ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

矿山酸性水中铝相次生矿物及环境学意义的研究进展

陈华清, 张天亮, 龚慧山, 徐友宁, 周建伟

陈华清, 张天亮, 龚慧山, 等. 矿山酸性水中铝相次生矿物及环境学意义的研究进展[J]. 西北地质, 2023, 56(4): 141-151. DOI: 10.12401/j.nwg.2023129
引用本文: 陈华清, 张天亮, 龚慧山, 等. 矿山酸性水中铝相次生矿物及环境学意义的研究进展[J]. 西北地质, 2023, 56(4): 141-151. DOI: 10.12401/j.nwg.2023129
CHEN Huaqing, ZHANG Tianliang, GONG Huishan, et al. Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water[J]. Northwestern Geology, 2023, 56(4): 141-151. DOI: 10.12401/j.nwg.2023129
Citation: CHEN Huaqing, ZHANG Tianliang, GONG Huishan, et al. Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water[J]. Northwestern Geology, 2023, 56(4): 141-151. DOI: 10.12401/j.nwg.2023129

矿山酸性水中铝相次生矿物及环境学意义的研究进展

基金项目: 陕西省重点研发计划“秦巴山区金属矿产开发引发生态环境污染综合治理关键技术与示范”(2023-ZDLSF-63),中国地质调查局项目“安康蒿坪河流域石煤矿区生态修复支撑调查与监测”(DD20230457)联合资助。
详细信息
    作者简介:

    陈华清(1984−)男,硕士,从事矿山地质环境问题调查与防治工作,E−mail:116549321@qq.com

    徐友宁(1963−)男,博士,研究员,从事矿山地质环境研究工作,E−mail:948477575@qq.com

    通讯作者:

    徐友宁(1963−)男,博士,研究员,从事矿山地质环境研究工作,E−mail:948477575@qq.com

  • 中图分类号: P592

Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water

  • 摘要:

    酸性矿山排水(AMD)是硫化矿床矿山环境污染防治的难点,因而持续受到国内外学者的关注。众多的学者对矿区AMD中次生矿物进行了研究。为深入了解AMD中次生矿物的形成和演化,为AMD污染防治提供科学依据,笔者对前人不同环境下AMD中的次生矿物类型、次生矿物形成顺序,以及铝相次生矿物的形成、特征、环境危害及意义进行了简要综述。目前与AMD有关的主要次生矿物存在3种类型,即铁相次生矿物、铝相次生矿物和其他相次生矿物,AMD中的pH、Eh和温度对于次生矿物的形成具有控制性的作用。铁、铝相次生矿物具有吸附金属能力,这一性质有助于在一定程度上实现河流的自净化作用。由于AMD形成条件高,矿物相不稳定,目前有关AMD中铝相次生矿物及“酸性白水”的研究成果有限。因此,加强铝相次生矿物以及“酸性白水”的研究,可以更好地解析蒿坪河流域石煤矿区河流酸性磺水–酸性白水的形成演化机制,以及铝相次生矿物吸附重金属的地球化学过程。

    Abstract:

    Acid mine drainage (AMD) is a difficult point in the prevention and control of environmental pollution in sulfide ore deposits, has attracted the attention of scholars at home and abroad. Numerous scholars have studied secondary minerals in AMD in different mining areas. In order to understand the formation and evolution of secondary minerals in AMD, it provides scientific basis for AMD pollution prevention and control. This paper briefly reviews the types of secondary minerals, the formation order of secondary minerals, and the formation, characteristics, environmental hazards and significance of secondary minerals in aluminum phase in AMD under different environments. There are currently three main types of secondary minerals associated with AMD, including: iron−phase secondary minerals, aluminum−phase secondary minerals and other−phase secondary minerals. The pH, Eh and temperature in AMD have a controlling effect on the formation of secondary minerals. Fe− and Al−phase secondary minerals have strong adsorption capacity for several metals in AMD, which can achieve a certain degree of water self−purification. At present, due to the high formation conditions of AMD and unstable mineral phases, there are limited research results on aluminum−phase secondary minerals and “acidic white water” in AMD. Therefore, the study of aluminum−phase secondary minerals and “acidic white water” can better analyze the formation and evolution mechanism of acidic sulfonated water and acidic white water in rivers in the stone coal mines area of Haoping river basin from the perspective of prevention and control, as well as the geochemical process of heavy metal adsorption by aluminum−phase secondary minerals.

  • 中国作为世界上最大的煤炭生产国和消费国,尽管能源结构在不断调整,燃煤消耗逐年减少,但燃煤仍是现阶段的主要能源,2022年中国煤炭消费量占能源消费总量的56.2%(国家统计局,2023)。电力和热力生产是燃煤消费的最主要渠道之一,燃煤电厂的主要污染物包括SO2、NOx、烟等,可导致区域大气环境污染和酸雨等(徐钢等,2016王永英,2019)。此外,燃煤电厂生产过程中也会释放一定含量的重金属(如As、Cd、Cr、Cu、Pb、Hg等)(车凯等,2022顾晨等,2022),这些污染物一般会吸附于颗粒物并随之以沉降的方式进入河、湖、渠、库等地表水环境以及农田、林地等土壤环境,进而可能引起水体、土壤等污染问题,从而破坏水体和土壤生态系统平衡(郝素华等,2022曹佰迪等,2022蒋起保等,2022)。因此,燃煤电厂也是影响区域生态环境的重点固定污染源。对于水环境而言,电厂燃煤过程中排放的SO2、NOx等污染物可影响水体中的硫化物、硝酸盐、氨氮等指标的含量,颗粒物沉降至水体中的重金属含量也可能加重水体中重金属的含量(潘莎等,2019)。

    黄壁庄水库是一座以防洪为主,兼顾城市用水、灌溉、发电等综合利用的大(I)型水利枢纽工程,是海河流域河北段的重要控制性工程。同时,该水库承担着区域农业灌溉用水的任务,也是河北省重要的大型水库型水源地(王瑶等,2020)。黄壁庄水库是岗南水库向南水北调应急供水的唯一途径,其对于城市供水安全具有举足轻重的作用(康文忠,2022)。为了保护黄壁庄水库饮用水水源地,石家庄市先后出台了多项文件和政策以明确石家庄黄壁庄水库饮用水水源保护区的保护级别、范围和水质保护目标。本研究中的燃煤电厂位于黄壁庄水库西侧约2km,区域主导风向的上风向。

