ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

矿山酸性水中铝相次生矿物及环境学意义的研究进展

陈华清, 张天亮, 龚慧山, 徐友宁, 周建伟

陈华清, 张天亮, 龚慧山, 等. 矿山酸性水中铝相次生矿物及环境学意义的研究进展[J]. 西北地质, 2023, 56(4): 141-151. DOI: 10.12401/j.nwg.2023129
引用本文: 陈华清, 张天亮, 龚慧山, 等. 矿山酸性水中铝相次生矿物及环境学意义的研究进展[J]. 西北地质, 2023, 56(4): 141-151. DOI: 10.12401/j.nwg.2023129
CHEN Huaqing, ZHANG Tianliang, GONG Huishan, et al. Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water[J]. Northwestern Geology, 2023, 56(4): 141-151. DOI: 10.12401/j.nwg.2023129
Citation: CHEN Huaqing, ZHANG Tianliang, GONG Huishan, et al. Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water[J]. Northwestern Geology, 2023, 56(4): 141-151. DOI: 10.12401/j.nwg.2023129

矿山酸性水中铝相次生矿物及环境学意义的研究进展

基金项目: 陕西省重点研发计划“秦巴山区金属矿产开发引发生态环境污染综合治理关键技术与示范”(2023-ZDLSF-63),中国地质调查局项目“安康蒿坪河流域石煤矿区生态修复支撑调查与监测”(DD20230457)联合资助。
详细信息
    作者简介:

    陈华清(1984−)男,硕士,从事矿山地质环境问题调查与防治工作,E−mail:116549321@qq.com

    徐友宁(1963−)男,博士,研究员,从事矿山地质环境研究工作,E−mail:948477575@qq.com

    通讯作者:

    徐友宁(1963−)男,博士,研究员,从事矿山地质环境研究工作,E−mail:948477575@qq.com

  • 中图分类号: P592

Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water

  • 摘要:

    酸性矿山排水(AMD)是硫化矿床矿山环境污染防治的难点,因而持续受到国内外学者的关注。众多的学者对矿区AMD中次生矿物进行了研究。为深入了解AMD中次生矿物的形成和演化,为AMD污染防治提供科学依据,笔者对前人不同环境下AMD中的次生矿物类型、次生矿物形成顺序,以及铝相次生矿物的形成、特征、环境危害及意义进行了简要综述。目前与AMD有关的主要次生矿物存在3种类型,即铁相次生矿物、铝相次生矿物和其他相次生矿物,AMD中的pH、Eh和温度对于次生矿物的形成具有控制性的作用。铁、铝相次生矿物具有吸附金属能力,这一性质有助于在一定程度上实现河流的自净化作用。由于AMD形成条件高,矿物相不稳定,目前有关AMD中铝相次生矿物及“酸性白水”的研究成果有限。因此,加强铝相次生矿物以及“酸性白水”的研究,可以更好地解析蒿坪河流域石煤矿区河流酸性磺水–酸性白水的形成演化机制,以及铝相次生矿物吸附重金属的地球化学过程。

    Abstract:

    Acid mine drainage (AMD) is a difficult point in the prevention and control of environmental pollution in sulfide ore deposits, has attracted the attention of scholars at home and abroad. Numerous scholars have studied secondary minerals in AMD in different mining areas. In order to understand the formation and evolution of secondary minerals in AMD, it provides scientific basis for AMD pollution prevention and control. This paper briefly reviews the types of secondary minerals, the formation order of secondary minerals, and the formation, characteristics, environmental hazards and significance of secondary minerals in aluminum phase in AMD under different environments. There are currently three main types of secondary minerals associated with AMD, including: iron−phase secondary minerals, aluminum−phase secondary minerals and other−phase secondary minerals. The pH, Eh and temperature in AMD have a controlling effect on the formation of secondary minerals. Fe− and Al−phase secondary minerals have strong adsorption capacity for several metals in AMD, which can achieve a certain degree of water self−purification. At present, due to the high formation conditions of AMD and unstable mineral phases, there are limited research results on aluminum−phase secondary minerals and “acidic white water” in AMD. Therefore, the study of aluminum−phase secondary minerals and “acidic white water” can better analyze the formation and evolution mechanism of acidic sulfonated water and acidic white water in rivers in the stone coal mines area of Haoping river basin from the perspective of prevention and control, as well as the geochemical process of heavy metal adsorption by aluminum−phase secondary minerals.

