙泉湖水域面积由11183.31 m2也逐渐扩大到18334.75 m2

    恢复补水工程发现,党河水未进行除砂除泥处理直接引入渗水场,水位下降后底部有一层沉淀淤泥,随着时间越长淤泥越厚。淤泥透水性很差并未作处理,随着淤泥厚度的增加,渗水场内水体下渗速度逐渐降低,最终会形成一潭死水而无法下渗。

    (1)月牙泉湖水位下降由自然因素和人为因素所造成,其中人为因素是导致月牙泉水位下降最主要原因,也是最直接原因。泉湖水位的下降导致周围环境地质的恶化和旅游资源的衰竭。

    (2)月牙泉湖水位的急剧下降和周围环境地质的恶化,引起党和国家领导人及相关部门的极大关注。1986年开始,先后进行淘泉工程、注水工程、渗灌工程及应急治理工程等一系列的治理工程,效果都不尽人意,为了从根本上解决月牙泉湖水位下降问题,开始实施恢复补水工程。

    (3)FEFLOW软件模拟预测表明,鸣沙山前自然洼地地段每年补水量为1306.24×104 m3,月牙泉湖水位可提升1.2 m;党河河道每年补水量为1658.24×104 m3,月牙泉湖水位可提升2.0 m。党河河道补水效果最佳。

    (4)补水方案实施后,月牙泉湖水面上升了1.58 m,水域面积扩大到18 334.75 m2,达到预期效果。恢复补水工程直接把党河水引入渗水场,随着时间的推移渗水场底部逐渐沉淀一层淤泥,此淤泥透水性很差并未作处理,水体下渗速度逐渐降低。此外,关于短期监测中发现的问题与判定仍需进一步监测与研究。

  • 图  1   研究区构造位置(a、b)及二叠系佳木河组佳二段综合柱状图(c)

    Figure  1.   (a, b) Structural location of the study area and (c) comprehensive histogram of the 2nd member of Permian Jiamuhe Formation

    图  2   准噶尔盆地西北缘二叠系烃源岩厚度及气源灶分布图

    a. 风城组烃源岩及气源灶分布;b. 下乌尔禾组烃源岩及气源灶分布;c. 佳木河组烃源岩及气源灶分布

    Figure  2.   Distribution of Permian source rocks thickness and gas kitchen in northwestern margin of Junggar basin

    图  3   典型轻烃参数特征图

    a. 天然气甲基环己烷指数分布图;b. 天然气环己烷指数分布图

    Figure  3.   Characteristics of typical light hydrocarbon parameters

    图  4   中拐地区佳木河组天然气δ13C2与δ13C1关系图(底图据孙平安等,2012

    Figure  4.   Cross plot of δ13C2-δ13C1 of natural gas of of Jiamuhe Formation in Zhongguai area

    图  5   佳木河组佳二段P1j21砂层组储层甜点分布图

    a. 纵向分布图;b. 平面分布图

    Figure  5.   Distribution of sweet spot in P1j21 sand formation of the second member of Jiamuhe Formation

    图  6   佳木河组佳二段P1j21砂层组储集层空间类型

    a.浊沸石溶蚀孔,溶蚀缝,部分孔后期被沥青质充填,铸体单偏光,新光1井,4558.06 m;b.浊沸石溶蚀孔,溶蚀缝,部分孔后期被沥青质充填,铸体单偏光,新光1井,4586.42 m;c.浊沸石溶蚀孔,微裂缝,铸体单偏光,中佳4井,4637.36 m; d.浊沸石溶蚀孔,后期被沥青充填,粒缘缝发育,铸体单偏光,新光1井,4553.09 m;e.微裂缝,中佳2井,FMI成像测井;f.微裂缝,拐3井,FMI成像测井;g.浊沸石溶蚀孔,微裂缝,铸体单偏光,中佳4井,4636.61 m;h.微裂缝,凝灰岩岩屑溶孔,铸体单偏光,中佳6井,4956.53 m;i.微裂缝,凝灰岩岩屑溶孔,浊沸石溶蚀孔,铸体单偏光,中佳6井,4873.12 m

    Figure  6.   Reservoir space type of P1j21 sand formation of Jiamuhe Formation

    图  7   佳木河组佳二段P1j21砂层组物性与面孔率(a)及浊沸石含量关系图(b)

