ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

东昆仑东段到木提岩体成因及构造意义:来自年代学及地球化学的约束

韩建军, 李红刚, 何俊, 赵明福, 韩旭, 张新远, 柴云

韩建军, 李红刚, 何俊, 等. 东昆仑东段到木提岩体成因及构造意义:来自年代学及地球化学的约束[J]. 西北地质, 2023, 56(6): 140-154. DOI: 10.12401/j.nwg.2023133
引用本文: 韩建军, 李红刚, 何俊, 等. 东昆仑东段到木提岩体成因及构造意义:来自年代学及地球化学的约束[J]. 西北地质, 2023, 56(6): 140-154. DOI: 10.12401/j.nwg.2023133
HAN Jianjun, LI Honggang, HE Jun, et al. Petrogenesis and Tectonic Implications of Daomuti Intrusive Rocks in East Kunlun Orogen: Constraints from the Geochronology and Geochemistry[J]. Northwestern Geology, 2023, 56(6): 140-154. DOI: 10.12401/j.nwg.2023133
Citation: HAN Jianjun, LI Honggang, HE Jun, et al. Petrogenesis and Tectonic Implications of Daomuti Intrusive Rocks in East Kunlun Orogen: Constraints from the Geochronology and Geochemistry[J]. Northwestern Geology, 2023, 56(6): 140-154. DOI: 10.12401/j.nwg.2023133

东昆仑东段到木提岩体成因及构造意义:来自年代学及地球化学的约束

基金项目: 青海省地质勘查项目“青海省都兰县昂日塔地区1∶25000万区域地质矿产调查”(2017042034jc015)资助。
详细信息
    作者简介:

    韩建军(1991–),男,硕士,工程师,从事构造地质学及矿产勘查工作。E–mail:wsxh91@foxmail.com

    通讯作者:

    李红刚(1973–),男,工程师,从事区域地质调查和矿产调查工作。E–mail:674833190@qq.com

  • 中图分类号: P595;P597+.1

Petrogenesis and Tectonic Implications of Daomuti Intrusive Rocks in East Kunlun Orogen: Constraints from the Geochronology and Geochemistry

  • 摘要:

    到木提岩体位于东昆仑造山带东段,主要岩性有二长花岗岩、花岗闪长岩及闪长岩。笔者对新发现的闪长岩进行了锆石U–Pb测年和岩石地球化学测试,以确定其形成时代及岩石成因,结合二长花岗岩和花岗闪长岩的岩石地球化学特征,综合探讨到木提岩体的侵位时代、岩石成因及构造演化程。LA–ICP–MS锆石U–Pb测年获得的闪长岩206Pb/238U年龄为(244.6±1.8)Ma,到木提闪长岩体结晶时代为早三叠世。二长花岗岩和花岗闪长岩的地球化学特征显示:里特曼指数小于3.3,具钙碱性–高钾钙碱性特征;铝饱和指数A/CNK值均小于1.1;岩石中P2O5含量普遍较低,且与SiO2含量呈负相关性;富集K、Rb、La等LILE,亏损Nb、Ta、Ti、P等HFSE。地球化学特征表明,到木提岩体属于I型花岗岩。综合分析认为,东昆仑东段到木提岩体是下地壳岩石发生部分熔融形成的火山弧花岗岩,阿尼玛卿洋俯冲作用可以持续到早—中三叠世,俯冲过程中形成区域性的地幔岩浆底侵就是导致下地壳熔融的热源,且幔源岩浆不同程度混入到到木提岩浆演化中,岩浆演化中伴有一定的结晶分异发生。

    Abstract:

    The Daomuti intrusive rocks is located in the eastern section of the East Kunlun orogenic belt, and mainly includes monzogranite, granodiorite and diorite. In this paper, zircon U–Pb dating and petrogeochemical tests are performed on newly discovered diorite to determine its crystalline age and petrogenesis. Comprehensively analyse the petrogeochemical characteristics of monzogranite and granodiorite, and discuss the emplacement age, rock genesis and tectonic evolution of the Daomuti intrusive rocks. LA–ICP–MS zircon U–Pb dating analysis shows that the 206Pb/238U weighted average age of diorite is (244.6±1.8) Ma, and the crystallization age of the diorite is Early Triassic. The geochemical characteristics of the monzogranite and granodiorite show that the Ritman index is greater than 3.3 and has the characteristics of calcium alkalinity–high potassium calcium alkalinity; the aluminum saturation index A/CNK values are less than 1.1; the P2O5 content in the rocks is low, and its has a negative correlation with SiO2 content; It is enriched with LILE such as K, Rb, La, and loses HFSE such as Nb, Ta, Ti and P. The above characteristics indicate that the Daomuti intrusive rocks belongs to type I granite. Based on the research results of this paper, it can be considered that the Daomuti intrusive rocks is a volcanic arc granite, its formed by partial melting of the lower crust rocks, and the Animaqing Ocean subduction continued to the Early–Middle Triassic The mantle magma underplating during the subduction process is the heat source that causes the melting of the lower crust, and the mantle source magma is mixed into the Daomuti intrusive rocks’ magma evolution, and during the Daomuti intrusive rocks’ magma evolution occurred fractional crystallization.