  • 图  1   蒿坪河流域某支沟河流中酸性磺水及白水照片

    Figure  1.   Sulfonated and white water in a tributary river of the Haoping river basin

    图  2   蒿坪河流域某支沟矿硐口磺水及白水照片

    Figure  2.   Sulfonated and white water at the outlet of a mine cave in a tributary river of the Haoping river basin

    表  1   AMD中次生矿物种类(据Alpers et al.,1994修改)

    Table  1   Species of secondary minerals in AMD

    铁相次生矿物化学式铝相次生矿物化学式其他相次生矿物化学式
    水绿矾FeSO4·7H2O铝叶绿矾Al2/3Fe4(SO46(OH)2·20H2O胆矾CuSO4·5H2O
    铁矾FeSO4·5H2O铁明矾FeAl2(SO44·22H2O三水胆矾CuSO4·3H2O
    水铁矾FeSO4·H2O镁明矾MgAl2(SO44·22H2O水胆矾Cu4(SO4)·(OH)6
    叶绿矾FeFe4(SO46(OH)2·20H2O锰明矾MnAl2(SO44·22H2O柱钠铜矾Na2Cu(SO4)·22H2O
    粒铁矾FeFe2(SO44·14H2O毛矾石Al2(SO43·17H2O斜蓝铜矾Cu4(SO4)(OH)6·2H2O
    针绿矾Fe2(SO43·9H2O斜铝矾Al(SO4)(OH)·5H2O水铜铝矾Cu4Al2(SO4)(OH)12·24H2O
    板铁矾(H3O)Fe(SO42·3H2O明矾石KAl3(SO42(OH)6水氯铜矿CuCl2·2H2O
    纤铁矾Fe(SO4)(OH)·5H2O钠明矾石NaAl3(SO42(OH)6砷铁矾Fe6(AsO34(SO4)(OH)4·4H2O
    红铁矾Fe(SO4)(OH)·3H2O羟铝矾Al4(SO4)(OH)10·4H2O石膏CaSO4·2H2O
    基铁矾Fe(SO4)(OH)·2H2O矾石Al4(SO4)(OH)4·7H2O泻利盐MgSO4·7H2O
    黄钾铁矾KFe3(SO42(OH)6斜钠明矾NaAl(SO42·6H2O水镍钴矾Co6Ni3Mn(SO4)·6H2O
    黄铵铁矾NH4Fe3(SO42(OH)6三水铝石Al(OH)3钴铝矾(Co,Mg)Al2(SO44·22H2O
    黄钠铁矾NaFe3(SO42(OH)6赤矾CoSO4·7H2O
    柱钾铁矾K2O·Fe2O3·4SO3·8H2O白钠镁矾Na6Mg(SO42·4H2O
    施威特曼石Fe8O8(SO4)(OH)6李时珍石ZnFe2(SO44·14H2O
    锡铁山石Fe8(Cl)(SO4)·6H2O
    针铁矿α-FeOOH
    纤铁矿γ-FeOOH
    褐铁矿Fe2O3·nH2O
    赤铁矿Fe2O3
    下载: 导出CSV

    表  2   铝相次生矿物的性质(据Bigham et al.,2000修改

    Table  2   Properties of aluminum phase secondary minerals

    矿物名称水羟铝矾石
    Al4(OH)10SO4·15H2O
    羟铝矾
    Al4(OH)10SO4·4H2O
    水羟铝矾
    Al12(OH)26(SO45·20H2O
    矾石
    Al2(OH)4SO4·7H2O
    变矾石
    Al2(OH)4SO4·5H2O
    晶系单斜晶系单斜晶系三斜晶系单斜晶系单斜晶系
    空间群P21P1P21/cP21/m
    晶胞尺寸a=14.911
    b=9.993
    c=13.640
    β=112.24°
    a=12.954
    b=10.004
    c=11.064
    β=104.1°
    a=18.475
    b=19.454
    c=3.771
    α=95.24°
    β=91.48°
    γ=80.24°
    a=7.440
    b=15.583
    c=11.700
    β=110.18°
    a=7.930
    b=16.879
    c=7.353
    β=106.73°
    颜色白色至浅黄棕色白色白垩色/
    含铜时为浅蓝绿色
    白色丝白色
    结构及结晶度粘土状,
    通常潮湿和可塑
    粘土状,
    贝壳状断口
    密堆积的微-
    隐晶质聚集体
    泥状、易碎、
    结节状细小纤维
    结节状微晶线状
    聚集体和凝结物
    最强XRD间距(Å)12.6, 6.18, 5.29, 4.709.39, 4.73, 3.69, 1.43818.18.98, 7.79, 4.708.46, 4.52, 4.39, 3.54
    稳定性易脱水为羟铝矾由水羟铝矾石脱水而成在环境条件下脱水在55 ℃下脱水为矾石
    下载: 导出CSV