    本研究聚焦于某典型燃煤电厂相关大气污染物对于黄壁庄水库的沉降贡献,通过调查“源”的排放强度和“受体”的水环境质量,厘清并分析电厂大气污染物沉降与黄壁庄水库相关污染物的响应关系和累积效应,为科学判定燃煤电厂大气沉降入库污染负荷和影响程度提供支撑依据。

    该燃煤电厂始建于20世纪90年代,电厂现有4×330 MW和2×600 MW机组,总装机容量合计2520 MW,是当地电网装机容量最大的火力发电厂之一,亦是河北省内重要的电源支撑点之一。

    黄壁庄水库位于石家庄市西部鹿泉区黄壁庄村附近的滹沱河干流上,水面面积约为4094万m2,集水面积约23030 km2。库区流域范围属于温带季风气候,太阳辐射季节性变化显著,地面高低气压活动频繁,四季分明,夏秋多雨,年内降水主要集中在7~9月份,占年总降水量的70%~80%。区内多年平均降水量484.4 mm,最大降水量1211.0 mm,最小降水量220.0 mm。黄壁庄水库汇水范围内海拔1000 m左右,水源地保护区制高点为驼梁山,海拔2281 m。黄壁庄水库上游区域主要植被类型为经济林、农田耕地、草场草地、灌木丛等(董文鹏等,2022)。黄壁庄主要入库河流为滹沱河(岗黄区间段)与冶河。黄壁庄水库位于岗南水库下游,岗南水库下泄水量经滹沱河(岗黄区间)入黄壁庄水库,因此岗南水库是黄壁庄水库的重要水源补给。冶河长39.4 km,上游有绵河和甘陶河两条支流,其中仅绵河常年有水,两条支流于北横口处汇合。黄壁庄水库的主要流域汇水范围包括滹沱河、冶河、牧马河、绵河、清水河、乌河、松溪河、阳武河、云中河、永兴河、龙华河、南甸河、温河、桃河、南川河、甘陶河。研究区位置见图1

    图  1  研究区位置图
    Figure  1.  The location of the study area

    对2008~2020年黄壁庄水库入口和中心监测点位的水质进行逐月监测,主要监测指标包括pH值、溶解氧、高锰酸盐指数、生化需氧量、氨氮、挥发酚、总磷、化学需氧量、阴离子洗涤剂、石油类、硫化物、铜、锌、总氰化物、氟化物、总砷、总汞、六价铬、总铅、总镉和硒等21项,主要的测试方法以X射线荧光光谱法(XRF)、原子荧光光谱法(AFS)和电感耦合等离子体质谱法(ICP-MS)为主。

    燃煤电厂污染物排放数据来自2008~2020年在线监测数据,数据来源符合《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范》(HJ75-2017)和《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法》(HJ76-2017)。

    由于Spearman相关分析模型对数据条件的要求较低,适用范围较广,可满足数据条件(周永江等,2020)。因此,相关性分析首先采用SPSS 22软件中的Spearman相关分析模型对电厂排放大气污染物总量与对应黄壁庄水库水质指标进行相关性分析,具体计算公式如下:

    $$ \rho {=1-}\frac{{6}\sum {{d}}_{{i}}^{{2}}}{{n}\left({{n}}^{{2}}{-1}\right)} $$ (1)

    式中:ρ为相关系数,di为两个随机变量的第i个取值的差值,即di=XiYi,1≤inn为样本容量。若ρ介于0~1之间,则变量间存在正相关关系;若ρ介于−1~0之间,则变量间存在负相关关系。ρ的绝对值越接近1,表明变量之间的相关性越强。

    由于该燃煤电厂排放的大气污染物SO2、NO2进入大气后转化成中间污染物硫酸盐和硝酸盐,因此本次预测需模拟中间产物硫酸盐、硝酸盐沉降量(于洋,2012冯紫艳,2013);结合本次模拟干湿沉降及预测范围(城市尺度)等预测特征,故选择CALPUFF模型。CALPUFF模拟系统包括诊断风场模型CALMET、高斯烟团扩散模型CALPUFF和后处理软件CALPOST等3部分。CALMET利用质量守衡原理对风场进行诊断,输出包括逐时风场、混合层高度、大气稳定度(PGT分类)、微气象参数等;CALPUFF模式可运用于静风、复杂地形等非定常条件;CALPOST为计算结果后处理软件,对CALPUFF计算的浓度进行时间分配处理,并计算出干(湿)沉降通量、能见度等(卢燕宇等,2017)。

    CALPUFF基本原理为高斯烟团模式,利用在取样时间内进行积分的方法来节约计算时间,输出主要包括地面和各指定点的污染浓度;烟团分裂利用采样函数方法对烟团的空间轨迹、浓度分布进行描述;烟云抬升采用Briggs抬升公式(浮力和动量抬升),考虑稳定层结中部分烟云穿透,过渡烟云抬升等因素(邹伟等,2010)。

    假设水库垂直上空大气中的污染物在整个水体为均匀分布,则大气沉降的污染物通量转换到水体中的浓度CT可按如下公式计算:

    $$ C_{T}=F_{t} \cdot S_{w} \cdot T/V $$ (2)

    式中,CT(mg/L)为大气沉降的污染物通量转换到水体中的浓度;Ft(mg/(m2·d))为总沉降通量;Sw(km2)为水域面积;V(m3)为水库库容;Tn(无量纲)为转换系数,按照大气污染物与水污染物分子量折算,n为SO2、NO2、NH3、重金属(Hg、As、Pb、Cd、Cr、Cu、Zn)等。

    依据对浙江省老虎滩水库流域的研究建立的源头溪流一维水质模型(金树权,2008),并以此为基础建立了入河系数多目标优化模型。水质模型见下式。

    $$ {L}_{e}=\sum _{i=1}^{n}{q}_{i}\left[{e}^{-k\sum _{j=1}^{n}{l}_{j}}\right]+\frac{{L}_{n}}{kl}\left(1-{e}^{-kl}\right)+\frac{{C}_{b}{Q}_{e}}{kl}\left(1-{e}^{-kl}\right) $$ (3)

    式中,Le为段末污染物月平均输入负荷(kg/mon);k为单位河段污染物平均综合降解系数(1/km);l为河段总长度(km);li为第i个点源污染排放口离河流段末的长度(km);qi为第i个点源污染物月排放量(kg/mon);Ln为流域内面源污染物月入河量(kg);Cb为污染物环境背景浓度(mg/L),Qe为河流月累计流量(m3/mon)。

