Geochemical Characteristics and Paleo-Oceanic Environment of Carbonate Rocks of Carboniferous-Permian Amushan Formation in Yin’e Basin: Example from Wuliji Taolai Section
-
摘要:
为厘定银额盆地石炭系—二叠系阿木山组碳酸盐岩沉积时的古海洋环境,为油气勘探提供理论依据。笔者以乌力吉陶来剖面为例,通过剖面实测及系统采样,采用岩石学与地球化学相结合的方法,探讨阿木山组碳酸盐岩形成时的古海洋环境及油气勘探前景。地球化学特征表明:阿木山组碳酸盐岩陆源元素质量分数均较低,稀土元素特征值、碳氧同位素之间未见明显相关性,受陆源物质、成岩作用及热液作用的影响较弱,所测地球化学数据能有效反映碳酸盐岩形成时的古海洋环境。阿木山组碳酸盐岩沉积于正常海相环境,属温暖或炎热的亚热带气候,古氧相为弱氧化–弱还原环境,古海水温度为13.22~34.60 ℃,平均值为21.35 ℃,总体经历了1个大的海侵海退旋回。根据碳酸盐岩的分布及生烃条件,预示阿木山组有较好的油气勘探前景。
Abstract:In order to analyze the paleo-oceanic environment of carbonate rocks of Carboniferous-Permian Amushan Formation in Yin’e basin, and provide theoretical basis for oil and gas exploration. Taking the Wuliji Taolai section as an example, this paper discusses the paleo-ocean environment and oil and gas exploration prospect of carbonate rocks of the Amushan Formation based on petrologic and geochemical data. The geochemical characteristics show that the terrigenous elements of carbonate rocks of the Amushan Formation are relatively low. There is no obvious correlation between characteristic values of rare earth elements, carbon and oxygen isotopes. The influence of terrigenous materials, diagenesis, and hydrothermal is weak. The geochemical data can reasonably indicate the paleo-oceanic environment of the carbonate rocks. The carbonate rocks of the Amushan Formation were deposited in normal marine environments with warm or hot subtropical climate. The paleo-oxygen facies were in a weak oxidation-weak reduction environment. The paleo-sea temperature ranged from 13.22 to 34.60 ℃, with an average of 21.35 ℃. The distribution of carbonate rocks and hydrocarbon generation conditions indicate that Amushan Formation has good oil and gas exploration prospects.
-
Keywords:
- Carboniferous-Permian /
- Amushan Formation /
- carbonate rocks /
- geochemistry /
- paleo-ocean environmen
-
-
图 4 研究区碳酸盐岩中珊瑚和䗴化石
a. Caninia sp.,横切面(TL-19F2);b. Caninia sp.,纵切面(TL-19F2);c. Pseudozaphrentoides sp.,横切面(TL-19F2);d. Pseudozaphrentoides sp.,纵切面(TL-19F2);e. Caninia sp.,横切面(TL-19F2);f. Caninia sp.,横切面(TL-19F2);g. Caninia bothrophylloides Zeng,纵切面(TL-19F2);h. Caninia bothrophylloides Zeng,横切面(TL-19F2);i. Fusulinella peruana Meyer,×10(TL-1F1);j. Triticites winterensis Thompson,Verville and Lokke,×10(TL-36F6);k. Triticites winterensis Thompson,Verville and Lokke,×10(TL-36F6);l. Triticites pseudoarcticus Rauser,×10(TL-12F2)
Figure 4. Fossils of coral and skink in carbonate rocks in the study area
表 1 银额盆地石炭系—二叠系阿木山组实测剖面岩性组合特征
Table 1 Lithologic association of measured profile of Carboniferous-Permian Amushan Formation in Yin’e basin