    表  3   铝羟基硫酸盐矿物中铝沉淀物的组成(%)(据Bigham et al.,2000修改)

    Table  3   Composition (%) of Al hydroxysulfate minerals

    水合
    明矾石
    羟铝矾水羟
    铝矾石
    ABCDEF
    C1C2C3
    理论值分析值
    Al2O338.8045.8031.7046.4044.7536.2042.8047.0039.0040.1044.10
    CaO0.300.400.771.50
    Na2O0.000.050.181.200.10
    K2O0.000.040.000.500.000.00
    H2O20.5736.3055.9033.4035.6046.940.8039.5046.0045.6035.00
    SO340.6317.9012.4017.4018.1010.7012.408.7017.4011.6022.30
    总计100.00100.00100.0097.2098.7594.2096.9096.90104.2097.40101.40
    X射线衍射羟铝矾羟铝矾无定形无定形无定形明矾石无定形无定形
    电子衍射羟铝矾无定形无定形无定形结晶无定形羟铝矾
      注:样品A来自Bannister等(1948a);样品B来自Clayton(1980);样品C来自Nordstrom(1984);样品D来自Headden(1905)Cunningham等(1996);样品E来自Ball(1989);样品F来自Charles等(1967)合成沉淀。
    下载: 导出CSV
  • 栾兆坤. 水中铝的形态及其形态研究方法[J]. 环境化学, 1987(01): 46-56

    LUAN Zhaokun. The speciation and speciation study of aluminum in water[J]. Environmental Chemistry, 1987(01): 46-56.

    刘奇缘, 陈炳辉, 周永章等. 粤北大宝山槽对坑酸性矿山废水中不同沉积层次生矿物研究[J]. 地球与环境, 2017, 45(03): 259-266

    LIU Qiyuan, CHEN Binghui, ZHOU Yongzhang, et al. A study on secondary minerals in different sediments of Caoduikeng acid mine drainage, Dabaoshan mine, North Guangdong province, China[J]. Earth and Environment, 2017, 45(03): 259-266.

    王武名, 鲁安怀, 王长秋等. 尾矿酸浸液制备氢氧化铁过程中施威特曼石的形成与转变[J]. 岩石矿物学杂志, 2009, 28(06): 581-586

    WANG Wuming, LU Anhuai, WANG Changqiu, et al. The formation and transformation of schwertmannite during the preparation of ferric hydroxide with acid leaching filtrate of tailings[J]. Acta Petrologica Et Mineralogica, 2009, 28(06): 581-586.

    吴亚坤, 谢臣臣, 孙魁等. 神府矿区不同含水层水力联系的水化学证据[J/OL]. 西北地质, 2023: 1−12. doi: 10.12401/j. nwg. 2023010

    WU Yakun, XIE Chenchen, SUN Kui, et al. Hydrochemical evidence for hydraulic connection of different aquifers in Shenfu mining area[J/OL]. Northwestern Geology,2023: 1-12. doi: 10.12401/j.nwg.2023010

    徐友宁, 张江华, 何芳等. 西北地区矿山地质环境调查与防治研究[J]. 西北地质, 2022, 55(3): 129-139

    XU Youning, ZHANG Jianghua, HE Fang, et al. Investigation and Preventive Research of Mine Geological Environment in Northwest China[J]. Northwestern Geology, 2022, 55(3): 129-139.

    徐友宁, 陈华清, 柯海玲, 等. 蒿坪河流域石煤矿区河流铝的白色污染及其成因分析. 西北地质, 2023, 56(4): 128–140.

    XU Youning, CHEN Huaqing, KE Hailing, et al. Analysis of White Pollution of River Aluminum in Stone CoalMining Area in Haoping River Basin and Its Causes. Northwestern Geology, 2023, 56(4): 128–140.

