Mineralogical Characteristics and Metallogenic Indication of Gold−Bearing Sulfides in the Jinpenliang Gold Deposit, Zhashui−Shanyang Ore Cluster Area, South Qinling
-
摘要:
金盆梁金矿床位于南秦岭柞水−山阳金多金属矿集区北部,矿体呈近东西向赋存于上泥盆统桐峪寺组的沉积建造中,受左行韧性断层控制。关于矿石矿物学与金成矿过程尚缺乏系统的认识。基于岩矿相学鉴定、背散射电子图像(BSE)、能谱(EDS)及电子探针分析(EPMA)等方法,查明矿石组构与载金硫化物毒砂、黄铁矿、辉锑矿及白铁矿的矿物学特征,探讨金的赋存状态与成矿物理化学条件,初步厘定矿床成因类型。结果显示,热液成矿期的金矿化以微细浸染型为主,可划分为黄铁矿−毒砂−硅化(Ⅰ)、石英−辉锑矿−白铁矿±锑氧化物(Ⅱ)及方解石−石英(Ⅲ)3个阶段。不同载金硫化物的“不可见金”赋存状态差异显著,由毒砂的晶格金Au+,到早世代黄铁矿(Py-1)的晶格金Au+−纳米金Au0,至晚世代黄铁矿(Py-2)和白铁矿的纳米金Au0。金属矿物组合由毒砂−黄铁矿至辉锑矿−白铁矿,成矿流体由较高温的相对自然金不饱和状态,逐渐演化为相对低温的自然金饱和状态。金盆梁金矿床形成于较高硫逸度的中高温、中浅成环境,属于卡林型金矿床。
Abstract:The Jinpenliang gold deposit is located in the northern part of the Zhashui−Shanyang ore cluster area, South Qinling. The E−W trending main orebodies, occurring in sedimentary rocks of the Upper Devonian Tongyusi Formation, are strictly controlled by the left−lateral ductile faults. To date, there is still insufficient understanding of the ore mineralogy and gold mineralization processes. In this paper, we obtain data from a variety of experimental methods, such as petrographic identification, Back−Scattered Electron imaging (BSE), Energy Dispersive Spectrometry (EDS), and Electron Probe Micro−Analysis (EPMA), to determine the mineralogical characteristics of gold−bearing sulfides (arsenopyrite, pyrite, stibnite, and marcasite), and discuss the chemical states of Au and physicochemical conditions for gold mineralization. The results show that the micro−disseminated gold mineralization in hydrothermal period can be divided into three stages: pyrite−arsenopyrite−silicification stage (Ⅰ), quartz−stibnite−marcasite±antimony oxides stage (Ⅱ), and calcite−quartz stage (Ⅲ). The occurrence states of “invisible gold” vary greatly among different gold−bearing sulfides, from Au+ in arsenopyrite to Au+ and Au0 in early generation pyrite (Py-1), then to Au0 in late generation pyrite (Py-2) and marcasite. The metal mineral assemblage changes from arsenopyrite−pyrite to stibnite−marcasite, while the ore−forming fluid gradually evolves from relatively high−temperature solutions unsaturated with respect to native gold to low−temperature solutions saturated with respect to native gold. The Jinpenliang gold deposit is a Carlin−type gold deposit, which was formed in a medium−high temperature and shallow−moderate depth with logf(S2) ranging from −8.5 to −4.5.
-
Keywords:
- occurrence state of gold /
- arsenopyrite geothermometer /
- EPMA /
- gold−bearing sulfides /
- Jinpenliang /
- south Qinling
-
矿石组构与金的赋存状态研究,对于正确理解金的富集机制、矿床成因及优化矿石选冶工艺等具有十分重要的意义(胡文宣等,2001;华曙光等,2012)。典型卡林型金矿床的金主要以“不可见金(Invisible gold)”形式赋存于含砷黄铁矿和毒砂等Fe−As−S矿物中(Fleet et al.,1997),但仍存在次显微–纳米级自然金Au0、晶格金Au+、Au−及Au3+等诸多不同的认识(Arehart et al.,1993;Simon et al.,1999a;李九玲等,2002;Gopon et al.,2019)。(含As)黄铁矿是造山型与类卡林型金矿最重要的载金矿物,金以自然金和Au–Ag–(Te)系列矿物形式为主(Bateman et al.,2004;Goldfarb et al.,2017;刘家军等,2019)。毒砂和黄铁矿等载Au硫化物的元素含量、特征比值及相关性分析,可有效厘定Au的赋存状态、反演成矿流体性质和约束成矿物理化学条件,对于金成矿过程、成矿机制及矿床成因的研究至为关键(Kretschmar et al.,1976;Reich et al.,2005;孙宁岳等,2022)。
陕甘川“金三角”地区是中国重要的卡林–类卡林型金矿集中区,金主要产出于南秦岭泥盆系和三叠系碳酸盐岩–碎屑岩建造中(陈衍景等,2004),包括寨上、阳山及金龙山等代表性超大型和规模不等的金矿床多达50余处(Liu et al.,2015;Ma et al.,2020;姜寒冰等,2023)。然而,关于南秦岭沉积岩容矿型金矿床尚存在造山型、卡林型及类卡林型等多种成因认识(毛景文,2001;Mao et al.,2002;陈衍景等,2004)。柞水–山阳金多金属矿集区位于南秦岭晚古生代弧前盆地,已发现夏家店、王家坪和王家沟等多处卡林型金矿床(丁坤等,2021,2022);金盆梁即位于矿集区北部,是一处具有中型成矿远景的微细浸染型金矿床(李雪松等,2021)。目前,矿区仍以金锑找矿勘查为主(张嘉升等,2014),有关矿石矿物学与Au赋存状态的研究尚无报道,导致成矿过程与矿床成因认识不清。基于矿床地质特征与矿石组构的研究,笔者以不同成矿阶段的硫化物为研究对象,开展岩矿相学显微鉴定、扫描电镜–能谱及电子探针分析,查明金盆梁金矿床载金矿物的组分特征,限定Au的赋存状态与成矿物理化学条件,初步探讨矿床成因类型,以期为区域金锑成矿过程与成矿规律的研究提供一定依据。
1. 成矿地质背景
1.1 区域地质特征
南秦岭柞水–山阳金多金属矿集区属于秦岭造山带陕西段五大矿集区之一,夹持于北部商丹断裂与南部山阳–凤镇断裂之间的南秦岭弧前盆地(王宗起等,2009;王瑞廷等,2021),以北西–北西西向断裂最为发育,且控制着主要矿产的分布特点(图1)(朱赖民等,2019)。
图 1 秦岭造山带构造单元(a)及柞水–山阳矿集区地质图(b)(据Ding et al.,2022修改)1. 第四系;2. 石炭系;3. 泥盆系;4. 下古生界;5. 前寒武系;6. 晚侏罗—早白垩世花岗岩;7. 中—晚三叠世花岗岩;8. 新元古代花岗岩;9. 新元古代闪长岩;10. 辉长–辉绿岩;11. 角闪岩;12. 卡林型金矿床;13. 热水沉积改造型银矿床;14. 热水沉积改造型铜矿床;15. 热水沉积改造型铁矿床;16. 岩浆分结型铁矿床;17. 矽卡岩–斑岩型铜矿床;18. 断层;19. 地质界线;20. 地名Figure 1. (a) Tectonic framework of the Qinliong orogen and (b) geological map of the Zhashui–Shanyang ore district cluster区域以泥盆系和石炭系分布最为广泛,山阳–凤镇断裂以北主要为中—上泥盆统(桐峪寺组、青石垭组、池沟组及牛耳川组)浅海–半深海相的浅变质沉积碎屑岩、碳酸盐岩及复理石建造,以及下石炭统的海陆交互相含煤岩系,岩性为砂岩、粉砂岩、板岩及灰岩(Ding et al.,2022);南部则以中—上泥盆统和石炭系的浅海陆棚碎屑岩、碳酸盐建造为主(王瑞廷等,2021)。中生代陆内构造–岩浆活动与成矿作用极为强烈,以东江口为代表的印支期花岗岩呈近东西向分布于矿集区北部(230~210 Ma)(葛战林等,2021);燕山期浅成–超浅成的小斑岩体多侵位于北西–北西西向与南北向断层的交汇部位,成岩年龄大多为150~140 Ma(谢桂青等,2012;吴发富等,2014;朱赖民等,2019;Zhang et al.,2021;李平等,2023),与晚侏罗世—早白垩世的Au、Cu(Mo)成矿关系密切(刘凯等,2019;丁坤,2020)。
区内矿产资源丰富,以Au、Ag、Cu、Fe为优势矿种,典型矿床有银硐子–大西沟特大型热水沉积改造型银多金属矿(方维萱等,2000)、夏家店大型微细浸染型金矿(高菊生等,2006;刘凯等,2019)及小河口中型斑岩型铜矿(熊潇等,2019)等。截至目前,已发现大小金矿床(点)20余处,大多沿山阳–凤镇断裂的南北两侧展布(图1),而王家沟、金盆梁金矿则位于矿集区的最北端。