    Figure  7.   The relationship between physical property and (a) plane porosity or (b) laumonite content of P1j21 sand formation of Jiamuhe Formation

    图  8   研究区佳木河P1j21砂层组顶面构造图(a)及过井地震剖面(b)

    P1j1.佳木河组佳一段;P1j23. 佳木河组佳二段三砂组;P1j22. 佳木河组佳二段二砂组;P1j21. 佳木河组佳二段一砂组;P1j3.佳木河组佳三段;P3w. 上乌尔禾组;T1b. 百口泉组;T2k. 克拉玛依组

    Figure  8.   (a) The top structure of p1j21 sand formation and (b) seismic profile of Jiamuhe in the study area

    图  9   中拐地区佳木河组成藏事件与成岩演化综合图(据何文军等,2018修改)

    C. 石炭系;P1j.佳木河组;P1f. 风城组;P2x. 夏子街组;P2-3w.下-上乌尔禾组;T1b. 百口泉组;T2k. 克拉玛依组;T3b. 白碱滩组;J1b. 八道湾组;J1s. 三工河组;J2x. 西山窑组;J2t. 头屯河组;J3q. 齐古组;K. 白垩系;E+N. 古近系和新近系

    Figure  9.   Accumulation event and diagenetic evolution of Jiamuhe Formation in Zhongguai area

    图  10   研究区佳木河组致密砂岩气藏成藏模式图

    P1j1.佳木河组佳一段;P1j22+3. 佳木河组佳二段二砂组和三砂组;P1j21. 佳木河组佳二段一砂组;P1f. 风城组;P2x. 夏子街组;P2w. 下乌尔禾组;P3w. 上乌尔禾组;T. 三叠系;J. 侏罗系;K. 白垩系

    Figure  10.   Reservoir forming mode of tight sandstone gas reservoir of Jiamuhe Formation in the study area

    图  11   佳木河组佳二段沉积前古构造图

    Figure  11.   Pre-sedimentary paleostructure of the second member of Jiamuhe Formation

    表  1   研究区佳木河组天然气组分及C同位素组成表

    Table  1   Natural gas composition and carbon isotope composition of Jiamuhe Formation

    井号层位含量(%)天然气碳同位素δ13C(‰)
    甲烷C1/C1-5δ13C1δ13C2δ13C3
    中佳2P1j2194.030.96−33.13−27.87−27.42
    中佳6P1j2193.390.95−34.06−29.34−28.65
    P1j2193.880.96−34.03−28.66−28.5
    中佳601-HP1j2193.460.95−33.47−28.05−27.97
    新光1P1j2192.720.96−32.60−27.44−26.53
    P1j2192.450.96−32.42−27.282659
    下载: 导出CSV
  • 蔡勋育, 邱桂强, 孙冬胜, 等. 中国中西部大型盆地致密砂岩油气“甜点”类型与特征[J]. 石油与天然气地质, 2020, 41(4): 684-695 doi: 10.11743/ogg20200403

    CAI Xunyu, QIU Guiqiang, SUN Dongsheng, et al. Types and characteristics of tight sandstone sweet spots in large basins of central-western China[J]. Oil&Gas Geology, 2020, 41(4): 684-695. doi: 10.11743/ogg20200403

    操应长, 葸克来, 刘可禹, 等. 陆相湖盆致密砂岩油气储层储集性能表征与成储机制—以松辽盆地南部下白垩统泉头组四段为例[J]. 石油学报, 2018, 39(3): 247-265

    CAO Yingchang, XI Kelai, LIU Keyu, et al. Reservoir properties characterization and its genetic mechanism for tight sandstone oil and gas reservoir in lacustrine basin: the case of the fourth Member of Lower Cretaceous Quantou Formation in the southern Songliao Basin[J]. Acta Petrolei Sinica, 2018.39(3): 247-265.