    周立祥. 酸性矿山废水中生物成因次生高铁矿物的形成及环境工程意义[J]. 地学前缘, 2008, 15(6): 74-82

    ZHOU Lixiang. Biogenic iron oxyhydrosulfate and iron oxyhydroxide occurring in acid mine drainage and their environmental engineering implications[J]. Earth Science Frontiers, 2008, 15(6): 74-82.

    邹琦, 陈莹, 刘奇缘等. 广东大宝山铁龙AMD中赭色沉积物的含铁次生矿物研究[J]. 高校地质学报, 2017, 23(03): 442-451

    ZOU Qi, CHEN Ying, LIU Qiyuan, et al. Study on iron-bearing secondary minerals of ochre precipitates in the Tielong acid mine drainage, Dabaoshan mine, Guangdong province[J]. Geological Journal of China Universities, 2017, 23(03): 442-451.

    Adams F, Hajek B F. Effects of Solution Sulfate, Hydroxide, and Potassium Concentrations on the Crystallization of Alunite, Basaluminite, and Gibbsite from Dilute Aluminum Solutions[J]. Soil Science Society of America Journal, 1978, 126(3): 169-173.

    Alpers C N, Blowes D W, Nordstrom D K , et al. Secondary Minerals and Acid Mine-Water Chemistry. [M]. 1994. doi: 10.1016/0009-2541(92)90129-S

    Alpers C N, Rye R O, Nordstrom D K , et al. Chemical, Crystallographic, and Isotopic Properties of Alunite and Jarosite from Acid Hypersaline Australian Lakes [J], Chemical Geology, 1992, 96(1-2): 203-226. doi: 10.1016/0009-2541(92)90129-S

    Anthony J W, McLean W J. Jurbanite, A New Post-Mine Aluminum Sulfate Mineral from San Manuel, Arizona [J], American Mineralogist, 1976, 61: 1-4.

    Ash S H, Felegy E W, Kennedy D O, et al. Acid Mine Drainage Problems: Anthracite Region of Pennsylvania [M]. Technical Report Archive & Image Library, 1951.

    Ball, P. The crystal structure of sodium sulfate decahydrate, Na2SO4·10H2O.[J]. Acta Crystallographica Section C: Crystal Structure Communications, 1989,45(3), 363-365.

    Bannister F A, Hollingworth S E. Two Bew British Minerals[J]. Nature, 1948a, 162(4119): 565-565.

    Bao Y, Guo C, Lu G, et al. Role of Microbial Activity in Fe(III) Hydroxysulfate Mineral Transformations in An Acid Mine Drainage-Impacted Site from the Dabaoshan Mine[J]. Science of the Total Environment, 2018, 616: 647-657.

    Barton P. The acid mine drainage. In Sulfur in the Environment[M]. 1978.

    Basallote M D, Canovas C R, Olias M, et al. Mineralogically-Induced Metal Partitioning during the Evaporative Precipitation of Efflorescent Sulfate Salts from Acid Mine Drainage[J]. Chemical Geology, 2019, 530: 119-339.

    Bassett H, Goodwin T H. The basic aluminium sulphates[J]. Quarterly Journal of the Chemical Society of London, 1949, 2239-2279.

    Bertsch P, Parker B. Aqueous Polynuclear Aluminum Species[J]. Environmental Chemistry of Aluminum, 1996, 117-168. doi: 10.1180/minmag.1984.048.346.18

    Beukes G J, Schoch A E, De Bruiyn H, et al. A New Occurrence of the Hydrated Aluminium Sulphate Zaherite, from Pofadder, South Africa[J]. Mineralogical Magazine, 1984, 48(346): 131-135. doi: 10.1180/minmag.1984.048.346.18

    Bigham J M, Nordstrom D K. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters[J]. Reviews in Mineralogy and Geochemistry, 2000, 40: 351–403. doi: 10.2138/rmg.2000.40.7

    Brown Jr G E, Calas G. Environmental Mineralogy–Understanding Element Behavior in Ecosystems[J]. Comptes Rendus Geoscience, 2011, 343(2-3): 90-112. doi: 10.1016/j.crte.2010.12.005

    Cala-Rivero V, Arranz-González J C, Rodríguez-Gómez V, et al. A Preliminary Study of the Formation of Efflorescent Sulfate Salts in Abandoned Mining Areas with a View to Their Harvesting and Subsequent Recovery of Copper[J]. Minerals Engineering, 2018, 129: 37-40. doi: 10.1016/j.mineng.2018.09.014

