ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义

王文宝, 李卫星, 雷聪聪, 马军, 闫振军, 薄海军, 丁海生, 彭渊哲

王文宝,李卫星,雷聪聪,等. 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质,2024,57(3):29−43. doi: 10.12401/j.nwg.2023114
引用本文: 王文宝,李卫星,雷聪聪,等. 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质,2024,57(3):29−43. doi: 10.12401/j.nwg.2023114
WANG Wenbao,LI Weixing,LEI Congcong,et al. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology,2024,57(3):29−43. doi: 10.12401/j.nwg.2023114
Citation: WANG Wenbao,LI Weixing,LEI Congcong,et al. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology,2024,57(3):29−43. doi: 10.12401/j.nwg.2023114

中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义

基金项目: 中国地质调查局项目“内蒙古自治区额济纳旗辉森乌拉等三幅 1∶5 万区域地质调查”(DD20230252),“内蒙古自治区额济纳旗克克桃勒盖等4幅区域地质调查”(ZD20220503)联合资助
详细信息
    作者简介:

    王文宝(1989−),男,工程师,从事区域地质调查工作。E−mail:wangwenbao1989@163.com

    通讯作者:

    李卫星(1990−),男,工程师,从事区域地质调查工作。E−mail:1025992795@qq.com。

  • 中图分类号: P588.12

Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications

  • 摘要:

    中亚造山带增生过程中发育的典型岩浆作用是研究其演化过程的关键。中亚造山带中段南缘达伦乌苏二长花岗岩、花岗斑岩系统的岩石学、地球化学和年代学研究表明,达伦乌苏二长花岗岩具有明显高Sr、低Y、Yb含量,高Sr/Y值(88.55~140.34),无明显Eu异常(δEu值为0.68~0.98),具埃达克岩地球化学特征。花岗斑岩富SiO2,贫CaO和MgO,具高的FeOT/(FeOT+MgO)和10000×Ga/Al值,高Zr、Nb、Ta 含量,富集Pb、Hf、 Rb、K和Th,相对亏损Ba、Sr、P和Ti,属于典型的A型花岗岩。二者的锆石U-Pb年龄分别为(249.0±2.3)Ma和(241.0±2.8)Ma。结合区域地质资料,埃达克岩指示了古亚洲洋闭合后陆壳碰撞加厚的背景,而A型花岗岩指示了碰撞后伸展构造背景。两种典型的岩浆作用记录了早—中三叠世中亚造山带中段南缘由增生造山到造山后期伸展的转换过程。

    Abstract:

    Typical igneous rocks during the accretionary orogeny process in the Central Asian Orogenic Belt (CAOB) play a key role in understanding its tectonic evolution. We present new LA-ICP-MS in-situ zircon U-Pb and bulk geochemical data for the Dalunwusu monzogranite and granite porphyry suites which are located in Southernmost CAOB. The Dalunwusu monzogranites, have a crystallization age of (249.0±2.3) Ma, exhibit adakite-like geochemical characteristics, such as high Sr content and low Yb and Y contents, coupled with high Sr/Y values (88.55~140.34) and show a weakly negative Eu anomalies (δEu=0.68~0.98). Geochemical compositions indicate the Dalunwusu monzogranites derived from partial melting of mafic granulite in the lower thickened crust. The Dalunwusu granite porphyrys, have a crystallization age of (241.0±2.8) Ma, show typical geochemical features of A-type granites, which are characterized by having high SiO2, low CaO and MgO content, high FeOT/(FeOT+MgO) and 10000×Ga/Al values. Moreover, the granite porphyrys show trace element features of A-type granites including rich in Zr, Nb, Ta abundances, and high values for Pb, Hf, Rb, K and Th, and low values for Ba, Sr, P, and Ti. Taking into account available data of the regional geological background, we may suggest that the adakites were products through partial melting of the thickened lower crust after the closure of the Paleo-Asian Ocean, and the A-type granite porphyry were likely produced at the tectonic setting of post-collisional phase with crustal extension and thinning. These two typical igneous rocks reflect the shift of geodynamic setting, from an earlier accretionary orogen environment to a later extensional setting during early- middle Triassic.

  • 舟曲县山大沟深、岩体破碎、构造发育、软岩遍布、暴雨和地震频发、多发,地质灾害十分发育,是全国滑坡、泥石流强烈发育区之一(汪美华等,2023),被列为长江上游水土保持重点治理县。从2010年开始舟曲县相续发生了“8.8”特大山洪泥石流、南峪江顶崖滑坡、东山牙豁口滑坡和2021年的立节北山、果耶磨里滑坡,灾害的发生造成了巨大经济财产损失和人员伤亡,同时也为防灾减灾工作带来一定挑战。因此,舟曲县地质灾害防治工作备受重视,地质灾害调查评价、监测预警等综合防治体系愈加完善(刘传正等,2020),避险搬迁有序进行。易发性评价作为地质灾害调查评价的基础工作(吴树仁等,2009),可为城镇规划发展以及工程建设提供决策参考。

    关于地质灾害易发性的研究,关注点多在评价方法。自20世纪60年代起,评价方法由单一的数学统计法和机器学习模型(Ayalew et al.,2005许冲等,2009张俊等,2016方然可等,2021赵东亮等,2021张林梵等,2022孟晓捷等,2022贾俊等,2023),逐渐发展到多方法结合(Capparelli et al.,2011许英姿等,2016贾丽娜等,2018张玘恺等,2020罗路广等,2021a王高峰等,2021张文居等,2022),不同方法各有千秋,快速、精准地建立模型在实际工作中更为实用。在评价因子选取方面,往往忽略孕灾地质条件分析,过分依赖个人经验,导致有的评价因子缺乏针对性和代表性(罗路广等,2021b)。

    鉴于此,笔者依托2020~2021年实施完成的《舟曲县1∶50 000地质灾害风险调查评价》项目(陈世昌等,2021),利用最新的地质灾害调查数据,研究区域内孕灾地质条件和地质灾害发育的相关性,选取合适的评价因子,运用层次分析法,进行舟曲县地质灾害易发性评价,为地方政府防灾减灾提供可靠的参考依据。

    孕灾地质条件包括多种基础地质要素,是研究地质灾害形成的关键,也是易发性制图的根基(乐琪浪等,2015王高峰等,20162017)。

    地形地貌分为宏观和微观,共同构成地质灾害形成的重要条件。宏观地貌例如山区、河谷,受构造运动影响,形成过程漫长且不易改变;微观地貌例如坡高、坡度,除自然形成外,还明显受人类工程活动影响,其变化往往会引发不同规模的地质灾害。

    研究区位于西秦岭中高山区,山峻谷深,沟壑纵横,侵蚀切割强烈,宏观上分为侵蚀构造山地和侵蚀堆积河谷平原。地质灾害隐患点多集中在侵蚀构造山地。

    在侵蚀构造山区,遭受侵蚀、强风化作用的基岩构成中山、高山主体,表层覆盖较厚松散的残坡积层,局部裸露基岩节理裂隙发育,岩石极为破碎,在自然状态下较易发生滑坡、崩塌等地质灾害,雨季暴雨时可为泥石流灾害提供充足的物源(熊德清等,2021)。

    (1)对滑坡、崩塌的影响

    坡形直接影响崩滑灾害的形成(孙萍萍等,2019)。凸形、直线形、阶梯形和凹形是区内坡形的主要类型。对研究区172处斜坡类灾害的统计分析表明,崩塌灾害发生于应力集中程度高的凸形和直线形正向类型斜坡。滑坡主要发生于凹形和凸形斜坡,占总滑坡数量的63.6%。部分滑坡群分布于高陡坡体的第一斜坡带,坡脚处多无岩土体支撑,坡形多呈直线形或凸形;受构造、地下水影响发生过多次滑动的大滑坡多分布在山体坡脚较缓斜坡上,天然坡度20°左右,斜坡形态一般呈凹形(表1)。