1.2 矿床地质特征
金盆梁金矿位于陕西省柞水县瓦房口镇,大地构造位置处于南秦岭北部晚古生代裂陷带(张国伟等,2019),与区域王家沟金矿床同处于Ⅳ-66B-5山阳–柞水华力西—燕山期Fe–Ag–Cu–Pb–Zn–金红石成矿亚带(陕西省地质调查院,2017)。
矿区主要出露上泥盆统(D3)、上泥盆统桐峪寺组(D3t)及下石炭统二峪河组(C1e)。其中,上泥盆统分布于F13断裂以北,可对比于区域下古生界罗汉寺组,以浅变质的火山–沉积岩系为特征区别于桐峪寺组(张亚峰等,2022),仅个别矿化带赋存于其绿灰色千枚状含凝灰质石英粉砂岩中(图2)。上泥盆统桐峪寺组是最主要的赋矿地层,呈近东西向分布于F18断裂以南,属一套浅海–滨海相沉积碎屑岩建造(闫臻等, 2014)。矿脉几乎全部赋存于第五岩性段(D3t5)与第六岩性段(D3t6)中,岩性包括灰色千枚状粉砂质板岩、钙质板岩、灰褐黄色变质石英粉砂岩及灰绿色变质长石石英细砂岩,夹薄层细晶–粉晶灰岩等。二峪河组呈近东西向带状分布于矿区中部,岩性组合为中薄层灰岩、石英粉砂岩、粉砂质板岩及绢云千枚岩等。
图 2 金盆梁金矿床地质图(据苏选民等,2012)1. 下石炭统二峪河组上亚组下段;2. 下石炭统二峪河组下亚组上段;3. 上泥盆统(未分);4. 上泥盆统桐峪寺组第六岩性段;5. 上泥盆统桐峪寺组第五岩性段上亚段;6. 上泥盆统桐峪寺组第五岩性段下亚段;7. 上泥盆统桐峪寺组第四岩性段上亚段;8. 二长花岗岩;9. 闪长玢岩脉;10. 云斜煌斑岩脉;11. 矿体及编号;12. 矿化体;13. 断层及编号;14. 地名Figure 2. Geological map of the Jinpenliang gold deposit近东西向曹坪–红岩寺复式向斜与断裂构成了矿区的主要构造格架,后期叠加北西向、北东向走滑断裂。北东向左行走滑断层是本区主要的导矿构造,出露于矿区南部,一般长为313~4154 m,宽为1~5 m,走向为25°~40°,倾向北西,倾角为65°~80°;断面平直光滑,带内主要由糜棱岩、透镜状角砾组成,硅化、绿泥石化强烈。矿区岩浆活动较为强烈,北部见印支期曹坪二长花岗岩侵位于上泥盆统,闪长玢岩脉和云斜煌斑岩脉亦有发育。
目前,金盆梁金矿床共发现矿脉14条,圈定Ⅰ-1、Ⅱ-1金矿体2个(图2)。Ⅰ-1主矿体呈透镜体状分布于玄檀沟一带,赋存标高为1264~1506 m,地表槽探控制矿体长为593 m,深部坑道控制斜深为242 m。矿体由毒砂–黄铁矿–辉锑矿–硅化粉砂质板岩组成(图3),呈近东西走向,向南陡倾(180°~185°∠80°~85°),厚度为0.80~7.25 m,平均厚为1.76 m;金品位为2.57~12.36 g/t,平均金品位为4.53 g/t,估算推断资源量为783 kg(苏选民等,2012)。因受左行韧性剪切构造控制,矿体与围岩界线较为清晰,近矿围岩蚀变以硅化、绢云母化及毒砂–黄铁矿化为主,远端则碳酸盐化较强。
图 3 金盆梁金矿床典型矿体与矿石照片a. 主矿体赋存于粉砂质板岩的断裂中,石英–辉锑矿细脉切穿毒砂–黄铁矿化蚀变岩;b. 受左行韧性剪切作用,石英–辉锑矿脉呈浅黄色透镜状产出;c. 矿体远端的方解石–石英脉;d. 毒砂–黄铁绢英岩型矿石;e. 石英–辉锑矿脉型矿石;f. 方解石–石英脉手标本;g. 毒砂、黄铁矿呈微细浸染状,见自形毒砂沿边部交代他形粗粒黄铁矿;h. 辉锑矿呈半自形晶,含少量白铁矿;i. 方解石细脉切穿粗粒石英;j-l. Ⅰ~Ⅲ阶段的非金属矿物特征;Py. 黄铁矿;Apy. 毒砂;Stb. 辉锑矿;Mrc. 白铁矿;Q. 石英;Cal. 方解石;Ser. 绢云母Figure 3. Photos of typical orebodies and ores of the Jinpenliang gold deposit根据矿化类型、脉体穿切关系及矿物共生组合特征,金盆梁金矿床热液成矿期可划分为3个成矿阶段:黄铁矿–毒砂–硅化阶段(Ⅰ),金属矿物含量约为5%~8%,主要为微细浸染状的黄铁矿和毒砂,偶见辉锑矿,硫化物集合体局部呈宽约为1 mm的细脉(图3d)。黄铁矿呈他形–半自形粒状晶,粒径为0.02~0.60 mm;毒砂以亮白色微带奶油色的针柱状、矛状及菱形自形晶为特征,多沿早世代黄铁矿边部交代或呈放射状集合体,粒径大小为0.01~0.20 mm(图3g)。石英–辉锑矿–白铁矿±锑氧化物阶段(Ⅱ),呈宽3~5 cm的灰白–黄白色细脉切穿毒砂–黄铁矿化蚀变岩(图3a),强烈透镜体化(图3b)。其中,石英呈烟灰色–灰白色,结晶较好;针柱状辉锑矿集合体呈团斑状充填于脉体中,大小为0.50×1.0 cm~1.0×3.0 cm,局部氧化为浅黄色锑华和黄锑矿等(图3e、图3h)。方解石–石英阶段(Ⅲ),呈宽为3~7 cm宽的白色–黄白色陡倾细脉–网脉(图3c),密集发育于矿体远端;主要由方解石和石英组成,含少量绢云母、白云石(图3f、图3i),偶见星点状金属矿物。
2. 样品采集与测试方法
样品均采自金盆梁金矿区LDX01老硐Ⅰ-1主矿体,包括毒砂–黄铁绢英岩型(Ⅰ阶段)、石英–辉锑矿脉型矿石(Ⅱ阶段)及无矿方解石–石英脉(Ⅲ阶段),采样坐标为 E 109°27′27″,N 33°42′25″。优选典型样品开展矿物学鉴定与实验测试。
岩矿相学鉴定在中国地质调查局西安矿产资源调查中心实验室完成,仪器为德国莱卡DM2500P偏光显微镜。背散射电子图像(BSE)、能谱(EDS)和电子探针分析(EPMA)在西北大学大陆动力学国家重点实验室完成,仪器型号为JEOL JAX-8230,分析精度≤ ± 2%,最低检测限为~0.001%。测试条件:加速电压为15 kV,电子束电流为10 nA,束斑直径为2 μm。标样由美国SPI公司提供:Au(Au)、FeS2(Fe, S)、PbS(Pb)、Bi(Bi)、Ag(Ag)、Cd(Cd)、Sb2Te3(Sb, Te)、Se(Se)、FeAsS(As)、ZnS(Zn)、Cu(Cu)、Ni(Ni)、Co(Co)、Mn(Mn)和TiO2(Ti)。
3. 分析结果
3.1 矿石矿物学特征
3.1.1 矿石类型与组构
矿石类型以毒砂–黄铁绢英岩型为主(图3d),次为石英–辉锑矿脉型(图3e)。毒砂–黄铁矿化蚀变岩主要产于赋矿断裂内部,以发育微细浸染状毒砂、黄铁矿为特征;呈稀疏微细浸染状、细脉浸染状构造,具自形–半自形结构、他形结构、浸蚀结构、包含结构及弱增生环带结构。石英–辉锑矿脉沿毒砂–黄铁绢英岩裂隙充填,矿石以细脉–网脉状、团块状构造为主,多见半自形–他形结构、交代残余结构等(表1)。
表 1 金盆梁金矿床矿石类型与硫化物特征表Table 1. Ore types and sulfide characteristics of the Jinpenliang gold deposit矿石类型 金属硫化物 特征描述 素描图 毒砂–黄铁绢英岩型 Apy 毒砂(Apy)呈亮白色针柱状、菱形、茅状自形晶,常见晶面裂纹与孔隙;呈独立放射状或沿早世代黄铁矿边部交代形成毒砂–黄铁矿集合体 Py-1 早世代黄铁矿(Py-1)呈浅黄色–黄白色中粗粒他形晶,孔隙与裂纹发育;内部结构均一,增生环带不明显,边部多被自形–半自形毒砂交代浸蚀 Py-2 晚世代黄铁矿(Py-2)呈黄白色细粒自形–半自形晶,孔隙与裂纹较少,内部为均质结构;多独立产出,偶见内部包含自形毒砂颗粒 石英–辉锑矿脉型 Stb 辉锑矿(Stb)反射色为白色–灰白色,多色性极为显著,多呈半自形针柱状、粒状晶,易磨光,常见擦痕。可见白铁矿、黄锑矿(Cvn)等交代辉锑矿 Mrc 白铁矿(Mrc)呈浅黄白色自形板柱状晶,以似节理状的密集条纹切面为鉴别特征,大多沿辉锑矿边部或内部交代产出,极少数独立赋存于石英中 3.1.2 载金硫化物显微特征
毒砂、黄铁矿、辉锑矿和白铁矿均属于金盆梁金矿的载金硫化物。其中,毒砂(Apy)主要以稀疏浸染状赋存于毒砂–黄铁绢英岩型矿石中,呈亮白色针柱状、菱形、茅状自形晶,大小为10~200 μm,晶面裂纹、孔隙较为发育(图4a),背散射电子图像呈明亮的均质结构(图4b);呈独立放射状和毒砂–黄铁矿集合体形式产出(图4c)。
黄铁矿呈稀疏浸染状、星点状分布于毒砂–黄铁绢英岩型矿石中。早世代黄铁(Py-1)矿呈浅黄色–黄白色中粗粒他形晶,大小为100~1000 μm,孔隙与裂纹极为发育,边部多被针柱状毒砂交代浸蚀(图4a);背散射电子图像呈暗色,内部结构较均一(图4b)。晚世代黄铁矿(Py-2)呈黄白色自形–半自形五角十二面体,含量少且颗粒小,大小为50~100 μm,内部结构均匀;多独立产出,其内部可见自形毒砂(图4c、图4d)。
辉锑矿(Stb)呈斑杂状、细脉状赋存于石英–辉锑矿脉型矿石中,具白色–灰白色半自形针柱状、粒状晶,大小为20~800 μm,易磨光且常见擦痕(图4e);白铁矿和锑氧化物多沿内部或边部交代辉锑矿(图4f~图4h)。
白铁矿(Mrc)含量较少,仅见于石英–辉锑矿脉型矿石中,以浅黄白色的密集条纹切面为鉴定特征,板柱状自形晶的大小为20~200 μm;大多以交代辉锑矿形式产出,少数独立赋存于石英中(图4f);背散射电子图像呈暗色的均质结构(图4g)。
3.1.3 矿物组合与生成顺序
不同成矿期次的矿物组合特征差异明显:热液成矿期Ⅰ阶段为微细浸染状毒砂+黄铁矿+石英+绢云母组合,其中微晶石英粒径大小为50~200 μm,绢云母含量较高(20%~25%)且强烈定向排列(图3j);Ⅱ阶段金属矿物主要为辉锑矿+白铁矿,含微量早世代黄铁矿与毒砂,绢云母(5%~10%)呈较强的定向排列(图3k);Ⅲ阶段以无矿的方解石+石英+少量绢云母组合为特征,几乎不含金属硫化物,绢云母含量低(2%~5%)且无定向(图3l)。原生硫化物经浅表氧化淋虑,多形成黄锑矿+锑华+褐铁矿的表生期氧化矿物组合。主要矿物生成顺序见图5。
3.2 载金硫化物化学组成
金盆梁金矿床载金硫化物的电子探针分析结果见表2。
表 2 金盆梁金矿床载金硫化物电子探针分析结果表(%)Table 2. EMPA data (%) of Au–bearing sulfides in the Jinpenliang gold deposit测点号 矿物 Au S Pb Bi Ag Cd Sb Te Se As Zn Cu Ni Co Fe Mn Ti Total 计算化学式 JPL-gb6-1 毒砂
