ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

银额盆地石炭系—二叠系阿木山组碳酸盐岩地球化学特征及古海洋环境:以乌力吉陶来剖面为例

史冀忠, 魏建设, 姜亭, 宋博, 卜建军, 许伟, 王博

史冀忠,魏建设,姜亭,等. 银额盆地石炭系—二叠系阿木山组碳酸盐岩地球化学特征及古海洋环境:以乌力吉陶来剖面为例[J]. 西北地质,2024,57(6):113−126. doi: 10.12401/j.nwg.2023110
引用本文: 史冀忠,魏建设,姜亭,等. 银额盆地石炭系—二叠系阿木山组碳酸盐岩地球化学特征及古海洋环境:以乌力吉陶来剖面为例[J]. 西北地质,2024,57(6):113−126. doi: 10.12401/j.nwg.2023110
SHI Jizhong,WEI Jianshe,JIANG Ting,et al. Geochemical Characteristics and Paleo-Oceanic Environment of Carbonate Rocks of Carboniferous-Permian Amushan Formation in Yin’e Basin: Example from Wuliji Taolai Section[J]. Northwestern Geology,2024,57(6):113−126. doi: 10.12401/j.nwg.2023110
Citation: SHI Jizhong,WEI Jianshe,JIANG Ting,et al. Geochemical Characteristics and Paleo-Oceanic Environment of Carbonate Rocks of Carboniferous-Permian Amushan Formation in Yin’e Basin: Example from Wuliji Taolai Section[J]. Northwestern Geology,2024,57(6):113−126. doi: 10.12401/j.nwg.2023110

银额盆地石炭系—二叠系阿木山组碳酸盐岩地球化学特征及古海洋环境:以乌力吉陶来剖面为例

基金项目: 中国地质调查局项目“河西走廊盆地群油气调查评价”(DD20230261)、“西北含油气盆地油气战略性矿产调查评价”(DD20230314)和“银额盆地西部–北山盆地群油气地质调查”(DD20190092)联合资助
详细信息
    作者简介:

    史冀忠(1983−),男,正高级工程师,主要从事油气基础地质调查研究。E–mail:shijizhong0241@sina.com

    通讯作者:

    魏建设(1981−),男,正高级工程师,主要从事油气及非常规能源地质调查工作。E–mail:upcwjs@126.com

  • 中图分类号: P618.13

Geochemical Characteristics and Paleo-Oceanic Environment of Carbonate Rocks of Carboniferous-Permian Amushan Formation in Yin’e Basin: Example from Wuliji Taolai Section

  • 摘要:

    为厘定银额盆地石炭系—二叠系阿木山组碳酸盐岩沉积时的古海洋环境,为油气勘探提供理论依据。笔者以乌力吉陶来剖面为例,通过剖面实测及系统采样,采用岩石学与地球化学相结合的方法,探讨阿木山组碳酸盐岩形成时的古海洋环境及油气勘探前景。地球化学特征表明:阿木山组碳酸盐岩陆源元素质量分数均较低,稀土元素特征值、碳氧同位素之间未见明显相关性,受陆源物质、成岩作用及热液作用的影响较弱,所测地球化学数据能有效反映碳酸盐岩形成时的古海洋环境。阿木山组碳酸盐岩沉积于正常海相环境,属温暖或炎热的亚热带气候,古氧相为弱氧化–弱还原环境,古海水温度为13.22~34.60 ℃,平均值为21.35 ℃,总体经历了1个大的海侵海退旋回。根据碳酸盐岩的分布及生烃条件,预示阿木山组有较好的油气勘探前景。

    Abstract:

    In order to analyze the paleo-oceanic environment of carbonate rocks of Carboniferous-Permian Amushan Formation in Yin’e basin, and provide theoretical basis for oil and gas exploration. Taking the Wuliji Taolai section as an example, this paper discusses the paleo-ocean environment and oil and gas exploration prospect of carbonate rocks of the Amushan Formation based on petrologic and geochemical data. The geochemical characteristics show that the terrigenous elements of carbonate rocks of the Amushan Formation are relatively low. There is no obvious correlation between characteristic values of rare earth elements, carbon and oxygen isotopes. The influence of terrigenous materials, diagenesis, and hydrothermal is weak. The geochemical data can reasonably indicate the paleo-oceanic environment of the carbonate rocks. The carbonate rocks of the Amushan Formation were deposited in normal marine environments with warm or hot subtropical climate. The paleo-oxygen facies were in a weak oxidation-weak reduction environment. The paleo-sea temperature ranged from 13.22 to 34.60 ℃, with an average of 21.35 ℃. The distribution of carbonate rocks and hydrocarbon generation conditions indicate that Amushan Formation has good oil and gas exploration prospects.

  • 碳酸盐岩作为内源沉积岩,在形成过程中与水介质之间存在着复杂的地球化学平衡,元素在碳酸盐岩中迁移富集除与元素本身性质有关外,还受古气候和古环境等外部因素的影响,同时许多元素的赋存并不受成岩后生变化影响,因此利用碳酸盐岩中各元素的含量、比值可以推断沉积环境(Guy et al.,1999Brian et al.,2004史冀忠等,2021)。此外,碳酸盐岩的碳氧同位素也蕴含着其沉积时的古海洋环境信息(张秀莲,1985杨捷等,2014王小林等,2016),也是研究古海洋环境的重要手段。利用碳酸盐岩地球化学特征示踪古海洋环境及盆地演化,越来越受到沉积学家们的重视(何雨旸等,2014赵晓辰等,2017李文正等,2019杨晓璇等,2022)。

    阿木山组是地质部 241 队于 1955 年创名,地点在内蒙古包头市达尔罕茂明安联合旗阿木山地区(高振家等,2000),其分布十分广泛,西起阿拉善,东至巴林左旗,断续分布1 400 km(张玉清等,2016)。阿木山组在阿拉善左旗乌力吉出露良好,三段齐全,不同学者从地层时代、层序地层特征、岩相古地理等方面对该套地层进行了研究。1∶20万乌力吉幅区域地质调查报告认为该套地层为晚石炭世(宁夏回族自治区地质局,1980),卜建军等(2012)通过䗴类和珊瑚化石、郑荣国等(2017)通过火山岩锆石U-Pb测年,认为该套地层为晚石炭系世—早二叠世。苏华英(2011)通过露头层序地层学研究将阿木山组划分为 3 个三级层序。近年来笔者所在团队首次开展银额盆地石炭系—二叠系油气基础地质调查,通过剖面实测以及路线地质调查,对阿木山组沉积时期的物源、岩相古地理以及盆地演化进行了初步研究(史冀忠等,20132018卢进才等,2018),关于阿木山组碳酸盐岩形成的古海洋环境及演化规律尚未进行深入研究。笔者以乌力吉陶来剖面为例,在实测剖面的基础上,系统采集薄片、地球化学、碳氧同位素等样品,进行详细的岩石学及地球化学分析,重建银额盆地阿木山组碳酸盐岩沉积时期的古海洋环境及其演化特征,为银额盆地的油气勘探提供理论依据。

    银额盆地位于内蒙古自治区西部,处于华北板块、塔里木板块和哈萨克斯坦板块的结合处(图1a),是中国陆地上油气勘探程度较低的地区之一(卢进才等,2006魏建设等,2023)。研究区内分布着3条重要的断裂带,自北向南分别为雅干断裂带、恩格尔乌苏断裂带和查干础鲁断裂带,据此划分为雅干构造带、珠斯楞–杭乌拉构造带、沙拉扎山构造带和诺日公–狼山构造带(吴泰然等,1993王廷印等,1998张文等,2013)(图1b)。

    图  1  研究区构造位置(a)、阿木山组分布(b)和乌力吉地区地质简图(c)
    Figure  1.  (a) Tectonic location, (b) distribution of Amushan Formation and (c) geological sketch of Wuliji Area