    表  1  崩塌、滑坡对应坡形统计表
    Table  1.  Slope shape statistics corresponding to collapse and landslide
    序号坡面形态灾体数量
    (个)
    所占比例
    (%)
    灾害类型
    滑坡崩塌
    1凸形4023.3355
    2凹形5431.4540
    3直线形5330.82627
    4阶梯型2514.5250
    合计172100.014032
    下载: 导出CSV 
    | 显示表格

    坡度影响斜坡的应力大小与分布。利用DEM提取坡度,统计不同坡度区间的灾害数量。统计结果如下:崩塌所在斜坡坡度为40°~85°,多分布在60°以上的陡崖;滑坡所在斜坡坡度为15°~60°,多分布于25°~45°之间的陡坡地段(表2)。

    表  2  不同坡度区间崩塌滑坡发生概率统计表
    Table  2.  Statistics of collapse and landslide occurrence in different slope gradient intervals
    序号坡度区
    间(°)
    灾害总数灾害类型
    滑坡崩塌
    数量(个)比率(%)数量(个)比率(%)数量(个)比率(%)
    10~1000.000.000.0
    211~202615.12618.600.0
    321~304224.44230.000.0
    431~404526.24330.726.3
    541~502715.71913.6825.0
    651~60137.6107.139.4
    761~7074.100.0721.9
    871~8074.100.0721.9
    981~9052.900.0515.6
    合 计17210014010032100
    下载: 导出CSV 
    | 显示表格

    坡高控制斜坡的应力大小。低边坡受人类工程活动影响强烈,多发生削坡建房、建厂等,较大临空面易发育崩塌;高边坡(主要指100~400 m之间)的影响因素较多,易发生滑坡。根据统计结果,坡高0~100 m区间内,崩塌发生的次数及比率最高,数量有19处,占崩塌总数59.4%;滑坡发生比率较高的区间是50~400 m,共95处,占滑坡总数的67.8%(表3)。

    表  3  不同坡高区间崩塌滑坡发生概率统计表
    Table  3.  Statistics of collapse and landslide occurrence in different slope height intervals
    序号坡高区间
    (m)
    数量(个)
    比率(%)
    灾害类型
    滑坡崩塌
    数量(个)比率(%)数量(个)比率(%)
    10~502916.91812.91134.4
    251~1003118.02316.4825.0
    3101~2004123.83525.0618.8
    4201~3001911.01611.439.4
    5301~4002313.42115.026.3
    6401~50095.296.400.0
    7501~60084.785.700.0
    8601~70063.553.613.1
    9>70063.553.613.1
    合 计172100.0140100.032100.0
    下载: 导出CSV 
    | 显示表格

    (2)对泥石流的影响

    影响泥石流的地形地貌主要包括主沟纵坡、沟坡坡度、流域面积和相对高差,其控制着泥石流的形成(白永健等,2014a)。

    主沟纵坡为泥石流的形成提供动力。对区内124条泥石流沟谷的主沟纵坡进行统计(表4)发现,平均主沟纵坡为10%~50%的沟谷占总数的75.8%,说明在此区间的沟床比降对泥石流的形成和运动最为有利;主沟纵坡>10%的占总数的89.5%,这与舟曲县山大谷深的地形地貌有关。

    表  4  泥石流主沟纵坡统计表
    Table  4.  Statistics of longitudinal slope of main gully of debris flow
    序号主沟纵坡(‰)泥石流数量(条)比例泥石流类型易发程度
    (%)泥石流水石流高易发中易发低易发
    1<1001310.51300103
    2100~2003729.83700370
    3200~3002923.42900272
    4300~4001612.91601132
    5400~500129.7201101
    6500~600118.9101092
    7600~70043.231013
    8700~80010.810001
    9>80010.810001
    合计124100.01122210715
    下载: 导出CSV 
    | 显示表格

    沟坡坡度影响松散物质堆积量和降雨汇集速度。据统计,泥石流在26°~45°之间最为发育,共计100条,占总数的80.6%;高易发和中易发泥石流的数量分别为2条和90条,分别占各自类型总数的100%和84.1%(表5)。

    表  5  泥石流山坡坡度统计表
    Table  5.  Statistics of debris flow in different slope ranges
    序号坡度区间(°)泥石流数量(条)所占比例泥石流类型易发程度
    (%)泥石流水石流高易发中易发低易发
    1<2521.620020
    226~354637.14511441
    336~455443.55401467
    446~551512.1141 114
    5>5575.670043
    总计1241001222210715
    下载: 导出CSV 
    | 显示表格

    流域面积小利于泥石流的形成。对区内124条泥石流进行统计,10 km2以下的有90条,占总数的72.6%。此区间内,易发性中、高泥石流分别为76条和2条,均占到各自类别数量的70%以上(表6)。

    表  6  泥石流流域面积统计表
    Table  6.  Statistics of debris flow in different watershed areas
    序号流域面积
    (km2
    泥石流数量
    (条)
    比例
    (%)
    泥石流类型易发程度
    泥石流水石流高易发中易发低易发
    1<14032.33821318
    21~53729.83700343
    35~101310.51301111
    410~2097.390081
    520~501612.91600142
    650~10086.580080
    7>10010.810010
    合计1241001222210715
    下载: 导出CSV 
    | 显示表格

    相对高差为泥石流的形成提供动能和势能。94条泥石流发育于500~2000 m的相对高差,占总量的75.8%,反映了舟曲县地形起伏较大的特征(表7)。

    表  7  泥石流相对高差统计表
    Table  7.  Statistics of debris flow in different relative elevation ranges
    序号相对高差
    (m)
    泥石流数量
    (条)
    比例
    (%)
    泥石流类型易发程度
    泥石流水石流高易发中易发低易发
    1<20043.240040
    2200~5001713.71610152
    3500~10004233.94111338
    41000~15003125.03101273
    51500~2 0002116.92100201
    6>200097.390081
    合计1241001222210715
    下载: 导出CSV 
    | 显示表格

    地质构造通过对地形地貌、地层岩性、断裂褶皱和地震分布的控制,影响着地质灾害的发育程度与分布规律(白永健等,2014b)。

    (1)构造控制地质灾害的总体分布

    区域性总体抬升的新构造运动是控制区内地质灾害发育的重要因素。研究区发育的崩滑灾害受控于西秦岭褶皱带,尤其是白龙江断裂褶皱带,构造线呈NW~SE向展布,经多期强烈的构造运动,地质构造十分发育,利于地质灾害的形成。

    (2)断裂对崩塌、滑坡的控制

    断裂对崩滑灾害具有控制性,常造成岩体破碎、地下水活动异常等(彭建兵,2006张永双等,2016)。

    舟曲县滑坡呈带状集中分布于断裂带两侧附近,以坪定–化马断裂带为典型。沿该断裂带的北坪定乡—东山乡25km长的范围内发育有多处较大规模滑坡,形成一个锁儿头–泄流坡–中牌滑坡密集带。

    崩塌分布也明显受断裂控制,特别是三眼峪沟、罗家峪沟、峪子沟等几条较大支沟的中下游区断裂与沟谷岸坡交汇位置基岩、碎石土崩塌较为发育。白龙江南岸山区硬质岩区发育的断裂带与沟谷陡崖交互地带也是基岩崩塌密集分布的地带。

    工程地质岩组是崩滑流形成的“地基”式组成,控制地质灾害发育(黄润秋等,2008)。

    (1)对泥石流的控制

    研究区泥石流分为两种类型:泥石流和水石流,与地层分布息息相关。泥石流发育区多为志留系、泥盆系板岩、千枚岩以及石炭系灰岩,受构造运动影响,岩体构造裂隙发育,风化较强,力学性质一般。水石流发育区多集中于中生界硬质岩,地层岩性及岩土体结构对斜坡的稳定较为有利,滑坡、崩塌等重力堆积物不发育,山坡、沟道中堆积的松散固体物质相对较少,受固体物质补给量的限制,灾害以山洪为主,局部发育水石流沟。

    研究区易发泥石流的地层主要有古生界千枚岩、板岩等变质岩,此类地层岩体本身较为破碎,加之风化作用,使得表面堆积有较厚松散物质,为泥石流的形成提供固体物质储备。棱角状碎屑使其具有较强裹携能力,易侵蚀沟床,促进泥石流的发育。