    范存辉, 李虎, 支东明, 等. 新疆小拐地区二叠系佳木河组裂缝分布规律探讨[J]. 矿物岩石, 2012, 32(3): 85-93 doi: 10.3969/j.issn.1001-6872.2012.03.012

    FAN Cunhui, LI Hu, ZHI Dongming, et al. Study on the fracture distribution and numerical simulation of jiamuhe formation of permian in xiaoguai oilfield[J]. Mineralogy and Petrology, 2012, 32(3): 85-93. doi: 10.3969/j.issn.1001-6872.2012.03.012

    何春蕾, 王柏苍, 辜穗, 等. 四川盆地致密砂岩气产业可持续高质量发展战略管理[J]. 天然气工业, 2022, 42(1): 170-175

    HE Chunlei, WANG Baicang, GU Sui, et al. Strategic management for the sustainable high-quality development of tight sandstone gas industry in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 170-175.

    何文军, 杨海波, 费李莹, 等. 准噶尔盆地新光地区佳木河组致密砂岩气有利区资源潜力综合分析[J]. 天然气地球科学, 2018, 29(3): 370-381

    HE Wenjun, YANG Haibo, FEI Liying, et al. Comprehensive analysis of tight sandstone gas resource potential in thefavorable area of Jiamuhe Formation in Xinguang area, Junggar Basin[J]. Natural Gas Geoscience, 2018, 29(3): 370-381.

    胡惕麟, 戈葆雄, 张义纲, 等. 源岩吸附烃和天然气轻烃指纹参数的开发和应用[J]. 石油实验地质, 1990(04): 375-394

    HU Tilin, GE Baoxiong ZHANG Yigang, et al. The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas[J]. Petroleum Geology & Experiment, 1990(04): 375-394.

    贾爱林, 位云生, 郭智, 等. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业, 2022, 42(1): 83-92

    JIA Ailin, WEI Yunsheng, GUO Zhi, et al. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 2022, 42(1): 83-92.

    贾春明, 潘拓, 余海涛, 等. 准噶尔盆地沙湾凹陷风城组储层特征及物性控制因素分析[J]. 西北地质, 2023, 56(4): 49-61.

    JIA Chunming, PAN Tuo, YU Haitao, et al. Controlling Factors on Physical Property and Reservoir Characters of Fengcheng Formation in Shawan Depression, Junggar Basin[J]. Northwestern Geology, 2023, 56(4): 49-61.

    金之钧, 张金川, 唐玄. 非常规天然气成藏体系[J]. 天然气工业, 2021, 41(8): 58-68 doi: 10.3787/j.issn.1000-0976.2021.08.006

    JIN Zhijun, ZHANG Jinchuan, TANG Xuan. Unconventional natural gas accumulation system[J]. Natural Gas Industry, 2021, 41(8): 58-68. doi: 10.3787/j.issn.1000-0976.2021.08.006

    康玉柱. 中国致密岩油气资源潜力及勘探方向[J]. 天然气工业, 2016, 36(10): 10-18 doi: 10.3787/j.issn.1000-0976.2016.10.002

    KANG Yuzhu. Resource potential of tight sand oil and gas and exploration orientation in China[J]. Natural Gas Industry, 2016, 36(10): 10-18. doi: 10.3787/j.issn.1000-0976.2016.10.002

    孔星星, 肖佃师, 蒋恕, 等. 联合高压压汞和核磁共振分类评价致密砂岩储层—以鄂尔多斯盆地临兴区块为例[J]. 天然气工业, 2020, 40(3): 38-47

    KONG Xingxing, XIAO Dianshi, JIANG Shu, et al. Application of the combination of high-pressure mercury injection and nuclear mag-netic resonance to the classification and evaluation of tight sandstone reservoirs: A case study of the Linxing Block in the Ordos Basin[J]. Natural Gas Industry, 2020, 40(3): 38-47.

    李二庭, 靳军, 曹剑, 等. 准噶尔盆地新光地区佳木河组天然气地球化学特征及成因[J]. 天然气地球科学, 2019, 30(9): 1362-1369

    LI Erting, JIN Jun, CAO Jian, et al. Geochemical characteristics and genesis of natural gas in Jiamuhe Formation in Xinguang area, Junggar Basin[J]. Natural GasGeoscience, 2019, 30(9): 1362-1369.

    李建忠, 郭彬程, 郑民, 等. 中国致密砂岩气主要类型、地质特征与资源潜力[J]. 天然气地球学, 2012, 23(4): 607-615

    LI Jianzhong, GUO Bincheng, ZHENG Min, et al. Main types, geological features and resource potential of tight sandstone gas in China[J]. Natural Gas Geoscience, 2012, 23(4): 607-615.