(Apy)− 19.49 − 0.03 − − 0.10 − − 46.05 0.09 0.02 0.05 0.03 35.12 0.04 0.04 101.06 Fe1.03As1.01S JPL-gb6-2 − 20.86 − − − 0.03 0.79 − − 43.05 − 0.00 − − 35.48 0.03 0.00 100.24 Fe0.98As0.88S JPL-gb6-3 0.10 19.99 − − − 0.03 0.33 − − 44.33 − − − 0.03 35.55 0.01 − 100.36 Fe1.02As0.95S JPL-gb6-6 0.03 19.44 − − 0.02 0.06 0.09 − − 45.44 0.07 − − 0.08 35.41 − 0.03 100.68 Fe1.05As1.00S JPL-gb6-8 0.13 19.21 − − − 0.06 0.53 − − 45.55 0.02 − − 0.10 35.62 − − 101.21 Fe1.06As1.01S JPL-gb6-10 0.47 19.92 − − 0.06 − − − − 44.31 0.01 0.07 0.03 0.09 35.50 − − 100.45 Fe1.02As0.95S JPL-gb6-11 0.16 19.44 − 0.15 0.01 − 0.01 − − 45.66 0.02 − 0.10 0.09 35.73 − − 101.36 Fe1.06As1.01S JPL-gb6-13 0.03 20.53 0.06 − 0.06 0.07 0.99 − − 43.59 0.03 − 0.05 0.05 35.52 0.01 0.03 101.03 Fe0.99As0.91S JPL-gb6-16 − 19.81 − − 0.02 0.05 0.55 − − 44.27 0.00 0.11 0.00 0.07 35.44 − − 100.33 Fe1.03As0.96S JPL-gb6-18 − 19.55 0.05 − 0.05 0.01 0.61 − − 44.69 0.01 − − 0.04 35.63 − − 100.65 Fe1.05As0.98S JPL-gb6-19 0.03 20.43 − − − 0.01 0.78 − − 43.57 − 0.01 − 0.05 35.16 − 0.03 100.07 Fe0.99As0.91S JPL-gb6-4 早世代
黄铁矿
(Py-1)− 52.37 0.04 − 0.02 − − − 0.02 0.01 − − 0.07 0.14 47.18 0.02 − 99.86 Fe0.52S JPL-gb6-7 0.05 51.61 − − 0.01 − − − − 1.75 − − − 0.09 46.59 − − 100.09 Fe0.52S JPL-gb6-9 − 51.39 0.14 − 0.05 − − − 0.03 0.06 0.11 0.11 0.03 0.09 47.04 0.00 − 99.05 Fe0.53S JPL-gb6-14 0.30 52.14 − − 0.04 − 0.00 − − 0.01 0.06 0.05 0.26 0.05 46.25 − 0.02 99.18 Fe0.51S JPL-gb6-15 − 52.55 0.01 0.02 − − − − − 0.04 − − 0.20 0.15 46.77 − 0.02 99.75 Fe0.51S JPL-gb6-5 晚世代
黄铁矿
(Py-2)− 52.31 − − − 0.01 − − − 1.18 0.06 − − 0.05 46.12 − − 99.74 Fe0.51S JPL-gb6-12 − 51.95 − − 0.01 − 0.06 − − 0.70 0.04 − − 0.12 46.59 − 0.03 99.50 Fe0.51S JPL-gb6-17 − 52.18 0.12 − − 0.03 0.01 − − 0.45 0.06 − 0.01 0.04 47.01 − 0.01 99.91 Fe0.52S JPL-gb6-20 0.25 50.67 − − − − − − − 3.04 − 0.13 0.05 0.04 46.02 − − 100.21 Fe0.52S JPL-gb5-1 辉锑矿
(Stb)− 27.27 − 0.01 − − 71.58 − − 0.09 0.05 0.04 − − 0.00 0.05 − 99.10 Sb0.69S JPL-gb5-4 − 28.66 − 0.15 − 0.03 71.03 0.04 − 0.07 − − 0.05 − 0.04 − − 100.06 Sb0.65S JPL-gb5-5 0.26 27.64 0.09 − − − 71.08 − − 0.11 − 0.01 − − 0.02 0.00 0.00 99.22 Sb0.68S JPL-gb5-7 − 28.68 0.17 − 0.12 0.03 71.05 − 0.01 0.12 − − 0.03 − − − − 100.20 Sb0.65S JPL-gb4-1 − 28.32 − 0.13 0.03 0.02 70.92 0.04 0.01 0.09 − 0.06 0.02 0.00 0.03 0.01 − 99.69 Sb0.66S JPL-gb4-4 − 28.98 − − − − 71.52 0.02 − 0.16 − 0.03 − − 0.02 − − 100.74 Sb0.65S JPL-gb4-5 − 27.36 0.40 − − 0.07 71.89 0.06 − 0.09 0.03 0.07 0.13 0.06 0.00 − − 100.16 Sb0.69S JPL-gb4-6 0.29 27.97 − − − 0.02 71.24 0.01 − 0.16 0.09 0.01 − − − 0.01 − 99.79 Sb0.67S JPL-gb4-9 0.04 28.90 0.12 − − 0.06 70.78 0.02 − 0.21 0.05 − 0.06 0.01 − − − 100.24 Sb0.64S JPL-gb4-10 − 29.03 − 0.06 − − 71.02 0.07 0.01 0.11 − 0.07 0.04 − 0.01 0.01 − 100.43 Sb0.64S JPL-gb4-11 − 28.73 − − 0.01 0.04 70.49 0.12 − 0.11 − 0.04 − − − − − 99.54 Sb0.65S JPL-gb4-12 0.15 28.31 − − 0.03 0.07 71.26 0.00 0.00 0.11 − 0.03 0.00 0.01 0.04 − 0.02 100.04 Sb0.66S JPL-gb4-2 白铁矿
(Mrc)0.16 52.84 − − − − 0.20 − − − 0.17 − 0.12 0.16 46.49 0.03 − 100.18 Fe0.51S JPL-gb4-3 0.05 52.61 − 0.09 0.06 0.01 1.27 − 0.00 0.11 0.02 − 0.15 0.12 46.49 0.02 0.00 100.98 Fe0.51S JPL-gb4-7 0.14 48.73 − − 0.01 0.00 4.54 − 0.01 0.03 − − 0.05 0.22 41.19 − − 94.90 Fe0.49S JPL-gb4-8 − 48.14 − − − 0.02 3.88 − 0.01 − 0.02 − 0.09 0.22 41.43 − 0.04 93.86 Fe0.49S JPL-gb5-3 0.07 52.97 − − − 0.01 0.25 − − 0.02 0.04 − 0.13 0.24 45.87 − − 99.61 Fe0.50S JPL-gb5-6 − 52.27 − − − − 0.13 − − − − 0.09 − 0.14 45.56 − − 98.19 Fe0.50S JPL-gb5-8 0.07 52.57 − − − 0.08 0.09 − 0.03 − 0.04 − 0.08 0.17 45.89 0.05 − 99.06 Fe0.50S JPL-gb5-9 − 53.65 − − 0.03 − − − 0.00 0.01 0.07 − 0.16 0.09 46.80 0.01 − 100.83 Fe0.50S 注:“−”表示低于检出限。 毒砂中7个测点(共11个)的Au含量高于检出限,占测点总数的63.64%。主元素组成较为稳定:Fe含量为35.12%~35.73%(平均值为35.47%),As含量为43.05%~46.05%(平均值为44.59%),S含量为19.21%~20.86%(平均值为19.88%)。计算分子式为FeAs0.90S1.02~FeAs0.98S0.97,接近于毒砂理想分子式FeAs1-xS1+x(x ≤ |0.13|)(Sharp et al.,1985),且原子个数比S/As值为0.99~1.13,总体具有富As、低S与Fe的特征,指示毒砂的形成温度较高(Sharp et al.,1985;员媛娇等,2022)。元素的相关性分析证实,S与As原子百分数呈明显的线性负相关(图6a),而S与Fe、Fe与As之间不存在显著的相关性(图6b、图6c),暗示可能存在As替代部分S进入毒砂晶格(沈关文等, 2022)。除Fe、As、S元素外,多数测点还含有Au(0~0.47%)、Ag(0~0.06%)、Cd(0~0.07%)、Sb(0~0.99%)、Zn(0~0.09%)、Co(0~0.10%)等微量元素,Au与As、S无明显相关性(图6g、图6h);Pb、Bi、Cu、Ni、Mn、Ti含量极低,仅个别测点高于检出限,Te、Se含量均低于检出限。
黄铁矿中3个测点(共9个)Au含量高于检出限(0.05%~0.30%),占总测点数的33.33%。不同世代的黄铁矿主元素组成无显著差别:Py-1的S、Fe平均含量分别为52.01%、46.76%,原子个数比S/Fe值为1.90~1.96(平均值为1.94),计算化学式为Fe0.51S~Fe0.53S;Py-2的S、Fe平均含量分别为51.78%和46.43%,S/Fe值为1.92~1.98(平均值为1.94)且化学式为Fe0.51S~Fe0.52S(表2);与黄铁矿的理论值(S=53.45%,Fe=46.55%,原子个数比S/Fe=2)相比较,具有亏损S、略亏损或富集Fe的特征。所有测点的As含量均高于检出限,但Py-2中As含量(As=0.45%~3.04 %,平均值为1.34%)明显高于Py-1(As=0.01%~1.75%,平均值为0.37%),As–S–Fe三者之间无显著的相关性(图6d~图6f)。对比微量元素,Py-1中Ag(0~0.05%)、Pb(0~0.14%)、Zn(0~0.11%)、Co(0.05%~0.15%)、Ni(0~0.26%)略含量高于Py-2(Ag=0~0.01%,Pb=0~0.12%,Zn=0~0.06%,Co=0.04%~0.12%,Ni=0~0.05%),其他元素如Bi、Cd、Sb、Se、Mn、Ti仅个别测点高于检出限,Te含量均低于检出限。