    (2)对滑坡、崩塌的控制

    区内易发生滑坡的地层有:第四系黄土、碎石土堆积层和中~古生界千枚岩、板岩等。黄土的特殊物理力学性质为滑坡的发育提供了基本条件,疏松、不稳定的结构,决定了其内聚力较低。碎石土堆积层土石混杂,结构松散,底部与基岩的接触面倾向坡外,内部分布有倾向坡外且较连续的由千枚岩等变质岩风化岩屑构成的细粒土透镜体夹层,抗剪能力差,且相对隔水,千枚岩、板岩、片岩等软弱岩层的存在,使得这些岩土质斜坡的稳定性大为降低。

    区内易发生崩塌的地层有:第四系黄土,志留系、泥盆系千枚岩、板岩,二叠系、三叠系灰岩和其他硬质基岩。值得一提的是,其它硬质基岩形成较早,发育节理裂隙,在降雨、特别是地震作用下,易发生崩塌。区内西南部较大沟谷中常见以落石的形式崩落于沟谷之中,沟谷乡间公路两侧也有发育。

    生态环境主要指地表植被,它能通过地表保护、控制径流等间接影响地质灾害的发育。

    (1)对滑坡的影响

    地表缺乏植被保护,会加速表层风化,降雨迅速流入孔隙裂缝中,下渗至坡体软弱面,易形成滑坡。

    (2)对泥石流的影响

    植被叶片的蒸腾作用可消耗一定的降雨,同时根茎、落叶等能够吸收部分地表降雨,调节地面雨水的径流量以及径流速度,从而降低雨水裹携松散物质的动能,对泥石流的形成具有抑制作用。

    数据源主要包括(表8):①地质灾害隐患点的数据来自2021年开展的舟曲县1∶50 000地质灾害风险调查评价项目。②DEM数据为30 m×30 m分辨率的公开数据源,用于提取坡度、坡型、切割深度、沟壑密度等地形地貌参数。③1∶50000孕灾地质条件图(图1),用于提取岩土体类型、地质构造等信息。④2019年4月的ETM+遥感数据,用于计算植被指数NDVI。

    表  8  数据来源一览表
    Table  8.  List of data sources
    基础数据数据来源数据格式说明
    地质数据1∶50 000孕灾地质条件图SHP提取地质构造、岩土体类型等
    DEM数据地理空间数据云TIFF30 m×30 m分辨率,用于提取地形地貌相关数据
    遥感数据ETM+TIFF2019年4月数据,用于计算NDVI
    隐患点数据舟曲县1∶50 000地质灾害风险调查评价成果SHP用于构建发育因子指标
    下载: 导出CSV 
    | 显示表格
    图  1  舟曲县孕灾地质条件图
    1. 第四系中上更新统黄土;2. 白垩系下统砂岩;3. 燕山期花岗岩;4. 二叠系下统砂岩、板岩;5. 石炭系中上统灰岩;6. 泥盆系中统板岩;7. 志留系中上统千枚岩、板岩;8. 志留系下统灰岩;9. 地质构造
    Figure  1.  Map of Disaster-prone geological conditions in Zhouqu County

    根据调查成果,舟曲县共确定地质灾害隐患点299处,其中泥石流124处,占总数41.5%,滑坡140处,占总数46.8%,崩塌32处,占总数10.7%,地面塌陷3处,占总数1%(图2)。

    图  2  舟曲县地质灾害分布图
    1. 崩塌;2. 滑坡;3. 泥石流;4. 地面塌陷;5. 水系;6. 县界
    Figure  2.  Map of geological hazard distribution in Zhouqu County

    研究区地质灾害易发性评价采用层次分析法,依据评价因子的内在关系,建立层次结构模型,并逐个评判各因子之间的重要程度,建立判断矩阵,最终确定所有因子的权重。

    地质灾害易发性是地质灾害发育现状的具体表现,同时需要考虑孕灾地质环境背景的复杂性。因此,本研究评价指标体系构建如下:地质灾害易发性→发育因子、孕灾地质条件因子→11个具体的评价指标(图3)。

    图  3  地质灾害易发性评价指标体系
    Figure  3.  Evaluation index system of geohazards susceptibility

    地质灾害易发性评价采用线性组合,根据评价指标体系,建立11个评价因子的量化数据库,消除量纲进行归一化处理,确定其权重,运用GIS的栅格计算器工具,叠加处理,具体评价模型为:

    $$ Y=w_{1}x_{1}+w_{2}x_{2}+w_{3}x_{3}+…+w_{n}x_{n} $$ (1)

    式中:Y为易发性指数;w1w2wn为各评价因子;x1x2xn为各评价因子对应的权重。

    (1)发育因子

    发育因子主要考虑地质灾害发育程度,与其分布和数量有关,还得考虑灾害的规模大小。基于准确性与可操作性,地质灾害数量、面积与体积资料详实,可作为发育因子的评价指标。将全域划分为2.5 km×2.5 km的网格,以小网格为基准进行计算(图4)。

    图  4  地质灾害发育因子归一化图
    Figure  4.  Normalized map of geohazards development factors

    地质灾害频率比(C1):设某单元格为(mn),其面积为Smn),单元内发育灾害数量为qmn),单元内的灾害频率密度为:

    $$ fq(m\text{,}n)= q(m\text{,}n)/ S(m\text{,}n) $$ (2)

    全域总面积S,总灾害数量Q,频率比为:

    $$ f_{Q}=Q/S $$ (3)

    则:第(mn)单元格灾害频率比为:

    $$ Rf(m\text{,}n)=fq(m\text{,}n)/f_{Q } $$ (4)

    同理,地质灾害面积模数比(C2)与地质灾害体积模数比(C3)不再赘述。

    (2)孕灾地质条件因子

    根据孕灾地质条件分析结果,共选取了地形地貌数据、岩土体类型数据等八个对地质灾害发育影响较大的因子,进行归一化处理(图5),量化信息见表9

    图  5  地质灾害孕灾因子归一化图
    Figure  5.  Normalized map of geohazards –pregnant factors
    表  9  孕灾地质条件因子量化一览表
    Table  9.  Quantitative list of disaster-pregnant geological conditions
    序号分类孕灾因子数据源指标量化过程(意义)
    1 地形地貌数据 坡度 DEM
    (30 m×
    30 m)
    DEM数据提取。研究区内崩滑灾害所在斜坡坡度区间为10°~70°,本次评价将坡度上限的易发程度定义为1,坡度下限的易发程度定义为0,进行归一化处理
    2 坡度变化率 DEM数据提取。反映坡度变化情况,与斜坡拉张应力区的分布呈正相关,其变化越大,说明斜坡内部应力也随之变大,稳定性差
    3 坡形 DEM数据提取。可用地表曲率表征,以零为界,大于或等于零表明是直线/凸型斜坡,小于零表明是凹型/阶梯型坡斜坡
    4 切割深度 DEM数据提取。可用高程差表示,即平均值与最小值之差,表明区域地形地貌的起伏度以及沟谷的发育程度
    5 沟壑密度 DEM数据提取。衡量地表破碎程度,可用流域内水文网的长度表征
    6 岩土类型数据 岩土体类型 1∶50000孕灾地质条件图 岩土体类型的矢量数据。根据岩土体的工程地质特性,易发性由高到低分别赋予4~1,最后栅格化并归一
    7 构造数据 地质构造 利用断层矢量数据。以区内第四纪以来发育的活动断裂为基准线,利用线密度分析工具,以3 km为搜索半径进行分析
    8 环境变量数据 植被覆盖率 ETM+ 利用2019年4月ETM+遥感数据,计算求取植被指数NDVI
    下载: 导出CSV 
    | 显示表格

    获得基础评价因子的归一化图层后,按照AHP模型,运用GIS进行叠加计算,运用自然间断法将叠加结果分为极高易发区、高易发区、中易发区、低易发区等4类,对应的面积分别为68.98 km2(占总面积的2.29%)、390.9 km2(占总面积的12.97%)、1166.21 km2(占总面积的38.70%)、1387.76 km2(占总面积的46.05%)(表10图6)。