  • 沿黄公路位于黄土高原黄河中游区,区域地貌类型属典型的黄土丘陵沟壑区。受特定的地形地貌特征、气候条件、人类活动等影响,该区是中国地质灾害高发且最为严重的地区之一(彭建兵等,2014)。沿黄公路建设切坡形成大量的切坡群,这些高陡边坡成为沿线地质灾害的主要危险源。自2017年通车以来,公路沿线地质灾害频发,主要表现为风化剥落、掉块落石、倾倒、滑塌等,对沿线游客及过往车辆安全造成极大的威胁。为确保沿黄公路安全运行,排除致灾隐患,开展其地质灾害风险调查和研究迫在眉睫。

    中国从90年代开始实施了一系列覆盖全国山地丘陵区和重点城镇的地质灾害普查、详查及精细化调查工作,积累了黄土高原不同发展时期的地质灾害本底信息,在此基础上众多学者分析研究了黄土高原地质灾害发育规律(许领等,2008孙萍萍等,2019)、黄土滑坡发育类型(李同录等,2007唐亚明等,2015黄强兵等,2016)、崩塌破坏模式(王根龙等,2011彭军等2015薛强等,2021)等,提出了针对黄土高原不同区域、不同尺度的地质灾害风险评价方法(张茂省等,2019杨柳等,2020冯凡等,2022),形成了成熟的黄土高原区域地质灾害风险评估体系。而针对黄土高原公路沿线地质灾害破坏模式总结及风险管控相对薄弱,主要集中在基岩山区公路边坡破坏机理(陈晓刚等,2024)、边坡稳定性评价(岳中琦等,2024伍运霖等,2024)、风险区划(廖小平等,2021蒋瑜阳等,2023)等方面。

    笔者在1:10000比例尺地质灾害野外调查基础上,分析总结了黄土高原沿黄公路陕西绥德–清涧段边坡地质灾害变形破坏演化模式,定量评估了研究段边坡地质灾害财产风险和人员风险,并根据边坡变形破坏模式及风险评估结果制定了相应的地质灾害风险管控措施建议,为沿黄公路沿线地质灾害防灾减灾提供技术支撑。

    研究区为沿黄公路陕西省绥德县河底乡–清涧县儿狼山乡路段,长度为43 km,地处黄河中游的晋陕大峡谷内。地理位置为E 110°30′~110°45′ , N 37°10′~37°20′,总体地势北高南低,属于黄土丘陵沟壑区的河谷阶地,地形切割强烈。年均降水量为450~600 mm,多集中在6~9月份,且多以暴雨形式出现,年平均气温为11.5 ℃。地质构造属鄂尔多斯盆地I级构造单元陕北台凹,地质构造简单。

    沿线边坡类型主要为土质、岩质和土岩混合质3种。土质为第四系黄土。地层岩性为三叠系近水平产状的砂岩–泥岩互层(T3h),出露的泥岩风化侵蚀严重,地层差异性风化强烈,节理裂隙发育。沿线人员居住较少,仅一处崩塌隐患坡体下分布有4户居民,其余威胁对象均为公路沿线行人和车辆。

    沿黄公路研究区崩塌、滑坡等地质灾害多发,通过1∶10000地质灾害野外调查识别边坡灾害及隐患点51处,其中崩塌7处,崩塌隐患40处,滑坡3处,滑坡隐患1处(表1图1)。地质灾害以小型基岩崩塌为主,基岩崩塌39处,占比82.98%,黄土崩塌次之。滑坡较少,其中3处为黄土滑坡,1处为黄土–基岩接触面滑坡。基岩崩塌是研究区主要的灾害类型。