    银额盆地东部的阿木山组出露于芒罕超克、恩格尔乌苏北、乌力吉、阿伦功、264界碑西南、呼伦陶勒盖和乌兰敖包等地(图1b),各剖面岩性组成见表1。阿木山组在乌力吉出露最全,根据岩性组合特征可划分为3段:下段为中酸性火山碎屑岩、长石砂岩为代表的火山岩–碎屑岩;中段为生物碎屑灰岩为代表的碳酸盐岩;上段为砾岩及长石石英砂岩为代表的粗碎屑岩,沿走向岩性及厚度变化较大。

    表  1  银额盆地石炭系—二叠系阿木山组实测剖面岩性组合特征
    Table  1.  Lithologic association of measured profile of Carboniferous-Permian Amushan Formation in Yin’e basin
    剖面名称碎屑岩碳酸岩火山岩累计厚度
    (m)
    砂砾岩
    (m)
    粉砂岩
    (m)
    泥页岩
    (m)
    合计
    (m)
    比例
    (%)
    厚度
    (m)
    比例
    (%)
    厚度
    (m)
    比例
    (%)
    芒罕超克79.41281.17180.83541.4100.0541.41
    恩格尔乌苏北747.1049.5010.40807.087.3117.1012.67924.10
    乌力吉尚丹上段716.0447.81175.57939.4100.0939.42
    乌力吉陶来中段40.4877.7021.31139.517.9638.0382.06777.52
    乌力吉查古尔下段1331.4287.161418.693.821.471.4272.634.801512.68
    阿伦功383.76304.20289.35977.398.416.201.63993.51
    264界碑西南577.2867.2014.12658.683.3131.5716.65790.17
    乌兰敖包上段383.13128.453.66515.292.243.467.78558.70
    中段14.1914.216.173.8583.8888.04
    下段424.5412.8815.63453.197.72.620.56463.82
    呼伦陶勒盖下段194.3237.5494.05325.969.1146.0130.94471.92
    下载: 导出CSV 
    | 显示表格

    陶来剖面的碳酸盐岩厚度最大,其位于内蒙古阿拉善左旗乌力吉东约20 km(图1c),厚约为777.52 m,岩性以灰色中–薄层灰岩、生物碎屑灰岩、藻灰岩为主,夹泥质粉砂岩、粉砂质泥岩、含砾粗砂岩、钙质粗砂岩、钙质长石砂岩(图2表1)。生物灰岩中含有丰富的化石,有䗴类、珊瑚、腕足、海百合茎、菊石、腹足、有孔虫及藻类等(图3图4)。根据岩性组合特征、古生物化石等对阿木山组碳酸盐岩段进行了沉积相的划分,总体为碳酸盐岩台地相,进一步划分为台地边缘、开阔台地亚相(图2)。

    图  2  研究区碳酸盐岩段综合柱状图及采样位置
    Figure  2.  Comprehensive column and sampling position of carbonate rocks in the study area
    图  3  研究区碳酸盐岩野外及显微照片
    a.灰色薄层灰岩;b.珊瑚化石;c.菊石化石;d.藻类;e.生物碎屑灰岩中有孔虫(B5);f.生物碎屑灰岩中䗴化石(B5);g.生物碎屑灰岩(B7);h.生物碎屑灰岩(B12)
    Figure  3.  Field and microscopic characteristics of carbonate rocks in the study area
    图  4  研究区碳酸盐岩中珊瑚和䗴化石
    a. Caninia sp.,横切面(TL-19F2);b. Caninia sp.,纵切面(TL-19F2);c. Pseudozaphrentoides sp.,横切面(TL-19F2);d. Pseudozaphrentoides sp.,纵切面(TL-19F2);e. Caninia sp.,横切面(TL-19F2);f. Caninia sp.,横切面(TL-19F2);g. Caninia bothrophylloides Zeng,纵切面(TL-19F2);h. Caninia bothrophylloides Zeng,横切面(TL-19F2);i. Fusulinella peruana Meyer,×10(TL-1F1);j. Triticites winterensis Thompson,Verville and Lokke,×10(TL-36F6);k. Triticites winterensis Thompson,Verville and Lokke,×10(TL-36F6);l. Triticites pseudoarcticus Rauser,×10(TL-12F2)
    Figure  4.  Fossils of coral and skink in carbonate rocks in the study area

    样品采自内蒙古阿拉善左旗乌力吉东陶来剖面,层位为石炭系—二叠系阿木山组碳酸盐岩段,采样时沿剖面均匀采集,尽可能选取新鲜,未蚀变及矿化的样品。共采集12件薄片、12件地球化学和12件碳氧同位素样品,采样位置见图2,同时采集古生物化石样品进行详细鉴定(图4)。

    地球化学(常量元素、微量元素及稀土元素)分析在自然资源部岩浆作用成矿与找矿重点实验室进行,主量元素采用X射线荧光光谱法(XRF)测定,分析精度优于2%;微量元素及稀土元素采用电感耦合等离子质谱仪法(ICP-MS)测定,分析精度优于5%。碳氧同位素在西北大学大陆动力学国家重点实验室采用Gasbench-IRMS测试,δ13C分析精度为±0.1‰,δ18O分析精度为±0.2‰。

    岩石学是碳酸盐岩地球化学分析的基础,对采集的薄片在偏光显微镜下进行岩相学鉴定,主要为生物碎屑灰岩。

    生物碎屑灰岩为生物碎屑结构,块状构造,主要由生物碎屑组成,含量为45%~70%,主要为䗴科、有孔虫类、腕足和藻类等。䗴科壳体形态多呈纺锤形,少数为椭圆形,大小一般为0.8~3.5 mm;有孔虫呈锥形、长圆形、圆形等,壳体一般为0.2~2.8 mm;腕足常见腕足刺,呈圆形、同心层状构造;藻类多呈圆形或椭圆形,有些具同心层状;另外还有双壳类、海百合茎、苔藓类及其他生物碎屑,胶结物为方解石亮晶(图3图4)。

    中国地质大学(武汉)李志明教授对珊瑚进行了详细鉴定,有Caninia sp.、Pseudozaphrentoides sp.Caninia bothrophylloides Zeng等(图4a~图4h)。中国地质调查局武汉地质调查中心牛志军教授对䗴类进行了详细鉴定,有:Fusulinella peruana Meyer、Triticites winterensis Thompson、Verville and Lokke、Triticites pseudoarcticus Rauser和Fusulinella devexa Thompson(图4i~图4l)。根据化石确定该套地层时代为晚石炭系世小独山期—早二叠世紫松期(卜建军等,2012)。