    图  6  舟曲县地质灾害易发性分区图
    Figure  6.  Division of geohazards susceptibility in Zhouqu County
    表  10  地质灾害易发性统计表
    Table  10.  Statistics of geohazards susceptibility
    易发等级指数区间面积(km2总面积占比(%)区内灾害点数量(个)频率比
    低易发区0.0599~0.29151387.7646.05170.123
    中易发区0.2915~0.41991166.2138.70620.535
    高易发区0.4199~0.6993390.912.971493.842
    极高易发区0.6993~0.701968.972.297110.369
    下载: 导出CSV 
    | 显示表格

    根据分区结果,地质灾害极高易发区主要分布在县域北部白龙江流域(曲瓦–巴藏–立节–憨班–峰迭–舟曲县城–南峪–大川–两河口)以及石门沟流域,高易发区域主要分布在拱坝河流域中下游和博峪河流域舟曲段中部区域,中易发区呈条带状贯穿了舟曲县中部和北部部分区域,低易发区位于舟曲县东北边缘与宕昌接壤地带以及西南边缘与文县、四川省九寨沟县接壤地带。

    为验证易发性分区的可靠性,对落入各分区的灾害点进行统计,并计算频率比(灾害点数量占比/易发面积占比),由计算结果可知,极高易发区和高易发区虽然面积只占全县面积的15.26%,但区内灾害点占比达73.58%,频率比也与易发性等级相呼应。

    (1)地形地貌是舟曲县地质灾害发生的先决条件。易发生滑坡的微地貌为:坡形为凹形或凸形,坡度范围为15°~60°,多分布于25°~45°的陡坡地段,坡高为50~400 m区间内;易发生崩塌的微地貌为:坡形为直线形,坡度范围为40°~85°,多分布在60°以上的陡崖,坡高0~100 m区间内;易发生泥石流的微地貌:沟谷平均主沟纵坡为10%~50%,山坡坡度优势区间为26°~45°,流域面积为0~10 km2

    (2)舟曲县地质灾害受地质构造控制明显。其中滑坡、崩塌、泥石流等地质灾害隐患点主要分布于坪定—化马断裂带等几大断裂构造带内及其次级断层的两侧附近。

    (3)工程地质岩组是滑坡、崩塌、泥石流等地质灾害发生、发展的重要内因和物质基础。志留系、泥盆系等古生界地层出露区是泥石流灾害最易发的地区,易滑地层有黄土、碎石土堆积层、千枚岩、板岩等地层,易崩地层有第四系黄土、志留系、泥盆系千枚岩、板岩,二叠系、三叠系灰岩和其他硬质基岩。

    (4)根据孕灾地质条件分析,舟曲县地质灾害易发性评价指标分为发育因子和孕灾地质条件因子,其中发育因子包括地质灾害频率比、地质灾害面积模数比、地质灾害体积模数比,孕灾地质条件因子包括坡度、坡度变化率、坡形、切割深度、沟壑密度、岩土体类型、地质构造、植被指数,建立AHP评价模型,确定各因子权重,综合评价舟曲县地质灾害易发性。

    (5)舟曲县地质灾害易发性评价结果分为极高易发区、高易发区、中易发区、低易发区,对应的面积分别为68.98 km2(占总面积的2.29%)、390.9 km2(占总面积的12.97%)、1166.21 km2(占总面积的38.70%)、1387.76 km2(占总面积的46.05%)。地质灾害极高易发区主要分布在县域北部白龙江流域以及石门沟流域,高易发区域主要分布在拱坝河流域中下游和博峪河流域舟曲段中部区域。应用频率比法进行不同分区内灾害点数量统计,结果与易发性等级相呼应,验证了本研究易发性分区的可靠性。

  • 图  1   内蒙古西部大地构造简图(a)及研究区地质简图(b)

    图1a据吴泰然等(1993)Badarch等(2002)邵积东(2016)辛后田等(2020)修;蛇绿岩时限据Zheng等(2014)Jian等(2014)Fu等(2018)辛后田等(2020)

    Figure  1.   (a) Tectonic map of the western Inner Mongolia and (b) sketch geological map of the study area

    图  2   达伦乌苏早三叠世二长花岗岩(a、b)和中三叠世花岗斑岩岩体(c、d)野外及镜下特征

    Pl. 斜长石;Kfs. 钾长石;Bt. 黑云母;Qtz. 石英

    Figure  2.   (a, b) Representative photomicrographs of the Dalunwusu early- middle Triassic monzogranite and (c, d) granite porphyry

    图  3   达伦乌苏二长花岗岩(a)和紫红色花岗斑岩体(b)代表性锆石阴极发光图像

    Figure  3.   (a) The cathodoluminescence (CL) images of typical zircon grains of the Dalunwusu early- middle Triassic monzogranite and (b) granite porphyry

    图  4   达伦乌苏二长花岗岩(a、b)和紫红色花岗斑岩体(c、d)锆石U-Pb年龄谐和图

    Figure  4.   (a, b) LA-ICP-MS U-Pb zircon concordia diagram of the Dalunwusu early-middle Triassic monzogranite and (c, d) granite porphyry

    图  5   达伦乌苏早三叠世二长花岗岩和花岗斑岩TAS图解(a)(据Middemost, 1994)、SiO2-(Na2O+ K2O- CaO)(b)、SiO2- K2O(c)和A/NK-A/CNK图解(d)(据Miniar et al., 1989

    Figure  5.   (a) TAS diagram, (b) SiO2 vs. (Na2O+ K2O-CaO) , (c) SiO2 vs. K2O and (d) A/CNK vs. A/NK diagram for the Dalunwusuearly Triassic monzogranite and granite porphyry

    图  6   达伦乌苏早三叠世二长花岗岩和中三叠世花岗斑岩稀土元素球粒陨石标准化配分模式图(a)及微量元素蛛网图(b)

    球粒陨石标准化值据Boynton (1984);原始地幔标准化值据Sun等(1989)

    Figure  6.   (a) Chondrite-normalized REE patterns and (b) Primitive mantle-normalized multiple trace element diagrams of the Dalunwusu early-middle Triassic monzogranite and granite porphyry

    图  7   达伦乌苏早三叠世二长花岗岩岩石类型(a)及构造环境判别图解(b)

    a据Defant等(1990);b据Wang等(2006)

    Figure  7.   (a) Geochemical classification discrimination and (b) tectonic setting diagrams for Dalunwusu early Triassic mozogranite pluton

    图  8   达伦乌苏中三叠世花岗斑岩岩石类型及构造环境判别图解(a据Whalen et al., 1987; b据Forst et al., 2001

    Figure  8.   (a) Geochemical classification and (b) discrimination diagrams of the tectonic setting for Dalunwusu middle Triassic granite porphyry pluton

    表  1   达伦乌苏早三叠世二长花岗岩和中三叠世花岗斑岩LA-ICP-MS锆石U-Pb 测年结果

    Table  1   LA-ICP-MS zircon U-Pb dating results for the Dalunwusu early-middle triassic monzogranite and granite porphyry