辉锑矿的4个测点(共12个)Au含量高于检出限(0.04%~0.29%),占比33.33%。S和Sb含量分别为27.27%~29.03%(平均值为28.32%)和70.49%~71.89%(平均值为71.15%),原子个数比S/Sb值为1.45~1.55,计算化学式Sb0.64S~Sb0.69S;与辉锑矿的理论值(S=28.62%,Sb=71.38%)相比,略亏损主元素S、Sb。辉锑矿中普遍含As,含量为0.07%~0.21%,平均值为0.12%。元素关系图显示,S与Sb呈较弱的负相关关系,As与S、Sb、Au无显著相关性(图6d~图6h)。微量元素中,Pb、Bi、Ag、Se、Zn、Co、Mn、Ti等元素含量较低,只有少部分测点高于检出限;而多数测点的Cd(0~0.07%)、Te(0~0.12%)、Cu(0~0.07%)、Ni(0~0.13%)、Fe(0~0.04%)含量高于检出限。
白铁矿与黄铁矿互为同质多像变体(赵珊茸等,2004),两者具有相同的化学式和化学组成(FeS2,S=53.45%,Fe=46.55%)。作为金盆梁金矿的主要载金硫化物之一,白铁矿8个测点(共11个)Au含量高于检出限(0.05%~0.16%),占测点总数的72.73%。S、Fe含量分别为48.14%~53.65%(平均值为51.72%)和41.19%~46.80%(平均值为44.97%);原子个数比S/Fe值为1.97~2.06,平均值为2.00,显著贫S、Fe且二者呈线性正相关关系(图6e)。多数白铁矿测点含Cd(0~0.08%)、Sb(0~4.54%)、Se(0~0.03%)、As(0~0.11%)、Zn(0~0.17%)、Co(0.12%~0.24%)、Ni(0~0.16%)、Mn(0.12%~0.24%)等微量元素;仅个别测点的Bi、Cu、Ti含量高于检出限,Pb、Te含量均低于检出限。
4. 讨论
4.1 金的赋存状态
金的赋存状态是指金在矿石中的存在形式,以粒度划分的可见金(>0.1 μm)与不可见金(≤0.1 μm)是目前主流划分方案(张博等,2018)。前者包括明金、显微–次显微金等,可利用光学显微镜或扫描电镜观察;晶格金和纳米金等不可见金则往往难以观察(Cook et al.,1990)。金盆梁金矿床同一载金硫化物的电子探针数据中(表2),Au含量均存在高于和低于检出限且无异常高值点,高倍光学显微镜及背散射电镜下也未发现自然金颗粒,证明金可能主要以“不可见金”形式赋存于载金硫化物中。
大量研究表明,“不可见金”在含砷黄铁矿、毒砂及白铁矿等硫化物中主要有2种赋存形式,即次显微–纳米级自然金Au0和晶格金Au+(Fleet et al.,1993;Simon et al.,1999a,1999b;Cabri et al.,2000;Palenik et al.,2004;Reich et al.,2005;Liang et al.,2021),晶格金Au−(李九玲等,2002)和Au3+(Wu et al.,1989;Arehart et al.,1993)尚有报道。金的赋存状态与黄铁矿颗粒大小存在关联,Simon等(1999a)对美国内华达Twin Creeks卡林型金矿区含砷黄铁矿的研究表明,粗粒含砷黄铁矿中以化学吸附作用的晶格金AuⅠ+为主,细粒含砷黄铁矿中金多呈次显微自然金Au0存在;由此推断,金盆梁金矿早世代粗粒黄铁矿的金赋存状态主要为晶格金Au+,白铁矿与晚世代细粒黄铁矿为次显微–纳米级自然金Au0。在Fe–As–S三角关系图上,黄铁矿和白铁矿中As含量较低,投点接近于理想组成(图7a)(Fleet et al.,1997);毒砂的投点大致平行于S–As轴(图7b),证明As替代S进入毒砂的晶格(Deditius et al.,2008; Su et al.,2012),也为晶格金(固溶体金)的富集创造了先决条件(赵静等,2017)。Reich等(2005) 提出固溶体金在含砷黄铁矿中的最大溶解度曲线:CAu=0.02×CAs+4×10−5,可用于判别含砷黄铁矿和毒砂中金的赋存状态;落于该曲线上方区域的样品点(Au/As>0.02),金主要以纳米金Au0形式赋存,反之(Au/As<0.02)则以晶格金Au+为主。本研究毒砂、黄铁矿及白铁矿的数据投点分布于溶解度曲线两侧(图8),说明不同矿物中金的赋存状态差异显著:毒砂中的金均以晶格金Au+形式存在;早世代他形中粗粒黄铁矿含纳米金Au0和晶格金Au+;晚世代细粒自形黄铁矿和白铁矿的金为纳米金Au0。
图 8 金盆梁金矿床毒砂、黄铁矿及白铁矿Au–As关系图(拟合曲线据Reich et al.,2005)Apy. 毒砂;Py-1. 早世代黄铁矿;Py-2. 晚世代黄铁矿;Mrc. 白铁矿Figure 8. Correlation of Au–As values in arsenopyrite, pyrite, and marcasite from the Jinpenliang gold deposit晶格金在毒砂和砷黄铁矿中的替代机制主要存在以下4点不同认识。①Au+占据砷黄铁矿晶格缺陷的阳离子空位(Fleet et al.,1997;Simon et al.,1999a)。②未知Au–As–S化合物,Au+以四面体配位与硫和砷原子结合(Simon et al.,1999a;Reich et al.,2005)。③As替代S进入黄铁矿或毒砂内造成晶格错位和扭曲(Fougerouse et al.,2021),Au+/Au3+占据Fe2+的位置(Arehart et al.,1993;Simon et al.,1999a;Su et al.,2012)。④Au−占据毒砂和含砷黄铁晶格中[AsS]3–的S的位置(李九玲等,2002)。金盆梁金矿床仅毒砂中的金以晶格金Au+为主,As替代S进入毒砂晶格(图6a、图7a)且Au与Fe含量具弱正相关(剔除Au异常高值点0.47%,相关系数R2=0.34),指示Au+主要占据晶格畸变区Fe2+的位置。
4.2 成矿物理化学条件
鉴于毒砂相对难熔且固溶体对于温度极为敏感,Kretschmar等(1976)首次提出可通过Fe–As–S矿物共生关系与毒砂的化学组成,来限定毒砂的形成温度和硫逸度。经Sharp等(1985)重新验证后,毒砂地质温度计被广泛应用于各类热液矿床的研究中(Choi et al.,2000;Lentz,2002;汪超等,2021)。金盆梁金矿床早阶段的金属矿物共生组合为毒砂–黄铁矿,将毒砂As原子百分数投于Fe–As–S相图的相应区域,可获取其形成时的物理化学参数。利用电子探针数据计算可得,毒砂的As原子百分数为31%~33%,估算出成矿早阶段(Ⅰ)毒砂的形成温度t为370~490 ℃,硫逸度logf(S2)为−8.5~−4.5(图9)。
黄铁矿中的微量元素特征比值与含量变化,主要受控于沉淀时的物理化学条件和含矿热液的介质成分(胡楚雁,2001;刘仕玉等,2021)。Co/Ni值是判别黄铁矿成因的重要标志(Loftus-Hills et al.,1967;Bralia et al.,1979;沈关文等,2022)。前人研究认为,沉积成因黄铁矿Co、Ni含量普遍较低且Co/Ni<1;热液成因黄铁矿的Co/Ni值相对较高(1<Co/Ni<5);火山成因黄铁矿Co/Ni>5,通常大于10(Bralia et al.,1979)。金盆梁金矿床黄铁矿和白铁矿的Co/Ni值为0.20~4.10,且普遍大于1(图6i),均属于热液成因。
黄铁矿的微量元素组合与Co含量,可以反映矿床的形成环境(刘英俊等,1991;张然等,2022)。通常高温条件下的黄铁矿富Cr、Ti、Co、Ni、Mo、Bi、Cu、Zn等亲铁和亲石元素,Co含量高于1000×10−6;中温环境中的黄铁矿含较多Au、Ag、Cu、Pb、Zn等亲铜元素,Co含量为100×10−6~1000×10−6;低温环境下的黄铁矿以富Hg、Sb、As、Ag等高活动性亲铜元素为特征,Co含量低于100×10−6。金盆梁金矿床早世代黄铁矿的Ag、Pb、Zn、Co及Ni含量略高于晚世代黄铁矿,Co含量分别为0.05%~0.15%和0.04%~0.12%,说明两者均形成于中高温环境,且早世代黄铁矿的形成温度略高于晚世代。Fe/(S+As)值与黄铁矿的形成深度相关系数高达0.87,深成、中成及浅成环境黄铁矿的上述比值分别约为0.846、0.863和0.926(周学武等,2005);金盆梁金矿黄铁矿的Fe/(S+As)值为0.857~0.914,平均值为0.885,主体形成于中浅成环境。
由于金的溶解度随温度的升高略增大(Shenberger et al.,1989),综合矿物共生关系、金的赋存状态及毒砂地质温度计等的研究,可限定金盆梁金矿床主体形成于硫逸度logf(S2)为−8.5~−4.5的中高温、中浅成环境;从早至中阶段,成矿流体由较高温的相对自然金不饱和状态,逐渐演化为较低温的自然金饱和状态。
4.3 矿床成因
南秦岭金盆梁金矿床的成矿背景、矿床地质特征、矿石特征、矿物共生组合、金的赋存状态及矿床地球化学特征等,与卡林型金矿床相似(Hofstra et al.,2000),显著区别于造山型(Groves et al.,1998;Gu et al.,2023)和类卡林型金矿床(刘家军等,2019)。具体包括:①大地构造位置处于南秦岭晚古生带弧前盆地;赋矿岩系为泥盆系浅海–滨海相的碎屑–沉积岩建造,硅化粉砂质板岩为主要含矿岩性。②矿区夹持于印支期柞水和曹坪花岗岩基之间,与后者空间关系密切。③矿体以微细浸染型矿化蚀变岩为主,赋存于近东西向的高角度左行韧性剪切断层。④围岩蚀变类型包括硅化、毒砂–黄铁矿化、绢云母化和碳酸盐化。⑤成矿早期矿物组合为浸染状毒砂+黄铁矿+石英+绢云母,晚期为辉锑矿+白铁矿+石英+绢云母。⑥金以纳米级自然金Au0和晶格金Au+形式赋存于毒砂、黄铁矿及白铁矿中,Au+主要替代毒砂晶格中Fe2+。⑦成矿元素为Au–Ag–As–Sb中低温元素组合。⑧矿床形成于中高温的中浅成环境,成矿流体以大气降水为主(流体包裹体以气液两相水溶液型为主)。⑨热液方解石C、O同位素主要源于海相碳酸盐的溶解(δ13CV-PDB=–2.61‰~0.07‰,δ18OV-SMOW=15.83‰~16.45‰);矿石S来源于赋矿围岩(δ34S=–12.50‰~–10.20‰),Pb属于上地壳铅(未发表数据)。
因而,对比美国内华达与南秦岭地区典型卡林型金矿床的地质特征与成矿条件(陈衍景等,2004;Cline et al.,2005;Ma et al.,2020),笔者认为金盆梁金矿的成因类型应归属于卡林型金矿。
5. 结论
(1)金盆梁金矿床热液成矿期的金矿化以微细浸染型为主,可划分为3个成矿阶段:黄铁矿–毒砂–硅化阶段(Ⅰ )、石英–辉锑矿–白铁矿±锑氧化物阶段(Ⅱ)及方解石–石英阶段(Ⅲ)。近矿围岩蚀变以硅化、绢云母化、毒砂–黄铁矿化为主,远矿则主要为碳酸盐化。
(2)金的赋存状态在不同的Fe–As–S载金矿物中存在差异,由毒砂中的晶格金Au+,到早世代黄铁矿中的晶格金Au+和纳米金Au0,至晚世代黄铁矿和白铁矿的纳米金Au0。
(3)金属矿物组合由毒砂–黄铁矿至辉锑矿–白铁矿,成矿流体从较高温的相对自然金不饱和状态,逐渐演化为较低温的自然金饱和状态。金盆梁金矿形成于硫逸度logf(S2)为–8.5~–4.5的中高温、中浅成环境,成因类型应归属于卡林型金矿床。
致谢:野外工作得到了柞水县巨力多金属矿业开发中心的支持与帮助,成文过程中匿名审稿人提供了宝贵的修改意见,在此一并致谢!