    陶来剖面阿木山组碳酸盐岩的常量元素、微量元素、稀土元素及北美页岩标准化、C-O同位素分析结果分别见表2表5

    表  2  研究区碳酸盐岩常量元素分析结果
    Table  2.  Major elements analysis of carbonate rocks in the study area
    样号SiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OTiO2P2O5MnO烧失量(LOI)am
    CH12.570.700.120.1553.330.530.070.070.040.040.0442.2396.0975.71
    CH22.440.530.150.1053.500.670.070.070.030.030.0142.2596.42126.42
    CH34.600.530.110.1552.150.670.030.050.030.040.0341.4594.27126.42
    CH42.930.160.060.1053.620.580.010.050.010.020.0342.3096.50362.50
    CH51.160.090.010.1054.690.720.010.040.010.030.0143.0498.45800.00
    CH61.930.180.050.1253.231.300.020.060.010.030.0242.8897.41722.22
    CH70.530.040.010.1055.390.630.010.030.010.020.0143.1699.181575.00
    CH82.000.360.130.0553.610.690.020.050.020.020.0242.8697.16191.67
    CH92.910.370.180.1553.200.540.030.060.020.030.0442.3396.07145.95
    CH101.760.330.130.0854.340.550.010.050.020.020.0142.5497.43166.67
    CH113.220.420.240.1853.090.520.060.070.030.030.0641.9895.59123.81
    CH122.600.360.120.1553.540.590.040.060.030.030.0342.3096.43163.89
     注:常量元素含量为%。a=Σ(CaO+MgO+LOI);m=100×(MgO/Al2O3)。
    下载: 导出CSV 
    | 显示表格
    表  3  研究区碳酸盐岩微量元素分析结果
    Table  3.  Trace elements analysis of carbonate rocks in the study area
    样号NiCoSrBaVZrBUThCuSr/CuSr/Ba1000×(Sr/Ca)V/(V+Ni)Ni/Co
    CH112.102.5162739.609.878.052.501.770.742.9821015.831.650.454.82
    CH210.601.77108039.4012.8010.802.652.430.892.8238327.412.830.555.99
    CH312.801.51800102.006.709.052.322.200.451.844357.842.150.348.48
    CH411.801.6897628.206.707.622.012.660.301.1485634.612.550.367.02
    CH510.501.4678026.704.504.541.553.660.231.2462929.212.000.307.19
    CH610.401.54128035.104.466.042.304.020.350.75170736.473.370.306.75
    CH710.201.47101015.302.092.251.741.510.200.96105266.012.550.176.94
    CH810.401.50128017.806.819.692.602.370.390.88145571.913.340.406.93
    CH910.501.5369329.206.275.342.201.440.491.9136323.731.820.376.86
    CH1011.101.68104020.007.585.321.992.040.401.4273252.002.680.416.61
    CH1111.501.8777425.608.167.782.262.060.481.6048430.232.040.426.15
    CH1211.801.86112028.608.077.242.222.280.471.5572339.162.930.416.34
     注:微量元素含量为10–6
    下载: 导出CSV 
    | 显示表格
    表  4  研究区碳酸盐岩稀土元素及北美页岩标准化计算结果
    Table  4.  Rare earth elements analysis and NASC-normalized result of carbonate rocks in the study area
    样号LaCePrNdSmEuGdTbDyHoErTmYbLuY
    CH14.007.470.953.400.780.200.780.120.750.160.460.070.420.076.02
    CH24.467.180.993.630.780.180.800.140.810.170.470.070.420.076.88
    CH33.014.590.682.510.620.160.740.120.800.170.490.080.490.087.71
    CH41.983.470.441.700.400.100.460.080.520.120.340.050.330.054.76
    CH52.684.190.552.200.560.120.610.110.680.140.400.060.380.065.38
    CH63.964.170.742.920.740.160.880.140.890.180.510.080.490.0710.40
    CH70.971.290.200.760.190.050.210.040.240.060.160.020.150.032.85
    CH81.633.340.421.600.370.090.400.060.410.090.240.040.250.043.58
    CH93.465.300.732.770.620.140.660.110.670.140.400.060.360.056.32
    CH102.223.660.491.830.410.100.440.070.440.100.270.040.240.044.26
    CH112.874.700.582.080.500.130.560.100.600.120.360.050.350.055.57
    CH122.564.650.551.990.460.120.510.090.520.110.320.050.300.045.18
    样号 LREE HREE ΣREE LREE/HREE (La/Yb)N δEuN δCeN (La/Ce)N (La/Sm)N Y/Ho Ce/La
    CH1 16.80 8.85 25.65 1.90 0.92 1.13 0.83 1.22 0.91 37.63 1.87
    CH2 17.22 9.83 27.05 1.75 1.03 1.00 0.74 1.42 1.02 40.47 1.61
    CH3 11.57 10.67 22.24 1.08 0.60 1.04 0.70 1.50 0.86 45.35 1.52
    CH4 8.09 6.72 14.80 1.20 0.58 0.98 0.81 1.30 0.88 39.67 1.75
    CH5 10.30 7.83 18.13 1.32 0.68 0.90 0.75 1.46 0.85 38.43 1.56
    CH6 12.69 13.64 26.33 0.93 0.78 0.87 0.53 2.17 0.95 57.78 1.05
    CH7 3.46 3.75 7.21 0.92 0.63 0.99 0.64 1.72 0.91 51.82 1.33
    CH8 7.45 5.11 12.55 1.46 0.63 0.98 0.88 1.11 0.78 42.12 2.05
    CH9 13.02 8.77 21.79 1.48 0.93 0.96 0.73 1.49 0.99 45.14 1.53
    CH10 8.71 5.90 14.60 1.48 0.90 1.00 0.76 1.38 0.96 44.38 1.65
    CH11 10.86 7.76 18.62 1.40 0.79 1.08 0.79 1.39 1.02 46.42 1.64
    CH12 24.34 7.12 31.46 3.42 0.83 1.09 0.85 1.26 0.99 47.09 1.82
     注:稀土元素含量为10−6
    下载: 导出CSV 
    | 显示表格
    表  5  研究区碳酸盐岩C-O同位素分析结果
    Table  5.  Carbon and oxygen isotope analysis of carbonate rocks in the study area
    样号δ13C(‰)δ18O(‰)盐度指数Z(‰)温度指数T(℃)
    CH14.47−7.67132.6324.75
    CH24.47−5.00133.9713.22
    CH34.86−6.41134.0619.07
    CH43.80−9.67130.2634.60
    CH54.86−5.52134.5015.33
    CH64.60−7.33133.0823.16
    CH74.28−5.40133.3714.84
    CH83.04−6.96130.0521.52
    CH93.94−7.43131.6623.61
    CH104.68−6.06133.8817.57
    CH114.46−8.70132.1029.70
    CH124.59−6.35133.5418.83
    下载: 导出CSV 
    | 显示表格

    利用碳酸盐岩地球化学数据进行古海洋环境分析时,要考虑样品受陆源物质混入的影响。主量元素中的Al2O3、微量元素中的Zr、Th等通常来源于陆源碎屑,如果碳酸盐岩中这些元素含量较高,说明受到陆源物质混染(赵晓辰等,2017)。稀土元素(REE)的稳定性较强,并且溶解度很低(Murray et al.,1992),如果碳酸盐岩受到陆源物质的混染,将具有较高的稀土元素(REE)含量(常华进等,2009)。陶来剖面阿木山组碳酸盐岩地球化学分析结果见表1表3,Al2O3质量分数为0.04%~0.70%,平均值为0.34%;Zr质量分数为2.25×10−6~10.80×10−6,平均值为6.98×10−6;Th质量分数为0.20×10−6~0.89×10−6,平均值为0.45×10−6;稀土元素(REE)质量分数为7.21×10−6~31.46×10−6,平均值为20.04×10−6;所有样品陆源碎屑含量均较低(图5),说明碳酸盐岩的微量元素主要来自自生沉积。

    图  5  研究区碳酸盐岩地球化学特征
    Figure  5.  Geochemical characteristics of carbonate rocks in the study area

    Y和Ho的比值也可以用来反映碳酸盐岩受陆源物质的影响(Webb et al.,2000)。现代海水的Y/Ho值为44~74(Bau et al.,1996),正常灰岩的Y/Ho值为44左右(Nagarajan et al.,2011),陶来剖面阿木山组碳酸盐岩的Y/Ho值为37.63~57.78,平均值为44.69(表4),接近正常灰岩,说明较少受陆源物质混染。

    成岩作用和热液活动也会影响沉积物中微量元素的含量,如果沉积物受成岩作用影响,δCe与δEu、w(ΣREE)之间将具有良好的相关性(Shields et al.,2001),热液作用会使沉积物具明显的Eu正异常(常华进等,2009)。陶来剖面阿木山组碳酸盐岩δCe与δEu、w(ΣREE)之间未见明显相关性(图6a、图6b),同时(La /Sm)N>0.35(0.78~1.02,平均值为0.93)(表4),且(La /Sm)NδCe也无明显相关性(图6c)(Sholkovitz et al.,1994),δEu值为0.87~1.13,平均值为1.00(表3),Eu不具有正异常。陶来剖面阿木山组碳酸盐岩受成岩作用和热液作用影响较弱,所测地球化学数据可以客观反映古海洋环境。