剖面名称 段 碎屑岩 碳酸岩 火山岩 累计厚度
(m)砂砾岩
(m)粉砂岩
(m)泥页岩
(m)合计
(m)比例
(%)厚度
(m)比例
(%)厚度
(m)比例
(%)芒罕超克 79.41 281.17 180.83 541.4 100.0 - - - - 541.41 恩格尔乌苏北 747.10 49.50 10.40 807.0 87.3 - - 117.10 12.67 924.10 乌力吉尚丹 上段 716.04 47.81 175.57 939.4 100.0 - - - - 939.42 乌力吉陶来 中段 40.48 77.70 21.31 139.5 17.9 638.03 82.06 - - 777.52 乌力吉查古尔 下段 1331.42 - 87.16 1418.6 93.8 21.47 1.42 72.63 4.80 1512.68 阿伦功 383.76 304.20 289.35 977.3 98.4 16.20 1.63 - - 993.51 264界碑西南 577.28 67.20 14.12 658.6 83.3 131.57 16.65 - - 790.17 乌兰敖包 上段 383.13 128.45 3.66 515.2 92.2 43.46 7.78 - - 558.70 中段 14.19 - - 14.2 16.1 73.85 83.88 - - 88.04 下段 424.54 12.88 15.63 453.1 97.7 2.62 0.56 - - 463.82 呼伦陶勒盖 下段 194.32 37.54 94.05 325.9 69.1 - - 146.01 30.94 471.92 表 2 研究区碳酸盐岩常量元素分析结果
Table 2 Major elements analysis of carbonate rocks in the study area
样号 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO 烧失量(LOI) a m CH1 2.57 0.70 0.12 0.15 53.33 0.53 0.07 0.07 0.04 0.04 0.04 42.23 96.09 75.71 CH2 2.44 0.53 0.15 0.10 53.50 0.67 0.07 0.07 0.03 0.03 0.01 42.25 96.42 126.42 CH3 4.60 0.53 0.11 0.15 52.15 0.67 0.03 0.05 0.03 0.04 0.03 41.45 94.27 126.42 CH4 2.93 0.16 0.06 0.10 53.62 0.58 0.01 0.05 0.01 0.02 0.03 42.30 96.50 362.50 CH5 1.16 0.09 0.01 0.10 54.69 0.72 0.01 0.04 0.01 0.03 0.01 43.04 98.45 800.00 CH6 1.93 0.18 0.05 0.12 53.23 1.30 0.02 0.06 0.01 0.03 0.02 42.88 97.41 722.22 CH7 0.53 0.04 0.01 0.10 55.39 0.63 0.01 0.03 0.01 0.02 0.01 43.16 99.18 1575.00 CH8 2.00 0.36 0.13 0.05 53.61 0.69 0.02 0.05 0.02 0.02 0.02 42.86 97.16 191.67 CH9 2.91 0.37 0.18 0.15 53.20 0.54 0.03 0.06 0.02 0.03 0.04 42.33 96.07 145.95 CH10 1.76 0.33 0.13 0.08 54.34 0.55 0.01 0.05 0.02 0.02 0.01 42.54 97.43 166.67 CH11 3.22 0.42 0.24 0.18 53.09 0.52 0.06 0.07 0.03 0.03 0.06 41.98 95.59 123.81 CH12 2.60 0.36 0.12 0.15 53.54 0.59 0.04 0.06 0.03 0.03 0.03 42.30 96.43 163.89 注:常量元素含量为%。a=Σ(CaO+MgO+LOI);m=100×(MgO/Al2O3)。 表 3 研究区碳酸盐岩微量元素分析结果
Table 3 Trace elements analysis of carbonate rocks in the study area
样号 Ni Co Sr Ba V Zr B U Th Cu Sr/Cu Sr/Ba 1000 ×(Sr/Ca)V/(V+Ni) Ni/Co CH1 12.10 2.51 627 39.60 9.87 8.05 2.50 1.77 0.74 2.98 210 15.83 1.65 0.45 4.82 CH2 10.60 1.77 1080 39.40 12.80 10.80 2.65 2.43 0.89 2.82 383 27.41 2.83 0.55 5.99 CH3 12.80 1.51 800 102.00 6.70 9.05 2.32 2.20 0.45 1.84 435 7.84 2.15 0.34 8.48 CH4 11.80 1.68 976 28.20 6.70 7.62 2.01 2.66 0.30 1.14 856 34.61 2.55 0.36 7.02 CH5 10.50 1.46 780 26.70 4.50 4.54 1.55 3.66 0.23 1.24 629 29.21 2.00 0.30 7.19 CH6 10.40 1.54 1280 35.10 4.46 6.04 2.30 4.02 0.35 0.75 1707 36.47 3.37 0.30 6.75 CH7 10.20 1.47 1010 15.30 2.09 2.25 1.74 1.51 0.20 0.96 1052 66.01 2.55 0.17 6.94 CH8 10.40 1.50 1280 17.80 6.81 9.69 2.60 2.37 0.39 0.88 1455 71.91 3.34 0.40 6.93 CH9 10.50 1.53 693 29.20 6.27 5.34 2.20 1.44 0.49 1.91 363 23.73 1.82 0.37 6.86 CH10 11.10 1.68 1040 20.00 7.58 5.32 1.99 2.04 0.40 1.42 732 52.00 2.68 0.41 6.61 CH11 11.50 1.87 774 25.60 8.16 7.78 2.26 2.06 0.48 1.60 484 30.23 2.04 0.42 6.15 CH12 11.80 1.86 1120 28.60 8.07 7.24 2.22 2.28 0.47 1.55 723 39.16 2.93 0.41 6.34 注:微量元素含量为10–6。 