    Candeias C, Ávila P F, EF da Silva, et al. Acid Mine Drainage from the Panasqueira Mine and its Influence on Zêzere River(Central Portugal)[J]. Journal of African Earth Sciences, 2014, 99: 705-712. doi: 10.1016/j.jafrearsci.2013.10.006

    Caraballo M A, Wanty R B, Verplanck P L, et al. Aluminum mobility in mildly acidic mine drainage: Interactions between hydrobasaluminite, silica and trace metals from the nano to the meso-scale[J]. Chemical Geology, 2019, 519: 1–10. doi: 10.1016/j.chemgeo.2019.04.013

    Carbone C, Dinelli E, Marescotti P, et al. The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests[J]. Journal of Geochemical Exploration, 2013, 132: 188-200. doi: 10.1016/j.gexplo.2013.07.001

    Carrero S, Pérez-López R, Fernandez-Martinez A, et al. The potential role of aluminum hydroxysulphates in the removal of contaminants in acid mine drainage[J]. Chemical Geology, 2015, 417: 414–423. doi: 10.1016/j.chemgeo.2015.10.020

    Casey W H, Rustad J R, Spiccia L. Minerals as molecules—Use of aqueous oxide and hydroxide clusters to understand geochemical reactions[J]. Chemistry–A European Journal, 2009, 15(18): 4496-4515. doi: 10.1002/chem.200802636

    Chen Z W, Zhong X, Zheng M Y, et al. Indicator species drive the key ecological functions of microbiota in a river impacted by acid mine drainage generated by rare earth elements mining in South China[J]. Environmental Microbiology, 2022, 24(2): 919-937. doi: 10.1111/1462-2920.15501

    Charles Roberson, John Hem. Form and Stability of Aluminum Hydroxide Complexes in Dilute Solution[D]. USGS,1967. doi: 10.1180/minmag.1980.043.331.18

    Clayton T. Hydrobasaluminite and basaluminite from Chickerell, Dorset[J]. Mineralogical Magazine, 1980, 43(331): 931-937. doi: 10.1180/minmag.1980.043.331.18

    Cory N, Buffam I, Laudon H, et al. Landscape control of stream water aluminum in a boreal catchment during spring flood[J]. Environmental Science & Technology, 2006, 40(11): 3494-3500.

    Cravotta III C A, Brady K B C, Rose A W, et al. Frequency distribution of the pH of coal-mine drainage in Pennsylvania[C]US Geological Survey Toxic Substances Hydrology Program–Proceedings of the Technical Meeting: US Geological Survey Water-Resources Investigations Report. 1999, 99: 313-324.

    Cunningham K M. Water-quality data for Doughty Springs, Delta County, Colorado, 1903-1994, with emphasis on sulfur redox species[R]. US Geological Survey Water-Resources Investigations Report. 1996. doi: 10.1016/j.chemosphere.2013.12.027

    Du J Y, Sabatini D A, Butler E C. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water[J]. Chemosphere, 2014, 101: 21–27. doi: 10.1016/j.chemosphere.2013.12.027

    De Bruiyn H, Schoch A E, Beukes G J, et al. Note on cell parameters of zaherite[J]. Mineralogical Magazine, 1985, 49(350): 145− 146. doi: 10.2138/am-2016-5574

    Ehlmann B L, Swayze G A, Milliken R E, et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters[J]. American Mineralogist, 2016, 101(7): 1527− 1542. doi: 10.1007/s10498-005-6246-7

    España J S, Pamo E L, Pastor E S, et al. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt[J]. Aquatic Geochemistry, 2006, 12: 269-298. doi: 10.1007/s10498-005-6246-7

    España J S, Wang K, Falagán C, et al. Microbially mediated aluminosilicate formation in acidic anaerobic environments: A cell-scale chemical perspective[J]. Geobiology, 2018, 16(1): 88-103. doi: 10.1111/gbi.12269

    Farkas L, Pertlik F. Crystal structure determinations of felsöbányaite and basaluminite, Al4 (SO4)(OH)10·4H2O[J]. Acta Mineralogica-Petrographica, Szeged. 1997, 38: 5-15. doi: 10.1016/j.icarus.2009.07.014

    Farrand W H, Glotch T D, Rice Jr J W, et al. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region[J]. Icarus, 2009, 204(2): 478-488. doi: 10.1016/j.icarus.2009.07.014