    图  6  研究区碳酸盐岩相关性图解
    Figure  6.  The correlation diagrams of carbonate rocks in the study area
    a.δEu-δCe图解;b.w(ΣREE)-δCe图解;c.(La / Sm)N -δCe图解

    碳酸盐岩成岩后受大气淡水、热液活动等影响,容易造成δ18O值降低(曲长胜等,2017)。研究发现:当碳酸盐岩δ18O<−5‰时,表明已发生成岩蚀变,但仍能反映一定的古海洋环境;当碳酸盐岩δ18O<−10‰时,表明已遭受强烈的蚀变,已不能用于反映古海洋环境(Kaufman et al.,1995)。此外,可以利用碳酸盐岩C-O同位素两者之间的相关性来判断:若存在相关性,说明碳酸盐岩已遭受蚀变,不能用于反映古海洋环境;若不具有相关性或相关性差,则说明碳酸盐岩受成岩蚀变影响较小,能够反映古海洋环境(Horacek et al.,2007)。

    陶来剖面阿木山组12件碳酸盐岩样品δ18O值为−9.67‰~−5.00‰,均高于−10‰,平均值为−6.88‰(表5),同时δ13C与δ18O值相关系数为0.137,相关性较差(图7),说明所测试样品受后期水岩交互作用影响微弱,碳氧同位素测试结果基本满足古海洋环境分析的要求。

    图  7  研究区碳酸盐岩碳氧同位素关系图
    Figure  7.  The relationship between δ13C and δ18O values of carbonate rocks in the study area

    陶来剖面阿木山组12件碳酸盐岩样品地球化学测试结果显示:主量元素以CaO为主,质量分数为52.15%~55.39%,平均值为53.64%,接近纯灰岩化学成分理论值56%;MgO质量分数为0.52%~1.30%,平均值为0.67%;烧失量(LOI)为41.45%~43.16%,平均值为42.44%;Σ(CaO+MgO+LOI)的质量分数为94.27%~99.18%,平均值为96.75%,其余元素质量分数较少(表2),说明碳酸盐岩沉积时的古海洋环境较稳定。稀土元素总量(ΣREE)为(7.21×10−6~31.46×10−6,平均值为20.04×10−6,符合碳酸盐岩稀土元素总量小于100×10−6的特征(王中刚等,1986Bellanca et al.,1997)。轻重稀土元素比值(LREE/HREE)为0.92~3.42,平均值为1.53,轻稀土略富集,但分异度不大。δCe值为0.53~0.88,平均值为0.75,具有轻微的负异常;δEu值为0.87~1.13,平均值为1.00,正异常不明显(表4图8)。δ13C值为3.04‰~4.86‰,平均值为4.34‰;δ18O值为−9.67‰~−5.00‰,平均值为−6.88‰(表5)。

    图  8  研究区碳酸盐岩稀土元素北美页岩标准化配分模式图
    Figure  8.  NASC-normalized REE patterns of carbonate rocks in the study area

    根据碳酸盐岩地球化学特征及碳氧同位素组成,可以有效恢复其形成时的古海洋环境,包括古气候、古水深、古盐度、古氧相、古水温等。

    Sr/Cu值对气候变化非常敏感:Sr/Cu值介于1~10指示温湿气候,大于10指示干热气候(梁文君等,2015)。陶来剖面阿木山组碳酸盐岩Sr/Cu值远远大于10(表3),说明阿木山组碳酸盐岩沉积时总体为干热气候,纵向上表现为由低值变为高值再降低的趋势,在样品CH6处达到最高值(图9)。

    图  9  研究区碳酸盐岩地球化学古环境判别图
    Figure  9.  Geochemical paleo-environmental recognition of carbonate rocks in the study area

    前人研究表明,Sr质量分数、Sr/Ba值以及1 000×(Sr/Ca)值从浅水到深水具有由低变高的趋势,因此可以据此判断古水深(Veizer et al.,1974何雨旸等,2014许中杰等,2020)。陶来剖面阿木山组碳酸盐岩Sr质量分数为627×10−6~1 280×10−6,平均值为995×10−6;Sr/Ba值为7.84~71.91,平均值为36.20;1 000×(Sr/Ca)值为1.65~3.37,平均值为2.49(表3)。Sr、Sr/Ba值与1 000×(Sr/Ca)值具有相同的变化趋势,由低变高再降低,反映阿木山组组碳酸盐岩总体经历了1个大的海侵海退旋回(图9)。

    (1)常量元素:通常镁具亲海性、铝具亲陆性,利用其比值m=100×(w(MgO)/w(Al2O3))可以反映海相或陆相沉积环境:m<1时为淡水环境;1≤m<10时为海陆过渡环境;10≤m<500时为海相环境;m≥500时为陆表海或泻湖碳酸盐环境(何雨旸等,2014赵晓辰等,2017)。陶来剖面阿木山组碳酸盐岩m值为75.71~1 575.00,平均值为381.69(表2),说明阿木山组碳酸盐岩沉积时总体为正常海相环境,在CH5-CH7段为陆表海环境,CH7处m值达到最高值(图9)。

    (2)碳氧同位素:碳酸盐岩碳氧同位素组成随盐度增加而增加(Clayton et al.,1959),Keith提出根据δ13C、δ18O同位素计算古盐度的公式:Z=2.048(δ13C+50)+0.498(δ18O+50)(当Z值>120时,为海相碳酸盐岩;Z<120时,为淡水碳酸盐岩),用来区分侏罗纪和时代更晚的碳酸盐岩沉积环境(Keith et al.,1964),后来又将此公式推广到古生界碳酸盐岩等较老地层的古盐度分析中(康建威等,2015杜洋等,2016高达等,2021),均取得了良好的效果。

    陶来剖面阿木山组碳酸盐岩的Z值介于130.05‰~134.50‰,平均值为132.76‰,均高于120‰(表5图9),说明阿木山组碳酸盐岩沉积于正常海相环境。Z值与δ13C的相关系数为0.811,与δ18O的相关系数为0.543,说明δ13C与古盐度关系更为密切。

    Hatch等和Jones等指出,根据V/(V+Ni)和Ni/Co值可判别沉积介质的氧化还原条件:V/(V+Ni)<0.46代表氧化环境,V/(V+Ni)≥0.46指示还原环境;Ni/Co<5指示氧化环境,5≤Ni/Co<7代表弱氧化–弱还原环境,Ni/Co≥7指示还原环境(Hatch et al.,1992Jones et al.,1994)。陶来剖面阿木山组碳酸盐岩V/(V+Ni)值为0.17~0.55,平均值为0.37,指示研究区碳酸盐岩沉积时主体为氧化环境;Ni/Co值为4.82~8.48,平均值为6.67,指示研究区碳酸盐岩沉积时主体为弱氧化–弱还原环境(表3图9)。

    稀土元素方面,Ce/La值可以用来反映碳酸盐岩沉积时的氧化还原条件,Ce/La<1.5时为氧化环境,1.5≤Ce/La<2.0时为弱氧化–弱还原环境,Ce/La≥2.0时为还原环境(颜佳新等,1998)。陶来剖面阿木山组碳酸盐岩的Ce/La值为1.05~2.05,平均值为 1.62,说明研究区碳酸盐岩沉积时主体为弱氧化–弱还原环境(表4图9)。