-
图 1 秦岭造山带构造单元(a)及柞水–山阳矿集区地质图(b)(据Ding et al.,2022修改)
1. 第四系;2. 石炭系;3. 泥盆系;4. 下古生界;5. 前寒武系;6. 晚侏罗—早白垩世花岗岩;7. 中—晚三叠世花岗岩;8. 新元古代花岗岩;9. 新元古代闪长岩;10. 辉长–辉绿岩;11. 角闪岩;12. 卡林型金矿床;13. 热水沉积改造型银矿床;14. 热水沉积改造型铜矿床;15. 热水沉积改造型铁矿床;16. 岩浆分结型铁矿床;17. 矽卡岩–斑岩型铜矿床;18. 断层;19. 地质界线;20. 地名
Figure 1. (a) Tectonic framework of the Qinliong orogen and (b) geological map of the Zhashui–Shanyang ore district cluster
图 2 金盆梁金矿床地质图(据苏选民等,2012)
1. 下石炭统二峪河组上亚组下段;2. 下石炭统二峪河组下亚组上段;3. 上泥盆统(未分);4. 上泥盆统桐峪寺组第六岩性段;5. 上泥盆统桐峪寺组第五岩性段上亚段;6. 上泥盆统桐峪寺组第五岩性段下亚段;7. 上泥盆统桐峪寺组第四岩性段上亚段;8. 二长花岗岩;9. 闪长玢岩脉;10. 云斜煌斑岩脉;11. 矿体及编号;12. 矿化体;13. 断层及编号;14. 地名
Figure 2. Geological map of the Jinpenliang gold deposit
图 3 金盆梁金矿床典型矿体与矿石照片
a. 主矿体赋存于粉砂质板岩的断裂中,石英–辉锑矿细脉切穿毒砂–黄铁矿化蚀变岩;b. 受左行韧性剪切作用,石英–辉锑矿脉呈浅黄色透镜状产出;c. 矿体远端的方解石–石英脉;d. 毒砂–黄铁绢英岩型矿石;e. 石英–辉锑矿脉型矿石;f. 方解石–石英脉手标本;g. 毒砂、黄铁矿呈微细浸染状,见自形毒砂沿边部交代他形粗粒黄铁矿;h. 辉锑矿呈半自形晶,含少量白铁矿;i. 方解石细脉切穿粗粒石英;j-l. Ⅰ~Ⅲ阶段的非金属矿物特征;Py. 黄铁矿;Apy. 毒砂;Stb. 辉锑矿;Mrc. 白铁矿;Q. 石英;Cal. 方解石;Ser. 绢云母
Figure 3. Photos of typical orebodies and ores of the Jinpenliang gold deposit
图 8 金盆梁金矿床毒砂、黄铁矿及白铁矿Au–As关系图(拟合曲线据Reich et al.,2005)
Apy. 毒砂;Py-1. 早世代黄铁矿;Py-2. 晚世代黄铁矿;Mrc. 白铁矿
Figure 8. Correlation of Au–As values in arsenopyrite, pyrite, and marcasite from the Jinpenliang gold deposit
图 9 毒砂地质温度计的logf(S2)–t图解(据Sharp et al.,1985;Zhang et al.,2018)
Apy. 毒砂;Py. 黄铁矿;Po. 磁黄铁矿;Lo. 斜方砷铁矿
Figure 9. Logf(S2) vs. t equilibria diagram of arsenopyrite geothermometer
表 1 金盆梁金矿床矿石类型与硫化物特征表
Table 1 Ore types and sulfide characteristics of the Jinpenliang gold deposit
矿石类型 金属硫化物 特征描述 素描图 毒砂–黄铁绢英岩型 Apy 毒砂(Apy)呈亮白色针柱状、菱形、茅状自形晶,常见晶面裂纹与孔隙;呈独立放射状或沿早世代黄铁矿边部交代形成毒砂–黄铁矿集合体 Py-1 早世代黄铁矿(Py-1)呈浅黄色–黄白色中粗粒他形晶,孔隙与裂纹发育;内部结构均一,增生环带不明显,边部多被自形–半自形毒砂交代浸蚀 Py-2 晚世代黄铁矿(Py-2)呈黄白色细粒自形–半自形晶,孔隙与裂纹较少,内部为均质结构;多独立产出,偶见内部包含自形毒砂颗粒 石英–辉锑矿脉型 Stb 辉锑矿(Stb)反射色为白色–灰白色,多色性极为显著,多呈半自形针柱状、粒状晶,易磨光,常见擦痕。可见白铁矿、黄锑矿(Cvn)等交代辉锑矿 Mrc 白铁矿(Mrc)呈浅黄白色自形板柱状晶,以似节理状的密集条纹切面为鉴别特征,大多沿辉锑矿边部或内部交代产出,极少数独立赋存于石英中 表 2 金盆梁金矿床载金硫化物电子探针分析结果表(%)
Table 2 EMPA data (%) of Au–bearing sulfides in the Jinpenliang gold deposit
测点号 矿物 Au S Pb Bi Ag Cd Sb Te Se As Zn Cu Ni Co Fe Mn Ti Total 计算化学式 JPL-gb6-1 毒砂
(Apy)− 19.49 − 0.03 − − 0.10 − − 46.05 0.09 0.02 0.05 0.03 35.12 0.04 0.04 101.06 Fe1.03As1.01S JPL-gb6-2 − 20.86 − − − 0.03 0.79 − − 43.05 − 0.00 − − 35.48 0.03 0.00 100.24 Fe0.98As0.88S JPL-gb6-3 0.10 19.99 − − − 0.03 0.33 − − 44.33 − − − 0.03 35.55 0.01 − 100.36 Fe1.02As0.95S JPL-gb6-6 0.03 19.44 − − 0.02 0.06 0.09 − − 45.44 0.07 − − 0.08 35.41 − 0.03 100.68 Fe1.05As1.00S JPL-gb6-8 0.13 19.21 − − − 0.06 0.53 − − 45.55 0.02 − − 0.10 35.62 − − 101.21 Fe1.06As1.01S JPL-gb6-10 0.47 19.92 − − 0.06 − − − − 44.31 0.01 0.07 0.03 0.09 35.50 − − 100.45 Fe1.02As0.95S JPL-gb6-11 0.16 19.44 − 0.15 0.01 − 0.01 − − 45.66 0.02 − 0.10 0.09 35.73 − − 101.36 Fe1.06As1.01S JPL-gb6-13 0.03 20.53 0.06 − 0.06 0.07 0.99 − − 43.59 0.03 − 0.05 0.05 35.52 0.01 0.03 101.03 Fe0.99As0.91S JPL-gb6-16 − 19.81 − − 0.02 0.05 0.55 − − 44.27 0.00 0.11 0.00 0.07 35.44 − − 100.33 Fe1.03As0.96S JPL-gb6-18 − 19.55 0.05 − 0.05 0.01 0.61 − − 44.69 0.01 − − 0.04 35.63 − − 100.65 Fe1.05As0.98S JPL-gb6-19 0.03 20.43 − − − 0.01 0.78 − − 43.57 − 0.01 − 0.05 35.16 − 0.03 100.07 Fe0.99As0.91S JPL-gb6-4 早世代
黄铁矿
(Py-1)− 52.37 0.04 − 0.02 − − − 0.02 0.01 − − 0.07 0.14 47.18 0.02 − 99.86 Fe0.52S JPL-gb6-7 0.05 51.61 − − 0.01 − − − − 1.75 − − − 0.09 46.59 − − 100.09 Fe0.52S JPL-gb6-9 − 51.39 0.14 − 0.05 − − − 0.03 0.06 0.11 0.11 0.03 0.09 47.04 0.00 − 99.05 Fe0.53S JPL-gb6-14 0.30 52.14 − − 0.04 − 0.00 − − 0.01 0.06 0.05 0.26 0.05 46.25 − 0.02 99.18 Fe0.51S JPL-gb6-15 − 52.55 0.01 0.02 − − − − − 0.04 − − 0.20 0.15 46.77 − 0.02 99.75 Fe0.51S JPL-gb6-5 晚世代
黄铁矿
(Py-2)− 52.31 − − − 0.01 − − − 1.18 0.06 − − 0.05 46.12 − − 99.74 Fe0.51S JPL-gb6-12 − 51.95 − − 0.01 − 0.06 − − 0.70 0.04 − − 0.12 46.59 − 0.03 99.50 Fe0.51S JPL-gb6-17 − 52.18 0.12 − − 0.03 0.01 − − 0.45 0.06 − 0.01 0.04 47.01 − 0.01 99.91 Fe0.52S JPL-gb6-20 0.25 50.67 − − − − − − − 3.04 − 0.13 0.05 0.04 46.02 − − 100.21 Fe0.52S JPL-gb5-1 辉锑矿
(Stb)− 27.27 − 0.01 − − 71.58 − − 0.09 0.05 0.04 − − 0.00 0.05 − 99.10 Sb0.69S JPL-gb5-4 − 28.66 − 0.15 − 0.03 71.03 0.04 − 0.07 − − 0.05 − 0.04 − − 100.06 Sb0.65S JPL-gb5-5 0.26 27.64 0.09 − − − 71.08 − − 0.11 − 0.01 − − 0.02 0.00 0.00 99.22 Sb0.68S JPL-gb5-7 − 28.68 0.17 − 0.12 0.03 71.05 − 0.01 0.12 − − 0.03 − − − − 100.20 Sb0.65S JPL-gb4-1 − 28.32 − 0.13 0.03 0.02 70.92 0.04 0.01 0.09 − 0.06 0.02 0.00 0.03 0.01 − 99.69 Sb0.66S JPL-gb4-4 − 28.98 − − − − 71.52 0.02 − 0.16 − 0.03 − − 0.02 − − 100.74 Sb0.65S JPL-gb4-5 − 27.36 0.40 − − 0.07 71.89 0.06 − 0.09 0.03 0.07 0.13 0.06 0.00 − − 100.16 Sb0.69S JPL-gb4-6 0.29 27.97 − − − 0.02 71.24 0.01 − 0.16 0.09 0.01 − − − 0.01 − 99.79 Sb0.67S JPL-gb4-9 0.04 28.90 0.12 − − 0.06 70.78 0.02 − 0.21 0.05 − 0.06 0.01 − − − 100.24 Sb0.64S JPL-gb4-10 − 29.03 − 0.06 − − 71.02 0.07 0.01 0.11 − 0.07 0.04 − 0.01 0.01 − 100.43 Sb0.64S JPL-gb4-11 − 28.73 − − 0.01 0.04 70.49 0.12 − 0.11 − 0.04 − − − − − 99.54 Sb0.65S JPL-gb4-12 0.15 28.31 − − 0.03 0.07 71.26 0.00 0.00 0.11 − 0.03 0.00 0.01 0.04 − 0.02 100.04 Sb0.66S JPL-gb4-2 白铁矿