表 4 研究区碳酸盐岩稀土元素及北美页岩标准化计算结果
Table 4 Rare earth elements analysis and NASC-normalized result of carbonate rocks in the study area
样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y CH1 4.00 7.47 0.95 3.40 0.78 0.20 0.78 0.12 0.75 0.16 0.46 0.07 0.42 0.07 6.02 CH2 4.46 7.18 0.99 3.63 0.78 0.18 0.80 0.14 0.81 0.17 0.47 0.07 0.42 0.07 6.88 CH3 3.01 4.59 0.68 2.51 0.62 0.16 0.74 0.12 0.80 0.17 0.49 0.08 0.49 0.08 7.71 CH4 1.98 3.47 0.44 1.70 0.40 0.10 0.46 0.08 0.52 0.12 0.34 0.05 0.33 0.05 4.76 CH5 2.68 4.19 0.55 2.20 0.56 0.12 0.61 0.11 0.68 0.14 0.40 0.06 0.38 0.06 5.38 CH6 3.96 4.17 0.74 2.92 0.74 0.16 0.88 0.14 0.89 0.18 0.51 0.08 0.49 0.07 10.40 CH7 0.97 1.29 0.20 0.76 0.19 0.05 0.21 0.04 0.24 0.06 0.16 0.02 0.15 0.03 2.85 CH8 1.63 3.34 0.42 1.60 0.37 0.09 0.40 0.06 0.41 0.09 0.24 0.04 0.25 0.04 3.58 CH9 3.46 5.30 0.73 2.77 0.62 0.14 0.66 0.11 0.67 0.14 0.40 0.06 0.36 0.05 6.32 CH10 2.22 3.66 0.49 1.83 0.41 0.10 0.44 0.07 0.44 0.10 0.27 0.04 0.24 0.04 4.26 CH11 2.87 4.70 0.58 2.08 0.50 0.13 0.56 0.10 0.60 0.12 0.36 0.05 0.35 0.05 5.57 CH12 2.56 4.65 0.55 1.99 0.46 0.12 0.51 0.09 0.52 0.11 0.32 0.05 0.30 0.04 5.18 样号 LREE HREE ΣREE LREE/HREE (La/Yb)N δEuN δCeN (La/Ce)N (La/Sm)N Y/Ho Ce/La CH1 16.80 8.85 25.65 1.90 0.92 1.13 0.83 1.22 0.91 37.63 1.87 CH2 17.22 9.83 27.05 1.75 1.03 1.00 0.74 1.42 1.02 40.47 1.61 CH3 11.57 10.67 22.24 1.08 0.60 1.04 0.70 1.50 0.86 45.35 1.52 CH4 8.09 6.72 14.80 1.20 0.58 0.98 0.81 1.30 0.88 39.67 1.75 CH5 10.30 7.83 18.13 1.32 0.68 0.90 0.75 1.46 0.85 38.43 1.56 CH6 12.69 13.64 26.33 0.93 0.78 0.87 0.53 2.17 0.95 57.78 1.05 CH7 3.46 3.75 7.21 0.92 0.63 0.99 0.64 1.72 0.91 51.82 1.33 CH8 7.45 5.11 12.55 1.46 0.63 0.98 0.88 1.11 0.78 42.12 2.05 CH9 13.02 8.77 21.79 1.48 0.93 0.96 0.73 1.49 0.99 45.14 1.53 CH10 8.71 5.90 14.60 1.48 0.90 1.00 0.76 1.38 0.96 44.38 1.65 CH11 10.86 7.76 18.62 1.40 0.79 1.08 0.79 1.39 1.02 46.42 1.64 CH12 24.34 7.12 31.46 3.42 0.83 1.09 0.85 1.26 0.99 47.09 1.82 注:稀土元素含量为10−6。 表 5 研究区碳酸盐岩C-O同位素分析结果
Table 5 Carbon and oxygen isotope analysis of carbonate rocks in the study area
样号 δ13C(‰) δ18O(‰) 盐度指数Z(‰) 温度指数T(℃) CH1 4.47 −7.67 132.63 24.75 CH2 4.47 −5.00 133.97 13.22 CH3 4.86 −6.41 134.06 19.07 CH4 3.80 −9.67 130.26 34.60 CH5 4.86 −5.52 134.50 15.33 CH6 4.60 −7.33 133.08 23.16 CH7 4.28 −5.40 133.37 14.84 CH8 3.04 −6.96 130.05 21.52 CH9 3.94 −7.43 131.66 23.61 CH10 4.68 −6.06 133.88 17.57 CH11 4.46 −8.70 132.10 29.70 CH12 4.59 −6.35 133.54 18.83 -