    综合分析认为,陶来剖面阿木山组碳酸盐岩沉积时为弱氧化–弱还原环境。

    δ18O受水体温度影响较大,而δ13C受水体温度影响甚微,因此利用δ18O值可计算古海水温度(Craig,1965),经验公式为:T=16.9-4.2(δ18OCaCO3校正+0.22)+0.13(δ18OCaCO3校正+0.22)2 ,对于中生代之前的样品,需要对δ18O值进行“年代效应”校正以减少成岩作用的影响(邵龙义,1994)。通常利用第四纪海相碳酸盐岩的δ18O(平均值-1.2‰)来进行年代校正,陶来剖面阿木山组碳酸盐岩δ18O平均值为-6.88‰,二者差值Δδ18O=-5.68‰。用实测值与年代校正中Δδ18O值相减,即可得到δ18OCaCO3校正校正值。

    根据公式计算陶来剖面阿木山组碳酸盐岩沉积时的古海水温度为13.22 ~34.60 ℃,平均值为21.35 ℃(表5),说明当时为温暖或炎热的亚热带气候。从古水温变化来看,阿木山组沉积时气候比较稳定,约66.7%的数据分布在15 ~25 ℃,未发生较大的变化,仅存在短暂的波动(图9)。

    碳酸盐岩的地球化学特征及碳氧同位素可有效反应古海洋环境及其演化,且各参数间可以相互补充验证。地质演化过程中,构造运动或气候变化常常导致古水深、古盐度、古水温等的一系列变化(王鹏万等,2016)。根据前述陶来剖面阿木山组碳酸盐岩古海洋环境,气温升高伴随着海平面的上升、盐度降低(图10)。古海洋环境为一有机整体,各因素间存在耦合关系。

    图  10  古气候与沉积环境间相关性
    Figure  10.  The correlation between paleoclimate and sedimentary environment

    地球化学特征反应的古海洋环境可以从岩石学特征中得到印证。古盐度为正常海相环境,这从阿木山组中发育的大量珊瑚、腕足、有孔虫、䗴等正常浅海相生物化石得到验证;古气候为温暖或炎热的亚热带气候,气候比较稳定,适宜生物的生长。

    碳酸盐岩是油气勘探重要的领域,中国海相碳酸盐岩油气资源量占全国油气资源总量的40%以上,但探明程度较低,勘探潜力较大(杜洋等,2016)。根据全球已发现的碳酸盐岩油田,石炭系碳酸盐岩中的储量占比最大(熊加贝等,2022),塔里木盆地、四川盆地碳酸盐岩中含丰富的油气资源。阿木山组碳酸盐岩西起阿拉善,东至巴林左旗,断续分布1 400 km(张玉清等,2016),陶来剖面阿木山组中藻灰岩有机碳含量为1.52%,具有良好的生烃条件,预示阿木山组碳酸盐岩有较好的油气勘探前景。

    (1)阿木山组碳酸盐岩陆源元素质量分数均较低,稀土元素特征值、碳氧同位素之间未见明显相关性,说明受陆源物质、成岩作用及热液作用影响较弱,所测地球化学数据能有效反映碳酸盐岩的古海洋环境。

    (2)阿木山组碳酸盐岩沉积于正常海相环境,属温暖或炎热的亚热带气候,古氧相为弱氧化–弱还原环境,古海水温度为13.22 ~34.60 ℃,根据古水深变化阿木山组碳酸盐岩总体经历了1个大的海侵海退旋回,古环境参数间存在耦合关系。

    (3)根据全球已发现的碳酸盐岩油田,结合阿木山组碳酸盐岩的分布及生烃条件,预示阿木山组碳酸盐岩有较好的油气勘探前景。

  • 图  1   研究区构造位置(a)、阿木山组分布(b)和乌力吉地区地质简图(c)

    Figure  1.   (a) Tectonic location, (b) distribution of Amushan Formation and (c) geological sketch of Wuliji Area

    图  2   研究区碳酸盐岩段综合柱状图及采样位置

    Figure  2.   Comprehensive column and sampling position of carbonate rocks in the study area

    图  3   研究区碳酸盐岩野外及显微照片

    a.灰色薄层灰岩;b.珊瑚化石;c.菊石化石;d.藻类;e.生物碎屑灰岩中有孔虫(B5);f.生物碎屑灰岩中䗴化石(B5);g.生物碎屑灰岩(B7);h.生物碎屑灰岩(B12)

    Figure  3.   Field and microscopic characteristics of carbonate rocks in the study area

    图  4   研究区碳酸盐岩中珊瑚和䗴化石

    a. Caninia sp.,横切面(TL-19F2);b. Caninia sp.,纵切面(TL-19F2);c. Pseudozaphrentoides sp.,横切面(TL-19F2);d. Pseudozaphrentoides sp.,纵切面(TL-19F2);e. Caninia sp.,横切面(TL-19F2);f. Caninia sp.,横切面(TL-19F2);g. Caninia bothrophylloides Zeng,纵切面(TL-19F2);h. Caninia bothrophylloides Zeng,横切面(TL-19F2);i. Fusulinella peruana Meyer,×10(TL-1F1);j. Triticites winterensis Thompson,Verville and Lokke,×10(TL-36F6);k. Triticites winterensis Thompson,Verville and Lokke,×10(TL-36F6);l. Triticites pseudoarcticus Rauser,×10(TL-12F2)

    Figure  4.   Fossils of coral and skink in carbonate rocks in the study area

    图  5   研究区碳酸盐岩地球化学特征

    Figure  5.   Geochemical characteristics of carbonate rocks in the study area

    图  6   研究区碳酸盐岩相关性图解

    Figure  6.   The correlation diagrams of carbonate rocks in the study area

    a.δEu-δCe图解;b.w(ΣREE)-δCe图解;c.(La / Sm)N -δCe图解

    图  7   研究区碳酸盐岩碳氧同位素关系图

    Figure  7.   The relationship between δ13C and δ18O values of carbonate rocks in the study area

    图  8   研究区碳酸盐岩稀土元素北美页岩标准化配分模式图

    Figure  8.   NASC-normalized REE patterns of carbonate rocks in the study area

    图  9   研究区碳酸盐岩地球化学古环境判别图

    Figure  9.   Geochemical paleo-environmental recognition of carbonate rocks in the study area

    图  10   古气候与沉积环境间相关性

    Figure  10.   The correlation between paleoclimate and sedimentary environment

    表  1   银额盆地石炭系—二叠系阿木山组实测剖面岩性组合特征

    Table  1   Lithologic association of measured profile of Carboniferous-Permian Amushan Formation in Yin’e basin

    剖面名称碎屑岩碳酸岩火山岩累计厚度
    (m)
    砂砾岩
    (m)
    粉砂岩
    (m)
    泥页岩
    (m)
    合计
    (m)
    比例
    (%)
    厚度
    (m)
    比例
    (%)
    厚度
    (m)
    比例
    (%)
    芒罕超克79.41281.17180.83541.4100.0541.41
    恩格尔乌苏北747.1049.5010.40807.087.3117.1012.67924.10
    乌力吉尚丹上段716.0447.81175.57939.4100.0939.42
    乌力吉陶来中段40.4877.7021.31139.517.9638.0382.06777.52
    乌力吉查古尔下段1331.4287.161418.693.821.471.4272.634.801512.68
    阿伦功383.76304.20289.35977.398.416.201.63993.51
    264界碑西南577.2867.2014.12658.683.3131.5716.65790.17
    乌兰敖包上段383.13128.453.66515.292.243.467.78558.70
    中段14.1914.216.173.8583.8888.04
    下段424.5412.8815.63453.197.72.620.56463.82
    呼伦陶勒盖下段194.3237.5494.05325.969.1146.0130.94471.92
    下载: 导出CSV