    本研究只考虑面源污染项Ln/kl*(1−e−kl)。根据该研究建立的模型,面源污染物输入负荷受污染物综合降解系数和面源污染物入河量的影响(宋保平等,2013)。本研究按沉降到黄壁庄水库补给河流全部汇水区域的污染物经地表径流、补给方式全部进入黄壁庄水库考虑,忽略水污染物在迁移过程中的衰减。

    根据河北省地方标准《燃煤电厂大气污染物排放标准》(DB 13/2209-2015)和《地表水环境质量标准》(GB 3838-2002),以常见的燃煤电厂大气污染物为主要指标,结合地表水环境和燃煤中均包含的重金属元素(王毓秀等,2019),通过烟尘、SO2、NOx、NH3、Hg、Cu、Zn、As、Cd、Pb、Cr等排放量明确大气沉降污染物的排放状况。电厂污染物排放数据采用在线监测系统监测数据。2008~2020年该电厂的烟尘、SO2、NOx、NH3、Hg、Cu、Zn、As、Cd、Pb、Cr年均排放量(图2)分别为1271.00 t/a、4649.81 t/a、11411.30 t/a、68.50 t/a、0.21 t/a、0.22 t/a、4.86 t/a、0.15 t/a、1.27 kg/a、0.42 t/a、0.07 t/a,电厂的烟尘排放量在2009年之后逐年降低,SO2和NOx排放量在2012~2017年有所降低,2008~2020年电厂烟尘、SO2和NOx的排放量整体呈下降趋势,2015~2020年NH3的排放量呈波动状态。电厂Cu、Zn、As、Cd、Cr和Pb的排放量均于2009年达到峰值之后逐年下降,Hg排放量于2009年达到峰值后,呈现总体下降的趋势,2011年、2016~2017年和2020年出现了略微回升,但整体削减量可观(图3)。2015年电厂通过加装湿式电除尘器完成了烟气“超低排放”改造,烟尘排放量得到大量削减(烟尘排放削减量为2292.6 t/a);此外,2015年起烟气中重金属(Cu、Zn、As、Cd、Cr和Pb)排放量也出现了明显下降。2000年之后,国家在煤行业采取的一系列措施在SO2、NOx和PM2.5排放量的减排等方面均取得了一定的成效,全国煤电行业SO2和NOx的排放量由千万吨级降至百万吨级(顾晨等,2022)。

    图  2  2008~2020年燃煤电厂大气污染物(烟尘、SO2、NOx、NH3、Hg、Cu、Zn、As、Cd、Pb、Cr)排放量统计图
    Figure  2.  Emissions of soot, SO2, NOx, NH3, Hg, Cu, Zn, As, Cd, Pb and Cr from power plants from 2008 to 2020
    图  3  2008~2020年燃煤电厂大气污染物排放量变化图
    Figure  3.  Change in emissions of atmospheric pollutants from power plants from 2008 to 2020

    2008~2020年黄壁庄水库入口和中心处的21项水质监测指标中,高锰酸盐指数、氨氮、TP、COD和Cu等5项指标达到《地表水环境质量标准》(GB 3838-2002)II类水质标准,其余16项水质指标均可达到I类水质标准(图4)。黄壁庄水库入口处的高锰酸盐指数仅在2019年达到I类水质标准,其余年份均为II类水质标准;中心处的高锰酸盐指数在2008~2017年达到II类水质标准,2018~2020年可达I类水质标准,黄壁庄水库入口和中心处的NH3-N在2009年、2015年和2017年达到II类水质标准,其余年份均达到I类水质标准。除黄壁庄入口和中心处2010年的TP达到I类水质标准外,各点位其余年份的TP均达到II类水质标准。各监测点位的COD仅2008年为II类水质标准,2009~2020年均达到I类水质标准。2009年黄壁庄水库中心处Cu、Zn、Cd、Pb和Hg浓度达到了峰值,分别为0.02 mg/L、0.02 mg/L、0.00005 mg/L、0.0005 mg/L和0.00004 mg/L,除Cu满足II类水质标准外,其余重金属浓度均满足I类水质标准。其中,Zn、Cd、Pb和Hg浓度远低于《地表水环境质量标准》(GB 3838-2002)规定分析方法的检出限(分别为0.05 mg/L、0.001 mg/L、0.01 mg/L和0.00005 mg/L),即2009~2020年黄壁庄水库中心水体中Zn、Cd、Pb和Hg的浓度处于极低的水平并呈持续降低趋势。2013年起,黄壁庄水库水体中Cu浓度均未超过0.0025 mg/L,满足I类水质标准,且远低于《地表水环境质量标准》(GB 3838-2002)规定分析方法的最低检出限0.001 mg/L,2013年之后水体Cu含量亦呈现整体持续降低的趋势,水质持续转好。

    图  4  2008~2020年黄壁庄水库入口和中心处的水质统计图
    Figure  4.  Water quality at the entrance and centre of the reservoir from 2008 to 2020

    以燃煤电厂排放的典型大气污染物为基础,同时结合该电厂燃煤成分、燃煤烟尘中的化学组分和《地表水环境质量标准》(GB 3838-2002)中涉及的水质因子(王毓秀等,2016),采用Spearman相关性分析方法对电厂排放的大气污染与水库对应水质指之间的关系进行分析(图5)。相关性分析结果显示,黄壁庄水库入口处水体重金属(Hg、As、Pb、Cd、Cr6+、Cu、Zn)和电厂排放的大多数烟尘重金属Hg、As、Pb、Cr6+、Zn之间呈显著相关性(p<0.05),其中水库入口处水体中Hg与电厂烟尘其他重金属呈显著负相关;电厂排放烟尘中Cd和Cu与水库入口处水体中重金属基本无显著相关性。黄壁庄水库中心处水体重金属(Hg、As、Pb、Cd、Cr6+、Cu、Zn)和电厂排放的大多数烟尘重金属Hg、As、Pb、Cd、Cu、Zn之间呈显著相关性(p<0.05),其中水库中心处水体中Hg与电厂烟尘其他重金属呈显著负相关;电厂排放烟尘中Cr6+与水库中心处水体中重金属基本无显著相关性。然而,2016年起黄壁庄水库中Zn和Pb浓度出现了略微回升,电厂烟尘重金属的排放量仍在下降,即电厂烟尘重金属的排放对黄壁庄水库水质的影响可能有所降低。已有研究显示,燃煤电厂周边河流中的重金属含量随着样点与电厂距离的增加而减小(李旭等,2022),因此,燃煤电厂虽在一定程度上可影响周边水体中重金属的含量,但在本研究中影响较小。

