ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

班公湖-怒江成矿带西段白板地北部晚侏罗世花岗闪长岩锆石U-Pb年龄、微量元素组成及地质意义

向浩予, 刘松, 康波, 陈昌军, 邓伟, 邓修林, 陈浩如

向浩予,刘松,康波,等. 班公湖-怒江成矿带西段白板地北部晚侏罗世花岗闪长岩锆石U-Pb年龄、微量元素组成及地质意义[J]. 西北地质,2025,58(1):43−51. doi: 10.12401/j.nwg.2023115
引用本文: 向浩予,刘松,康波,等. 班公湖-怒江成矿带西段白板地北部晚侏罗世花岗闪长岩锆石U-Pb年龄、微量元素组成及地质意义[J]. 西北地质,2025,58(1):43−51. doi: 10.12401/j.nwg.2023115
XIANG Haoyu,LIU Song,KANG Bo,et al. Geochronology and Trace Element Compositions of Zircon in Granodiorite in North Baibandi Area, Western Bangong-Nujiang Metallogenic Belt and Their Geological Significance[J]. Northwestern Geology,2025,58(1):43−51. doi: 10.12401/j.nwg.2023115
Citation: XIANG Haoyu,LIU Song,KANG Bo,et al. Geochronology and Trace Element Compositions of Zircon in Granodiorite in North Baibandi Area, Western Bangong-Nujiang Metallogenic Belt and Their Geological Significance[J]. Northwestern Geology,2025,58(1):43−51. doi: 10.12401/j.nwg.2023115

班公湖-怒江成矿带西段白板地北部晚侏罗世花岗闪长岩锆石U-Pb年龄、微量元素组成及地质意义

基金项目: 西藏青草山地区矿产远景调查项目(2010-DK042)资助。
详细信息
    作者简介:

    向浩予(1983−),男,高级工程师,主要从事岩石学、地球化学研究。E−mail:30827281@qq.com

    通讯作者:

    陈浩如(1984−),男,博士研究生,主要从事岩石学、地球化学研究。E−mail:47568978@qq.com

  • 中图分类号: P597;P584

Geochronology and Trace Element Compositions of Zircon in Granodiorite in North Baibandi Area, Western Bangong-Nujiang Metallogenic Belt and Their Geological Significance

  • 摘要:

    白板地北部花岗闪长岩体位于班公湖–怒江缝合带北侧改则县境内。野外地质调查表明花岗闪长岩呈岩脉状侵入二叠系龙格组碳酸盐中,并在接触带上发育矽卡岩化蚀变和铜矿化,成矿潜力良好。但目前研究程度较低,尚未开展高精度年代学研究工作。笔者通过对白板地北部花岗闪长岩开展LA-ICP-MS锆石U-Pb年代学和微量元素研究,以精细厘定成岩年龄,揭示成矿温度并分析成矿潜力。结果表明,白板地北部花岗闪长岩锆石均为岩浆成因锆石,17个测点获得的锆石206Pb/208U谐和年龄为(154.8±1.2) Ma(MSWD=1.7),岩体侵位于晚侏罗世。锆石ƩREE值为6.1×10−6~24.04×10−6,平均值11.68×10−6,ƩLREEs和ƩHREE分别为0.41×10−6~9.44×10−6和4.93×10−6~23.55×10−6,具有亏损轻稀土,富集重稀土的特征;δEu值为0.26~0.64,δCe值为0.91~5.03,呈现显著的负Eu异常和正Ce异常特征。锆石Ti元素含量为0.89×10−6~1.43 ×10−6,估算的结晶温度为600.3~799.3 ℃,平均值为697.6℃,一定程度上反映了花岗闪长岩的成岩温度范围。综合成岩年龄和区域构造演化特征,推测白板地北部花岗闪长岩形成于班公湖-怒江洋壳北向俯冲的构造背景,为深入认识区域构造演化提供了新证据。

    Abstract:

    The granodiorite in the north of Baibandi is located in Gaize County, north of the Bangong Nujiang suture zone. The field geological survey shows that granodiorite intruded into the Permian Longge Formation carbonate. Skarn alteration and copper mineralization developed along the contact zone, showing good metallogenic potential. However, due to the absence of high-precision chronology research, the genesis of the granodiorite remains poorly understanding. In this paper, the LA-ICP-MS zircon U-Pb geochronology and trace element studies were carried out on for zircon from the granodiorite in the north of Baibandi area in order to determining the age and analyzing the metallogenic potential. The results show that zircons from the granodiorite in the north of Baibandi area are all magmatic zircons. 17 zircons show weighted average 206Pb/208U ages of (154.8 ± 1.2) Ma (MSWD=1.7), showing that the granodiorite was formed in the Late Jurassic. The ƩREE values zircon of are 6.1×10−6~24.04 ×10−6 (averaging 11.68 ×10−6). The ƩLREEs and ƩHREEs values are 0.41×10−6~9.44×10−6 and 4.93×10−6~23.55×10−6, respectively, showing the enrichment of heavy rare earths. The δEu and δCe values of zircons range from 0.26 to 0.64 and 0.91 to 5.03 respectively, showing significant negative Eu anomalies and positive Ce anomalies. The Ti contents of zircon range from 0.89×10−6 to 1.43×10−6, with estimated crystallization temperature of 600.3 to 799.3 ℃ (averaging 697.6 ℃). Based on these results and the characteristics of regional tectonic evolution, it is inferred that the granodiorite in the north of Baibandi was formed during northward subduction of Bangong-Nujiang oceanic crust. Our results provide new evidence for understanding the formation of the Bangong-Nujiang metallogenic belt.