(Mrc)0.16 52.84 − − − − 0.20 − − − 0.17 − 0.12 0.16 46.49 0.03 − 100.18 Fe0.51S JPL-gb4-3 0.05 52.61 − 0.09 0.06 0.01 1.27 − 0.00 0.11 0.02 − 0.15 0.12 46.49 0.02 0.00 100.98 Fe0.51S JPL-gb4-7 0.14 48.73 − − 0.01 0.00 4.54 − 0.01 0.03 − − 0.05 0.22 41.19 − − 94.90 Fe0.49S JPL-gb4-8 − 48.14 − − − 0.02 3.88 − 0.01 − 0.02 − 0.09 0.22 41.43 − 0.04 93.86 Fe0.49S JPL-gb5-3 0.07 52.97 − − − 0.01 0.25 − − 0.02 0.04 − 0.13 0.24 45.87 − − 99.61 Fe0.50S JPL-gb5-6 − 52.27 − − − − 0.13 − − − − 0.09 − 0.14 45.56 − − 98.19 Fe0.50S JPL-gb5-8 0.07 52.57 − − − 0.08 0.09 − 0.03 − 0.04 − 0.08 0.17 45.89 0.05 − 99.06 Fe0.50S JPL-gb5-9 − 53.65 − − 0.03 − − − 0.00 0.01 0.07 − 0.16 0.09 46.80 0.01 − 100.83 Fe0.50S 注:“−”表示低于检出限。 -
陈衍景, 张静, 张复新, 等. 西秦岭地区卡林—类卡林型金矿床及其成矿时间、构造背景和模式[J]. 地质论评, 2004, 50(2): 134-152 doi: 10.3321/j.issn:0371-5736.2004.02.004 Chen Yanjing, Zhang Jing, Zhang Fuxin, et al. Carlin and Carlin-like gold deposit in western Qinling Mountains and their metallogenic time, tectonic setting and model[J]. Geological Review, 2004, 50(2): 134-152. doi: 10.3321/j.issn:0371-5736.2004.02.004
丁坤. 南秦岭柞-山矿集区典型金矿床成矿作用与成矿动力学背景[D]. 西安: 长安大学, 2020 DING Kun. Metallogenesis and metallogenic dynamics background of typical gold deposits in Zha-shan ore concentration area, South Qinling[D]. Xi’an: Chang’an University, 2020
丁坤, 王瑞廷, 刘凯, 等. 南秦岭柞水-山阳矿集区夏家店金矿床黄铁矿微量元素和氢、氧、硫同位素对矿床成因的制约[J]. 现代地质, 2021, 35(6): 1622-1632 DING Kun, WANG Ruiting, LIU Kai, et al. Pyrite trace element, hydrogen, oxygen, and sulfur isotope geochemistry of the Xiajiadian gold deposit in Zhashui-Shanyang orefield, south Qinling orogen, and its metallogenic constraints[J]. Geoscience, 2021, 35(6): 1622-1632.
丁坤, 王瑞廷, 王智慧, 等. 南秦岭柞水-山阳矿集区王家坪金矿床地质特征及矿床成因探讨[J]. 西北地质, 2022, 55(1): 167-178 DING Kun, WANG Ruiting, WANG Zhihui, et al. Geological characteristics and genesis of the Wangjiaping gold deposit in Zhashui-Shanyang ore concentration area of south Qinling[J]. Northwestern Geology, 2022, 55(1): 167-178.
方维萱, 芦继英. 陕西银硐子-大西沟菱铁银多金属矿床热水沉积岩相特征及成因[J]. 沉积学报, 2000, 18(3): 431-438 FANG Weixuan, LU Jiying. Genesis and characteristics of hydrothermal sedimentary facies Forsiderite-silver-polymetallic deposits in Yindongzi and Daxigou, Shanxi, China[J]. Acta Sedimentologica Sinica, 2000, 18(3): 431-438.
高菊生, 王瑞廷, 张复新, 等. 南秦岭寒武系黑色岩系中夏家店金矿床地球化学特征[J]. 中国地质, 2006, 33(6): 1371-1378 GAO Jusheng, WANG Ruiting, ZHANG Fuxin, et al. Geology and geochemistry of the Xiajiadian gold deposit in the Cambrian black rock series in the South Qinling[J]. Geology in China, 2006, 33(6): 1371-1378.
葛战林, 郝迪, 张晓星, 等. 东秦岭大蛇沟钨矿区赋矿围岩成因: 锆石U-Pb年代学和地球化学证据[J]. 现代地质, 2021, 35(6): 1633-1650 GE Zhanlin, HAO Di, ZHANG Xiaoxing, et al. Petrogenesis of host rocks in the Dashegou tungsten orefield, East Qinling Orogen: Evidences from zircon U-Pb geochronology and geochemistry[J]. Geoscience, 2021, 35(6): 1633-1650.
胡楚雁. 黄铁矿的微量元素及热电性和晶体形态分析[J]. 现代地质, 2001, 15(2): 238-241 HU Chuyan. Characteristics of trace elements, thermoelectricity and crystal form of pyrite[J]. Geoscience, 2001, 15(2): 238-241.
胡文宣, 张文兰, 胡受奚, 等. 含金毒砂中晶格金的确定及其形成机理研究[J]. 地质学报, 2001(3): 410-418 HU Wenxuan, ZHANG Wenlan, HU Shouxi, et al. Determination of structural gold in Au-bearing arsenopyrite and its formation mechanism[J]. Acta Geologica Sinica, 2001(3): 410-418.
华曙光, 王力娟, 贾晓芳, 等. 陕西镇安丘岭卡林型金矿金的赋存状态和富集机理[J]. 地球科学(中国地质大学学报), 2012, 37(5): 989-1002 HUA Shuguang, WANG Lijuan, JIA Xiaofang, et al. Occurrence and enrichment mechanism of gold in the Qiuling Carlin-type gold deposit, Zhen’an county, Shaanxi province, China[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(5): 989-1002.
姜寒冰, 杨合群, 赵国斌, 等. 西秦岭成矿带区域成矿规律概论[J]. 西北地质, 2023, 56(2): 187−202. JIANG Hanbing, YANG Hequn, ZHAO Guobin, et al. Discussion on the Metallogenic Regularity in West Qinling Metallogenic Belt, China[J]. Northwestern Geology, 2023, 56(2): 187−202.
李九玲, 亓锋, 徐庆生. 矿物中呈负价态之金—毒砂和含砷黄铁矿中“结合金”化学状态的进一步研究[J]. 自然科学进展, 2002, 12(9): 952-958 LI Jiuling, QI Feng, XU Qingsheng. The negative valence gold in mineral: A further study on the chemical state of “bound gold” in arsenian pyrites and arsenopyrites[J]. Progress in Natural Science, 2002, 12(9): 952-958.