    表  1  研究区边坡灾害变形破坏模式分类
    Table  1.  Classification of deformation and failure modes of slope disasters in the study area
    编号 灾害类型 破坏模式 地层岩性及灾害体特征 编号 灾害类型 破坏模式 地层岩性及灾害体特征
    1 崩塌隐患 倾倒 基岩,坡高18 m,宽200 m 27 滑坡 拉裂-滑移 黄土+基岩,厚15~20 m,
    坡高120 m,宽270 m
    2 崩塌 倾倒 黄土,坡高13 m,宽50 m 28 崩塌 滑移 黄土,坡高66 m,宽100 m
    3 崩塌隐患 倾倒 基岩,坡高60 m,宽150 m 29 崩塌 滑移 黄土,坡高20 m,宽50 m
    4 崩塌隐患 倾倒 基岩,坡高50 m,宽150 m 30 滑坡隐患 拉裂–滑移 黄土,坡高45.5 m,宽100 m
    5 崩塌隐患 倾倒 基岩,坡高80 m,宽650 m 31 滑坡 拉裂–滑移 黄土,坡高45.5 m,
    宽100 m,厚1~2 m
    6 崩塌隐患 倾倒 基岩,坡高100 m,宽500 m 32 崩塌隐患 倾倒 基岩,坡高33 m,宽100 m
    7 崩塌隐患 倾倒 基岩,坡高96 m,宽250 m 33 崩塌隐患 倾倒 基岩,坡高18.4 m,宽70 m
    8 崩塌隐患 倾倒 基岩,坡高65 m,宽150 m 34 滑坡 拉裂–滑移 黄土,坡高23 m,
    宽100 m,厚约4 m
    9 崩塌隐患 倾倒 基岩,坡高65 m,宽250 m 35 崩塌隐患 倾倒 基岩,坡高21 m,宽20 m
    10 崩塌隐患 倾倒 基岩,坡高70 m,宽300 m 36 崩塌 滑移 黄土,坡高23 m,宽100 m
    11 崩塌隐患 滑移 基岩,坡高108 m,宽150 m 37 崩塌隐患 倾倒 黄土,坡高29 m,宽7 m
    12 崩塌隐患 倾倒 基岩,坡高114 m,宽300 m 38 崩塌隐患 倾倒 基岩,坡高29.5 m,宽105 m
    13 崩塌隐患 滑移 基岩,坡高115 m,宽150 m 39 崩塌隐患 倾倒 基岩,坡高18 m,宽50 m
    14 崩塌隐患 倾倒 基岩,坡高105 m,宽100 m 40 崩塌隐患 倾倒 基岩,坡高20 m,宽150 m
    15 崩塌隐患 倾倒 基岩,坡高106 m,宽200 m 41 崩塌隐患 滑移 黄土+基岩,坡高30 m,宽120 m
    16 崩塌隐患 倾倒 基岩,坡高90 m,宽500 m 42 崩塌隐患 倾倒 基岩,坡高18 m,宽60 m
    17 崩塌隐患 倾倒 基岩,坡高26 m,宽300 m 43 崩塌隐患 倾倒 基岩,坡高19 m,宽100 m
    18 崩塌隐患 坠落 基岩,坡高30 m,宽200 m 44 崩塌隐患 倾倒 基岩,坡高13 m,宽70 m
    19 崩塌隐患 倾倒 基岩,坡高60 m,宽100 m 45 崩塌隐患 倾倒 基岩,坡高11 m,宽93 m
    20 崩塌隐患 倾倒 基岩,坡高45 m,宽100 m 46 崩塌 滑移 黄土,坡高17 m,宽10 m
    21 崩塌隐患 坠落 基岩,坡高17 m,宽50 m 47 崩塌隐患 倾倒 基岩,坡高18 m,宽200 m
    22 崩塌隐患 倾倒 基岩,坡高35 m,宽30 m 48 崩塌隐患 倾倒 基岩,坡高19 m,宽50 m
    23 崩塌隐患 坠落 基岩,坡高15 m,宽100 m 49 崩塌隐患 倾倒 基岩,坡高21 m,宽75 m
    24 崩塌隐患 坠落 基岩,坡高23 m,宽70 m 50 崩塌 滑移 黄土,坡高17 m,宽100 m
    25 崩塌隐患 倾倒 基岩,坡高20 m,宽60 m 51 崩塌 滑移 黄土,坡高22 m,宽100 m
    26 崩塌隐患 倾倒 基岩,坡高25 m,宽250 m
    下载: 导出CSV 
    | 显示表格
    图  1  沿黄公路边坡灾害隐患分布图
    Figure  1.  Distribution of hidden hazards along the Yellow Highway slope