  • 班公湖–怒江成矿带包含班公湖–怒江缝合线中的蛇绿混杂岩带以及南北两侧的岩浆岩区(宋扬等,2014)。近年来,随着铁格隆南、多布杂、尕尔勤等大型、超大型斑岩Cu-Au矿床以及尕尔穷、嘎啦勒等大型矽卡岩Cu-Au矿床的发现和评价,班公湖–怒江成矿带成为了青藏高原继冈底斯和玉龙成矿带之后又一重要成矿带(唐菊兴,2019)。目前,已发现的矿床主要集中发育在班公湖–怒江成矿带西段。前人针对成矿带西段的构造–岩浆演化与成矿耦合关系开展了大量研究(潘桂棠等,20042007曲晓明等,2006Shi et al., 2007, 2008李金祥等,2007佘洪全等,2009常青松,2011陈华安等,2013; Zhu et al., 2016; Li et al., 2016),但对于成矿带北缘晚侏罗世岩浆岩的成因及其成矿潜力的研究还相对薄弱。白板地北部花岗闪长岩位于班公湖–怒江成矿带北缘改则县境内(图1)。地表可见花岗闪长岩与龙格组(P2l)碳酸盐岩呈侵入接触,接触带上发育好的石榴子石矽卡岩化,并发育有孔雀石和黄铜矿(图2),具有良好的找矿前景,但缺乏深入研究。笔者在野外地质调查基础上,针对白板地北部花岗闪长岩开展LA-ICP-MS锆石U-Pb定年和原位微量元素研究,以精确厘定其侵位年龄和成岩温度,以期为深入认识班公湖–怒江成矿带西段构造–岩浆演化过程提供新证据。

    图  1  青藏高原的构造纲要图
    Figure  1.  Tectonic outline map of the Tibet Plateau
    图  2  研究区地质简图
    Figure  2.  Geological map of the study area

    研究区主要出露上晚二叠世龙格组和中侏罗统雀莫错组沉积地层。其中,龙格组岩性自上而下分别为生物碎屑灰岩、亮晶灰岩、泥晶灰岩和生物碎屑灰岩的不等厚互层。雀莫错组岩性主要为浅灰–灰黄色总成变质砂岩、灰绿色薄层变质粉砂岩,夹少量灰绿色薄层粉砂质板岩。花岗闪长岩与龙格组碳酸盐岩呈侵入接触关系,其表面风化为黄白色,局部可见褐铁矿化,新鲜面为灰白色,呈中粒花岗结构,块状构造。岩石主要由石英(25%~30%)、钾长石(30%~35%)、斜长石(40%~45%)、角闪石(5%~10%)、黑云母(0~5%)以及少量锆石和磷灰石等副矿物。接触带附近花岗闪长岩中发育少量绿泥石–绿帘石脉和黄铁矿细脉。矽卡岩主要呈透镜状发育于花岗闪长岩与龙格组碳酸盐岩接触带上,主要矿物组成包括石榴子石、辉石、绿帘石和绿泥石。黄铜矿和孔雀石呈脉状,浸染状发育于石榴子石与辉石颗粒之间,规模宽约1 m,长度大于2 m。拣块样分析结果表明,矽卡的Cu、Mn、Pb、Zn品位分别为:8.75%、0.10%、0.021%和0.13%,呈现出较好的铜成矿潜力。

    分析样品采自白板地北部(图2)。在地表采集不同位置花岗闪长岩样品约10 kg并在室内开展样品初步处理和加工,过程中剔除遭受风化作用的样品。样品破碎筛选至80~100目,经重砂和磁选出锆石单矿物并在双目镜下初步挑选,然后将锆石清洗后固定在已刻槽的环氧树胶靶台上,抛光至锆石颗粒内部露出,并镜下对其进行透射光、反射光照相,最后对锆石靶用体积百分比为3%的HNO3清洗样品并镀金膜,镀膜后进行阴极发光(CL)照相。