    表  2   研究区碳酸盐岩常量元素分析结果

    Table  2   Major elements analysis of carbonate rocks in the study area

    样号SiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OTiO2P2O5MnO烧失量(LOI)am
    CH12.570.700.120.1553.330.530.070.070.040.040.0442.2396.0975.71
    CH22.440.530.150.1053.500.670.070.070.030.030.0142.2596.42126.42
    CH34.600.530.110.1552.150.670.030.050.030.040.0341.4594.27126.42
    CH42.930.160.060.1053.620.580.010.050.010.020.0342.3096.50362.50
    CH51.160.090.010.1054.690.720.010.040.010.030.0143.0498.45800.00
    CH61.930.180.050.1253.231.300.020.060.010.030.0242.8897.41722.22
    CH70.530.040.010.1055.390.630.010.030.010.020.0143.1699.181575.00
    CH82.000.360.130.0553.610.690.020.050.020.020.0242.8697.16191.67
    CH92.910.370.180.1553.200.540.030.060.020.030.0442.3396.07145.95
    CH101.760.330.130.0854.340.550.010.050.020.020.0142.5497.43166.67
    CH113.220.420.240.1853.090.520.060.070.030.030.0641.9895.59123.81
    CH122.600.360.120.1553.540.590.040.060.030.030.0342.3096.43163.89
     注:常量元素含量为%。a=Σ(CaO+MgO+LOI);m=100×(MgO/Al2O3)。
    下载: 导出CSV

    表  3   研究区碳酸盐岩微量元素分析结果

    Table  3   Trace elements analysis of carbonate rocks in the study area

    样号NiCoSrBaVZrBUThCuSr/CuSr/Ba1000×(Sr/Ca)V/(V+Ni)Ni/Co
    CH112.102.5162739.609.878.052.501.770.742.9821015.831.650.454.82
    CH210.601.77108039.4012.8010.802.652.430.892.8238327.412.830.555.99
    CH312.801.51800102.006.709.052.322.200.451.844357.842.150.348.48
    CH411.801.6897628.206.707.622.012.660.301.1485634.612.550.367.02
    CH510.501.4678026.704.504.541.553.660.231.2462929.212.000.307.19
    CH610.401.54128035.104.466.042.304.020.350.75170736.473.370.306.75
    CH710.201.47101015.302.092.251.741.510.200.96105266.012.550.176.94
    CH810.401.50128017.806.819.692.602.370.390.88145571.913.340.406.93
    CH910.501.5369329.206.275.342.201.440.491.9136323.731.820.376.86
    CH1011.101.68104020.007.585.321.992.040.401.4273252.002.680.416.61
    CH1111.501.8777425.608.167.782.262.060.481.6048430.232.040.426.15
    CH1211.801.86112028.608.077.242.222.280.471.5572339.162.930.416.34
     注:微量元素含量为10–6
    下载: 导出CSV

    表  4   研究区碳酸盐岩稀土元素及北美页岩标准化计算结果

    Table  4   Rare earth elements analysis and NASC-normalized result of carbonate rocks in the study area

    样号LaCePrNdSmEuGdTbDyHoErTmYbLuY
    CH14.007.470.953.400.780.200.780.120.750.160.460.070.420.076.02
    CH24.467.180.993.630.780.180.800.140.810.170.470.070.420.076.88
    CH33.014.590.682.510.620.160.740.120.800.170.490.080.490.087.71
    CH41.983.470.441.700.400.100.460.080.520.120.340.050.330.054.76
    CH52.684.190.552.200.560.120.610.110.680.140.400.060.380.065.38
    CH63.964.170.742.920.740.160.880.140.890.180.510.080.490.0710.40
    CH70.971.290.200.760.190.050.210.040.240.060.160.020.150.032.85
    CH81.633.340.421.600.370.090.400.060.410.090.240.040.250.043.58
    CH93.465.300.732.770.620.140.660.110.670.140.400.060.360.056.32
    CH102.223.660.491.830.410.100.440.070.440.100.270.040.240.044.26
    CH112.874.700.582.080.500.130.560.100.600.120.360.050.350.055.57
    CH122.564.650.551.990.460.120.510.090.520.110.320.050.300.045.18
    样号 LREE HREE ΣREE LREE/HREE (La/Yb)N δEuN δCeN (La/Ce)N (La/Sm)N Y/Ho Ce/La
    CH1 16.80 8.85 25.65 1.90 0.92 1.13 0.83 1.22 0.91 37.63 1.87
    CH2 17.22 9.83 27.05 1.75 1.03 1.00 0.74 1.42 1.02 40.47 1.61
    CH3 11.57 10.67 22.24 1.08 0.60 1.04 0.70 1.50 0.86 45.35 1.52
    CH4 8.09 6.72 14.80 1.20 0.58 0.98 0.81 1.30 0.88 39.67 1.75
    CH5 10.30 7.83 18.13 1.32 0.68 0.90 0.75 1.46 0.85 38.43 1.56
    CH6 12.69 13.64 26.33 0.93 0.78 0.87 0.53 2.17 0.95 57.78 1.05
    CH7 3.46 3.75 7.21 0.92 0.63 0.99 0.64 1.72 0.91 51.82 1.33
    CH8 7.45 5.11 12.55 1.46 0.63 0.98 0.88 1.11 0.78 42.12 2.05
    CH9 13.02 8.77 21.79 1.48 0.93 0.96 0.73 1.49 0.99 45.14 1.53
    CH10 8.71 5.90 14.60 1.48 0.90 1.00 0.76 1.38 0.96 44.38 1.65
    CH11 10.86 7.76 18.62 1.40 0.79 1.08 0.79 1.39 1.02 46.42 1.64
    CH12 24.34 7.12 31.46 3.42 0.83 1.09 0.85 1.26 0.99 47.09 1.82
     注:稀土元素含量为10−6
    下载: 导出CSV

    表  5   研究区碳酸盐岩C-O同位素分析结果

    Table  5   Carbon and oxygen isotope analysis of carbonate rocks in the study area

    样号δ13C(‰)δ18O(‰)盐度指数Z(‰)温度指数T(℃)
    CH14.47−7.67132.6324.75
    CH24.47−5.00133.9713.22
    CH34.86−6.41134.0619.07
    CH43.80−9.67130.2634.60
    CH54.86−5.52134.5015.33
    CH64.60−7.33133.0823.16
    CH74.28−5.40133.3714.84
    CH83.04−6.96130.0521.52
    CH93.94−7.43131.6623.61
    CH104.68−6.06133.8817.57
    CH114.46−8.70132.1029.70
    CH124.59−6.35133.5418.83
    下载: 导出CSV
  • 卜建军, 牛志军, 吴俊, 等. 内蒙古西部额济纳旗及邻区上石炭统—下二叠统阿木山组的沉积特征和时代[J]. 地质通报, 2012, 31(10): 1669-1683.

    BU Jianjun, NIU Zhijun, WU Jun, et al. Sedimentary characteristics and age of Amushan Formation in Ejin Banner and its adjacent areas, western Inner Mongolia[J]. Geological Bulletin of China, 2012, 31(10): 1669- 1683.

    常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99.

    杜洋, 樊太亮, 高志前. 塔里木盆地中下奥陶统碳酸盐岩地球化学特征及其对成岩环境的指示—以巴楚大板塔格剖面和阿克苏蓬莱坝剖面为例[J]. 天然气地球科学, 2016, 27(8): 1509-1523

    DU Yang, FAN Tailiang, GAO Zhiqian. Geochemical characteristics and their implications to diagenetic environment of Lower-Middle Ordovician carbonate rocks, Tarim Basin, China: A case study of Bachu Dabantage outcrop and Aksu Penglaiba outcrop[J]. Natural Gas Geoscience, 2016, 27(8): 1509-1523.

    高达, 王明敏, 陶叶, 等. 塔中地区良里塔格组海平面变化对高频层序和沉积演化的控制[J/OL]. 中国地质,2021.