    受地质环境条件和诱发因素影响,不同地质灾害类型表现出不同的变形破坏特征和破坏模式。研究区按边坡变形破坏模式划分,崩塌有倾倒式、滑移式和坠落式3种破坏模式,其中,倾倒式34处,滑移式9处,坠落式4处; 4处滑坡及隐患破坏模式均为拉裂–剪切滑移式。

    倾倒式破坏模式:既发生于岩质边坡也发生于土质边坡。人工开挖、自然风化及降雨是形成该地区此类灾害的主要诱因(薛强等,2021)。

    岩质边坡受公路建设切割影响,坡体近直立,坡面破碎,节理裂隙发育。坡体因砂泥岩强度不同而差异风化,导致泥岩剥落、岩体向外凸出。同时受降雨及风化影响,边坡上部节理裂隙不断扩张,导致岩体向临空方向持续蠕动变形,自身重力作用下危岩体重心不断前倾,沿着节理裂隙面发生倾倒式变形破坏(图2)。

    图  2  倾倒式基岩崩塌变形破坏分析
    Figure  2.  Analysis of deformation and damage caused by toppling bedrock collapse

    黄土斜坡因切坡,坡度较陡。受外部风化剥蚀影响,坡体顶部边缘处形成近垂直的拉张裂隙,在降雨影响下裂隙逐步向深部扩张,开裂的土体逐渐偏离母体。当开裂土体重心偏离母体时,发生倾倒式变形崩塌(图3)。

    图  3  倾倒式黄土崩塌变形破坏分析
    Figure  3.  Analysis of collapse, deformation and failure of inverted loess

    倾倒式岩质崩塌实例为清涧县解家沟乡49号崩塌隐患体,该边坡段高为21 m,宽为75 m,坡度为70°,因公路建设切坡形成。坡体节理裂隙发育,岩体向外凸出,部分裂隙较大约5 cm,砂岩块体发生错动(图2)。倾倒式土质崩塌实例为绥德县定仙嫣乡沟口村崩塌(编号:2号),该崩塌体高为13 m,宽为50 m,坡度近50°,最新发生于2019年,崩塌堆积体多堆积在公路沿线内侧坡体上(图3)。

    滑移式破坏模式:主要发生于黄土崩塌,人工开挖和降雨是其主要诱发因素。研究区高陡黄土斜坡剥落、侵蚀现象强烈。降水沿着高陡坡面自上而下冲刷,使得坡体因剥落侵蚀产生的裂隙发展为裂缝或落水洞,但因坡度大导致侵蚀裂隙深度小。随着降水入渗,坡脚土体含水量增大,强度降低,剥落侵蚀现象较坡体中上部严重,造成坡底局部滑塌,随着时间推移,高陡边坡逐渐出现内凹,形成反坡,失去对上部土体的支撑。同时坡体中上部裂隙扩张,形成贯通拉裂面,边坡最终沿着较浅拉裂面产生滑动、崩塌(图4)。

    图  4  滑移式黄土崩塌变形破坏分析
    Figure  4.  Analysis of deformation and failure of sliding loess collapse

    滑移式崩塌实例为陕西省清涧县吴家山村沿黄公路358 km+100~110 m段黄土崩塌(编号:46号),该坡体由Q3黄土组成,坡高为25 m,宽为10 m,坡度约为60°,滑塌坡面较新鲜,崩塌堆积体于坡脚,垂直节理裂隙发育,贯通性较好,降雨诱发下可再次发生滑移式崩塌(图4)。

    坠落式破坏模式:发生于研究区直线型岩质边坡。边坡为砂泥岩互层,砂泥岩差异性风化导致泥岩剥落、上面砂岩层悬空。同时在重力、自然风化、降雨等作用下,岩体后缘节理裂隙逐渐加深和张裂,悬空岩体在重力作用下沿着节理裂隙面发生拉裂–坠落式崩塌(图5)。

    图  5  坠落式基岩崩塌变形破坏分析
    Figure  5.  Analysis of deformation and damage caused by falling bedrock collapse