    样品号含量(10−6Th/U同位素比值年龄(Ma)
    PbThU207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U
    TW5127-1,二长花岗岩
    spot-01 32.8 326.9 674.0 0.49 0.05049 0.00147 0.28031 0.00805 0.04026 0.00048 0.01271 0.00033 217 67 251 6 254 3
    spot-02 45.2 455.1 918.5 0.50 0.05321 0.00132 0.29573 0.00716 0.04026 0.00044 0.01333 0.00032 345 57 263 6 254 3
    spot-03 28.3 258.8 604.2 0.43 0.04913 0.00141 0.26853 0.00759 0.03961 0.00044 0.01198 0.00027 154 67 242 6 250 3
    spot-04 53.0 553.6 1104.3 0.50 0.05191 0.00116 0.28680 0.00654 0.03992 0.00045 0.01226 0.00028 280 52 256 5 252 3
    spot-06 36.8 315.5 771.4 0.41 0.05038 0.00249 0.28842 0.00889 0.04069 0.00050 0.01441 0.00045 213 115 257 7 257 3
    spot-07 52.9 653.7 1115.6 0.59 0.05049 0.00128 0.26964 0.00651 0.03867 0.00044 0.01216 0.00026 217 55 242 5 245 3
    spot-08 53.5 681.0 1150.5 0.59 0.05180 0.00184 0.27615 0.00703 0.03824 0.00042 0.01142 0.00027 276 86 248 6 242 3
    spot-09 59.7 588.7 1247.8 0.47 0.05236 0.00134 0.29155 0.00711 0.04018 0.00047 0.01260 0.00030 302 62 260 6 254 3
    spot-10 26.7 259.7 576.7 0.45 0.05159 0.00165 0.27715 0.00837 0.03891 0.00049 0.01281 0.00035 333 74 248 7 246 3
    spot-11 32.9 282.6 723.8 0.39 0.05188 0.00138 0.27909 0.00744 0.03876 0.00043 0.01279 0.00035 280 61 250 6 245 3
    spot-12 61.6 743.3 1250.5 0.59 0.05035 0.00115 0.28021 0.00614 0.04020 0.00044 0.01272 0.00025 209 49 251 5 254 3
    spot-13 58.5 935.0 1168.0 0.80 0.05662 0.00127 0.30055 0.00718 0.03820 0.00042 0.01236 0.00024 476 48 267 6 242 3
    spot-14 33.1 398.4 699.9 0.57 0.05294 0.00130 0.28662 0.00766 0.03900 0.00053 0.01247 0.00031 328 28 256 6 247 3
    spot-16 50.1 789.2 954.3 0.83 0.05336 0.00124 0.29522 0.00668 0.04002 0.00049 0.01279 0.00029 343 47 263 5 253 3
    spot-18 32.2 366.7 644.9 0.57 0.05154 0.00161 0.28431 0.00892 0.03999 0.00056 0.01268 0.00033 265 77 254 7 253 3
    spot-22 43.9 763.0 844.2 0.90 0.04963 0.00120 0.26183 0.00619 0.03795 0.00037 0.01184 0.00022 176 56 236 5 240 2
    spot-24 25.9 240.0 545.8 0.44 0.05098 0.00152 0.28251 0.00887 0.03984 0.00065 0.01215 0.00041 239 70 253 7 252 4
    spot-25 34.6 491.3 697.3 0.70 0.04986 0.00133 0.26655 0.00691 0.03842 0.00049 0.01198 0.00030 187 63 240 6 243 3
    spot-27 35.5 383.4 718.5 0.53 0.05046 0.00134 0.28351 0.00710 0.04058 0.00052 0.01273 0.00031 217 61 253 6 256 3
    spot-29 37.2 350.4 796.3 0.44 0.04926 0.00147 0.26735 0.00737 0.03925 0.00050 0.01164 0.00028 167 70 241 6 248 3
    spot-30 39.0 658.3 726.7 0.91 0.05058 0.00132 0.28010 0.00692 0.03998 0.00046 0.01233 0.00027 220 59 251 5 253 3
    spot-31 51.3 747.0 1026.8 0.73 0.05171 0.00134 0.27898 0.00669 0.03889 0.00040 0.01207 0.00026 272 59 250 5 246 3
    spot-32 45.1 528.0 924.9 0.57 0.05077 0.00151 0.27851 0.00752 0.03980 0.00056 0.01234 0.00031 232 66 249 6 252 3
    PM54TW7,花岗斑岩
    spot-01 28.7 427.2 572.8 0.75 0.05527 0.00186 0.29714 0.00979 0.03869 0.00065 0.01221 0.00040 433 76 264 8 245 4
    spot-02 48.7 619.9 1002.1 0.62 0.05177 0.00152 0.27438 0.00762 0.03805 0.00054 0.01167 0.00033 276 69 246 6 241 3
    spot-03 33.9 406.8 725.1 0.56 0.05418 0.00204 0.27645 0.00792 0.03671 0.00053 0.01233 0.00037 389 81 248 6 232 3
    spot-05 42.4 786.6 831.7 0.95 0.05388 0.00157 0.28522 0.00820 0.03811 0.00058 0.01118 0.00030 365 67 255 6 241 4
    spot-09 24.3 284.9 523.6 0.54 0.05405 0.00210 0.28162 0.01030 0.03766 0.00058 0.01145 0.00037 372 87 252 8 238 4
    spot-10 55.3 781.8 1085.9 0.72 0.05242 0.00438 0.27090 0.01148 0.03757 0.00062 0.01364 0.00049 306 191 243 9 238 4
    spot-13 38.0 550.1 770.3 0.71 0.05064 0.00156 0.26967 0.00809 0.03845 0.00051 0.01204 0.00035 233 72 242 6 243 3
    spot-14 36.8 470.6 743.6 0.63 0.05036 0.00182 0.27417 0.00974 0.03923 0.00053 0.01244 0.00038 213 88 246 8 248 3
    spot-15 34.4 538.8 723.4 0.74 0.05096 0.00156 0.26393 0.00810 0.03735 0.00051 0.01168 0.00031 239 72 238 7 236 3
    spot-16 25.8 435.0 524.3 0.83 0.05166 0.00184 0.26403 0.00885 0.03711 0.00056 0.01228 0.00033 333 81 238 7 235 3
    spot-21 27.5 373.2 569.7 0.66 0.05394 0.00206 0.28668 0.01036 0.03826 0.00059 0.01193 0.00044 369 87 256 8 242 4
    spot-22 39.5 549.3 782.3 0.70 0.05610 0.00259 0.30074 0.00964 0.03877 0.00057 0.01394 0.00045 457 102 267 8 245 4
    spot-23 33.4 588.1 646.7 0.91 0.04870 0.00181 0.26388 0.00917 0.03937 0.00071 0.01205 0.00040 132 87 238 7 249 4
    spot-27 33.8 463.5 682.4 0.68 0.05041 0.00173 0.26837 0.00914 0.03865 0.00059 0.01287 0.00044 213 84 241 7 244 4
    下载: 导出CSV

    表  2   达伦乌苏早三叠世二长花岗岩和中三叠世花岗斑岩主、微量分析测试结果

    Table  2   Major (%) and trace element (10−6) analysis results for the Dalunwusu early- middle Triassic monzogranite and granite porphyry

    GS5215-1GS5137-1GS5107-1TW5127-1PM54TW7GS5312-1GS5312-2
    岩体早三叠世二长花岗岩中三叠世紫红色花岗斑岩
    SiO271.8071.2171.7472.7177.0077.2578.08
    TiO20.300.320.290.260.080.100.10
    Al2O315.1215.0514.8414.9812.2711.6211.35
    Fe2O31.401.161.121.361.010.941.02
    FeO0.901.471.310.320.491.130.80
    CaO1.852.071.721.390.720.600.54
    MgO0.690.840.660.600.140.190.15
    K2O3.663.254.164.505.115.895.71
    Na2O4.144.474.053.793.152.232.22
    MnO0.040.040.030.020.020.030.02
    P2O50.090.110.080.070.010.020.02
    LOI1.280.600.820.910.330.250.27
    TOTAL99.7099.6699.69100.1399.8899.7899.81
    K2O/Na2O0.890.731.031.191.622.642.58
    FeOT2.162.522.331.551.401.971.72
    A/CNK1.071.031.041.101.021.041.05
    A/NK1.401.381.331.351.141.161.15
    Mg#40.2441.2237.4744.7517.6917.1915.34
    R12388231622952392277129183027
    R2529558508472324302287
    Ga19.619.419.819.721.51816.8
    Rb95.5107126168383388403
    Sr39574840248724.865.465.2
    Y4.15.334.544.684.477.425.43
    Zr16115314611881.77672.5
    Nb3.633.783.463.2514.318.415.2
    Ba579727901105652.9127132
    La14.723.320.418.711119.16
    Ce28.542.537.838.917.319.617.6
    Pr3.314.84.13.781.541.811.42
    Nd11.917.214.513.94.135.654.19
    Sm2.022.752.342.470.640.90.66
    Eu0.590.790.70.490.0840.170.15
    Gd1.722.352.041.990.710.970.78
    Tb0.210.270.230.220.10.170.12
    Dy0.781.080.91.010.5310.7
    Ho0.140.190.160.160.110.230.17
    Er0.440.540.480.430.460.830.63
    Tm0.0490.0720.0610.0620.0820.150.1
    Yb0.360.470.410.380.691.150.78
    Lu0.0590.0740.0580.0590.130.20.13
    Hf4.464.193.933.574.153.683.21
    Ta0.120.140.0990.410.971.671.29
    Pb23.727.222.826.451.231.731.9
    Th15.717.419.313.339.44938
    U1.451.540.921.298.677.066.72
    δEu0.970.950.980.680.380.560.64
    ΣREE64.7896.3984.1882.5537.5143.8336.59
    (La/Yb)N29.3035.5835.7135.3111.446.868.43
    (La/Sm)N4.705.485.634.8911.117.908.97
    10000×Ga/Al2.452.432.522.483.312.932.80
    下载: 导出CSV
  • 陈井胜, 刘正宏, 刘永江, 等. 中亚造山带东段构造演化研究进展: 前言[J]. 岩石学报, 2022, 38(08): 2175-2180 doi: 10.18654/1000-0569/2022.08.01