李平, 陈隽璐, 张越, 等. 商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 2023, 56(2): 10−27. LI Ping, CHEN Junlu, ZHANG Yue, et al. The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance. Northwestern Geology, 2023, 56(2): 10−27.
李雪松, 姚志亮, 王小平, 等. 陕西省柞水县金盆梁金多金属矿勘探(1500 m标高以下)工作总结[R]. 西安: 西安西北有色物探总队有限公司, 2021. 刘家军, 刘冲昊, 王建平, 等. 西秦岭地区金矿类型及其成矿作用[J]. 地学前缘, 2019, 26(5): 1-16 LIU Jiajun, LIU Chonghao, WANG Jianping, et al. Classification and mineralization of the gold deposit in the western Qinling region, China[J]. Earth Science Frontiers, 2019, 26(5): 1-16.
刘凯, 王瑞廷, 樊忠平, 等. 秦岭造山带柞水-山阳矿集区夏家店金矿床成矿时代及其地质意义[J]. 矿床地质, 2019, 38(6): 1278-1296 LIU Kai, WANG Ruiting, FAN Zhongping, et al. Metallogenic age of Xiajiadian gold deposit in the Zhashui-Shanyang ore concentration, Qinling orogenic belt and its geological significance[J]. Mineral Deposits, 2019, 38(6): 1278-1296.
刘仕玉, 刘玉平, 叶霖, 等. 滇东南都龙超大型锡锌多金属矿床黄铁矿LA-ICPMS微量元素组成研究[J]. 岩石学报, 2021, 37(4): 1196-1212 doi: 10.18654/1000-0569/2021.04.14 LIU Shiyu, LIU Yuping, YE Lin, et al. LA-ICPMS trace elements of pyrite from the super-large Dulong Sn-Zn polymetallic deposit, southeastern Yunnan, China[J]. Acta Petrologica Sinica, 2021, 37(4): 1196-1212. doi: 10.18654/1000-0569/2021.04.14
刘英俊, 马东升. 金的地球化学[M]. 北京: 科学出版社, 1991 LIU Yingjun, MA Dongsheng. The Geochemistry of gold[M]. Beijing: Science Press, 1991.
毛景文. 西秦岭地区造山型与卡林型金矿床[J]. 矿物岩石地球化学通报, 2001, 20(1): 11-13 MAO Jingwen. Geology, distribution and Classification of gold deposits in the western Qinling belt, central China[J]. Bulletin of Mineralogy, Petrology and Geochemisty, 2001, 20(1): 11-13.
陕西省地质调查院. 中国区域地质志·陕西志[M]. 北京: 地质出版社, 2017 Shaanxi Institute of Geological Survey. The regional geology of China, Shaanxi Province[M]. Beijing: Geological Publishing House, 2017.
沈关文, 张良, 孙思辰, 等. 江南造山带万古金矿床含金硫化物组构与金沉淀机制[J]. 岩石学报, 2022, 38(1): 91-108 doi: 10.18654/1000-0569/2022.01.07 SHEN Guanwen, ZHANG Liang, SUN Sichen, et al. Textures of gold-bearing sulfides and gold precipitation mechanism, Wangu gold deposit, Jiangnan Orogen[J]. Acta Petrologica Sinica, 2022, 38(1): 91-108. doi: 10.18654/1000-0569/2022.01.07
苏选民, 马秋峰, 韩玉信. 陕西省柞水县金盆梁金多金属矿普查2012年总结[R]. 西安: 陕西省地质矿产勘查开发局第二综合物探大队, 2012. 孙宁岳, 李国武, 申俊峰, 等. 黄铁矿精细结构与晶胞参数的关系及其标型意义[J]. 西北地质, 2022, 55(4): 333−342. SUN Ningyue, LI Guowu, SHEN Junfeng, et al. Relationship between Fine Structure and Cell Parameters of Pyrite and Their Typomorphic Significance[J]. Northwestern Geology, 2022, 55(4): 333−342.
汪超, 王瑞廷, 刘云华, 等. 陕西商南三官庙金矿床地质特征、金的赋存状态及矿床成因探讨[J]. 矿床地质, 2021, 40(3): 491-508 WANG Chao, WANG Ruiting, LIU Yunhua, et al. Geological characteristics, modes of occurrence of gold and genesis of San’guanmiao gold deposit, Shangnan, Shaanxi Province[J]. Mineral Deposits, 2021, 40(3): 491-508.
王瑞廷, 冀月飞, 成欢, 等. 南秦岭柞水-山阳矿集区金铜矿床成矿规律与找矿方向[J]. 现代地质, 2021, 35(6): 1487-1503 WANG Ruiting, JI Yuefei, CHENG Huan, et al. Metallogenic regularities and future prospecting direction of gold-copper deposits in the Zhashui-Shanyang orefield, Southern Qinling Orogen[J]. Geoscience, 2021, 35(6): 1487-1503.
王宗起, 闫全人, 闫臻, 等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 2009, 83(11): 1527-1546 WANG Zongqi, YAN Quanren, YAN Zhen, et al. New division of the main tectonic units of the Qinling Orogenic Belt, Central China[J]. Acta Geologica Sinica, 2009, 83(11): 1527-1546.
吴发富, 王宗起, 闫臻, 等. 秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 岩石学报, 2014, 30(2): 451-471 WU Fafu, WANG Zongqi, YAN Zhen, et al. Geochemical characteristics, zircon U-Pb ages and Lu-Hf isotopic composition of the Yanshanian intermediate-acidic plutons in the Shanyang-Zhashui areas, Qinling Orogenic Belt[J]. Acta Petrologica Sinica, 2014, 30(2): 451-471.
谢桂青, 任涛, 李剑斌, 等. 陕西柞山盆地池沟铜钼矿区含矿岩体的锆石U-Pb年龄和岩石成因[J]. 岩石学报, 2012, 28(1): 15-26 XIE Guiqing, REN Tao, LI Jianbin, et al. Zircon U-Pb age and petrogenesis of ore-bearing granitoid for the Chigou Cu-Mo deposit form the Zhashan basin, Shaanxi Province[J]. Acta Petrologica Sinica, 2012, 28(1): 15-26.
熊潇, 朱赖民, 张国伟, 等. 南秦岭柞水-山阳矿集区小河口矽卡岩型铜矿床矿物化学及其成矿意义[J]. 岩石学报, 2019, 35(8): 2597-2614 doi: 10.18654/1000-0569/2019.08.16 XIONG Xiao, ZHU Laimin, ZHANG Guowei, et al. Mineral chemistry of the Xiaohekou skarn copper deposit in the Zhashui-Shanyang ore cluster area, South Qinling and its metallogenic significance[J]. Acta Petrologica Sinica, 2019, 35(8): 2597-2614. doi: 10.18654/1000-0569/2019.08.16
闫臻, 王宗起, 陈雷, 等. 南秦岭山阳-柞水矿集区构造-岩浆-成矿作用[J]. 岩石学报, 2014, 30(2): 401-414 YAN Zhen, WANG Zongqi, CHEN Lei, et al. Tectono-magmatism and metallogeneses of Shanyang-Zhashui ore concentration area in Qinling Orogen[J]. Acta Petrologica Sinica, 2014, 30(2): 401-414
员媛娇, 范成龙, 吕喜平, 等. 电子探针和LA-ICP-MS技术研究内蒙古浩尧尔忽洞金矿床毒砂矿物学特征[J]. 岩矿测试, 2022, 41(2): 211-225 YUAN Yuanjiao, FAN Chenglong, LYU Xiping, et al. Application of EPMA and LA-ICP-MS to study mineralogy of arsenopyrite from the Haoyaoerhudong gold deposit, Inner Mongolia, China[J]. Rock and Mineral Analysis, 2022, 41(2): 211-225.
张博, 李诺, 陈衍景. 热液矿床金的赋存状态及研究方法[J]. 地学前缘, 2018, 25(5): 251-265 ZHANG Bo, LI Nuo, CHEN Yanjing. Occurrence state of gold in hydrothermal deposits and related research methods[J]. Earth Science Frontiers, 2018, 25(5): 251-265.
张国伟, 郭安林, 董云鹏, 等. 关于秦岭造山带[J]. 地质力学学报, 2019, 25(5): 746-768 ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al. Rethinking of the Qinling Orogen[J]. Journal of Geomechanics, 2019, 25(5): 746-768.
张嘉升, 潘爱芳, 樊会民, 等. 陕西柞水地区金盆梁金矿区水系沉积物地球化学特征与找矿方向[J]. 地球科学与环境学报, 2014, 36(4): 55-63 doi: 10.3969/j.issn.1672-6561.2014.04.005 ZHANG Jiasheng, PAN Aifang, FAN Huimin, et al. Geochemical characteristics of stream sediment in Jinpenliang gold mining area of Zhashui area, Shaanxi and its prospecting direction[J]. Journal of Earth Science and Environment, 2014, 36(4): 55-63. doi: 10.3969/j.issn.1672-6561.2014.04.005
张然, 肖志斌, 付超, 等. 胶东地区新立金矿中金矿物和载金黄铁矿成因矿物学特征及地质意义[J]. 岩矿测试, 2022, 41(6): 997-1006 doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206011 ZHANG Ran, XIAO Zhibin, FU Chao, et al. Genetic mineralogy and geological significance of gold minerals and gold-bearing pyrites from the Xinli gold deposit in the Jiaodong area[J]. Rock and Mineral Analysis, 2022, 41(6): 997-1006. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206011
张亚峰, 陈国超, 杨玲, 等. 西秦岭凤县北部罗汉寺岩组沉积时代和源区特征: 来自LA-ICP-MS锆石U-Pb年龄证据[J]. 地质学报, 2022, 96(3): 805-823 ZHANG Yafeng, CHEN Guochao, YANG Ling, et al. A study of the provenance and sedimentary age of the Luohansi Formation in the Fengxian County, eastern part of West Qinling Orogenic belt: Evidence from LA-ICP-MS zircon U-Pb ages[J]. Acta Geologica Sinica, 2022, 96(3): 805-823.