卜建军, 牛志军, 吴俊, 等. 内蒙古西部额济纳旗及邻区上石炭统—下二叠统阿木山组的沉积特征和时代[J]. 地质通报, 2012, 31(10): 1669-1683. BU Jianjun, NIU Zhijun, WU Jun, et al. Sedimentary characteristics and age of Amushan Formation in Ejin Banner and its adjacent areas, western Inner Mongolia[J]. Geological Bulletin of China, 2012, 31(10): 1669- 1683.
常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99 CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99.
杜洋, 樊太亮, 高志前. 塔里木盆地中下奥陶统碳酸盐岩地球化学特征及其对成岩环境的指示—以巴楚大板塔格剖面和阿克苏蓬莱坝剖面为例[J]. 天然气地球科学, 2016, 27(8): 1509-1523 DU Yang, FAN Tailiang, GAO Zhiqian. Geochemical characteristics and their implications to diagenetic environment of Lower-Middle Ordovician carbonate rocks, Tarim Basin, China: A case study of Bachu Dabantage outcrop and Aksu Penglaiba outcrop[J]. Natural Gas Geoscience, 2016, 27(8): 1509-1523.
高达, 王明敏, 陶叶, 等. 塔中地区良里塔格组海平面变化对高频层序和沉积演化的控制[J/OL]. 中国地质,2021. GAO Da, WANG Mingmin, TAO Ye, et al. Control of sea level changes on high-frequency sequence and sedimentary evolution of Lianglitage Formation in the Tazhong area[J/OL]. Geology in China,2021.
高振家, 陈克强, 魏家庸. 中国岩石地层辞典[M]. 武汉: 中国地质大学出版社, 2000 GAO Zhenjia, CHEN Keqiang, WEI Jiayong. Dictionary of the lithostratigraphic unit of China[M]. Wuhan: China University of Geoscience Press, 2000.
何雨旸, 赵广涛, 赵利, 等. 巢北地区二叠系栖霞组碳酸盐岩地球化学特征及其古环境意义[J]. 中国海洋大学学报, 2014, 44(5): 79-88 HE Yuyang, ZHAO Guangtao, ZHAO Li, et al. Geochemistry characteristics and paleo-environment significance of Qixia Formation in Chaobei area[J]. Periodical of Ocean University of China, 2014, 44(5): 79-88.
康建威, 牟传龙, 周恳恳, 等. 中条山地区武系地球化学特征与沉积环境研究[J]. 西北地质, 2015, 48(01): 37-46 KANG Jianwei, MOU Chuanlong, ZHOU Kenken, et al. Geochemical characteristics and sedimentary environment of the Cambrian carbonates in Zhongtiaoshan area[J]. Northwestern, 2015, 48(01): 37-46.
李文正, 张建勇, 郝毅, 等. 川东南地区洗象池组碳氧同位素特征、古海洋环境及其与储集层的关系[J]. 地质学报, 2019, 93(2): 487-500 doi: 10.1111/1755-6724.13831 LI Wenzheng, ZHANG Jianyong, HAO Yi, et al. Characteristics of carbon and oxygen isotopic, paleoceanographic environment and their relationship with reservoirs of the Xixiangchi Formation, southeastern Sichuan basin[J]. Acta Geologica Sinica, 2019, 93(2): 487-500. doi: 10.1111/1755-6724.13831
梁文君, 肖传桃, 肖凯, 等. 藏北安多晚侏罗世古环境、古气候与地球化学元素关系研究[J]. 中国地质, 2015, 42(4): 1079-1091 LIANG Wenjun, XIAO Chuantao, XIAO Kai, et al. The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo Country of northern Tibet[J]. Geology in China, 2015, 42(4): 1079-1091.