    李剑, 姜晓华, 王秀芹, 等. 裂谷盆地致密砂岩气成藏机制与富集规律—以松辽盆地与渤海湾盆地为例[J]. 石油与天然气地质, 2017, 38(6): 1005-1018 doi: 10.11743/ogg20170601

    LI Jian, JIANG Xiaohua, WANG Xiuqin, et al. Mechanisms for gas accumulation and enrichment in tight sandstone reservoir in rift basins: Cases from the Songliao Basin and the Bohai Bay[J]. Oil&Gas Geology, 2017, 38(6): 1005-1018. doi: 10.11743/ogg20170601

    李振华, 邱隆伟, 师政, 等. 准噶尔盆地中拐地区佳二段沸石类矿物成岩作用及其对油气成藏的意义[J]. 中国石油大学学报: 自然科学版, 2014, 38(1): 1-7

    LI Zhenhu, QIU Longwei, SHI Zheng, et al. Diagenesis of zeoliteminerals and its significance for hydrocarbon accumulation in thesecond member of Jiamuhe Formation of Zhongguai area, Junggar Basin[J]. Journal of China University of Petroleum: Edition ofNatural Sciences, 2014, 38(1): 1-7.

    李振华, 邱隆伟, 孙宝强, 等. 准噶尔盆地中拐地区佳木河组流体包裹体特征及成藏期次划分[J]. 天然气地球科学, 2013, 24(5): 931-939

    LI Zhenhua, QIU Longwei, SUN Baoqiang, et al. Characteristics offluid inclusion and charging events of natural gas in Permian Jiamuhe Formation of Zhongguai area, Junggar Basin[J]. Natural GasGeoscience, 2013, 24(5): 931-939.

    林玉祥, 余志勇, 刘冬. 临兴地区致密砂岩气藏形成机理与成藏模式[J]. 地质与勘探, 2021, 57(1): 210-221 doi: 10.12134/j.dzykt.2021.01.020

    LIN Yuxiang, YU Zhiyong, LIU Dong. Formation mechanism and model of tight sandstone gas reser-voirs in the Linxing area of Ordos Basin[J]. Geology and Exploration, 2021, 57(1): 210-221. doi: 10.12134/j.dzykt.2021.01.020

    刘君龙, 胡宗全, 刘忠群, 等. 四川盆地川西坳陷新场须家河组二段气藏甜点模式及形成机理[J]. 石油与天然气地质, 2021, 42(4): 852-862 doi: 10.11743/ogg20210407

    LIU Junlong, HU Zongquan, LIU Zhongqun, et al. Gas pool sweet spot models and their forming mechanism in the Xu 2 Member in Xinchang area, Western Sichuan Depression, Sichuan Basin[J]. Oil&Gas Geology, 2021, 42(4): 852-862. doi: 10.11743/ogg20210407

    刘忠群, 徐士林, 刘君龙, 等. 四川盆地川西坳陷深层致密砂岩气藏富集规律[J]. 天然气工业, 2020, 40(2): 31-40 doi: 10.3787/j.issn.1000-0976.2020.02.004

    LIU Zhongqun, XU Shilin, LIU Junlong, et al. Enrichment laws of deep tight sandstone gas reservoirs in the Western Sichuan Depression, Sichuan Basin[J]. Natural Gas Industry, 2020, 40(2): 31-40. doi: 10.3787/j.issn.1000-0976.2020.02.004

    蒙晓灵, 兰义飞, 张宏波, 等. 鄂尔多斯盆地南部深层致密砂岩气藏成藏特点及产能主控因素[J]. 西安石油大学学报( 自然科学版), 2020, 35(5): 9-13

    MENG Xiaoling, LAN Yifei, ZHANG Hongbo, et al. Hydrocarbon accumulation characteristics and main productivity control factors of deep tight sandstone in the South of Ordos Basin[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2020, 35(5): 9-13.

    宋学锋, 魏慧蕊, 李文杰, 等. 塔里木盆地M区块致密砂岩气藏水锁损害影响因素评价[J]. 断块油气田, 2022, 29(2): 224-228

    SONG Xuefeng, WEI Huirui, LI Wenjie, et al. Evaluation on influencing factors of water lock damage of tight sandstone gas reservoir in block M of Tarim Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 224-228.

    孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 10: 15-1026.

    SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026.

    孙平安, 王绪龙, 唐勇, 等. 准噶尔盆地浅层天然气多种成因地球化学研究[J]. 地球化学, 2012, 41(2): 109-121 doi: 10.3969/j.issn.0379-1726.2012.02.002

    SUN Pingan, WANG Xulong, TANG Yong, et al. Geochemical constraints on the multiple origins of shallow⁃buried natural gases in the Junggar basin[J]. Geochimica, 2012, 41(2): 109-121. doi: 10.3969/j.issn.0379-1726.2012.02.002

    汪海阁, 周波. 致密砂岩气钻完井技术进展及展望[J]. 天然气工业, 2022, 42(1): 159-169

    WANG Haige, ZHOU Bo. et al. Progress and prospect of tight sandstone gas well drilling and completion technologies[J]. Natural Gas Industry, 2022, 42(1): 159-169.

    王继平, 张城玮, 李建阳, 等. 苏里格气田致密砂岩气藏开发认识与稳产建议[J]. 天然气工业, 2021, 41(2): 100-110

    WANG Jiping, ZHANG Chengwei, LI Jianyang, et al. Tight sandstone gas reservoirs in the Sulige Gas Field: Development understandings and stable-production proposals[J]. Natural Gas Industry, 2021, 41(2): 100-110.

    王平, 沈海超. 加拿大M致密砂岩气藏高效开发技术[J]. 石油钻探技术, 2022, 50(1): 97-102

    WANG Ping, SHEN Haichao. High-efficient development technologies for the M tight sandstone gas reservoir in Canada[J]. Petroleum Drilling Techniques, 2022, 50(1): 97-102.

    王屿涛, 吕纯刚, 姚爱国, 等. 准噶尔盆地致密砂岩气资源潜力及勘探前景[J]. 天然气地球科学, 2015, 26(5): 855-860

    WANG Yutao, LYU Chungang, Yao Aiguo, et al. Tight Sandstone Gas Resource Potential and Exploration Prospect in the Junggar Basin[J]. Natural Gas Geoscience, 2015, 26(5): 855-860.

    魏国齐, 张福东, 李君, 等. 中国致密砂岩气成藏理论进展[J]. 天然气地球科学, 2016, 27(2): 199-210

    WEI Guoqi, ZHANG Fudong, LI Jun, et al. New progress of tight sand gas accumulation theory and favorable exploration zones in China [J]. Natural Gas Geoscience, 2016, 27(2): 199-210.

    魏新善, 胡爱平, 赵会涛, 等. 致密砂岩气地质认识新进展[J]. 岩性油气藏, 2017, 29(1): 11-20 doi: 10.3969/j.issn.1673-8926.2017.01.002

    WEI Xinshan, HU Aiping, ZHAO Huitao, et al. New geological understanding of tight sandstone gas[J]. Lithologic Reservoirs, 2017, 29(1): 11-20. doi: 10.3969/j.issn.1673-8926.2017.01.002

    吴和源, 唐勇, 常秋生. 准噶尔盆地中拐凸起佳木河组沸石类胶结砂砾岩储集层成因机理[J]. 新疆石油地质, 2017, 38(3): 281-288

    WU Heyuan, TANG Yong, CHANG Qiusheng. Genesis of Sandy Conglomerate Reservoirs Cemented by Zeolites in Jiamuhe Formation of Zhongguai Swell, Junggar Basin[J]. Xinjiang Petroleum Geology, 2017, 38(3): 281-288.

    杨升宇, 张金川, 黄卫东, 等. 吐哈盆地柯柯亚地区致密砂岩气储层“甜点”类型及成因[J]. 石油学报, 2013, 34(2): 272-282.

    YANG Shengyu, ZHANG Jinchuan, HUANG Weidong, et al. “Sweet spot”types of reservoirs and genesis of tight sandstone gas in Kekeya area, Turpan Hami Basin[J]. Acta Petrolei Sinica, 2018.39(3): 247-265.

    杨镱婷, 陈群福, 陈磊, 等. 准噶尔盆地中拐地区佳木河组致密砂岩气成因类型及气源[J]. 新疆石油天然气, 2017, 13(3): 6-10

    YANG Yiting, CHEN Qunfu, CHEN Lei, et al. Tight sandstone gas genetic type and gas source in the Jiamuhe Formation of Zhongguai area, Junggar Basin[J]. Xinjiang Oil and Gas, 2017, 13(3): 6-10.