    图  5  燃煤电厂大气污染物和库区水质的相关性分析图
    a.水库入口水体与电厂大气污染物相关性;b.水库中心水体与电厂大气污染物相关性
    Figure  5.  Correlation analysis of atmospheric pollutants of power plants and water quality in reservoirs

    采用CALPUFF模型对该电厂排放的大气污染物在黄壁庄水库的沉降量进行分析,结果显示,因该电厂大气污染物排放导致的黄壁庄水库中水体SO2、SO42−、NOx、NO3、NH3、Hg、As、Cd、Cr、Cu、Pb、Zn沉降量分别为955.48 kg/a、81.23 kg/a、1.87 t/a、119.49 kg/a、151.11 kg/a、173.00 g/a、6.14 kg/a、0.35 g/a、351.00 g/a、100.00 g/a、44.00 g/a、4.02 kg/a;电厂排放的大气污染物沉降到补给源(岗南水库、滹沱河、冶河、牧马河、绵河、清水河、乌河、松溪河、阳武河、云中河、永兴河、龙华河、南甸河、温河、桃河、南川河、甘陶河等)水体中的SO2、SO42−、NOx、NO3、NH3、Hg、As、Cd、Cr、Cu、Pb、Zn总沉降量分别为4.51 t/a、638.53 kg/a、3.70 t/a、1.19 t/a、575.22 kg/a、604.00 g/a、21.41 kg/a、1.65 g/a、1.22 kg/a、348.00 g/a、154.00 g/a、14.03 kg/a;电厂排放大气污染物沉降到补给源周边陆域的SO2、SO42−、NOx、NO3、NH3、Hg、As、Cd、Cr、Cu、Pb、Zn总沉降量分别为87.49 t/a、16.49 t/a、67.12 t/a、22.71 t/a、10.37 t/a、10.85 kg/a、384.91 kg/a、22.00 g/a、22.02 kg/a、6.27 kg/a、2.77 kg/a、252.26 kg/a。黄壁庄水库水面、补给源水面与陆域-水体沉降量的SO2、SO42−、NOx、NO3、NH3、Hg、As、Cd、Cr、Cu、Pb、Zn总沉降量为22.97 t/a、4.02 t/a、18.99 t/a、5.85 t/a、2.79 t/a、2.95 kg/a、104.53 kg/a、6.00 g/a、5.98 kg/a、1.70 kg/a、752.00 g/a、68.50 kg/a。

    该电厂排放污染物转化为水污染物的指标率见图6。排放的SO2、SO42−、NOx、NO3、NH3、Hg、As、Cd、Cr、Cu、Pb、Zn沉降到黄壁庄水库水体中转化生成的水污染物SO42−、HNO3、NH3-N、Hg、As、Cd、Cr6+、Cu、Pb、Zn贡献浓度分别为3.35×10−3 mg/L、5.86×10−3 mg/L、5.88×10−4 mg/L、3.73×10−7 mg/L、1.32×10−5 mg/L、7.46×10−10 mg/L、7.56×10−7 mg/L、2.16×10−7 mg/L、9.48×10−8 mg/L、 8.66×10−6 mg/L,其浓度占标率分别为1.34×10−3%、5.86×10−2%、0.12%、0.75%、2.65×10−2%、1.49×10−5%、1.51×10−3%、2.16×10−5%、9.48×10−4%、8.66×10−4%,各项污染物的占标率的大小排序为Hg>NH3-N>HNO3>As>Cr6+>SO42−>Pb>Zn>Cu>Cd,均满足《地表水环境质量标准》(GB 3838-2002)中II类标准限值要求。电厂排放的污染物沉降到黄壁庄水库水面、补给源水面以及陆域的污染物最终进入水库中转化生成的水污染物SO42−、HNO3、NH3-N、Hg、As、Cd、Cr6+、Cu、Pb、Zn贡献浓度分别为3.11×10−2 mg/L、2.62×10−2 mg/L、3.91×10−3 mg/L、2.27×10−6 mg/L、8.03×10−5 mg/L、4.88×10−9 mg/L、4.60×10−6 mg/L、1.31×10−6 mg/L、5.78×10−7 mg/L、5.27×10−5 mg/L,浓度占标率分别为0.01%、0.26%、0.78%、4.53%、0.16%、9.76×10−5%、9.19×10−3%、1.31×10−4%、5.78×10−3%、5.27×10−3%,各项污染物的占标率的大小排序为Hg>NH3-N>HNO3>As>SO42−>Cr6+>Pb>Zn>Cu>Cd,各污染物浓度均满足《地表水环境质量标准》(GB 3838-2002)中Ⅱ类标准限值要求。已有研究结果表明,燃煤电厂生产过程中排放的含Hg废气和粉尘是环境中Hg的重要来源,也是导致周边水体中Hg含量较高的一个原因(刘瑞平等,2017李昌鑫等,2020刘昭等,2021)。电厂排放的Hg及其化合物直接沉降到黄壁庄水库水体以及沉降到黄壁庄水库水面、补给源水面和陆域最终间接进入水库中转化生成的水污染物Hg在各水污染物中浓度占标率最高,但分别为0.75%和4.53%,水平极低,表明电厂排放的Hg对黄壁庄水库水质的影响很小。

    图  6  电厂排放污染物和补给水源对水库污染物的占标率排序图
    a.水库入口处水体;b.水库中心处水体
    Figure  6.  Ranking of pollutants discharged from power plants and recharge sources to reservoir pollutants as a percentage of the standard

    (1)2008~2020年该燃煤电厂的大气污染物(如烟尘、SO2、NOx、重金属等)排放量整体呈降低趋势,在此期间,黄壁庄水库的水质均满足《地表水环境质量标准》(GB 3838-2002)中Ⅱ类及以上水体限值要求,大部分水质指标达到了I类标准。

    (2)相关性分析结果证明了电厂排放烟尘中的重金属Hg、As、Pb和水库入口处、中心处水体中对应重金属含量之间有显著相关性,Cd和Cu与水库入口处水体中对应重金属基本无显著相关性,Cr6+与水库中心处水体中对应重金属基本无显著相关性。

    (3)电厂排放的大气污染物直接沉降到黄壁庄水库水体后转化生成的各水污染物中对水库水质影响最大的污染物是Hg及其化合物,其进入水体转化生成的水污染物Hg的浓度占标率在各水污染物中最大,但也仅为0.75%,水平极低,对水库水质的影响很小。