    坠落式崩塌实例为清涧县石盘乡上坪村北18号基岩崩塌隐患体,该崩塌体高约为30 m,宽为200 m,近直立,砂岩巨厚,拉张裂隙发育,砂岩悬空。遇降雨或其他扰动拉张裂隙不断扩张,在自身重力作用下砂岩会发生坠落(图5)。

    研究区3处滑坡发生于黄土层内,1处发生在黄土与基岩接触面,均为拉裂–剪切滑移式破坏模式。

    黄土层内滑坡:黄土垂直节理发育,在自重力卸荷与物理风化作用下,斜坡沿垂直节理向临空方向蠕动变形,导致垂直节理拉张扩展形成拉张裂隙,雨水沿拉张裂隙入渗斜坡体,导致斜坡体不断蠕动变形,拉张裂隙向下延伸在黄土内产生剪切破坏,并向下延伸发育,直至贯通形成剪切面,土体强度进一步降低,最终导致土体沿剪切面下滑形成整体滑移式破坏(图6)。

    图  6  黄土层内滑移式滑坡变形破坏分析
    Figure  6.  Deformation and failure analysis of sliding landslides within loess layers

    黄土–基岩接触面滑坡:主要发生在切割较深、可见基岩出露的沟谷中,其典型的斜坡结构形式是黄土+基岩结构。上覆黄土垂直裂隙发育,降水沿垂直或侧向通道入渗至基岩层。基岩隔水性相对较好,水体在基岩面上富集,饱水,造成基岩表部土体饱和而强度降低,进而转变为滑带。同时,斜坡地下水位快速抬升,稳定性不断下降,拉张裂缝不断扩展直至到基岩表部,滑坡后缘贯通,斜坡在自重力作用下发生滑坡(图7)。

    图  7  黄土-基岩接触面滑移式滑坡变形破坏分析
    Figure  7.  Deformation and failure analysis of lliding landslides at the loess bedrock contact surface

    黄土层内滑坡实例为清涧县解家沟乡庙墕村滑坡(编号:34号),该坡体由Q3和Q2黄土组成,坡高为23 m,宽为100 m,坡度为60°,滑体平均厚约为4 m,后缘陡坎高5 m,降雨诱发下可再次发生滑动(图6)。

    黄土–基岩接触面滑坡实例为清涧县解家沟乡西山里村滑坡体(编号:27号),黄体由Q3和Q2黄土组成,下伏基岩为T3h砂泥岩互层。滑坡坡高为120 m,宽为270 m,平均坡度为60°。滑体厚为10~15 m,上覆黄土发生滑动,挤压下伏砂泥岩顶层破碎,随滑体滑动,堆积于坡体,滑床整体为黄土,夹杂部分破碎砂泥岩。滑坡后壁黄土裸露,主滑面后缘陡坎出露10 m,坡体北侧羽状裂隙发育,部分贯通,后续降水入渗后缘,发生滑坡可能性较大(图7)。

    地质灾害定量风险评价可通过以下公式计算(张茂省等,2019)。

    财产风险计算公式:

    $$ \mathit{P} _{ \mathrm{(prop)}} \mathrm= \mathit{P} _{ \mathrm{(L)}} \mathrm{\times } \mathit{P} _{ \mathrm{(T:L)}} \mathrm{\times } \mathit{P} _{ \mathrm{(S:T)}} \mathrm{\times } \mathit{V} _{ \mathrm{(prop:S)}} \mathrm{\times } \mathit{E} $$ (1)

    式中:P(prop)为财产年损失;P(L)为灾害发生概率;P(T:L)为灾害到达承载体的概率;P(S:T)为承载体时空概率;V(prop:S)为承灾体易损性;E为承灾体价值。

    单人生命风险计算公式:

    $$ \mathit{P} _{ \mathrm{(LOL)}} \mathrm= \mathit{P} _{ \mathrm{(L)}} \mathrm{\times } \mathit{P} _{ \mathrm{(T:L)}} \mathrm{\times } \mathit{P} _{ \mathrm{(S:T)}} \mathrm{\times } \mathit{V} _{ \mathrm{(D:T)}} $$ (2)

    式中:P(LOL)为单人年死亡概率;V(D:T)为人员易损性。

    灾害发生概率根据野外实地调查灾害发生可能性级别确定,对于失稳可能性是“可能”的相当于年发生概率10−3,对于失稳可能性是“很可能”的确定为10−2,几乎确定的为10−1马红娜等,2023)。灾害到达承载体的概率由承灾体距离风险源的远近及地形因素决定,研究区除34号和51号外灾害体威胁的承灾体均位于坡脚,灾害体失稳到达承灾体的概率为1.0。承灾体时空概率包括固定承灾体和流动承灾体,固定承灾体时空概率为1.0;流动承灾体考虑灾害威胁建筑物内的人员和沿黄公路上行驶人员和车辆,时空概率分别为0.342和0.208(张茂省等,2019)。