卢进才, 陈践发, 郭建军, 等. 古亚洲与特提斯交汇带盆地群油气资源潜力[J]. 西北地质, 2006, 39(3): 39−47. LU Jincai, CHEN Jianfa, GUO Jianjun, et al. Potential of Oil and gas Resources of Basin Groups in Conjunction Area between the Paleoa-Asia and Tethys[J]. Northwest Geology, 2006, 39(3): 39−47.
卢进才, 史冀忠, 牛亚卓, 等. 内蒙古西部北山—银额地区石炭纪—二叠纪层序地层与沉积演化[J]. 岩石学报, 2018, 34(10): 3101-3115 LU Jincai, SHI Jizhong, NIU Yazhuo, et al. The Carboniferous-Permian sequence stratigraphy and sedimentary evolution of Beishan-Yin’e region, western Inner Mongolia[J]. Acta Petrologica Sinica, 2018, 34(10): 3101-3115.
宁夏回族自治区地质局. 1/20万区域地质调查报告乌力吉幅(K-48-27)[R]. 北京: 全国地质资料馆, 1980. 曲长胜, 邱隆伟, 杨勇强, 等. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义[J]. 地质学报, 2017, 91(3): 605-616 QU Changsheng, QIU Longwei, YANG Yongqiang, et al. Carbon and oxygen isotopes compositions of carbonatic rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and their paleolimnological significance[J]. Acta Geologic Sinica, 2017, 91(3): 605-616.
邵龙义. 碳酸盐岩氧、碳同位素与古温度等的关系[J]. 中国矿业大学学报, 1994, 23(1): 39-45 SHAO Longyi. The radition of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc[J]. Journal of China University of Mining & Technology, 1994, 23(1): 39-45.
史冀忠, 陈高潮, 姜亭, 等. 内蒙古银额盆地及邻区石炭纪小独山期—二叠纪紫松期物源[J]. 地质通报, 2013, 32(11): 1777-1789 doi: 10.3969/j.issn.1671-2552.2013.11.010 SHI Jizhong, CHEN Gaochao, JIANG Ting, et al. The provenance of Carboniferous Xiaodushanian-Permian Zisongian stage in Yingen-Ejin Banner basin and its vicinities[J]. Geological Bulletin of China, 2013, 32(11): 1777-1789. doi: 10.3969/j.issn.1671-2552.2013.11.010
史冀忠, 陈高潮, 姜亭, 等. 银额盆地及邻区石炭纪小独山期—二叠纪紫松期岩相古地理[J]. 地质通报, 2018, 37(1): 107-119 doi: 10.12097/j.issn.1671-2552.2018.01.012 SHI Jizhong, CHEN Gaochao, JIANG Ting, et al. Lithofacies palaeogeography of Carboniferous Xiaodushanian-Permian Zisongian stage in Yingen-Ejin basin and its adjacent areas[J]. Geological Bulletin of China, 2018, 37(1): 107-119. doi: 10.12097/j.issn.1671-2552.2018.01.012
史冀忠, 牛亚卓, 许伟, 等. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693 SHI Jizhong, NIU Yazhuo, XU Wei, et al. Geochemical characteristics and sedimentary environment of Carboniferous Baishan Formation carbonate in Shibanquanxi of Yingen-Ejin Banner basin[J]. Journal of Jinlin University(Earth Science Edition), 2021, 51(3): 680-693.
苏华英. 内蒙古银根—额济纳旗盆地东部石炭—二叠系阿木山组层序地层特征[J]. 中国石油和化工标准与质量, 2011, 31(2): 199-200 SU Huaying. The sequence stratigraphy characteristics of the Permian-Carboniferous Amushan Formation in the eastern Yingen-Ejinaqi basin, Inner Mongolia, China[J]. China Petroleum and Chemical Standards and Quality, 2011, 31(2): 199-200.