  • 图  1   蒿坪河流域某支沟河流中酸性磺水及白水照片

    Figure  1.   Sulfonated and white water in a tributary river of the Haoping river basin

    图  2   蒿坪河流域某支沟矿硐口磺水及白水照片

    Figure  2.   Sulfonated and white water at the outlet of a mine cave in a tributary river of the Haoping river basin

    表  1   AMD中次生矿物种类(据Alpers et al.,1994修改)

    Table  1   Species of secondary minerals in AMD

    铁相次生矿物化学式铝相次生矿物化学式其他相次生矿物化学式
    水绿矾FeSO4·7H2O铝叶绿矾Al2/3Fe4(SO46(OH)2·20H2O胆矾CuSO4·5H2O
    铁矾FeSO4·5H2O铁明矾FeAl2(SO44·22H2O三水胆矾CuSO4·3H2O
    水铁矾FeSO4·H2O镁明矾MgAl2(SO44·22H2O水胆矾Cu4(SO4)·(OH)6
    叶绿矾FeFe4(SO46(OH)2·20H2O锰明矾MnAl2(SO44·22H2O柱钠铜矾Na2Cu(SO4)·22H2O
    粒铁矾FeFe2(SO44·14H2O毛矾石Al2(SO43·17H2O斜蓝铜矾Cu4(SO4)(OH)6·2H2O
    针绿矾Fe2(SO43·9H2O斜铝矾Al(SO4)(OH)·5H2O水铜铝矾Cu4Al2(SO4)(OH)12·24H2O
    板铁矾(H3O)Fe(SO42·3H2O明矾石KAl3(SO42(OH)6水氯铜矿CuCl2·2H2O
    纤铁矾Fe(SO4)(OH)·5H2O钠明矾石NaAl3(SO42(OH)6砷铁矾Fe6(AsO34(SO4)(OH)4·4H2O
    红铁矾Fe(SO4)(OH)·3H2O羟铝矾Al4(SO4)(OH)10·4H2O石膏CaSO4·2H2O
    基铁矾Fe(SO4)(OH)·2H2O矾石Al4(SO4)(OH)4·7H2O泻利盐MgSO4·7H2O
    黄钾铁矾KFe3(SO42(OH)6斜钠明矾NaAl(SO42·6H2O水镍钴矾Co6Ni3Mn(SO4)·6H2O
    黄铵铁矾NH4Fe3(SO42(OH)6三水铝石Al(OH)3钴铝矾(Co,Mg)Al2(SO44·22H2O
    黄钠铁矾NaFe3(SO42(OH)6赤矾CoSO4·7H2O
    柱钾铁矾K2O·Fe2O3·4SO3·8H2O白钠镁矾Na6Mg(SO42·4H2O
    施威特曼石Fe8O8(SO4)(OH)6李时珍石ZnFe2(SO44·14H2O
    锡铁山石Fe8(Cl)(SO4)·6H2O
    针铁矿α-FeOOH
    纤铁矿γ-FeOOH
    褐铁矿Fe2O3·nH2O
    赤铁矿Fe2O3
    下载: 导出CSV

    表  2   铝相次生矿物的性质(据Bigham et al.,2000修改

    Table  2   Properties of aluminum phase secondary minerals

    矿物名称水羟铝矾石
    Al4(OH)10SO4·15H2O
    羟铝矾
    Al4(OH)10SO4·4H2O
    水羟铝矾
    Al12(OH)26(SO45·20H2O
    矾石
    Al2(OH)4SO4·7H2O
    变矾石
    Al2(OH)4SO4·5H2O
    晶系单斜晶系单斜晶系三斜晶系单斜晶系单斜晶系
    空间群P21P1P21/cP21/m
    晶胞尺寸a=14.911
    b=9.993
    c=13.640
    β=112.24°
    a=12.954
    b=10.004
    c=11.064
    β=104.1°
    a=18.475
    b=19.454
    c=3.771
    α=95.24°
    β=91.48°
    γ=80.24°
    a=7.440
    b=15.583
    c=11.700
    β=110.18°
    a=7.930
    b=16.879
    c=7.353
    β=106.73°
    颜色白色至浅黄棕色白色白垩色/
    含铜时为浅蓝绿色
    白色丝白色
    结构及结晶度粘土状,
    通常潮湿和可塑
    粘土状,
    贝壳状断口
    密堆积的微-
    隐晶质聚集体
    泥状、易碎、
    结节状细小纤维
    结节状微晶线状
    聚集体和凝结物
    最强XRD间距(Å)12.6, 6.18, 5.29, 4.709.39, 4.73, 3.69, 1.43818.18.98, 7.79, 4.708.46, 4.52, 4.39, 3.54
    稳定性易脱水为羟铝矾由水羟铝矾石脱水而成在环境条件下脱水在55 ℃下脱水为矾石
    下载: 导出CSV

    表  3   铝羟基硫酸盐矿物中铝沉淀物的组成(%)(据Bigham et al.,2000修改)

    Table  3   Composition (%) of Al hydroxysulfate minerals

    水合
    明矾石
    羟铝矾水羟
    铝矾石
    ABCDEF
    C1C2C3
    理论值分析值
    Al2O338.8045.8031.7046.4044.7536.2042.8047.0039.0040.1044.10
    CaO0.300.400.771.50
    Na2O0.000.050.181.200.10
    K2O0.000.040.000.500.000.00
    H2O20.5736.3055.9033.4035.6046.940.8039.5046.0045.6035.00
    SO340.6317.9012.4017.4018.1010.7012.408.7017.4011.6022.30
    总计100.00100.00100.0097.2098.7594.2096.9096.90104.2097.40101.40
    X射线衍射羟铝矾羟铝矾无定形无定形无定形明矾石无定形无定形
    电子衍射羟铝矾无定形无定形无定形结晶无定形羟铝矾
      注:样品A来自Bannister等(1948a);样品B来自Clayton(1980);样品C来自Nordstrom(1984);样品D来自Headden(1905)Cunningham等(1996);样品E来自Ball(1989);样品F来自Charles等(1967)合成沉淀。
    下载: 导出CSV
  • 栾兆坤. 水中铝的形态及其形态研究方法[J]. 环境化学, 1987(01): 46-56

    LUAN Zhaokun. The speciation and speciation study of aluminum in water[J]. Environmental Chemistry, 1987(01): 46-56.