    研究区除15号灾害体的承灾体有窑洞外,其他承灾体均为沿黄公路及其过往车辆。财产易损性和人员易损性参照《地质灾害风险调查评价技术要求(试行)》,并结合灾害体强度、承灾体抵抗灾害能力等综合考虑赋值,财产易损性赋值为0~1,0表示财产完好无损,1表示彻底损坏;人员易损性赋值为0~1,0代表未受到伤害,1代表死亡。

    研究区灾害财产和人员风险评估结果见表2,人员风险区划见图8。51处地质灾害财产年损失在0.0005~3.375万元/a,其中1.0万元以上有7处,占比13.73%;年损失在3.0万元/a以上的有3处(15号、17号和27号),15号和17号均为直线型基岩斜坡,节理裂隙极其发育,灾害发生概率极高。15号危岩体块状大,最大粒径5.0 m,对承灾体损失大。17号坡下为沿黄公路和居民点,承灾体易损性高。27号为黄土–基岩接触面滑坡,规模大,发生概率高,致使承灾体易损性高。

    表  2  沿黄公路段边坡灾害风险评估结果
    Table  2.  Results of slope disaster risk assessment along the Yellow Highway section
    风险源
    编号
    发生概
    率P(L)
    到达概
    率P(T:L)
    固定承载体时
    空概率P(S:T)
    流动承灾体时
    空概率P(S:T)
    财产易损
    性V(prop:S)
    人员易损
    性V(D:T)
    承灾体
    价值E(万元)
    财产年损失
    P(prop)(万元/a)
    单人年死亡
    概率P(LOL)
    1 10−2 1.0 1.0 0.208 0.60 0.60 45.00 0.270 1.25×10−3
    2 10−2 1.0 1.0 0.208 0.20 0.20 11.25 0.023 4.16×10−4
    3 10−2 1.0 1.0 0.208 0.30 0.40 11.25 0.034 8.32×10−4
    4 10−2 1.0 1.0 0.208 0.40 0.40 22.50 0.090 8.32×10−4
    5 10−2 1.0 1.0 0.208 0.40 0.50 146.25 0.585 1.04×10−3
    6 10−2 1.0 1.0 0.208 0.30 0.40 112.50 0.338 8.32×10−4
    7 10−2 1.0 1.0 0.208 0.30 0.40 56.25 0.169 8.32×10−4
    8 10−2 1.0 1.0 0.208 0.40 0.50 33.75 0.135 1.04×10−3
    9 10−3 1.0 1.0 0.208 0.20 0.30 56.25 0.011 6.24×10−5
    10 10−3 1.0 1.0 0.208 0.30 0.40 67.50 0.020 8.32×10−5
    11 10−3 1.0 1.0 0.208 0.30 0.40 33.75 0.010 8.32×10−5
    12 10−2 1.0 1.0 0.208 0.40 0.60 67.50 0.270 1.25×10−3
    13 10−1 1.0 1.0 0.208 0.60 0.70 33.75 2.025 1.46×10−2
    14 10−2 1.0 1.0 0.208 0.40 0.50 22.50 0.090 1.04×10−3
    15 10−1 1.0 1.0 0.55 0.60 0.80 55.00 3.300 4.40×10−2
    16 10−3 1.0 1.0 0.208 0.30 0.40 112.50 0.034 8.32×10−5
    17 10−1 1.0 1.0 0.208 0.50 0.70 67.50 3.375 1.46×10−2
    18 10−1 1.0 1.0 0.208 0.50 0.60 45.00 2.250 1.25×10−2
    19 10−3 1.0 1.0 0.208 0.40 0.30 22.50 0.009 6.24×10−5
    20 10−3 1.0 1.0 0.208 0.20 0.30 22.50 0.005 6.24×10−5
    21 10−2 1.0 1.0 0.208 0.40 0.60 11.25 0.045 1.25×10−3
    22 10−1 1.0 1.0 0.208 0.40 0.60 6.75 0.270 1.25×10−2
    23 10−2 1.0 1.0 0.208 0.60 0.60 22.50 0.135 1.25×10−3
    24 10−2 1.0 1.0 0.208 0.40 0.50 15.75 0.063 1.04×10−3