王鹏万, 斯春松, 张润合, 等. 滇黔北坳陷寒武系碳酸盐岩古海洋环境特征及地质意义[J]. 沉积学报, 2016, 34(5): 811-818 WANG Pengwan, SI Chunsong, ZHANG Runhe, et al. Characteristic of the Cambrian carbonate paleo-ocean environment in the Dianqianbei depression and its geological significance[J]. Acta Sedimentologica Sinica, 2016, 34(5): 811-818.
王廷印, 张铭杰, 王金荣, 等. 恩格尔乌苏冲断带特征及大地构造意义[J]. 地质科学, 1998, 33(4): 385-394 WANG Tingyin, ZHANG Mingjie, WANG Jinrong, et al. The characteristics and tectonic implications of the thrust belt in Eugerwusu, China[J]. Scientia Geologica sinica, 1998, 33(4): 385-394.
王小林, 胡文瑄, 张军涛, 等. 塔里木盆地和田1井中寒武统膏岩层段发现原生白云石[J]. 地质评论, 2016, 62(2): 419-433 WANG Xiaolin, HU Wenxuan, ZHANG Juntao, et al. Discovery of primary dolomite in evaporite sequences of hetian-1 well, Middle Cambrian, Tarim basin[J]. Geological Review, 2016, 62(2): 419-433.
王中刚, 于学元, 赵振华. 国外稀土元素地球化学的进展[J]. 矿物岩石地球化学通报, 1986, 5(1): 2-4 WANG Zhonggang, YU Xueyuan, ZHAO Zhenhua. Progress of geochemistry on rare earth elements abroad[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1986, 5(1): 2-4.
魏建设, 赵琳雁, 周俊林, 等. 银额盆地吉格达凹陷原油地球化学特征及其意义[J]. 西北地质, 2023, 56(5): 332−342. WEI Jianshe, ZHAO Linyan, ZHOU Junlin, et al. Geochemical Characteristics of Crude Oil in Jigeda Sag of Yingen–Ejin Basin and Its Significances[J]. Northwestern Geology, 2023, 56(5): 332−342.
吴泰然, 何国琦. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J]. 地质学报, 1993, 67(2): 97-108 WU Tairan, HE Guoqi. Tectonic units and their fundamental characteristics on the Northern margin of the Alxa Block[J]. Acta Geologica Sinica, 1993, 67(2): 97-108.
熊加贝, 何登发. 全球碳酸盐岩地层—岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1): 187-200 XIONG Jiabei, HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields[J]. Lithologic Reservoirs, 2022, 34(1): 187-200.
许中杰, 孔锦涛, 程日辉, 等. 下扬子南京地区早寒武世幕府山组海平面相对升降的地球化学和碳、氧同位素记录[J]. 吉林大学学报(地球科学版), 2020, 50(1): 158-169 XU Zhongjie, KONG Jintao, CHENG Rihui, et al. Geochemical and carbon and oxygen isotope records of relative sea-level change of Mufushan Formation in Early Cambrian in Nanjing, Lower Yangtze region[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 158-169.
颜佳新, 徐四平, 李方林. 湖北巴东栖霞组缺氧沉积环境的地球化学特征[J]. 岩相古地理, 1998, 18(6): 27-32 YAN Jiaxin, XU Siping, LI Fanglin. Geochemistry of the dysaerobic sedimentary environments of the Qixia Formation in Badong, Hubei[J]. Journal of Palaeogeography, 1998, 18(6): 27-32.
杨捷, 曾佐勋, 蔡雄飞, 等. 贺兰山地区震旦系碳酸盐岩碳氧同位素分析[J]. 科学通报, 2014, 59(4-5): 355-365 doi: 10.1360/csb2014-59-4-5-355 YANG Jie, ZENG Zuoxun, CAI Xiongfei, et al. Carbon and oxygen isotopes analyses for the Sinian carbonates in the Helan Mountain, North China[J]. Chinese Science Bulletin, 2014, 59(4-5): 355-365. doi: 10.1360/csb2014-59-4-5-355
杨晓璇, 李雪峰, 郭进京, 等. 西秦岭北缘漳县渐新统—中新统湖相碳酸盐岩碳、氧同位素特征及意义[J]. 西北地质, 2022, 55(02): 106-115 YANG Xiaoxuan, LI Xuefeng, GUO Jinjing, et al. Characteristics and significance of C-O isotopes of Oligocene Miocene lacustrine carbonate rocks in Zhangxian, Northern margin of West Qinling Mountains[J]. Northwestern, 2022, 55(02): 106-115.