赵静, 梁金龙, 韩波. 水银洞金矿与阳山金矿载金矿物成分分析及金的赋存状态[J]. 科技通报, 2017, 33(1): 24-31 doi: 10.13774/j.cnki.kjtb.2017.01.006 ZHAO Jing, LIANG Jinlong, HAN Bo. The component analyses of Au-Bearing minerals and the occurrence of gold in Shuiyindong and Yangshan Carlin-type gold deposits, China[J]. Bulletin of Science and Technology, 2017, 33(1): 24-31. doi: 10.13774/j.cnki.kjtb.2017.01.006
赵珊茸, 边秋娟, 凌其聪. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2004 ZHAO Shanrong, BIAN Qiujuan, LING Qicong. Crystallography and mineralogy[M]. Beijing: Higher Education Press, 2004.
周学武, 李胜荣, 鲁力, 等. 辽宁丹东五龙矿区石英脉型金矿床的黄铁矿标型特征研究[J]. 现代地质, 2005, 19(2): 231-238 doi: 10.3969/j.issn.1000-8527.2005.02.011 Zhou Xuewu, Li Shengrong, Lu Li, et al. Study of pyrite typomorphic characteristics of Wulong quartz-vein-type gold deposit in Dandong, Liaoning Province, China[J]. Geoscience, 2005, 19(2): 231-238. doi: 10.3969/j.issn.1000-8527.2005.02.011
朱赖民, 郑俊, 熊潇, 等. 南秦岭柞水-山阳矿集区园子街岩体岩石地球化学与成矿潜力探讨[J]. 地学前缘, 2019, 26(5): 189-205 ZHU Laimin, ZHENG Jun, XIONG Xiao, et al. Petrogeochemistry and mineralization potential of the Yuanzijie intrusion in the Zhashui-Shanyang ore deposit cluster in southern Qinling[J]. Earth Science Frontiers, 2019, 26(5): 189-205.
Arehart G B, Chryssoulis S L, Kesler S E. Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits; implications for depositional processes[J]. Economic Geology, 1993, 88(1): 171-185. doi: 10.2113/gsecongeo.88.1.171
Bateman R, Hagemann S. Gold mineralisation throughout about 45 Ma of Archaean orogenesis: Protracted flux of gold in the Golden Mile, Yilgarn craton, Western Australia[J]. Mineralium Deposita, 2004, 39(5-6): 536-559. doi: 10.1007/s00126-004-0431-2
Bralia A, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems: Evidences from southern Tuscany pyritic deposits[J]. Mineralium Deposita, 1979, 14(3): 353-374.
Cabri L J, Newville M, Gordon R A, et al. Chemical speciation of gold in arsenopyrite[J]. The Canadian Mineralogist, 2000, 38(5): 1265-1281. doi: 10.2113/gscanmin.38.5.1265
Choi S G, Youm S J. Compositional variation of arsenopyrite and fluid evolution at the Ulsan deposit, southeastern Korea: A low-sulfidation porphyry system[J]. The Canadian Mineralogist, 2000, 38(3): 567-583. doi: 10.2113/gscanmin.38.3.567
Cline J S, Hofstra A H, Muntean J L, et al. Carlin-type gold deposit in Nevada: Critical geologic characteristics and viable model[J]. Economic Geology, 2005, 100th Anniversary Volume: 451−484.
Cook N J, Chryssoulis S L. Concentrations of “Invisible Gold” in the common sulfides[J]. The Canadian Mineralogist, 1990, 28(1): 1-16.
Deditius A P, Utsunomiya S, Renock D, et al. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2919-2933. doi: 10.1016/j.gca.2008.03.014
Ding K, Yang X Q, Wang H, et al. Geochronology and geochemistry of the granite porphyry from the Qinglingou gold deposit, South Qinling, China: Implication for petrogenesis and mineralization[J]. Minerals, 2022, 12(6): 707. doi: 10.3390/min12060707
Fleet M E, Chryssoulis S L, Maclean P J, et al. Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS[J]. The Canadian Mineralogist, 1993, 31(1): 1-17.
Fleet M E, Mumin A H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis[J]. American Mineralogist, 1997, 82(1-2): 182-193. doi: 10.2138/am-1997-1-220
Fougerouse D, Reddy S M, Aylmore M, et al. A new kind of invisible gold in pyrite hosted in deformation-related dislocations[J]. Geology, 2021, 49(10): 1225-1229. doi: 10.1130/G49028.1
Goldfarb R J, Berger B R, George M W, et al. Tellurium[A]. In: Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply[R]. Reston: U. S. Geological Survey, 2017, R1−R14.
Gopon P, Douglas J O, Auger M A, et al. A nanoscale investigation of Carlin-type gold deposits: An atom-scale elemental and isotopic perspective[J]. Economic Geology, 2019, 114(6): 1123-1133. doi: 10.5382/econgeo.4676
Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13(1): 7-27.
Gu X X, Zhang Y M, Ge Z L, et al. Mineralization and genesis of the orogenic gold system in the Kalamaili area, East Junggar, Xinjiang, northwestern China[J]. GSA Bulletin, 2023.
Hofstra A H, Cline J S. Characteristics and models for Carlin-type gold deposits[J]. Reviews in Economic Geology, 2000, 13: 163-220.
Kretschmar U, Scott S D. Phase relations involving arsenopyrite in the system Fe-As-S and their application[J]. The Canadian Mineralogist, 1976, 14(3): 364-386.
Lentz D R. Sphalerite and arsenopyrite at the Brunswick No. 12 massive-sulfide deposit, Bathurst Camp, New Brunswick: Constraints on P-T evolution[J]. The Canadian Mineralogist, 2002, 40(1): 19-31. doi: 10.2113/gscanmin.40.1.19
Liang Q L, Xie Z J, Song X Y, et al. Evolution of invisible au in arsenian pyrite in carlin-type Au deposits[J]. Economic Geology, 2021, 116(2): 515-526. doi: 10.5382/econgeo.4781
Liu J J, Dai H Z, Zhai D G, et al. Geological and geochemical characteristics and formation mechanisms of the Zhaishang Carlin-like type gold deposit, western Qinling Mountains, China[J]. Ore Geology Reviews, 2015, 64: 273-298. doi: 10.1016/j.oregeorev.2014.07.016
Loftus-Hills G, Solomon M. Cobalt, nickel and selenium in sulphides as indicators of ore genesis[J]. Mineralium Deposita, 1967, 2(3): 228-242.
Ma Y B, Zhu L M, Lu R K, et al. Geology and in-situ sulfur and lead isotope analyses of the Jinlongshan Carlin-type gold deposit in the Southern Qinling Orogen, China: Implications for metal sources and ore genesis[J]. Ore Geology Reviews, 2020, 126: 103777. doi: 10.1016/j.oregeorev.2020.103777
Mao J W, Qiu Y M, Goldfarb R J, et al. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China[J]. Mineralium Deposita, 2002, 37: 352-377. doi: 10.1007/s00126-001-0249-0
Palenik C S, Utsunomiya S, Reich M, et al. “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit[J]. American Mineralogist, 2004, 89(10): 1359-1366. doi: 10.2138/am-2004-1002
Reich M, Kesler S E, Utsunomiya S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781-2796. doi: 10.1016/j.gca.2005.01.011
Sharp Z D, Essene E J, Kelly W C. A re-examination of the arsenopyrite geothermometer: Pressure considerations and applications to natural assemblages[J]. The Canadian Mineralogist, 1985, 23(4): 517-534.
Shenberger D M, Barnes H L. Solubility of gold in aqueous sulfide solutions from 150 to 350 °C[J]. Geochimica et Cosmochimica Acta, 1989, 53(2): 269-278. doi: 10.1016/0016-7037(89)90379-7
Simon G, Kesler S E, Chryssoulis S. Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposition of gold in Carlin-type deposits[J]. Economic Geology, 1999a, 94(3): 405-421. doi: 10.2113/gsecongeo.94.3.405
Simon G, Huang H, Penner-Hahn J E, et al. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite[J]. American Mineralogist, 1999b, 84(7-8): 1071-1079. doi: 10.2138/am-1999-7-809
Su W C, Zhang H T, Hu R Z, et al. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for gold depositional processes[J]. Mineralium Deposita, 2012, 47(6): 653-662. doi: 10.1007/s00126-011-0328-9
Wu X, Delbove F. Hydrothermal synthesis of gold-bearing arsenopyrite[J]. Economic Geology, 1989, 84(7): 2029-2032. doi: 10.2113/gsecongeo.84.7.2029
Zhang B, Li N, Shu S P, et al. Textural and compositional evolution of Au-hosting Fe-S-As minerals at the Axi epithermal gold deposit, Western Tianshan, NW China[J]. Ore Geology Reviews, 2018, 100: 31-50. doi: 10.1016/j.oregeorev.2017.08.002
Zhang Z Y, Wang Y H, Zhang F F, et al. Origin of high Ba-Sr granitoids at Chigou in central China and implications for Cu mineralization: Insights from whole-rock geochemistry, zircon U-Pb dating, Lu-Hf isotopes and molybdenite Re-Os systematics[J]. Ore Geology Reviews, 2021, 138: 104416. doi: 10.1016/j.oregeorev.2021.104416
-
期刊类型引用(4)
1. 孟五一,张振,高永宝,魏立勇,贾彬,郑鑫,刘宁波. 南秦岭新发现王庄金矿床矿物成分及其地质意义. 西北地质. 2024(04): 157-169 . 本站查看
2. 葛战林,顾雪祥,章永梅,高永宝,郝迪,郑艳荣,刘明,王辉. 南秦岭柞水-山阳矿集区金盆梁金矿床成因——来自流体包裹体及C-H-O-S-Pb同位素的制约. 矿床地质. 2024(04): 877-898 . 百度学术
3. 王立峰,薛志强,王振强,王鹏飞,张苏坤,孙保花,王社全,杨智超,张鹏. 小秦岭金矿田杨砦峪–樊岔矿段黄铁矿LA-ICP-MS微量元素特征及其指示意义. 西北地质. 2024(05): 74-87 . 本站查看
4. 赵江林,唐利,田浩浩,赵凤芸,盛渊明,曾涛,陈龙龙,张寿庭. 南秦岭双元沟铜矿床成矿斑岩的黑云母和角闪石成分特征及成矿意义. 成都理工大学学报(自然科学版). 2024(05): 867-879 . 百度学术
其他类型引用(0)