    CHEN Jingsheng, LIU Zhenghong, LIU Yongjiang, et al. Recent Progress in the evolution of eastern segment of the Central Asia Orogenic Belt[J]. Acta Petrologica Sinica, 2022, 38(8): 2175-2180. doi: 10.18654/1000-0569/2022.08.01

    董玉, 王锶淼, 于倩, 等. 中国东北地区晚古生代构造-岩浆演化历史[J]. 岩石学报, 2022, 38(8): 2249-2268 doi: 10.18654/1000-0569/2022.08.04

    DONG Yu, WANG Simiao, YU Qian, et al. Late Paleozoic tectonic-magmatic evolution history of the northeastern China[J]. Acta Petrologica Sinica, 2022, 38(8): 2249-2268. doi: 10.18654/1000-0569/2022.08.04

    付超,李俊建,张帅,等.中蒙边界地区侵入岩时空分布特征及对构造演化的启示[J].华北地质, 2023, 46(1): 1−19.

    FU Chao, LI Junjian, ZHANG Shuai, et al. The temporal and spatial distribution characteristics of intrusive rocks in the border area between China and Mongolia and its implications for tectonic evolution[J]. North China Geology, 2023, 46(1): 1−19.

    贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3), 465-480 doi: 10.3969/j.issn.1001-1552.2009.03.017

    JIA Xiaohui, WANG Qiang, TANG Gongjian. A-type Granites: Research Progress and Implications[J]. Geotectonica et Metallogenia, 33(3), 2009, 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017

    雷聪聪, 薄海军, 丁海生, 等. 内蒙古自治区雅干地区白山组火山岩LA-ICP-MS锆石U-Pb年龄及其构造环境[J]. 地质通报, 2023,42(12):2096-2108.

    LEI Congcong, BO Haijun, DING Haisheng, et al. LA-ICP-MS zircon U-Pb dating and tectonic setting of volcanic rocks of Baishan Formation in Yagan area, Inner Mongolia Autonomous Region[J]. Geological Bulletin, 2023,42(12):2096-2108.

    李凤春, 侯明兰, 栾日坚, 等. 电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用[J]. 岩矿测试, 2016, 35(1): 17-23.

    LI Fengchun, HOU Minglan, LUAN Rijian, et al. Optimization of Analytical Conditions for LA-ICP-MS and Its Application to Zircon U-Pb Dating[J]. Rock and Mineral Analysis. 2016, 35(1): 17-23

    刘桂萍, 郭瑞清, 魏震, 等. 新疆库鲁克塔格地区古生代花岗质侵入岩全岩Sr-Nd和锆石Hf同位素地球化学特征及其意义[J]. 西北地质, 2021, 54(03): 39-50

    LIU Guiping, GUO Ruiqing, WEI Zhen. Geochemical Characteristics and Significance of the Whole Rock Sr-Nd and Zircon Hf Isotopic in the Paleozoic Granite-plutons in Kuruktag, Xinjiang. Northwestern Geology, 2021, 54(03): 39-50.

    刘基, 王丕军, 薄海军. 内蒙古额济纳旗内乔仑恩格次黑云母二长花岗斑岩中锆石的特征及其指示意义[J]. 西北地质, 2020, 53(03): 41-55

    LIU Ji, Wang Pijun Bo Haijun. Characteristics and Implications of Zircon in Qiaolun'en'geci Biotite Monzogranite Porphyry in Ejina County, Inner Mongolia[J]. Northwestern Geology, 2020, 53(03): 41-55.

    马军, 雷聪聪, 王文宝, 等. 阿拉善地块北缘雅干地块诸小布和糜棱岩化花岗岩地球化学特征、锆石U-Pb年龄及构造背景研究[J]. 矿物岩石地球化学通报, 2021, 40(06): 1357-1368 doi: 10.19658/j.issn.1007-2802.2021.40.086

    MA Jun, LEI Congcong, WANG Wenbao, et al. A Study on Geochemistry, Zircon U-Pb Dating and Tectonic Setting of the Zhuxiaobuhe Mylonitized Granite in the Yagan Area of Northern Margin of the Alxa Terrain[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(06): 1357-1368. doi: 10.19658/j.issn.1007-2802.2021.40.086

    邵积东. 内蒙古地质构造单元划分及存在的有关问题[J]. 西部资源, 2016, 3: 84-87/150. doi: 10.16631/j.cnki.cn15-1331/p.2016.03.030

    SHAO Jidong. Division of geological tectonic units of Inner Mongolia and related problems[J]. Westrn Resources, 2016. 3: 84-87/150. doi: 10.16631/j.cnki.cn15-1331/p.2016.03.030

    邵济安, 唐克东, 何国琦. 内蒙古早二叠世构造古地理的再造[J]. 岩石学报, 2014, 30(7): 1858–1866

    SHAO Jian, TANG Kedong, HE Guoqi. Early Permian tectono-palaeogeographic reconstruction of Inner Mongolia, China[J]. Acta Petrologica Sinica, 2014, 30(7): 1858–1866.

    舍建忠, 贾健, 金成, 等. 西准噶尔谢米斯台山中段晚石炭世A型花岗岩地球化学特征及岩石成因[J]. 地质通报, 2023, 42(7): 1051−1068.

    SHE Jianzhong, JIA Jian, JIN Cheng, et al. Geochemical characteristics and petrogenesis of Late Carboniferous A-type granites in the middle section of Xiemisitai Mountain, West Junggar[J]. Geological Bulletin of China, 2023, 42(7): 1051−1068.

    宋博, 张慧元, 魏东涛, 等. 中亚造山带南缘中-新元古代地壳的揭示——来自北山—阿拉善北部钻遇碱性花岗岩的年代学和Hf 同位素示踪研究[J]. 地球学报, 2021, 42(1): 9-20 doi: 10.3975/cagsb.2020.071901

    SONG Bo, ZHANG Huiyuan, WEI Dongtao, et al. Revelation of the Meso–Neoproterozoic Crust on the Southern Margin of the Central Asian Orogenic Belt: Chronology and Hf Isotope Tracer from Drilling-intersected Alkaline Granites, Northern Beishan-Alxa[J]. Acta Geoscientica Sinica, 2021, 42(1): 9-20. doi: 10.3975/cagsb.2020.071901

    王丕军. 额济纳旗乔仑恩格次花岗岩特征及构造环境研究[D]. 北京: 中国地质大学(北京), 2018

    WANG Pijun. Characteristics and Tectonic Environment of Qiaolunengeci Granite in Ejina County[D]. Beijing: China University of Geosciences(Beijing), 2018.

    王廷印, 王金荣, 王士政, 等. 华北板块和塔里木板块之关系[J]. 地质学报, 1993, 67(4): 287-300 doi: 10.19762/j.cnki.dizhixuebao.1993.04.001

    WANG Tingyin, WANG Jinrong, WANG Shizheng, et al. Relationships between the North China and Tarim Plates[J]. Acta Geologica Sinica, 1993, 67(4): 287-300. doi: 10.19762/j.cnki.dizhixuebao.1993.04.001

    王元元, 杨小强, 阿种明, 等. 新疆西准噶尔沙勒克腾地区花岗岩锆石U-Pb年龄、地球化学特征及其对后碰撞构造环境的约束[J]. 地质通报, 2023, 42(4): 600−615.