    在开展原位成分分析前,先详细研究锆石的形貌和内部结构,对解释锆石的U-Pb年龄、微区地球化学成分和同位素组成的至关重要。根据透射光、反射光及阴极发光照片,选取表面干净无裂缝、内部洁净没有包裹体、环带清晰的锆石颗粒17粒,分别对其进行微区U-Pb同位素、微量元素分析,锆石单颗粒LA-ICP-MS(激光剥蚀电感耦合等离子体质谱)、U-Pb同位素定年和微量元素分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,激光剥蚀系统为美国安捷伦公司生产的GeoLas2005,激光器来自于德国ATL公司,ICP-MS型号为Agilent7500a。实验中采用He气作为剥蚀物质的载气。此次样品分析为了得到稳定的信号,测试时激光斑束直径32 μm,剥蚀深度约15 μm。锆石年龄校准采用国际标准锆石91500作为外标(Wiedenbeck et al.,19952004),用美国国家标准技术研究院研制人工合成硅酸盐玻璃标准参考物NIST SRM612作为内标。每分析5次未知锆石样品便进行标样分析,以确保分析条件的精度。实验获得的ICP-MS的同位素分析数据比值校正通过GLITTER软件进行计算,普通铅校正采用Andersen的ComPbCorr校正软件(Andersen et al.,2002),以扣除普通Pb的影响。加权平均年龄和谐和图绘制采用ISOPLOT(版本VER3.32版)3.0程序进行(Ludwig et al.,2003)。具体的实验原理和详细的测试方法可参考Yuan 等(2004)

    白板地北部花岗闪长岩锆石颗粒阴极发光照片显示,岩浆锆石的长轴为20~250 μm;锆石CL图像显示晶型主要以双锥状、长板状为主,除受后期人工挑选及制靶过程轻微破坏外,基本呈自形晶(图3)。按形状特点可分为两类,第一类总体锆石颗粒以长板状为主,最长的如13、15测点所在锆石,长约为200 μm,宽约为70 μm,长宽比约为3∶1,以灰黑色为主,典型的岩浆锆石振荡环带清晰,晶型粗大完整;第二类以短板状为主,最小的如2、9测点所在锆石,长约为50 μm,宽约为20 μm,长宽比约为1.5∶1,也以灰黑色为主,偶见灰白色,晶型较小但基本完好,也具有典型的岩浆锆石特征(吴元保等,2004)。尽管锆石形态不一,但均未见后期热液改造、二次捕获等迹象,代表此次岩浆活动为一次形成,因而其可以代表该花岗闪长岩体的成岩年龄(王立强等,2016)。

    图  3  白板地北部花岗闪长岩锆石阴极发光(CL)图像及测点图
    Figure  3.  The CL images and the laser location of zircon from the granodiorite in the north of Baibandi area
    图  4  花岗闪长岩中锆石稀土元素配分模式图
    Figure  4.  The chondrite-normalized REE pattern of zircon from the granodiorite

    样品的锆石17个测点微量元素含量分析结果可见表1。花岗闪长岩锆石的稀土元素球粒陨石标准化配分模式(图4)显示,17个测试点的稀土元素配分模式都表现为一致的明显的重稀土(HREE)富集、轻稀土(LREE)亏损的左倾型。花岗闪长岩中锆石的稀土元素配分模式总体显示显著Ce正异常(δCe = 0.89~4.81)。所有测点均呈现较明显的Eu(δEu=0.26~0.65)负异常。文中测试所有样品稀土总量变化范围大,从最小的6.08×10−6,到最高的24.03×10−6,其锆石稀土元素总量一般低于50×10−6。在La-(Sm/La)N判别图解大部分测点均落在岩浆成因锆石区域附近,而远离热液锆石区域,表明本次分析的锆石均为岩浆锆石(图5)。

    表  1  白板地矿区外围花岗闪长岩锆石微量元素(10–6)分析结果
    Table  1.  The trace element (10–6) result of zircon from granodiorite in Baibandi area
    测点TiYNbTaLaCePrNdSmEuGdTbDyHoErTmYbLu∑REEδEuδCe
    11.2012.010.080.040.020.140.010.100.150.040.420.110.970.442.000.485.511.1311.530.472.89
    21.1314.140.090.032.264.370.461.930.370.050.380.101.230.492.250.555.501.0420.980.390.98
    30.9812.320.090.040.090.270.030.230.170.040.510.131.250.471.880.473.790.659.980.381.23
    41.145.560.080.050.140.300.040.180.140.030.320.070.630.221.000.282.930.646.920.480.91
    51.3317.870.090.040.010.190.010.090.140.040.460.161.610.632.780.595.591.0213.320.414.28
    61.419.190.070.040.010.180.010.120.160.050.380.100.910.341.590.353.440.708.360.645.03
    71.437.980.070.030.010.150.020.240.240.060.620.131.010.331.400.413.840.839.290.492.30
    80.944.690.070.040.010.110.010.100.150.030.290.070.600.190.790.262.810.686.080.412.36
    91.1031.510.100.040.010.150.010.110.170.040.780.222.671.054.991.1210.761.9624.030.263.28
    101.2521.910.090.040.010.170.010.120.160.050.470.141.810.733.310.828.091.7417.630.474.47
    111.068.810.080.030.010.140.010.130.170.040.360.090.820.311.620.434.791.0910.000.452.85
    121.248.600.080.040.010.120.010.100.160.040.400.100.930.361.450.343.320.668.000.433.51
    131.244.100.090.040.010.140.010.100.140.040.320.070.590.200.920.262.810.636.250.612.88
    140.894.320.050.030.270.550.060.320.120.030.280.060.490.200.880.232.340.456.280.410.97
    151.0911.600.090.040.020.160.010.110.160.040.490.121.010.421.870.484.890.9310.700.392.29
    161.1627.240.080.030.010.130.010.130.160.040.620.222.530.894.100.898.771.6020.090.353.10
    171.2510.000.080.040.010.200.010.140.170.050.410.090.940.321.500.403.990.869.080.583.41
    下载: 导出CSV 
    | 显示表格
    图  5  岩浆锆石-热液锆石判别图解(Hoskin, 2005
    Figure  5.  La-(Sm/La)N diagram for zircon