    Frondel C. Meta-aluminite, a new mineral from Temple Mountain, Utah[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1968, 53(5-6): 717-721. doi: 10.1126/science.1076505

    Furrer G, Phillips B L, Ulrich K U, et al. The origin of aluminum flocs in polluted streams[J]. Science, 2002, 297(5590): 2245-2247. doi: 10.1126/science.1076505

    Headden, W.P. The Doughty Springs, a group of radium-bearing springs, Delta County, Colorado[J]. American Journal of Science, 1905,19, 297-309 doi: 10.2113/gsecongeo.64.6.599

    Hemley J J, Hostetler P B, Gude A J, et al. Some stability relations of alunite[J]. Economic Geology, 1969, 64(6): 599-612. doi: 10.2113/gsecongeo.64.6.599

    Hicks W S, Bowman G M, Fitzpatrick R W. Effect of season and landscape position on the aluminium geochemistry of tropical acid sulfate soil leachate[J]. Soil Research, 2009, 47(2): 137-153. doi: 10.1071/SR06106

    Jambor J L, Puziewicz J. New mineral names[J]. American Mineralogist, 1990, 75(3-4): 431-438. doi: 10.3891/acta.chem.scand.16-0403

    Johansson G. The crystal structures of [Al2(OH)2(H2O)8](SO4)4·2H2O and [Al2(OH)2(H2O)8](SeO4)2·2H2O[J]. Acta Chemica Scandinavica, 1962, 16: 403-420. doi: 10.3891/acta.chem.scand.16-0403

    Johansson G. On the crystal structure of the basic sulfate 13Al2O3·6SO4·xH2O[J]. Ark. Kemi, 1963, 20: 321-342. doi: 10.1016/j.gca.2010.12.001

    Jones A M, Collins R N, Waite T D. Mineral species control of aluminum solubility in sulfate-rich acidic waters[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 965-977. doi: 10.1016/j.gca.2010.12.001

    Kefeni K K, Msagati T M, Mamba B B. Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage[J]. Chemical Engineering Journal, 2015, 276: 222-231. doi: 10.1016/j.cej.2015.04.066

    Liu Q, Chen B, Haderlein S, et al. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China[J]. Ecotoxicology and Environmental Safety, 2018, 155: 50-58. doi: 10.1016/j.ecoenv.2018.02.017

    Long D T, Fegan N E, McKee J D, et al. Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia[J]. Chemical Geology, 1992, 96(1-2): 183-202. doi: 10.1016/0009-2541(92)90128-R

    Lozano A, Fernández-Martínez A, Ayora C, et al. Local structure and ageing of basaluminite at different pH values and sulphate concentrations[J]. Chemical Geology, 2018, 496: 25-33. doi: 10.1016/j.chemgeo.2018.08.002

    Lu C, Yang B, Cui X, et al. Characteristics and Environmental Response of White Secondary Mineral Precipitate in the Acid Mine Drainage From Jinduicheng Mine, Shaanxi, China[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1012-1021. doi: 10.1007/s00128-021-03355-9

    Lükewille A, Van Breemen N. Aluminium precipitates from groundwater of an aquifer affected by acid atmospheric deposition in the Senne, Northern Germany[J]. Water, Air, and Soil Pollution, 1992, 63: 411-416. doi: 10.1007/BF00475506

    Maza S N, Collo G, Astini R A, et al. Holocene ochreous lacustrine sediments within the Famatina Belt, NW Argentina: A natural case for fossil damming of an acid drainage system[J]. Journal of South American Earth Sciences, 2014, 52: 149-165. doi: 10.1016/j.jsames.2014.02.010

    Michael G S, John A W. The role of secondary minerals in remediation of acid mine drainage by Portland cement[J]. Journal of hazardous materials, 2019, 367: 267-276. doi: 10.1016/j.jhazmat.2018.12.035

    Munk L A, Faure G, Pride D E, et al. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado[J]. Applied Geochemistry, 2002, 17(4): 421-430. doi: 10.1016/S0883-2927(01)00098-1

    Newman C P, Mccrea K W, Zimmerman J, et al. Geochemistry, mineralogy, and acid-generating behaviour of efflorescent sulphate salts in underground mines in Nevada, USA[J]. Geochemistry: Exploration, Environment, Analysis, 2019, 19(4): 317−329. doi: 10.1016/0016-7037(82)90168-5