    刘奇缘, 陈炳辉, 周永章等. 粤北大宝山槽对坑酸性矿山废水中不同沉积层次生矿物研究[J]. 地球与环境, 2017, 45(03): 259-266

    LIU Qiyuan, CHEN Binghui, ZHOU Yongzhang, et al. A study on secondary minerals in different sediments of Caoduikeng acid mine drainage, Dabaoshan mine, North Guangdong province, China[J]. Earth and Environment, 2017, 45(03): 259-266.

    王武名, 鲁安怀, 王长秋等. 尾矿酸浸液制备氢氧化铁过程中施威特曼石的形成与转变[J]. 岩石矿物学杂志, 2009, 28(06): 581-586

    WANG Wuming, LU Anhuai, WANG Changqiu, et al. The formation and transformation of schwertmannite during the preparation of ferric hydroxide with acid leaching filtrate of tailings[J]. Acta Petrologica Et Mineralogica, 2009, 28(06): 581-586.

    吴亚坤, 谢臣臣, 孙魁等. 神府矿区不同含水层水力联系的水化学证据[J/OL]. 西北地质, 2023: 1−12. doi: 10.12401/j. nwg. 2023010

    WU Yakun, XIE Chenchen, SUN Kui, et al. Hydrochemical evidence for hydraulic connection of different aquifers in Shenfu mining area[J/OL]. Northwestern Geology,2023: 1-12. doi: 10.12401/j.nwg.2023010

    徐友宁, 张江华, 何芳等. 西北地区矿山地质环境调查与防治研究[J]. 西北地质, 2022, 55(3): 129-139

    XU Youning, ZHANG Jianghua, HE Fang, et al. Investigation and Preventive Research of Mine Geological Environment in Northwest China[J]. Northwestern Geology, 2022, 55(3): 129-139.

    徐友宁, 陈华清, 柯海玲, 等. 蒿坪河流域石煤矿区河流铝的白色污染及其成因分析. 西北地质, 2023, 56(4): 128–140.

    XU Youning, CHEN Huaqing, KE Hailing, et al. Analysis of White Pollution of River Aluminum in Stone CoalMining Area in Haoping River Basin and Its Causes. Northwestern Geology, 2023, 56(4): 128–140.

    周立祥. 酸性矿山废水中生物成因次生高铁矿物的形成及环境工程意义[J]. 地学前缘, 2008, 15(6): 74-82

    ZHOU Lixiang. Biogenic iron oxyhydrosulfate and iron oxyhydroxide occurring in acid mine drainage and their environmental engineering implications[J]. Earth Science Frontiers, 2008, 15(6): 74-82.

    邹琦, 陈莹, 刘奇缘等. 广东大宝山铁龙AMD中赭色沉积物的含铁次生矿物研究[J]. 高校地质学报, 2017, 23(03): 442-451

    ZOU Qi, CHEN Ying, LIU Qiyuan, et al. Study on iron-bearing secondary minerals of ochre precipitates in the Tielong acid mine drainage, Dabaoshan mine, Guangdong province[J]. Geological Journal of China Universities, 2017, 23(03): 442-451.

    Adams F, Hajek B F. Effects of Solution Sulfate, Hydroxide, and Potassium Concentrations on the Crystallization of Alunite, Basaluminite, and Gibbsite from Dilute Aluminum Solutions[J]. Soil Science Society of America Journal, 1978, 126(3): 169-173.

    Alpers C N, Blowes D W, Nordstrom D K , et al. Secondary Minerals and Acid Mine-Water Chemistry. [M]. 1994. doi: 10.1016/0009-2541(92)90129-S

    Alpers C N, Rye R O, Nordstrom D K , et al. Chemical, Crystallographic, and Isotopic Properties of Alunite and Jarosite from Acid Hypersaline Australian Lakes [J], Chemical Geology, 1992, 96(1-2): 203-226. doi: 10.1016/0009-2541(92)90129-S

    Anthony J W, McLean W J. Jurbanite, A New Post-Mine Aluminum Sulfate Mineral from San Manuel, Arizona [J], American Mineralogist, 1976, 61: 1-4.

    Ash S H, Felegy E W, Kennedy D O, et al. Acid Mine Drainage Problems: Anthracite Region of Pennsylvania [M]. Technical Report Archive & Image Library, 1951.

    Ball, P. The crystal structure of sodium sulfate decahydrate, Na2SO4·10H2O.[J]. Acta Crystallographica Section C: Crystal Structure Communications, 1989,45(3), 363-365.

    Bannister F A, Hollingworth S E. Two Bew British Minerals[J]. Nature, 1948a, 162(4119): 565-565.

    Bao Y, Guo C, Lu G, et al. Role of Microbial Activity in Fe(III) Hydroxysulfate Mineral Transformations in An Acid Mine Drainage-Impacted Site from the Dabaoshan Mine[J]. Science of the Total Environment, 2018, 616: 647-657.

    Barton P. The acid mine drainage. In Sulfur in the Environment[M]. 1978.

    Basallote M D, Canovas C R, Olias M, et al. Mineralogically-Induced Metal Partitioning during the Evaporative Precipitation of Efflorescent Sulfate Salts from Acid Mine Drainage[J]. Chemical Geology, 2019, 530: 119-339.

    Bassett H, Goodwin T H. The basic aluminium sulphates[J]. Quarterly Journal of the Chemical Society of London, 1949, 2239-2279.

    Bertsch P, Parker B. Aqueous Polynuclear Aluminum Species[J]. Environmental Chemistry of Aluminum, 1996, 117-168. doi: 10.1180/minmag.1984.048.346.18

    Beukes G J, Schoch A E, De Bruiyn H, et al. A New Occurrence of the Hydrated Aluminium Sulphate Zaherite, from Pofadder, South Africa[J]. Mineralogical Magazine, 1984, 48(346): 131-135. doi: 10.1180/minmag.1984.048.346.18

    Bigham J M, Nordstrom D K. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters[J]. Reviews in Mineralogy and Geochemistry, 2000, 40: 351–403. doi: 10.2138/rmg.2000.40.7

    Brown Jr G E, Calas G. Environmental Mineralogy–Understanding Element Behavior in Ecosystems[J]. Comptes Rendus Geoscience, 2011, 343(2-3): 90-112. doi: 10.1016/j.crte.2010.12.005

    Cala-Rivero V, Arranz-González J C, Rodríguez-Gómez V, et al. A Preliminary Study of the Formation of Efflorescent Sulfate Salts in Abandoned Mining Areas with a View to Their Harvesting and Subsequent Recovery of Copper[J]. Minerals Engineering, 2018, 129: 37-40. doi: 10.1016/j.mineng.2018.09.014