    花岗闪长岩中17个锆石颗粒的U-Pb同位素测定结果显示(表2),锆石中Th含量为64.27×10−6~203.13×10−6,平均值为114.31×10−6,U含量为105.97×10−6~472.42×10−6,平均值为278.27×10−6。Th/U值为0.33~0.61,均大于0.1,变化范围相对较小,表明这些锆石存在于相对一致的U-Th-Pb封闭体系。这一特征与典型岩浆成因锆石(Th/U>0.1)的一致(Hoskin et al., 2003陈澍民等,2023代新宇等,2024李平等,2024)。17个测点的Th/U值均在0.3以上,具有典型岩浆锆石特征(吴元保等,2004王新雨等,2023)。同时,17个测点的207Pb/206Pb 值非常接近典型的岩浆成因锆石值(207Pb/206Pb =0.04590.0605),表明该花岗闪长岩中的锆石为同期岩浆结晶形成(Belousova, 2002)。17个测点的U-Pb同位素比值在误差范围内谐和度较高,集中在谐和线附近(图6)。在置信度为95%时的206Pb/238U加权平均值为(154.8±1.2)Ma(MSWD=1.7)。

    表  2  白板地矿区外围花岗闪长岩样品锆石U-Pb定年结果
    Table  2.  The U-Pb results of zircon from granodiorite in Baibandi area
    测点号 含量(10−6 同位素比值及误差 年龄(Ma)及误差
    238U 232Th U/Th 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U
    1 138.54 366.17 2.64 0.0536 0.0022 0.1811 0.0075 0.0246 0.0002 156.64 1.51
    2 148.67 397.41 2.67 0.0518 0.0020 0.1711 0.0062 0.0240 0.0002 153.01 1.50
    3 130.68 295.38 2.26 0.0504 0.0024 0.1631 0.0075 0.0236 0.0003 150.12 1.80
    4 203.13 472.42 2.33 0.0507 0.0018 0.1726 0.0061 0.0247 0.0002 157.14 1.44
    5 68.52 144.69 2.11 0.0469 0.0027 0.1525 0.0084 0.0240 0.0004 152.62 2.28
    6 64.27 105.97 1.65 0.0605 0.0036 0.1938 0.0109 0.0241 0.0004 153.25 2.42
    7 107.75 184.78 1.71 0.0543 0.0028 0.1821 0.0096 0.0246 0.0004 156.69 2.44
    8 165.62 400.21 2.42 0.0527 0.0022 0.1736 0.0066 0.0243 0.0003 154.55 1.91
    9 107.27 314.87 2.94 0.0459 0.0022 0.1506 0.0071 0.0240 0.0003 152.73 1.86
    10 144.11 333.98 2.32 0.0489 0.0021 0.1596 0.0067 0.0240 0.0003 152.82 1.68
    11 118.63 294.75 2.48 0.0508 0.0023 0.1714 0.0074 0.0248 0.0003 158.00 1.84
    12 80.83 216.32 2.68 0.0516 0.0028 0.1696 0.0090 0.0240 0.0003 152.90 1.99
    13 125.69 343.74 2.73 0.0506 0.0020 0.1684 0.0067 0.0241 0.0003 153.82 1.69
    14 83.72 257.36 3.07 0.0523 0.0024 0.1737 0.0075 0.0245 0.0003 155.85 1.77
    15 88.07 238.58 2.71 0.0532 0.0026 0.1798 0.0084 0.0248 0.0003 157.90 2.10
    16 73.90 206.91 2.80 0.0580 0.0027 0.1982 0.0095 0.0249 0.0004 158.38 2.27
    17 93.93 157.44 1.68 0.0518 0.0026 0.1756 0.0093 0.0245 0.0004 156.32 2.29
    下载: 导出CSV 
    | 显示表格
    图  6  白板地北部花岗闪长岩锆石U-Pb年龄谐和图
    Figure  6.  The U-Pb Concordia age of the granodiorite in the north of Baibandi area

    锆石U-Pb定年结果表明,白板地北部花岗闪长岩的侵位年龄为(154.8±1.2) Ma(MSWD=1.7),表明其侵位时间为晚侏罗世。区域上,晚侏罗世岩浆作用大量发育在班公湖–怒江成矿带西段,并伴随有矽卡岩型Fe-Cu矿床的发育。例如,位于缝合带北侧的弗野和材玛岩体(冯国胜等,2006Guynn et al., 2006; 曲晓明 et al., 2009; Li et al., 2014胡为正等,2014Fan et al., 2015; Hao et al., 2016; Li et al., 2016王立强等,2017)以及位于缝合带南缘的躬琼左波花岗岩以及革吉地区大面积出露的晚侏罗世花岗闪长岩(Cao et al., 2016)。以上晚侏罗世岩浆岩的成岩年龄集中在149~164 Ma之间,表明班公湖–怒江缝合带两侧晚侏罗世岩浆作用不仅规模巨大,且具有持续时间较长。前人通过对上述晚侏罗世岩浆岩的地球化学特征开展研究,提出班公湖–怒江缝合带南缘晚侏罗世岩浆作用主要与班公湖–怒江洋的北向俯冲有关,大量中酸性侵入体与二叠纪、三叠纪碳酸盐岩接触形成了以弗野、材玛和亚龙为代表的一系列矽卡岩型矽卡岩型Fe-Cu矿床。本次研究发现的白板地北部花岗闪长岩可能同样与班公湖–怒江洋南向俯冲密切相关,而且在岩体与龙格组大理岩接触部位发育有矽卡岩,指示其可能具有寻找矽卡岩型Fe-Cu矿床的潜力。