    25 10−1 1.0 1.0 0.208 0.40 0.40 13.50 0.540 8.32×10−3
    26 10−3 1.0 1.0 0.208 0.20 0.30 33.75 0.007 6.24×10−5
    27 10−1 1.0 1.0 0.208 0.50 0.70 60.75 3.038 1.46×10−2
    28 10−3 1.0 1.0 0.208 0.30 0.40 22.50 0.007 8.32×10−5
    29 10−2 0.3 1.0 0.208 0.20 0.10 11.25 0.007 6.24×10−5
    30 10−3 1.0 1.0 0.208 0.30 0.30 22.50 0.007 6.24×10−5
    31 10−2 1.0 1.0 0.208 0.30 0.20 22.50 0.068 4.16×10−4
    32 10−2 1.0 1.0 0.208 0.5 0.60 15.75 0.079 1.25×10−3
    33 10−1 1.0 1.0 0.208 0.40 0.50 15.75 0.630 1.04×10−2
    34 10−1 0.5 1.0 0.208 0.30 0.20 9.00 0.135 2.08×10−3
    35 10−1 1.0 1.0 0.208 0.5 0.70 4.50 0.225 1.46×10−2
    36 10−3 1.0 1.0 0.208 0.30 0.20 1.58 0.0005 4.16×10−5
    37 10−1 1.0 1.0 0.208 0.40 0.50 22.50 0.900 1.04×10−2
    38 10−1 1.0 1.0 0.208 0.5 0.60 23.63 1.181 1.25×10−2
    39 10−1 1.0 1.0 0.208 0.50 0.60 11.25 0.563 1.25×10−2
    40 10−1 1.0 1.0 0.208 0.5 0.50 33.75 1.688 1.04×10−2
    41 10−3 1.0 1.0 0.208 0.30 0.20 27.00 0.008 4.16×10−5
    42 10−2 1.0 1.0 0.208 0.5 0.60 13.50 0.675 1.25×10−3
    43 10−2 1.0 1.0 0.208 0.40 0.50 22.50 0.900 1.04×10−3
    44 10−1 1.0 1.0 0.208 0.40 0.40 15.75 0.630 8.32×10−3
    45 10−1 1.0 1.0 0.208 0.40 0.40 20.93 0.837 8.32×10−3
    46 10−2 1.0 1.0 0.208 0.30 0.30 2.25 0.068 6.24×10−4
    47 10−2 1.0 1.0 0.208 0.60 0.70 45.00 0.270 1.46×10−3
    48 10−2 1.0 1.0 0.208 0.60 0.70 11.25 0.068 1.46×10−3
    49 10−1 1.0 1.0 0.208 0.50 0.50 16.88 0.844 1.04×10−2
    50 10−2 1.0 1.0 0.208 0.30 0.40 22.50 0.068 8.32×10−4
    51 10−2 0.3 1.0 0.208 0.20 0.20 22.50 0.014 1.25×10−4
    下载: 导出CSV 
    | 显示表格
    图  8  沿黄公路边坡灾害风险区划及防控措施图
    Figure  8.  Risk zoning and prevention measures for slope disasters along the Yellow Highway

    目前国际上无通用的因崩塌滑坡灾害引起的个人生命风险容许标准,本次采用澳大利亚地质力学学会和香港特别行政区政府共同建议的标准(1×10−4/a)(毕银强等,2016徐继维等,2016),把单人年死亡概率1×10−4/a以下定为低风险源,以上按10倍差依次定为中风险源、高风险源和极高风险源。低风险源12个,占比23.53%;中风险源9个,占比17.65%;高风险源18个,占比35.29%;极高风险源12个,占比23.53%。

    沿黄公路研究段灾害及其隐患51处。根据风险定量评估结果,对单人年死亡概率P(LOL)<10−4且财产年损失P(prop)<0.1万元的采取群策群防措施;对单人年死亡概率P(LOL) >10−4或财产年损失P(prop)>0.1万元的灾害体采取搬迁避让、坡面防护、削坡处理、专业监测等相应的风险管控措施。