    Candeias C, Ávila P F, EF da Silva, et al. Acid Mine Drainage from the Panasqueira Mine and its Influence on Zêzere River(Central Portugal)[J]. Journal of African Earth Sciences, 2014, 99: 705-712. doi: 10.1016/j.jafrearsci.2013.10.006

    Caraballo M A, Wanty R B, Verplanck P L, et al. Aluminum mobility in mildly acidic mine drainage: Interactions between hydrobasaluminite, silica and trace metals from the nano to the meso-scale[J]. Chemical Geology, 2019, 519: 1–10. doi: 10.1016/j.chemgeo.2019.04.013

    Carbone C, Dinelli E, Marescotti P, et al. The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests[J]. Journal of Geochemical Exploration, 2013, 132: 188-200. doi: 10.1016/j.gexplo.2013.07.001

    Carrero S, Pérez-López R, Fernandez-Martinez A, et al. The potential role of aluminum hydroxysulphates in the removal of contaminants in acid mine drainage[J]. Chemical Geology, 2015, 417: 414–423. doi: 10.1016/j.chemgeo.2015.10.020

    Casey W H, Rustad J R, Spiccia L. Minerals as molecules—Use of aqueous oxide and hydroxide clusters to understand geochemical reactions[J]. Chemistry–A European Journal, 2009, 15(18): 4496-4515. doi: 10.1002/chem.200802636

    Chen Z W, Zhong X, Zheng M Y, et al. Indicator species drive the key ecological functions of microbiota in a river impacted by acid mine drainage generated by rare earth elements mining in South China[J]. Environmental Microbiology, 2022, 24(2): 919-937. doi: 10.1111/1462-2920.15501

    Charles Roberson, John Hem. Form and Stability of Aluminum Hydroxide Complexes in Dilute Solution[D]. USGS,1967. doi: 10.1180/minmag.1980.043.331.18

    Clayton T. Hydrobasaluminite and basaluminite from Chickerell, Dorset[J]. Mineralogical Magazine, 1980, 43(331): 931-937. doi: 10.1180/minmag.1980.043.331.18

    Cory N, Buffam I, Laudon H, et al. Landscape control of stream water aluminum in a boreal catchment during spring flood[J]. Environmental Science & Technology, 2006, 40(11): 3494-3500.

    Cravotta III C A, Brady K B C, Rose A W, et al. Frequency distribution of the pH of coal-mine drainage in Pennsylvania[C]US Geological Survey Toxic Substances Hydrology Program–Proceedings of the Technical Meeting: US Geological Survey Water-Resources Investigations Report. 1999, 99: 313-324.

    Cunningham K M. Water-quality data for Doughty Springs, Delta County, Colorado, 1903-1994, with emphasis on sulfur redox species[R]. US Geological Survey Water-Resources Investigations Report. 1996. doi: 10.1016/j.chemosphere.2013.12.027

    Du J Y, Sabatini D A, Butler E C. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water[J]. Chemosphere, 2014, 101: 21–27. doi: 10.1016/j.chemosphere.2013.12.027

    De Bruiyn H, Schoch A E, Beukes G J, et al. Note on cell parameters of zaherite[J]. Mineralogical Magazine, 1985, 49(350): 145− 146. doi: 10.2138/am-2016-5574

    Ehlmann B L, Swayze G A, Milliken R E, et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters[J]. American Mineralogist, 2016, 101(7): 1527− 1542. doi: 10.1007/s10498-005-6246-7

    España J S, Pamo E L, Pastor E S, et al. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt[J]. Aquatic Geochemistry, 2006, 12: 269-298. doi: 10.1007/s10498-005-6246-7

    España J S, Wang K, Falagán C, et al. Microbially mediated aluminosilicate formation in acidic anaerobic environments: A cell-scale chemical perspective[J]. Geobiology, 2018, 16(1): 88-103. doi: 10.1111/gbi.12269

    Farkas L, Pertlik F. Crystal structure determinations of felsöbányaite and basaluminite, Al4 (SO4)(OH)10·4H2O[J]. Acta Mineralogica-Petrographica, Szeged. 1997, 38: 5-15. doi: 10.1016/j.icarus.2009.07.014

    Farrand W H, Glotch T D, Rice Jr J W, et al. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region[J]. Icarus, 2009, 204(2): 478-488. doi: 10.1016/j.icarus.2009.07.014

    Frondel C. Meta-aluminite, a new mineral from Temple Mountain, Utah[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1968, 53(5-6): 717-721. doi: 10.1126/science.1076505

    Furrer G, Phillips B L, Ulrich K U, et al. The origin of aluminum flocs in polluted streams[J]. Science, 2002, 297(5590): 2245-2247. doi: 10.1126/science.1076505

    Headden, W.P. The Doughty Springs, a group of radium-bearing springs, Delta County, Colorado[J]. American Journal of Science, 1905,19, 297-309 doi: 10.2113/gsecongeo.64.6.599

    Hemley J J, Hostetler P B, Gude A J, et al. Some stability relations of alunite[J]. Economic Geology, 1969, 64(6): 599-612. doi: 10.2113/gsecongeo.64.6.599

    Hicks W S, Bowman G M, Fitzpatrick R W. Effect of season and landscape position on the aluminium geochemistry of tropical acid sulfate soil leachate[J]. Soil Research, 2009, 47(2): 137-153. doi: 10.1071/SR06106

    Jambor J L, Puziewicz J. New mineral names[J]. American Mineralogist, 1990, 75(3-4): 431-438. doi: 10.3891/acta.chem.scand.16-0403

    Johansson G. The crystal structures of [Al2(OH)2(H2O)8](SO4)4·2H2O and [Al2(OH)2(H2O)8](SeO4)2·2H2O[J]. Acta Chemica Scandinavica, 1962, 16: 403-420. doi: 10.3891/acta.chem.scand.16-0403

    Johansson G. On the crystal structure of the basic sulfate 13Al2O3·6SO4·xH2O[J]. Ark. Kemi, 1963, 20: 321-342. doi: 10.1016/j.gca.2010.12.001

    Jones A M, Collins R N, Waite T D. Mineral species control of aluminum solubility in sulfate-rich acidic waters[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 965-977. doi: 10.1016/j.gca.2010.12.001

    Kefeni K K, Msagati T M, Mamba B B. Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage[J]. Chemical Engineering Journal, 2015, 276: 222-231. doi: 10.1016/j.cej.2015.04.066