    岩浆岩中的锆石由于较高的封闭温度体系,包含着关于深部地壳和花岗岩源区的重要信息(Belousova, 2002)。得益于单矿物微区高精度微量元素分析技术的发展,锆石中Ti含量近几年被用来作为单矿物微量元素温度计的指示元素(Watson et al., 2005, 2006)。众多学者总结了不同成因锆石的运用条件和范围。这一温度既可反映锆石结晶温度也代表了花岗岩将的上限温度,而锆石中的Ti的含量主要取决于SiO2的活度,目前较常用也得到众多实验验证的锆石Ti温度计的计算公式为:Log(Ti-in-zircon)=(5.77±0.072)−(4800±86)/T(K)-$\log \alpha_{\mathrm{SiO}_ 2}+\log \alpha_{\mathrm{TiO} _2} $。其中,$\alpha_{\mathrm{SiO} _2} \approx 1 $, $ \alpha_{\mathrm{TiO}_ 2} $在典型岩浆温度范围内,地壳岩石一般为0.6,通过这一公式计算结果可信度可达90%。通过对矿区含矿斑岩的锆石Ti含量温度计算结果分析认为绝大部分锆石的结晶温度低于700 ℃。本中估算的锆石结晶温度为600.3~799.3 ℃(表3),均值为697 ℃,与典型花岗岩的结晶温度相近(周金胜等,2013),表明估算结果相对可靠。

    表  3  锆石Ti含量温度计算结果
    Table  3.  Ti LA-ICP-MS zircon data and TTi-in-zircon thermometry calculation results
    点号 1 2 3 4 5 6 7 8 9
    T(℃) 600.3 609.0 607.5 617.0 638.3 665.4 695.3 690.0 698.2
    点号 10 11 12 13 14 15 16 17
    T(℃) 718.0 723.3 743.4 764.3 752.9 761.3 776.2 799.3
    下载: 导出CSV 
    | 显示表格

    (1)笔者研究的白板地斑岩铜矿床外围花岗闪长岩,露头出露面积不大,花岗闪长岩锆石为典型的岩浆成因锆石,锆石LA-ICP-MS U-Pb谐和年龄为(154.8±1.2) Ma(MSWD=1.7)。

    (2)白板地北部花岗闪长岩锆石稀土元素–微量元素地球化学特征显示其相对富集重稀土。锆石Ti温度计估算结果表明其结晶温度平均值为697 ℃。

  • 图  1   青藏高原的构造纲要图

    Figure  1.   Tectonic outline map of the Tibet Plateau

    图  2   研究区地质简图

    Figure  2.   Geological map of the study area

    图  3   白板地北部花岗闪长岩锆石阴极发光(CL)图像及测点图

    Figure  3.   The CL images and the laser location of zircon from the granodiorite in the north of Baibandi area

    图  4   花岗闪长岩中锆石稀土元素配分模式图

    Figure  4.   The chondrite-normalized REE pattern of zircon from the granodiorite

    图  5   岩浆锆石-热液锆石判别图解(Hoskin, 2005

    Figure  5.   La-(Sm/La)N diagram for zircon

    图  6   白板地北部花岗闪长岩锆石U-Pb年龄谐和图

    Figure  6.   The U-Pb Concordia age of the granodiorite in the north of Baibandi area

    表  1   白板地矿区外围花岗闪长岩锆石微量元素(10–6)分析结果

    Table  1   The trace element (10–6) result of zircon from granodiorite in Baibandi area