    WANG Yuanyuan, YANG Xiaoqiang, A Zhongming, et al. Zircon U-Pb age, geochemistry of granites in Shaleketeng area, West Junggar, Xinjiang and its constraints on the post-collision tectonic environment[J]. Geological Bulletin of China, 2023, 42(4): 600−615.

    王振义, 李钢柱, 丁海生, 等. 内蒙古额济纳旗雅干地区北山岩群的厘定及其地质意义[J]. 地球科学, 2022, 47(4): 1177-1193 doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204003

    WANG Zhenyi, LI Gangzhu, DING Haisheng, et al. Determination and Geological Significance of Beishan Group in Yagan Area, Ejiana, Inner Mongolia[J]. Earth Science, 2022, 47(4): 1177-1193. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204003

    吴泰然, 何国琦. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J]. 地质学报, 1993, 67(2): 97-108. doi: 10.19762/j.cnki.dizhixuebao.1993.02.001

    WU Tairan, HE Guoqi. Tectonic units and their fundamental characteristics on the northern margin of the Alxa Block[J]. Acta Geologica Sinica, 1993, 67(2), 97-108. doi: 10.19762/j.cnki.dizhixuebao.1993.02.001

    谢春林, 杨建国, 王立社, 等. 甘肃北山地区古亚洲南缘古生代岛弧带位置的讨论[J]. 地质学报, 2009, 83(11): 1584-1599 doi: 10.3321/j.issn:0001-5717.2009.11.004

    XIE Chunlin, YANG Jianguo, WANG Lishe, et al. Disscussion on the Location of Paleozoic Island Arc Zone on the South Margin of Paleo-Asian Ocean in the Beishan Area of Gansu Province[J]. Acta Geologica Sinica, 2009, 83(11): 1584-1599. doi: 10.3321/j.issn:0001-5717.2009.11.004

    辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 39(9): 1297-1316

    XIN Houtian, NIU Wenchao, TIAN Jian, et al. Spatio-temporal structure of Beishan orogenic belt and evolution of Paleo-Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(9): 1297-1316.

    熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139.

    XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139.

    杨玉柱, 袁万明. A型花岗岩的鉴别标志[J]. 河北地质学院学报, 1993, 16(2): 150-158

    YANG Yuzhu, YUAN Wanming. Discriminating Marks of A-type Granitoids[J]. Journal of Hebei College of Geology, 1993, 16(2): 150-158.

    张旗, 焦守涛. 埃达克岩来自高压背景-一个科学的, 可靠的, 有预见性的科学发现[J]. 岩石学报, 2020, 36(6): 1675-1683 doi: 10.18654/1000-0569/2020.06.02

    ZHANG Qi, JIAO Shoutao. Adakite comes from a high-pressure background: A scientific, reliable, predictable scientific discovery[J]. Acta Petrologica Sinica, 2020, 36(6): 1675-1683. doi: 10.18654/1000-0569/2020.06.02

    张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012, 31(4): 621-626 doi: 10.3969/j.issn.1000-6524.2012.04.014

    ZHANG Qi, RAN Hao, LI Chengdong. A-type granite: what is the essence? [J]. Acta Petrologica Et Mineralogica, 2012, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    张旗, 王焰, 刘伟, 等. 埃达克岩的特征及其意义[J]. 地质通报, 2002, 21(7): 431-435 doi: 10.3969/j.issn.1671-2552.2002.07.012

    ZHANG Qi, WANG Yan, LIU Wei, et al. Adakite: Its characteristics and implications[J]. Geological Bulletin of China, 2002, 21(7): 431-435. doi: 10.3969/j.issn.1671-2552.2002.07.012

    张旗, 王焰, 王元龙. 埃达克岩与构造环境[J]. 大地构造与成矿学, 2003, 27(2): 101-108 doi: 10.3969/j.issn.1001-1552.2003.02.001

    ZHANG Qi, WANG Yan, WANG Yuanlong. On the relationship between adakite and its tectonic setting[J]. Geotectonica et Metallogenia, 2003, 27(2): 101-108. doi: 10.3969/j.issn.1001-1552.2003.02.001

    张永玲, 张治国, 刘希军, 等. 内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义[J]. 西北地质, 2024, 57(1): 122−138.

    ZHANG Yongling, ZHANG Zhiguo, LIU Xijun, et al. Mineralogical Chemistry Characteristics and Geological Significance of the Clinopyroxene from Chaokeshan Gabbro, Inner Mongolia[J]. Northwestern Geology, 2024, 57(1): 122−138.

    郑荣国, 吴泰然, 张文, 等. 阿拉善地块北缘雅干花岗岩体地球化学、地质年代学及其对区域构造演化制约[J]. 岩石学报, 2013, 29(08): 2665-2675

    ZHENG Rongguo, WU Tairan, ZHANG Wen, et al. 2013. Geochronology and geochemistry of the Yagan granite in the northern margin of the Alxa block: Constraints on the tectonic evolution of the southern Altaids[J]. Acta Petrologica Sinica, 29(8): 2665-2675.

    Badarch G, Cunningham W D, Windley BF. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1): 87~110. doi: 10.1016/S1367-9120(02)00017-2

    Boynton W V, Geochemistry of the rare earth elements: meteorite studies[A]. In Henderson P (ed.). Rare earth element geochemistry[M]. Amsterdam, Elsevier, 1984: 63−114.

    Charvet J, SHU Liangshu, Laurent-Charvet S. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and Junggar plates[J]. Episodes, 2007, 30: 162-186.

    Defant M J, Drummond M S. Derivation of Some ModernArc Magmas by Melting of Young Subducted Lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    DU Long, LONG Xiaoping, YUAN Chao, et al. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff[J]. Lithos, 2018, 318: 47-59.

    Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    Eizenhöfer P R, ZHAO Guochun. Solonker Suture in East Asia and its bearing on the final closure of the eastern segment of the Palaeo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 153-172. doi: 10.1016/j.earscirev.2017.09.010

    Forst B R, Barnes C G, Collins W J, et al. A Geochemitic Classification For Granitic Rocks[J]. Journal of Petrology, 2001. 42(11): 2033-2042. doi: 10.1093/petrology/42.11.2033

    FU Dong, HUANG Bo, Kusky T M, et al. A middle Permian ophiolitic mélange belt in the Solonker suture zone, western Inner Mongolia, China: Implications for the evolution of the Paleo-Asian Ocean[J]. Tectonics, 2018, 37: 1292-1320. doi: 10.1029/2017TC004947

    JIAN Ping, Kröner A, Jahn B M, et al. Zircon dating of Neoproterozoic and Cambrian ophiolites in West Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2014, 133: 62-93. doi: 10.1016/j.earscirev.2014.02.006

    Jian Ping, LIU Dunyi, Kröner A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 2008, 101: 233-259. doi: 10.1016/j.lithos.2007.07.005

    LI HaoDong, ZHOU JianBo, Wilde S A. Nature and development of the South Tianshan-Solonker suture zone[J]. Earth-Science Reviews, 2022, 223: 104189

    LI Jinyi. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3-4): 207-224. doi: 10.1016/j.jseaes.2005.09.001

    Li Shan, Chung S L, Wilde S A, et al. Early‐Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens. Journal of Geophysical Research: Solid Earth[J], 2017, 122(3): 2291-2309.

    LI Shan, WANG Tao, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China[J]. Lithos, 2012, 134-135: 123-145. doi: 10.1016/j.lithos.2011.12.005

    Li Shan, Wang Tao, Wilde S A, et al. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Science Reviews[J], 2013, 126: 206−234.