    Liu Q, Chen B, Haderlein S, et al. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China[J]. Ecotoxicology and Environmental Safety, 2018, 155: 50-58. doi: 10.1016/j.ecoenv.2018.02.017

    Long D T, Fegan N E, McKee J D, et al. Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia[J]. Chemical Geology, 1992, 96(1-2): 183-202. doi: 10.1016/0009-2541(92)90128-R

    Lozano A, Fernández-Martínez A, Ayora C, et al. Local structure and ageing of basaluminite at different pH values and sulphate concentrations[J]. Chemical Geology, 2018, 496: 25-33. doi: 10.1016/j.chemgeo.2018.08.002

    Lu C, Yang B, Cui X, et al. Characteristics and Environmental Response of White Secondary Mineral Precipitate in the Acid Mine Drainage From Jinduicheng Mine, Shaanxi, China[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1012-1021. doi: 10.1007/s00128-021-03355-9

    Lükewille A, Van Breemen N. Aluminium precipitates from groundwater of an aquifer affected by acid atmospheric deposition in the Senne, Northern Germany[J]. Water, Air, and Soil Pollution, 1992, 63: 411-416. doi: 10.1007/BF00475506

    Maza S N, Collo G, Astini R A, et al. Holocene ochreous lacustrine sediments within the Famatina Belt, NW Argentina: A natural case for fossil damming of an acid drainage system[J]. Journal of South American Earth Sciences, 2014, 52: 149-165. doi: 10.1016/j.jsames.2014.02.010

    Michael G S, John A W. The role of secondary minerals in remediation of acid mine drainage by Portland cement[J]. Journal of hazardous materials, 2019, 367: 267-276. doi: 10.1016/j.jhazmat.2018.12.035

    Munk L A, Faure G, Pride D E, et al. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado[J]. Applied Geochemistry, 2002, 17(4): 421-430. doi: 10.1016/S0883-2927(01)00098-1

    Newman C P, Mccrea K W, Zimmerman J, et al. Geochemistry, mineralogy, and acid-generating behaviour of efflorescent sulphate salts in underground mines in Nevada, USA[J]. Geochemistry: Exploration, Environment, Analysis, 2019, 19(4): 317−329. doi: 10.1016/0016-7037(82)90168-5

    Nordstrom D K. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals[J]. Acid Sulfate Weathering, 1982a, 10: 37-56. doi: 10.1016/0016-7037(82)90168-5

    Nordstrom D K. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K[J]. Geochimica et Cosmochimica Acta, 1982b, 46(4): 681-692. doi: 10.1016/0016-7037(82)90168-5

    Nordstrom D K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters[J]. Applied Geochemistry. 2011, 26: 1777–1791

    Nordstrom D K, Alpers C N. Geochemistry of Acid Mine Waters in The Environmental Geochemistry of mineral deposits Part B[J]. Reviews in Economic geology–Society of economic geologists, Inc, 1999, 6A: 133-160. doi: 10.1126/science.232.4746.54

    Nordstrom D K, Ball J W. The geochemical behavior of aluminum in acidified surface waters[J]. Science, 1986, 232(4746): 54-56. doi: 10.1126/science.232.4746.54

    Nordstrom D K, Ball J W, Roberson C E, et al. The effect of sulfate on aluminum concentrations in natural waters: II. Field occurrences and identification of aluminum hydroxysulfate precipitates[C]//Geol. Soc. Am. Program Abstr. 1984, 16(6): 611. doi: 10.1016/0016-7037(68)90042-2

    Raymahashay B C. A geochemical study of rock alteration by hot springs in the Paint Pot Hill area, Yellowstone Park[J]. Geochimica et Cosmochimica Acta, 1968, 32(5): 499-522. doi: 10.1016/0016-7037(68)90042-2

    Rose A W, Cravotta III C A. Geochemistry of coal mine drainage[J]. Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania, 1998, 1: 1-22.

    Ruotsala A P, Babcock L L. Zaherite, a new hydrated aluminum sulfate[J]. American Mineralogist, 1977, 62(11−12): 1125− 1128.

    Sienkiewicz E, Gąsiorowski M. The evolution of a mining lake-From acidity to natural neutralization[J]. Science of the Total Environment, 2016, 557: 343-354. doi: 10.4141/cjss82-036

    Singh S S. The formation and coexistence of gibbsite, boehmite, alumina and alunite at room temperature[J]. Canadian Journal of Soil Science, 1982, 62(2): 327-332. doi: 10.4141/cjss82-036

    Theobald Jr P K, Lakin H W, Hawkins D B. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado[J]. Geochimica et Cosmochimica Acta, 1963, 27(2): 121-132. doi: 10.1016/0016-7037(63)90053-X

    Topal M, Öbek E, Arslan Topal E I. Phycoremediation of precious metals by cladophora fracta from mine gallery waters causing environmental contamination[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105: 134-138. doi: 10.1007/s00128-020-02879-w

    Väänänen M, Kupiainen L, Rämö J, et al. Speciation and coagulation performance of novel coagulant–Aluminium formate[J]. Separation and Purification Technology, 2012, 86: 242-247. doi: 10.1016/j.seppur.2011.11.010

    Valente T, Grande J A, De La Torre M L, et al. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain)[J]. Applied Geochemistry, 2013, 39: 11-25. doi: 10.1016/j.apgeochem.2013.09.014

    Verplanck, P.L., Nordstrom, D.K., Taylor, H.E, et al. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation.[J]. Applied Geochemistry, 2004,19, 1339-1354 doi: 10.1007/s11051-005-6931-x

    Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms[J]. Journal of Nanoparticle Research, 2005, 7: 409-433. doi: 10.1007/s11051-005-6931-x

    Weiser H B, Milligan W O, Purcell W R. Composition of floc formed at pH values below 5.5[J]. Ind Eng Chem, 1941, 33: 669-672. doi: 10.1021/ie50377a029

    Zhang Z, Wang L, Zhou B, et al. Adsorption performance and mechanism of synthetic schwertmannite to remove low-concentration fluorine in water[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1191-1201. doi: 10.1007/s00128-021-03147-1

    Zodrow E L, Mccandlish K. Hydrated sulfates in the Sydney coalfield, Cape Breton, Nova Scotia[J]. The Canadian Mineralogist, 1978, 16(1): 17-22.

图(2)  /  表(3)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  9
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-07
  • 修回日期:  2023-07-09
  • 录用日期:  2023-07-11
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-08-19

目录

/

返回文章
返回