张文, 吴泰然, 冯继承, 等. 阿拉善地块北缘古大洋闭合的时间制约: 来自乌力吉花岗岩体的证据[J]. 中国科学(地球科学), 2013, 43(8): 1299-1311 ZHANG Wen, WU Tairan, FENG Jichen, et al. Time constraints for the closing of the Paleo-Asian Ocean in the Northern Alxa Region: Evidence from Wuliji granites[J]. Science China: Earth Sciences, 2013, 43(8): 1299-1311.
张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 1985, 3(4): 17-30 ZHANG Xiulian. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater[J]. Acta Sedimentologica Sinica, 1985, 3(4): 17-30.
张玉清, 张婷. 内蒙古阿木山组[J]. 中国地质, 2016, 43(3): 1000-1015 ZHANG Yuqing, ZHANG Ting. Amushan Formation in Inner Mongolia[J]. Geology in China, 2016, 43(3): 1000-1015.
赵晓辰, 刘池洋, 赵岩, 等. 鄂尔多斯西南缘水泉岭组碳酸盐岩地球化学特征[J]. 西北大学学报(自然科学版), 2017, 47(1): 101-109 ZHAO Xiaochen, LIU Chiyang, ZHAO Yan, et al. Geochemical characteristics of the Shuiquanling Formation carbonates in the southwestern margin of Ordos basin[J]. Journal of Northwest University(Natural Science Edition), 2017, 47(1): 101-109.
郑荣国, 李锦轶, 刘建峰. 阿拉善地块北缘地区阿木山组火山岩时代: 锆石U-Pb定年证据[J]. 中国地质, 2017, 44(3): 612-613 ZHENG Rongguo, LI Jinyi, LIU Jianfeng. The age of volcanic rocks of Amushan Formation on the northern margin of Alxa block: Evidence from zircon U-Pb data[J]. Geology in China, 2017, 44(3): 612-613.
Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambiran Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9
Bellanca A, Masetti D, Neri R. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section(Venetian region, northern Italy): assessing REE sensitivity to environmental changes[J]. Chemical Geology, 1997, 141(3-4): 141-152. doi: 10.1016/S0009-2541(97)00058-2
Brian A, Haley, Gary P K, James M. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279. doi: 10.1016/j.gca.2003.09.012
Clayton R N, Degens E T. Use of carbon isotope analyses of carbonates for differentiating fresh-water and marine sediments[J]. AAPG Bulletin, 1959, 43(4): 890-897.
Craig H. The measurement of oxygen isotope paleotemperatures//Tongiorgi E. Stable isotopes in oceanographic studies and paleotemperatures[J]. Pisa: Consiglio nazionale delle richerche, Laboratorio di geologia nucleare, 1965, 161-182.
Guy C, Daux V, Schott J. Behaviour of rare earth elements during seawater/basalt interactions in the Mururoa Massif[J]. Chemical Geology, 1999, 158(1-2): 21-35. doi: 10.1016/S0009-2541(99)00019-4
Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A[J]. Chemical Geology, 1992, 99(1-3): 65-82. doi: 10.1016/0009-2541(92)90031-Y
Horacek M, Brandner R, Abart R. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic carbon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1-2): 347-354. doi: 10.1016/j.palaeo.2006.11.049
Jones B J, Manning A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1): 111-129.
Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1-4): 27-49. doi: 10.1016/0301-9268(94)00070-8
Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10-11): 1787-1816. doi: 10.1016/0016-7037(64)90022-5
Murray R W, Buchholtz M R, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2657-2671. doi: 10.1016/0016-7037(92)90351-I
Nagarajan R, Madhavaraju J, Armstrong-Altrin J S, et al. Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima basin, Karnataka, Southern India[J]. Geosciences Journal, 2011, 15(1): 9-25. doi: 10.1007/s12303-011-0005-0
Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175: 29-48. doi: 10.1016/S0009-2541(00)00362-4
Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(6): 1567-1579. doi: 10.1016/0016-7037(94)90559-2
Veizer J, Demovic R. Strontium as a tool for facies analysis[J]. Journal of Sedimentary Petrology, 1974, 44(1): 93-115.
Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565. doi: 10.1016/S0016-7037(99)00400-7