    于景维, 季汉成, 史燕青, 等. 准噶尔盆地阜东斜坡区三叠系韭菜园子组成岩作用特征及其对储层物性影响[J]. 西北地质, 2021, 54(2): 99-110.

    YU Jingwei, JI Hancheng, SHI Yanqing, et al. Diagenesis and Its Effects on the Reservoir Property of the Triassic Jiucaiyuanzi Formation of Fudong Slope, Junggar Basin[J]. Northwestern Geology,2021,54(2): 99-110.

    张道伟, 杨雨. 四川盆地陆相致密砂岩气勘探潜力与发展方向[J]. 天然气工业, 2022, 42(1): 1-11 doi: 10.3787/j.issn.1000-0976.2022.01.001

    ZHANG Daowei, YANGYu. Exploration potential and development direction of continental tight sandstone gas in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 1-11. doi: 10.3787/j.issn.1000-0976.2022.01.001

    张杰, 李熙喆, 高树生, 等. 致密砂岩气藏产水机理及其对渗流能力的影响[J]. 天然气地球科学, 2019, 30(10): 1519-1530 doi: 10.11764/j.issn.1672-1926.2019.10.015

    Zhang Jie, Li Xizhe, Gao Shusheng, et al. Water production mechanism of tight sandstonegas reservoir and its influence on percolation capacity[J]. Natural Gas Geoscience, 2019, 30(10): 1519-1530. doi: 10.11764/j.issn.1672-1926.2019.10.015

    张新远, 李永军, 刘凯, 等. 克拉玛依油田K82井区上乌尔禾组油气成藏特征研究[J]. 西北地质, 2024, 57(2): 14−23.

    ZHANG Xinyuan, LI Yongjun, LIU Kai, et al. Hydrocarbon Accumulation Characteristics of Upper Wuerhe Formation in Well Block K82, Karamay Oilfield[J]. Northwestern Geology, 2024, 57(2): 14−23.

    张誉洋, 李永军, 郑孟林, 等. 新疆车排子油田车探1井3 538~3 774 m井段孢粉组合及地质意义[J]. 西北地质, 2022, 55(2): 157-165.

    ZHANG Yuyang, LI Yongjun, ZHENG Menglin, et al. Sporopollen Assemblage and Geological Significance of 3 538~3 774 m Section in Well Chetan 1, Chepaizi Oilfield, Xinjiang[J]. Northwestern Geology,2022,55(2): 157-165.

    赵靖舟, 李军, 曹青, 等. 论致密大油气田成藏模式[J]. 石油与天然气地质, 2013, 34(5): 573-583 doi: 10.11743/ogg20130501

    ZHAO Jingzhou, LI Jun, CAO Qing, et al. Hydrocarbon accumulation patterns of large tight oil and gas fields[J]. Oil&Gas Geology, 2013, 34(5): 573-583. doi: 10.11743/ogg20130501

    赵靖舟. 非常规油气有关概念、分类及资源潜力[J]. 天然气地球学, 2012, 23(3): 393-406

    ZHAO Jingzhou. Conception, classification and resource potential of unconventional hydrocarbons[J]. Natural Gas Geoscience, 2012, 23(3): 393-406.

    曾凡成, 张昌民, 魏兆胜, 等. 火山活动影响下的致密砂岩气储层特征及气藏富集主控因素[J]. 地质学报, 2021, 95(3): 895-912 doi: 10.3969/j.issn.0001-5717.2021.03.020

    ZENG Fancheng, ZHANG Changmin, WEI Zhaosheng, et al. Main enrichment controlling factors and reservoir characteristics of tight sandstone gas under the influence of volcanic activity[J]. Acta Geologica Sinica, 2021, 95(3): 895-912. doi: 10.3969/j.issn.0001-5717.2021.03.020

    邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术—兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399

    ZOU Caineng, ZHANG Guosheng, YANGZhi, et al. Ueological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon;on unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399.