    GAO Da, WANG Mingmin, TAO Ye, et al. Control of sea level changes on high-frequency sequence and sedimentary evolution of Lianglitage Formation in the Tazhong area[J/OL]. Geology in China,2021.

    高振家, 陈克强, 魏家庸. 中国岩石地层辞典[M]. 武汉: 中国地质大学出版社, 2000

    GAO Zhenjia, CHEN Keqiang, WEI Jiayong. Dictionary of the lithostratigraphic unit of China[M]. Wuhan: China University of Geoscience Press, 2000.

    何雨旸, 赵广涛, 赵利, 等. 巢北地区二叠系栖霞组碳酸盐岩地球化学特征及其古环境意义[J]. 中国海洋大学学报, 2014, 44(5): 79-88

    HE Yuyang, ZHAO Guangtao, ZHAO Li, et al. Geochemistry characteristics and paleo-environment significance of Qixia Formation in Chaobei area[J]. Periodical of Ocean University of China, 2014, 44(5): 79-88.

    康建威, 牟传龙, 周恳恳, 等. 中条山地区武系地球化学特征与沉积环境研究[J]. 西北地质, 2015, 48(01): 37-46

    KANG Jianwei, MOU Chuanlong, ZHOU Kenken, et al. Geochemical characteristics and sedimentary environment of the Cambrian carbonates in Zhongtiaoshan area[J]. Northwestern, 2015, 48(01): 37-46.

    李文正, 张建勇, 郝毅, 等. 川东南地区洗象池组碳氧同位素特征、古海洋环境及其与储集层的关系[J]. 地质学报, 2019, 93(2): 487-500 doi: 10.1111/1755-6724.13831

    LI Wenzheng, ZHANG Jianyong, HAO Yi, et al. Characteristics of carbon and oxygen isotopic, paleoceanographic environment and their relationship with reservoirs of the Xixiangchi Formation, southeastern Sichuan basin[J]. Acta Geologica Sinica, 2019, 93(2): 487-500. doi: 10.1111/1755-6724.13831

    梁文君, 肖传桃, 肖凯, 等. 藏北安多晚侏罗世古环境、古气候与地球化学元素关系研究[J]. 中国地质, 2015, 42(4): 1079-1091

    LIANG Wenjun, XIAO Chuantao, XIAO Kai, et al. The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo Country of northern Tibet[J]. Geology in China, 2015, 42(4): 1079-1091.

    卢进才, 陈践发, 郭建军, 等. 古亚洲与特提斯交汇带盆地群油气资源潜力[J]. 西北地质, 2006, 39(3): 39−47.

    LU Jincai, CHEN Jianfa, GUO Jianjun, et al. Potential of Oil and gas Resources of Basin Groups in Conjunction Area between the Paleoa-Asia and Tethys[J]. Northwest Geology, 2006, 39(3): 39−47.

    卢进才, 史冀忠, 牛亚卓, 等. 内蒙古西部北山—银额地区石炭纪—二叠纪层序地层与沉积演化[J]. 岩石学报, 2018, 34(10): 3101-3115

    LU Jincai, SHI Jizhong, NIU Yazhuo, et al. The Carboniferous-Permian sequence stratigraphy and sedimentary evolution of Beishan-Yin’e region, western Inner Mongolia[J]. Acta Petrologica Sinica, 2018, 34(10): 3101-3115.

    宁夏回族自治区地质局. 1/20万区域地质调查报告乌力吉幅(K-48-27)[R]. 北京: 全国地质资料馆, 1980.
    曲长胜, 邱隆伟, 杨勇强, 等. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义[J]. 地质学报, 2017, 91(3): 605-616

    QU Changsheng, QIU Longwei, YANG Yongqiang, et al. Carbon and oxygen isotopes compositions of carbonatic rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and their paleolimnological significance[J]. Acta Geologic Sinica, 2017, 91(3): 605-616.

    邵龙义. 碳酸盐岩氧、碳同位素与古温度等的关系[J]. 中国矿业大学学报, 1994, 23(1): 39-45

    SHAO Longyi. The radition of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc[J]. Journal of China University of Mining & Technology, 1994, 23(1): 39-45.

    史冀忠, 陈高潮, 姜亭, 等. 内蒙古银额盆地及邻区石炭纪小独山期—二叠纪紫松期物源[J]. 地质通报, 2013, 32(11): 1777-1789 doi: 10.3969/j.issn.1671-2552.2013.11.010

    SHI Jizhong, CHEN Gaochao, JIANG Ting, et al. The provenance of Carboniferous Xiaodushanian-Permian Zisongian stage in Yingen-Ejin Banner basin and its vicinities[J]. Geological Bulletin of China, 2013, 32(11): 1777-1789. doi: 10.3969/j.issn.1671-2552.2013.11.010

    史冀忠, 陈高潮, 姜亭, 等. 银额盆地及邻区石炭纪小独山期—二叠纪紫松期岩相古地理[J]. 地质通报, 2018, 37(1): 107-119 doi: 10.12097/j.issn.1671-2552.2018.01.012

    SHI Jizhong, CHEN Gaochao, JIANG Ting, et al. Lithofacies palaeogeography of Carboniferous Xiaodushanian-Permian Zisongian stage in Yingen-Ejin basin and its adjacent areas[J]. Geological Bulletin of China, 2018, 37(1): 107-119. doi: 10.12097/j.issn.1671-2552.2018.01.012

    史冀忠, 牛亚卓, 许伟, 等. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693

    SHI Jizhong, NIU Yazhuo, XU Wei, et al. Geochemical characteristics and sedimentary environment of Carboniferous Baishan Formation carbonate in Shibanquanxi of Yingen-Ejin Banner basin[J]. Journal of Jinlin University(Earth Science Edition), 2021, 51(3): 680-693.

    苏华英. 内蒙古银根—额济纳旗盆地东部石炭—二叠系阿木山组层序地层特征[J]. 中国石油和化工标准与质量, 2011, 31(2): 199-200

    SU Huaying. The sequence stratigraphy characteristics of the Permian-Carboniferous Amushan Formation in the eastern Yingen-Ejinaqi basin, Inner Mongolia, China[J]. China Petroleum and Chemical Standards and Quality, 2011, 31(2): 199-200.

    王鹏万, 斯春松, 张润合, 等. 滇黔北坳陷寒武系碳酸盐岩古海洋环境特征及地质意义[J]. 沉积学报, 2016, 34(5): 811-818

    WANG Pengwan, SI Chunsong, ZHANG Runhe, et al. Characteristic of the Cambrian carbonate paleo-ocean environment in the Dianqianbei depression and its geological significance[J]. Acta Sedimentologica Sinica, 2016, 34(5): 811-818.

    王廷印, 张铭杰, 王金荣, 等. 恩格尔乌苏冲断带特征及大地构造意义[J]. 地质科学, 1998, 33(4): 385-394

    WANG Tingyin, ZHANG Mingjie, WANG Jinrong, et al. The characteristics and tectonic implications of the thrust belt in Eugerwusu, China[J]. Scientia Geologica sinica, 1998, 33(4): 385-394.

    王小林, 胡文瑄, 张军涛, 等. 塔里木盆地和田1井中寒武统膏岩层段发现原生白云石[J]. 地质评论, 2016, 62(2): 419-433

    WANG Xiaolin, HU Wenxuan, ZHANG Juntao, et al. Discovery of primary dolomite in evaporite sequences of hetian-1 well, Middle Cambrian, Tarim basin[J]. Geological Review, 2016, 62(2): 419-433.

    王中刚, 于学元, 赵振华. 国外稀土元素地球化学的进展[J]. 矿物岩石地球化学通报, 1986, 5(1): 2-4

    WANG Zhonggang, YU Xueyuan, ZHAO Zhenhua. Progress of geochemistry on rare earth elements abroad[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1986, 5(1): 2-4.