    测点TiYNbTaLaCePrNdSmEuGdTbDyHoErTmYbLu∑REEδEuδCe
    11.2012.010.080.040.020.140.010.100.150.040.420.110.970.442.000.485.511.1311.530.472.89
    21.1314.140.090.032.264.370.461.930.370.050.380.101.230.492.250.555.501.0420.980.390.98
    30.9812.320.090.040.090.270.030.230.170.040.510.131.250.471.880.473.790.659.980.381.23
    41.145.560.080.050.140.300.040.180.140.030.320.070.630.221.000.282.930.646.920.480.91
    51.3317.870.090.040.010.190.010.090.140.040.460.161.610.632.780.595.591.0213.320.414.28
    61.419.190.070.040.010.180.010.120.160.050.380.100.910.341.590.353.440.708.360.645.03
    71.437.980.070.030.010.150.020.240.240.060.620.131.010.331.400.413.840.839.290.492.30
    80.944.690.070.040.010.110.010.100.150.030.290.070.600.190.790.262.810.686.080.412.36
    91.1031.510.100.040.010.150.010.110.170.040.780.222.671.054.991.1210.761.9624.030.263.28
    101.2521.910.090.040.010.170.010.120.160.050.470.141.810.733.310.828.091.7417.630.474.47
    111.068.810.080.030.010.140.010.130.170.040.360.090.820.311.620.434.791.0910.000.452.85
    121.248.600.080.040.010.120.010.100.160.040.400.100.930.361.450.343.320.668.000.433.51
    131.244.100.090.040.010.140.010.100.140.040.320.070.590.200.920.262.810.636.250.612.88
    140.894.320.050.030.270.550.060.320.120.030.280.060.490.200.880.232.340.456.280.410.97
    151.0911.600.090.040.020.160.010.110.160.040.490.121.010.421.870.484.890.9310.700.392.29
    161.1627.240.080.030.010.130.010.130.160.040.620.222.530.894.100.898.771.6020.090.353.10
    171.2510.000.080.040.010.200.010.140.170.050.410.090.940.321.500.403.990.869.080.583.41
    下载: 导出CSV

    表  2   白板地矿区外围花岗闪长岩样品锆石U-Pb定年结果

    Table  2   The U-Pb results of zircon from granodiorite in Baibandi area

    测点号 含量(10−6 同位素比值及误差 年龄(Ma)及误差
    238U 232Th U/Th 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U
    1 138.54 366.17 2.64 0.0536 0.0022 0.1811 0.0075 0.0246 0.0002 156.64 1.51
    2 148.67 397.41 2.67 0.0518 0.0020 0.1711 0.0062 0.0240 0.0002 153.01 1.50
    3 130.68 295.38 2.26 0.0504 0.0024 0.1631 0.0075 0.0236 0.0003 150.12 1.80
    4 203.13 472.42 2.33 0.0507 0.0018 0.1726 0.0061 0.0247 0.0002 157.14 1.44
    5 68.52 144.69 2.11 0.0469 0.0027 0.1525 0.0084 0.0240 0.0004 152.62 2.28
    6 64.27 105.97 1.65 0.0605 0.0036 0.1938 0.0109 0.0241 0.0004 153.25 2.42
    7 107.75 184.78 1.71 0.0543 0.0028 0.1821 0.0096 0.0246 0.0004 156.69 2.44
    8 165.62 400.21 2.42 0.0527 0.0022 0.1736 0.0066 0.0243 0.0003 154.55 1.91
    9 107.27 314.87 2.94 0.0459 0.0022 0.1506 0.0071 0.0240 0.0003 152.73 1.86
    10 144.11 333.98 2.32 0.0489 0.0021 0.1596 0.0067 0.0240 0.0003 152.82 1.68
    11 118.63 294.75 2.48 0.0508 0.0023 0.1714 0.0074 0.0248 0.0003 158.00 1.84
    12 80.83 216.32 2.68 0.0516 0.0028 0.1696 0.0090 0.0240 0.0003 152.90 1.99
    13 125.69 343.74 2.73 0.0506 0.0020 0.1684 0.0067 0.0241 0.0003 153.82 1.69
    14 83.72 257.36 3.07 0.0523 0.0024 0.1737 0.0075 0.0245 0.0003 155.85 1.77
    15 88.07 238.58 2.71 0.0532 0.0026 0.1798 0.0084 0.0248 0.0003 157.90 2.10
    16 73.90 206.91 2.80 0.0580 0.0027 0.1982 0.0095 0.0249 0.0004 158.38 2.27
    17 93.93 157.44 1.68 0.0518 0.0026 0.1756 0.0093 0.0245 0.0004 156.32 2.29
    下载: 导出CSV

    表  3   锆石Ti含量温度计算结果

    Table  3   Ti LA-ICP-MS zircon data and TTi-in-zircon thermometry calculation results

    点号 1 2 3 4 5 6 7 8 9
    T(℃) 600.3 609.0 607.5 617.0 638.3 665.4 695.3 690.0 698.2
    点号 10 11 12 13 14 15 16 17
    T(℃) 718.0 723.3 743.4 764.3 752.9 761.3 776.2 799.3
    下载: 导出CSV
  • 常青松, 朱弟成, 赵志丹, 等. 西藏羌塘南缘热那错早白垩世流纹岩锆石U-Pb年代学和Hf同位素及其意义[J]. 岩石学报, 2011, 27(7): 2034−2044.

    CHANG Qingsong, ZHU Dicheng, ZHAO Zhidan, et al. Zircon U-Pb geochronology and Hf isotopes of Early Cretaceous rhyolites from the southern margin of the Qiangtang area, Tibet, and their significance[J]. Acta Petrologica Sinica,2011,27(7):2034−2044.

    陈华安, 祝向平, 马东方, 等. 西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J]. 地质学报, 2013, 87(10): 1593−1611.

    CHEN Hua'an, ZHU Xiangping, MA Dongfang, et al. Chronology, petrology, and metallogenic significance of mineralizing porphyries in the Bolong porphyry Cu-Au deposit, Tibet[J]. Acta Geologica Sinica,2013,87(10):1593−1611.