    邹才能, 陶士振, 袁选俊, 等. “连续型”油气藏及其在全球的重要性成藏、分布与评价[J]. 石油勘探与开发, 2009, 36(6): 669-682 doi: 10.3321/j.issn:1000-0747.2009.06.001

    ZOU Caineng, TAO Shizhen, YUAN Xuanjun, et al. Global importance of“continuous”petroleum reservoirs: accumulation, distribution and evaluation[J]. Petroleum Exploration and Developmenr, 2009, 36(6): 669-682. doi: 10.3321/j.issn:1000-0747.2009.06.001

    邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望-以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187 doi: 10.1038/aps.2011.203

    ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. doi: 10.1038/aps.2011.203

    Badre S, Cristiane C G, Koyo N, et al. Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen[J]. Fuel, 2006, 85(1): 1-11. doi: 10.1016/j.fuel.2005.05.021

    Dai J, Ni Y, Hu G, et al. Stable carbon and hydrogen isotopes of gases from the large tight gas fields in China[J]. Science China Earth Sciences, 2014, 57(1): 88-103. doi: 10.1007/s11430-013-4701-7

    Gautier D L, Mast R F. US geological survey methodology for the1995 national assessment[J]. AAPG Bulletin, 1995, 78(1): 1-10.

    Huang Y, Tang Y, Li M, et al. Quantitative evaluation of geological fl uid evolution and accumulated mechanism: in case of tight sandstone gas fi eld in central Sichuan Basin[J]. Petroleum Science, 2021, 18(2): 416-429.

    Jiang Z, Li Z, Li F, et al. Tight sandstone gas accumulation mechanism and development models[J]. Petroleum Science, 2015, 12(4): 587-605.

    Liu G, Sun M, Zhao Z, et al. Characteristics and accumulation mechanism of tight sandstone gas reservoirs in the Upper Paleozoic, northern Ordos Basin, China[J]. Petroleum Science, 2013, 10(4): 442-449.

    Lü Z, Ye S, Yang X, et al. Quantification and timing of porosity evolution in tight sand gas reservoirs: an example from the Middle Jurassic Shaximiao Formation, western Sichuan, China[J]. Petroleum Science, 2015, 12(2): 207-217.

    Schmoker J W. Resource-assessment perspectives for unconventional gas systems[J]. AAPU Bulletin, 2002, 86(11): 1993-1999.

    Wu W, Zhao J, Wei X, et al. Evalua-tion of gas-rich “sweet-spot ” and controlling factors of gas-water distribution in tight sandstone gas provinces: an example from the Permian He8 Member in Sulige Gas Province, central Ordos Basin, Northern China[J]. Journal of Asian Earth Sciences, 2022, 227: 105098. doi: 10.1016/j.jseaes.2022.105098

    Zhao J, Li J, Cao Q, et al. Quasi-continuous hydrocarbon accumulation: An alternative model for the formation of large tight oil and gas accumulations[J]. Journal of Petroleum Science and Engineering, 2019, 174: 25-39. doi: 10.1016/j.petrol.2018.10.076

    Zhao J, Zhang W, Li J, et al. Genesis of tight sand gas in the Ordos Basin, China[J]. Organic Geochemistry, 2014, 74: 76-84. doi: 10.1016/j.orggeochem.2014.03.006

    Zou C, Tao S, Zhang X, et al. Geologic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China’s Large Gas Provinces of low porosity and permeability[J]. Science China Earth Sciences, 2009, 52(8): 1068-1090. doi: 10.1007/s11430-009-0104-1

    Zou C, Zhu R, Liu K, et al. Tight gas sandstone reservoirs in China: characteristics and recognition criteria[J]. Journal of Petroleum Science and Engineering, 2012, 88-89: 82-91. doi: 10.1016/j.petrol.2012.02.001

  • 期刊类型引用(2)

    1. 李平平,盖楠,王晓丹,杨俊仓. 敦煌月牙泉域地下水系统水文地球化学特征分析. 干旱区研究. 2024(02): 240-249 . 百度学术
    2. 李平平,黎涛,杨俊仓,郑跃军. 月牙泉应急治理工程水环境效益评价分析. 地下水. 2024(06): 93-95 . 百度学术

    其他类型引用(0)

图(11)  /  表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  4
  • PDF下载量:  37
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-05-28
  • 修回日期:  2023-12-06
  • 网络出版日期:  2024-08-14
  • 刊出日期:  2024-10-19

目录

/

返回文章
返回