    魏建设, 赵琳雁, 周俊林, 等. 银额盆地吉格达凹陷原油地球化学特征及其意义[J]. 西北地质, 2023, 56(5): 332−342.

    WEI Jianshe, ZHAO Linyan, ZHOU Junlin, et al. Geochemical Characteristics of Crude Oil in Jigeda Sag of Yingen–Ejin Basin and Its Significances[J]. Northwestern Geology, 2023, 56(5): 332−342.

    吴泰然, 何国琦. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J]. 地质学报, 1993, 67(2): 97-108

    WU Tairan, HE Guoqi. Tectonic units and their fundamental characteristics on the Northern margin of the Alxa Block[J]. Acta Geologica Sinica, 1993, 67(2): 97-108.

    熊加贝, 何登发. 全球碳酸盐岩地层—岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1): 187-200

    XIONG Jiabei, HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields[J]. Lithologic Reservoirs, 2022, 34(1): 187-200.

    许中杰, 孔锦涛, 程日辉, 等. 下扬子南京地区早寒武世幕府山组海平面相对升降的地球化学和碳、氧同位素记录[J]. 吉林大学学报(地球科学版), 2020, 50(1): 158-169

    XU Zhongjie, KONG Jintao, CHENG Rihui, et al. Geochemical and carbon and oxygen isotope records of relative sea-level change of Mufushan Formation in Early Cambrian in Nanjing, Lower Yangtze region[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 158-169.

    颜佳新, 徐四平, 李方林. 湖北巴东栖霞组缺氧沉积环境的地球化学特征[J]. 岩相古地理, 1998, 18(6): 27-32

    YAN Jiaxin, XU Siping, LI Fanglin. Geochemistry of the dysaerobic sedimentary environments of the Qixia Formation in Badong, Hubei[J]. Journal of Palaeogeography, 1998, 18(6): 27-32.

    杨捷, 曾佐勋, 蔡雄飞, 等. 贺兰山地区震旦系碳酸盐岩碳氧同位素分析[J]. 科学通报, 2014, 59(4-5): 355-365 doi: 10.1360/csb2014-59-4-5-355

    YANG Jie, ZENG Zuoxun, CAI Xiongfei, et al. Carbon and oxygen isotopes analyses for the Sinian carbonates in the Helan Mountain, North China[J]. Chinese Science Bulletin, 2014, 59(4-5): 355-365. doi: 10.1360/csb2014-59-4-5-355

    杨晓璇, 李雪峰, 郭进京, 等. 西秦岭北缘漳县渐新统—中新统湖相碳酸盐岩碳、氧同位素特征及意义[J]. 西北地质, 2022, 55(02): 106-115

    YANG Xiaoxuan, LI Xuefeng, GUO Jinjing, et al. Characteristics and significance of C-O isotopes of Oligocene Miocene lacustrine carbonate rocks in Zhangxian, Northern margin of West Qinling Mountains[J]. Northwestern, 2022, 55(02): 106-115.

    张文, 吴泰然, 冯继承, 等. 阿拉善地块北缘古大洋闭合的时间制约: 来自乌力吉花岗岩体的证据[J]. 中国科学(地球科学), 2013, 43(8): 1299-1311

    ZHANG Wen, WU Tairan, FENG Jichen, et al. Time constraints for the closing of the Paleo-Asian Ocean in the Northern Alxa Region: Evidence from Wuliji granites[J]. Science China: Earth Sciences, 2013, 43(8): 1299-1311.

    张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 1985, 3(4): 17-30

    ZHANG Xiulian. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater[J]. Acta Sedimentologica Sinica, 1985, 3(4): 17-30.

    张玉清, 张婷. 内蒙古阿木山组[J]. 中国地质, 2016, 43(3): 1000-1015

    ZHANG Yuqing, ZHANG Ting. Amushan Formation in Inner Mongolia[J]. Geology in China, 2016, 43(3): 1000-1015.

    赵晓辰, 刘池洋, 赵岩, 等. 鄂尔多斯西南缘水泉岭组碳酸盐岩地球化学特征[J]. 西北大学学报(自然科学版), 2017, 47(1): 101-109

    ZHAO Xiaochen, LIU Chiyang, ZHAO Yan, et al. Geochemical characteristics of the Shuiquanling Formation carbonates in the southwestern margin of Ordos basin[J]. Journal of Northwest University(Natural Science Edition), 2017, 47(1): 101-109.

    郑荣国, 李锦轶, 刘建峰. 阿拉善地块北缘地区阿木山组火山岩时代: 锆石U-Pb定年证据[J]. 中国地质, 2017, 44(3): 612-613

    ZHENG Rongguo, LI Jinyi, LIU Jianfeng. The age of volcanic rocks of Amushan Formation on the northern margin of Alxa block: Evidence from zircon U-Pb data[J]. Geology in China, 2017, 44(3): 612-613.

    Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambiran Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9

    Bellanca A, Masetti D, Neri R. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section(Venetian region, northern Italy): assessing REE sensitivity to environmental changes[J]. Chemical Geology, 1997, 141(3-4): 141-152. doi: 10.1016/S0009-2541(97)00058-2

    Brian A, Haley, Gary P K, James M. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279. doi: 10.1016/j.gca.2003.09.012

    Clayton R N, Degens E T. Use of carbon isotope analyses of carbonates for differentiating fresh-water and marine sediments[J]. AAPG Bulletin, 1959, 43(4): 890-897.

    Craig H. The measurement of oxygen isotope paleotemperatures//Tongiorgi E. Stable isotopes in oceanographic studies and paleotemperatures[J]. Pisa: Consiglio nazionale delle richerche, Laboratorio di geologia nucleare, 1965, 161-182.

    Guy C, Daux V, Schott J. Behaviour of rare earth elements during seawater/basalt interactions in the Mururoa Massif[J]. Chemical Geology, 1999, 158(1-2): 21-35. doi: 10.1016/S0009-2541(99)00019-4

    Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A[J]. Chemical Geology, 1992, 99(1-3): 65-82. doi: 10.1016/0009-2541(92)90031-Y

    Horacek M, Brandner R, Abart R. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic carbon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1-2): 347-354. doi: 10.1016/j.palaeo.2006.11.049

    Jones B J, Manning A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1): 111-129.

    Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1-4): 27-49. doi: 10.1016/0301-9268(94)00070-8

    Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10-11): 1787-1816. doi: 10.1016/0016-7037(64)90022-5

    Murray R W, Buchholtz M R, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2657-2671. doi: 10.1016/0016-7037(92)90351-I

    Nagarajan R, Madhavaraju J, Armstrong-Altrin J S, et al. Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima basin, Karnataka, Southern India[J]. Geosciences Journal, 2011, 15(1): 9-25. doi: 10.1007/s12303-011-0005-0

    Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175: 29-48. doi: 10.1016/S0009-2541(00)00362-4

    Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(6): 1567-1579. doi: 10.1016/0016-7037(94)90559-2

    Veizer J, Demovic R. Strontium as a tool for facies analysis[J]. Journal of Sedimentary Petrology, 1974, 44(1): 93-115.

    Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565. doi: 10.1016/S0016-7037(99)00400-7

  • 期刊类型引用(1)

    1. 牛亚卓,史冀忠,赵国春,牛文超,陈高潮,宋博. 中亚造山带南缘晚石炭世——早二叠世碳酸盐岩台地的建立和消亡. 西北地质. 2024(06): 95-112 . 本站查看

    其他类型引用(0)

图(10)  /  表(5)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  3
  • PDF下载量:  49
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-09-04
  • 修回日期:  2023-01-02
  • 录用日期:  2023-01-25
  • 网络出版日期:  2024-10-08
  • 刊出日期:  2024-12-19

目录

/

返回文章
返回