    陈澍民, 徐宏根, 吴金虹, 等. 湖南天明金矿区云斜煌斑岩年代学、同位素地球化学及成矿意义[J]. 西北地质, 2023, 56(6): 285−300.

    CHEN Shumin, XU Honggen, WU Jinhong, et al. Geochronology, Isotopic Geochemistry of Diorite Porphyrite in Tianming Gold Deposit, Hunan[J]. Northwestern Geology,2023,56(6):285−300.

    冯国胜, 廖六根, 陈振华, 等. 西藏西部日土县材玛铁多金属矿地质特征及找矿意义[J]. 地质通报, 2006, 25(S1): 267−272.

    FENG Guosheng, LIAO Liugen, CHEN Zhenhua, et al. Geological characteristics and prospecting significance of the Caimar iron-polymetallic deposit in the western part of Tibet, China[J]. Geological Bulletin of China,2006,25(S1):267−272.

    胡为正, 廖辉宝, 黄东荣. 西藏日土县材玛铁矿地质特征及找矿方向[J]. 资源调查与环境, 2014, 35(2): 120−129.

    HU Weizheng, LIAO Huibao, HUANG Dongrong. Geological characteristics and prospecting direction of the Caimar iron deposit in Ritong County, Tibet[J]. Resources Survey and Environment,2014,35(2):120−129.

    代新宇, 周斌, 李新林, 等. 西昆仑奇台达坂北中新世石英二长岩侵入岩年代学、地球化学及其构造意义[J]. 西北地质, 2024, 57(4): 191−205.

    DAI Xinyu,ZHOU Bin,LI Xinlin,et al. Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun[J]. Northwestern Geology,2024,57(4):191−205.

    李金祥, 李光明, 秦克章, 等. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代: 对成矿构造背景的制约[J]. 岩石学报, 2007, 24(3): 531−543.

    LI Jinxiang, LI Guangming, QIN Kezhang, et al. Geochemical characteristics and age of porphyry-volcanic rocks in the Duobuza rich-gold porphyry copper deposit in the Bangong Lake area: Implications for metallogenic tectonic settings[J]. Acta Petrologica Sinica,2007,24(3):531−543.

    潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2007, 22(3): 521−533.

    PAN Guitang, MO Xuanxue, HOU Zengqian, et al. The spatial-temporal structure and evolution of the Gangdese orogenic belt[J]. Acta Petrologica Sinica,2007,22(3):521−533.

    李平, 朱涛, 吕鹏瑞, 等. 西天山早寒武世夏特辉长岩: 南天山洋早期俯冲的岩浆记录[J]. 西北地质, 2024, 57(3): 44−58.

    LI Ping,ZHU Tao,LÜ Pengrui,et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024,57(3):44−58.

    潘桂棠, 王立全, 朱弟成. 青藏高原区域地质调查中几个重大科学问题的思考[J]. 地质通报, 2004, 23(1): 12−19.

    PAN Guitang, WANG Liquan, ZHU Dicheng. Reflections on some major scientific issues in regional geological surveys of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China,2004,23(1):12−19.

    曲晓明, 王瑞江, 辛洪波, 等. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学[J]. 地球化学, 2009, 38(6): 523−535. doi: 10.3321/j.issn:0379-1726.2009.06.002

    QU Xiaoming, WANG Ruijiang, XIN Hongbo, et al. Geochronology and geochemistry of igneous rocks associated with the subduction of the Bangong Lake Tethys Ocean Basin in western Tibet[J]. Geochimica,2009,38(6):523−535. doi: 10.3321/j.issn:0379-1726.2009.06.002

    曲晓明, 辛洪波. 藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J]. 地质通报, 2006, 25(7): 792−799. doi: 10.3969/j.issn.1671-2552.2006.07.004

    QU Xiaoming, XIN Hongbo. Formation age and metallogenic tectonic environment of the Bangong Lake porphyry copper belt in western Tibet[J]. Geological Bulletin of China,2006,25(7):792−799. doi: 10.3969/j.issn.1671-2552.2006.07.004

    佘宏全, 李进文, 马东方, 等. 西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义[J]. 矿床地质, 2009, 28(6): 737−746. doi: 10.3969/j.issn.0258-7106.2009.06.003

    SHE Hongquan, LI Jinwen, MA Dongfang, et al. Molybdenite Re-Os and zircon U-Pb SHRIMP dating and their geological significance in the Duobuza porphyry copper deposit, Tibet[J]. Mineral Deposits,2009,28(6):737−746. doi: 10.3969/j.issn.0258-7106.2009.06.003

    宋扬, 唐菊兴, 曲晓明, 等. 西藏班公湖-怒江成矿带的广义概念及成矿特点[J]. 矿床地质, 2014, 33(S1): 815−816.

    SONG Yang, TANG Juxing, QU Xiaoming, et al. General concept and metallogenic characteristics of the Bangong Lake-Nujiang metallogenic belt, Tibet[J]. Mineral Deposits,2014,33(S1):815−816.