    LIU Min, LAI Shaocong, ZHANG Da, et al. Middle Permian high Sr/Y monzogranites in central Inner Mongolia: reworking of the juvenile lower crust of Bainaimiao arc belt during slab break-off of the Palaeo-Asian oceanic lithosphere[J]. International Geology Review, 2019, 61(17): 2083-2099. doi: 10.1080/00206814.2019.1579057

    LIU Qian, ZHAO Guochun, HAN Yigui, et al. Early Paleozoic subduction processes of the Paleo-Asian Ocean: insights from geochronology and geochemistry of Paleozoic plutons in the Alxa Terrane[J]. Lithos, 2016, 262: 546-560. doi: 10.1016/j.lithos.2016.07.041

    LIU Qian, ZHAO Guochun, HAN Yigui, et al. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos, 2017, 274-275: 19-30. doi: 10.1016/j.lithos.2016.12.029

    LIU Qian, ZHAO Guochun, HAN Yigui, et al. Geochronology and geochemistry of Paleozoic to Mesozoic granitoids in western Inner Mongolia, China: implications for the tectonic evolution of the southern Central Asian Orogenic Belt[J]. The Journal of Geology, 2018, 126(4): 451-471. doi: 10.1086/697690

    LIU Yongsheng, WANG Xiaohong, WANG Dongbing, et al. Triassic high-Mg adakitic andesites from Linxi, Inner Mongolia: insights into the fate of the Paleo-Asian ocean crust and fossil slab-derived melt-peridotite interaction[J]. Chemical Geology, 2012, 328: 89-108. doi: 10.1016/j.chemgeo.2012.03.019

    LU Jia, ZHANG Chen, LIU Dongdong. Geochronological, geochemical and Sr-Nd-Hf isotopic studies of the A-type granites and adakitic granodiorites in Western Junggar: Petrogenesis and tectonic implications[J]. Minerals, 2020, 10(397): 1-25.

    Ludwing K R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[CP]. Berkeley: Berkeley Geochronology Center. 2003.

    LUAN JinPeng, TANG Jie, et al. Accretion kinematics and driving mechanism of the eastern Central Asian Orogenic Belt: Insights from seismic tomography and middle Permian-Middle Triassic magmatism in central Jilin Province[J]. Gondwana Research, 2022, 101: 114-131. doi: 10.1016/j.gr.2021.08.002

    Middemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    Miniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust Mantle Recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. doi: 10.1038/364299a0

    SHI Guanghai, MIAO Laicheng, ZHANG Fuqing, et al. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China[J]. Chinese Science Bulletin, 2004, 49(7): 723-729. doi: 10.1007/BF03184272

    SHI Yuruo, Anderson J L, LI Linlin, et al. Zircon ages and Hf isotopic compositions of Permian and Triassic A-type granites from central Inner Mongolia and their significance for late Palaeozoic and early Mesozoic evolution of the Central Asian Orogenic Belt[J]. International Geology Review, 2016, 58(8): 967-982. doi: 10.1080/00206814.2016.1138333

    SONG Dongfang, XIAO Wenjiao, Windley B F, et al. Carboniferous to Early Triassic magmatism and accretion in Alxa(NW China): implications for accretionary orogenesis of the southern Altaids[J]. Journal of the Geological Society, 2020, 177: 997-1012. doi: 10.1144/jgs2020-046

    SUN S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    WANG Qiang, XU JiFeng, et al. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, SouthChina: Implications for the Genesis of Porphyry Copper Mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144. doi: 10.1093/petrology/egi070

    WANG Tao, TONG Ying, XIAO Wenjiao, et al. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data[J]. National science review, 2022, 9(5), nwab210. doi: 10.1093/nsr/nwab210

    WANG Tao, ZHENG Yadong, Gehrels G E, et al. Geochronological evidence for existence of South Mongolian microcontinent—A zircon U-Pb age of grantoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex[J]. Chinese Science Bulletin, 2001, 46(23): 2005-2008. doi: 10.1007/BF02901917

    WANG Wenlong, TENG Xuejian, LIU Yang, et al. From subduction to post‐collision: Early Permian‐middle Triassic magmatic records from Langshan Belt, Central Asian Orogenic Belt[J]. Geological Journal, 2020, 55(3): 2167-2184. doi: 10.1002/gj.3790

    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202

    Windley B F, Alexeiev D, XIAO Wenjiao, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. doi: 10.1144/0016-76492006-022

    Wu Fuyuan, Sun Deyou, Li Huimin , et al, A-type granites in Northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187, 143−173.

    XIAO Wenjiao, Windley BF, HAN Chunming, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020

    XIAO Wenjiao, Windley BF, HAO Jie, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1069.

    XU Bei, Charvet J, CHEN Yan, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364. doi: 10.1016/j.gr.2012.05.015

    YAN Quanshu, Metcalfe I, SHI Xuefa, et al. Early Cretaceous granitic rocks from the southern Jiaodong Peninsula, eastern China: implications for lithospheric extension[J]. International Geology Review, 2019, 61(7): 821-838. doi: 10.1080/00206814.2018.1474388

    ZHANG Wen, Pease V, MENG Qingpeng, et al. Discovery of a Neoproterozoic granite in the Northern Alxa region, NW China: its age, petrogenesis and tectonic significance[J]. Geological Magazine, 2016, 153(03): 512-523. doi: 10.1017/S0016756815000631

    ZHENG Jiahao, MAO Jingwen, CHAI Fengmei, et al. Petrogenesis of Permian A-type granitoids in the Cihai iron ore district, Eastern Tianshan, NW China: Constraints on the timing of iron mineralization and implications for a non-plume tectonic setting[J]. Lithos, 2016, 260: 371-383. doi: 10.1016/j.lithos.2016.05.012

    ZHENG Rongguo, LI Jinyi, ZHANG Jin, et al. Permian oceanic slab subduction in the southmost of Central Asian Orogenic Belt: Evidence from adakite and high-Mg diorite in the southern Beishan[J]. Lithos, 2020, 358: 105406.

    ZHENG Rongguo, LI Jinyi, ZHANG Jin, et al. A prolonged subduction-accretion in the southern Central Asian Orogenic Belt: Insights from anatomy and tectonic affinity for the Beishan complex[J]. Gondwana Research, 2021, 95: 88-112. doi: 10.1016/j.gr.2021.02.022

    ZHENG Rongguo, WU Tairan, ZHANG Wen, et al. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: geochronological and geochemical evidences from ophiolites[J]. Gondwana Research, 2014, 25(2): 842-858. doi: 10.1016/j.gr.2013.05.011

  • 期刊类型引用(7)

    1. 胡雯欣,张珺璟,辛存林,任珩,许华,朱珂冰. 基于AHP-IVM的G212线陇南段泥石流灾害易发性评价. 兰州大学学报(自然科学版). 2025(01): 99-108 . 百度学术
    2. 张天宇,李林翠,刘凡,洪增林,钱法桥,胡斌,张淼. 基于优化最大熵模型的黄土滑坡易发性评价:以陕西省吴起县为例. 西北地质. 2025(02): 172-185 . 本站查看
    3. 高波,董英,贾俊,薛强,武文英,李林,王涛,刘港,江睿君. 甘肃临夏积石山县6.2级地震地质灾害发育特征及危险性评价. 西北地质. 2024(02): 209-219 . 本站查看
    4. 司马珂冰,孙成永. 新县片麻岩区地质灾害问题综合研究. 科技视界. 2024(07): 72-74 . 百度学术
    5. 张永强,宋国梁,刘学友,李林森,王晓辉,解小东,付云霞. 基于AHP和信息量模型的烟台市福山区地质灾害风险评价. 山东国土资源. 2024(10): 53-59 . 百度学术
    6. 梁峰,江攀和. 基于IVM-CF耦合模型的贵定县滑坡地质灾害易发性评价. 水利水电技术(中英文). 2024(S2): 669-677 . 百度学术
    7. 何寒舟,丁一. 赣南地区地质灾害风险区划分析研究. 华南地质. 2024(04): 737-748 . 百度学术

    其他类型引用(4)

图(8)  /  表(2)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  18
  • PDF下载量:  46
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2023-06-10
  • 录用日期:  2023-06-10
  • 网络出版日期:  2024-03-25

目录

/

返回文章
返回