    Nordstrom D K. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals[J]. Acid Sulfate Weathering, 1982a, 10: 37-56. doi: 10.1016/0016-7037(82)90168-5

    Nordstrom D K. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K[J]. Geochimica et Cosmochimica Acta, 1982b, 46(4): 681-692. doi: 10.1016/0016-7037(82)90168-5

    Nordstrom D K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters[J]. Applied Geochemistry. 2011, 26: 1777–1791

    Nordstrom D K, Alpers C N. Geochemistry of Acid Mine Waters in The Environmental Geochemistry of mineral deposits Part B[J]. Reviews in Economic geology–Society of economic geologists, Inc, 1999, 6A: 133-160. doi: 10.1126/science.232.4746.54

    Nordstrom D K, Ball J W. The geochemical behavior of aluminum in acidified surface waters[J]. Science, 1986, 232(4746): 54-56. doi: 10.1126/science.232.4746.54

    Nordstrom D K, Ball J W, Roberson C E, et al. The effect of sulfate on aluminum concentrations in natural waters: II. Field occurrences and identification of aluminum hydroxysulfate precipitates[C]//Geol. Soc. Am. Program Abstr. 1984, 16(6): 611. doi: 10.1016/0016-7037(68)90042-2

    Raymahashay B C. A geochemical study of rock alteration by hot springs in the Paint Pot Hill area, Yellowstone Park[J]. Geochimica et Cosmochimica Acta, 1968, 32(5): 499-522. doi: 10.1016/0016-7037(68)90042-2

    Rose A W, Cravotta III C A. Geochemistry of coal mine drainage[J]. Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania, 1998, 1: 1-22.

    Ruotsala A P, Babcock L L. Zaherite, a new hydrated aluminum sulfate[J]. American Mineralogist, 1977, 62(11−12): 1125− 1128.

    Sienkiewicz E, Gąsiorowski M. The evolution of a mining lake-From acidity to natural neutralization[J]. Science of the Total Environment, 2016, 557: 343-354. doi: 10.4141/cjss82-036

    Singh S S. The formation and coexistence of gibbsite, boehmite, alumina and alunite at room temperature[J]. Canadian Journal of Soil Science, 1982, 62(2): 327-332. doi: 10.4141/cjss82-036

    Theobald Jr P K, Lakin H W, Hawkins D B. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado[J]. Geochimica et Cosmochimica Acta, 1963, 27(2): 121-132. doi: 10.1016/0016-7037(63)90053-X

    Topal M, Öbek E, Arslan Topal E I. Phycoremediation of precious metals by cladophora fracta from mine gallery waters causing environmental contamination[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105: 134-138. doi: 10.1007/s00128-020-02879-w

    Väänänen M, Kupiainen L, Rämö J, et al. Speciation and coagulation performance of novel coagulant–Aluminium formate[J]. Separation and Purification Technology, 2012, 86: 242-247. doi: 10.1016/j.seppur.2011.11.010

    Valente T, Grande J A, De La Torre M L, et al. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain)[J]. Applied Geochemistry, 2013, 39: 11-25. doi: 10.1016/j.apgeochem.2013.09.014

    Verplanck, P.L., Nordstrom, D.K., Taylor, H.E, et al. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation.[J]. Applied Geochemistry, 2004,19, 1339-1354 doi: 10.1007/s11051-005-6931-x

    Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms[J]. Journal of Nanoparticle Research, 2005, 7: 409-433. doi: 10.1007/s11051-005-6931-x

    Weiser H B, Milligan W O, Purcell W R. Composition of floc formed at pH values below 5.5[J]. Ind Eng Chem, 1941, 33: 669-672. doi: 10.1021/ie50377a029

    Zhang Z, Wang L, Zhou B, et al. Adsorption performance and mechanism of synthetic schwertmannite to remove low-concentration fluorine in water[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1191-1201. doi: 10.1007/s00128-021-03147-1

    Zodrow E L, Mccandlish K. Hydrated sulfates in the Sydney coalfield, Cape Breton, Nova Scotia[J]. The Canadian Mineralogist, 1978, 16(1): 17-22.

图(2)  /  表(3)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  9
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-07
  • 修回日期:  2023-07-09
  • 录用日期:  2023-07-11
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-08-19

目录

    /

    返回文章
    返回