    唐菊兴. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展[J]. 岩石学报, 2019, 35(3): 617−624. doi: 10.18654/1000-0569/2019.03.01

    TANG Juxing. Progress in the investigation and research of mineral resource bases in important metallogenic belts in the Qinghai-Tibet Plateau and adjacent areas[J]. Acta Petrologica Sinica,2019,35(3):617−624. doi: 10.18654/1000-0569/2019.03.01

    王立强, 王勇, 旦真王修, 等. 班公湖—怒江成矿带西段主要岩浆热液型矿床成矿特征初探[J]. 地球学报, 2017, 38(5): 615−626. doi: 10.3975/cagsb.2017.05.03

    WANG Liqiang, WANG Yong, DANZHEN Wangxiu, et al. Preliminary study on metallogenic characteristics of major magmatic hydrothermal deposits in the western Bangong Lake-Nujiang metallogenic belt[J]. Acta Geoscientica Sinica,2017,38(5):615−626. doi: 10.3975/cagsb.2017.05.03

    王立强, 谢富伟, 王勇. 西藏巴嘎拉东铅锌矿床黑云母花岗岩锆石U-Pb年龄、微量元素组成及地质意义[J]. 岩矿测试, 2016, 35(6): 650−657.

    WANG Liqiang, XIE Fuwei, WANG Yong. Zircon U-Pb age, trace element composition, and geological significance of biotite granite in the Bagala East Pb-Zn deposit, Tibet[J]. Rock and Mineral Analysis,2016,35(6):650−657.

    王新雨, 王书来, 吴锦荣, 等. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 2023, 56(6): 71−81.

    WANG Xinyu, WANG Shulai, WU Jinrong, et al. Mineralization Age and Ore forming–Source of Niukutou Pb–Zn Deposit, Qinghai: Evidence from Geochronology of Ore–forming Rock Bodies and Re–Os Geochemistry of Pyrite[J]. Northwestern Geology,2023,56(6):71−81.

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    WU Yuanbao, ZHENG Yongfei. Genetic mineralogy of zircon and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin,2004,49(16):1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    周金胜, 孟祥金, 臧文栓, 等. 西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学、微量元素地球化学及地质意义[J]. 岩石学报, 2013, 29(11): 3755−3766.

    ZHOU Jinsheng, MENG Xiangjin, ZANG Wenshuan, et al. Zircon U-Pb geochronology, trace element geochemistry, and geological significance of mineralized porphyries in the Qingcaoshan porphyry Cu-Au deposit, Tibet[J]. Acta Petrologica Sinica,2013,29(11):3755−3766.

    AndersenT, Correction of common lead in U-Pb analyses that do not report Pb-204[J]. Chemical Geology,2002,192:59−79. doi: 10.1016/S0009-2541(02)00195-X

    Belousova E A, Griffin W L, Suzanne Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,2002,143(5):602−622. doi: 10.1007/s00410-002-0364-7

    Cao M J, Qin K Z, Li G M, et al. Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane, Tibet[J]. Gondwana Research,2016,39:386−400. doi: 10.1016/j.gr.2016.01.006

    Fan J J, Li C, Xie X M, et al. Petrology and U–Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos,2015,227:148−160. doi: 10.1016/j.lithos.2015.03.021

    Guynn, J H , Kapp P , Pullen A, et al. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture central Tibet[J]. Geology,2006,34:505−508.

    Hao L L, Wang Q, Wyman D A, et al. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet[J]. Lithos, 2016, 245: 223-242.

    Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry,2003,53(1):27−62. doi: 10.2113/0530027

    Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills[J]. Australia. Geochimica et Cosmochimica Acta,2005,69(3):637−648. doi: 10.1016/j.gca.2004.07.006

    Li S M, Zhu D C, Wang Q, et al. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J]. Lithos,2014,205:284−297.

    Li Y L, He J, Han Z P, et al. Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong–Nujiang Ocean subduction[J]. Lithos,2016,245:34−46.

    Ludwig, K. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication,2003,4:1−70.

    Shi R D, Yang J S, Xu Z Q, et al. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong–Nujiang suture zone[J]. Journal of Asian Earth Sciences,2008,32(5):438−457.

    Shi R D. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: Constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet[J]. Chinese Science Bulletin,2007,52(7):936−941. doi: 10.1007/s11434-007-0134-z

    Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science,2005,308:841−844.

    Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology,2006,151:413−433.

    Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter,1995,19(1):1−23. doi: 10.1111/j.1751-908X.1995.tb00147.x

    Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research,2004,28(1):9−39. doi: 10.1111/j.1751-908X.2004.tb01041.x

    Yuan H, Gao S, Liu X, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research,2004,28(3):353−370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos,2016,245:7−17.

  • 期刊类型引用(1)

    1. 宝音图,王鹏翔,徐茂臣,川濑博. 日本地震预警系统研究综述. 世界地震工程. 2024(03): 72-82 . 百度学术

    其他类型引用(0)

图(6)  /  表(3)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  11
  • PDF下载量:  52
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-09-11
  • 修回日期:  2023-04-16
  • 录用日期:  2023-06-10
  • 网络出版日期:  2024-12-18
  • 刊出日期:  2025-02-19

目录

/

返回文章
返回