    (1)搬迁避让:建议对15号基岩崩塌隐患威胁范围内的4户居民搬迁避让,同时对坡体坡面采取拉防护网等措施防护。

    (2)建立专业地质灾害监测体系:建议在清涧县解家沟乡西山里村滑坡体(27号)建立一体化自动监测站。

    (3)工程防治措施:针对1号、3~8号、12~14号、17~18号、21~25号、32~33号、35号、37~40号、42~45号、47~49号等基岩崩塌及隐患体,建议采取清理坡面松动危岩,拉防护网等措施。针对2号、31号、34号、46号、50~51号等土质崩塌及滑坡体,建议采取坡体后缘削坡、修建排水沟等防治措施。

    (4)群策群防:针对9~11号、16号、19~20号、26号、28~30号、36号、41号等低风险源,建议采取群策群防措施。群策群防人员定期目视检查,雨季加强巡查。

    (1)研究区地质灾害多发,共识别地质灾害及其隐患51处,其中崩塌7处,崩塌隐患40处,滑坡3处,滑坡隐患1处。地质灾害以小型基岩崩塌为主,基岩崩塌是研究区主要的灾害类型。

    (2)研究区崩塌包括土质崩塌和岩质崩塌,有倾倒式、滑移式和坠落式3种破坏模式,其中以倾倒式为主,滑移式次之。滑坡较少,均为黄土滑坡,拉裂–剪切滑移式破坏模式。

    (3)针对每处边坡地质灾害风险源开展了定量财产风险和人员风险评估。同时根据边坡破坏模式及风险评估结果,对单人年死亡概率P(LOL)<10−4且财产年损失P(prop)<0.1万元的地质灾害采取群策群防措施;对单人年死亡概率P(LOL)>10−4或财产年损失P(prop)>0.1万元的制定了专业监测、搬迁避让、工程防治等相应的风险管控措施建议。

  • 图  1   东昆仑东段到木提地区大地构造位置(a)及地质简图(b)

    Figure  1.   (a) Geotectonic location and (b) geological map in Daomuti area of east Kunlun orogeny

    图  2   到木提岩体的野外和显微照片

    a.花岗闪长岩及闪长质包体;b.花岗闪长岩显微照片;c.二长花岗岩;d.二长花岗岩显微照片;e.闪长岩;f.闪长岩显微照片;Pl.斜长石;Kfs.钾长石;Q.石英;Bt.黑云母;Hbl.角闪石;Ap.磷灰石

    Figure  2.   Field photos and microphotographs of the Daomuti intrusive rocks

    图  3   闪长岩的锆石阴极发光图像(a)和谐和图(b)

    Figure  3.   (a) CL images and (b) U–Pb concordia diagrams of zircons from diorite

    图  4   到木提岩体的TAS图解(a)(据Irvine et al.,1971Middlemost,1994)、K2O–SiO2图解(b)(据Rickwood,1989)和A/CNK–A/NK图解(c)(据Maniar et al.,1989

    Figure  4.   (a) TAS diagram, (b) K2O–SiO2 diagram and (c) A/CNK–A/NK diagram for Daomuti intrusive rocks

    图  5   到木提岩体的球粒陨石标准化稀土元素配分图(a)(标准化值据Boynton,1984)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun et al.,1989

    Figure  5.   (a) Chondrite–normalized rare earth element distribution patterns and (b) primitive mantle–normalized trace element spidergrams for Daomuti intrusive rocks

    图  6   到木提岩体的成因判别图解(据Collins et al.,1982

    Figure  6.   Origin distinguishing diagram of Daomuti intrusive rocks

    图  7   二长花岗岩和花岗闪长岩构造环境判别图解(据Pearce et al.,1984

    VAG.火山弧花岗岩;syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩

    Figure  7.   Diagrams of the tectonic setting for monzogranite and granodiorite

    表  1   闪长岩的锆石LA–ICP–MS U–Pb测年分析结果统计表

    Table  1   LA–ICP–MS U–Pb zircon analysis results for diorite

    样品
    编号
    元素含量
    (10−6
    Th/U同位素比值同位素年龄
    ThU比值207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    T0511.428.20.40580.05230.00320.27200.01670.03840.0007300139244132434
    T0615.740.90.38480.05270.00360.27330.01700.03880.0007318153245142455
    T0712.827.40.46620.05340.00350.27460.01790.03870.0009348148246142455
    T0813.736.30.37740.05230.00340.26790.01560.03860.0007300146241132444
    T0914.939.60.37570.05320.00350.27320.01710.03850.0007339150245142444
    T1011.932.50.36610.05480.00310.27840.01460.03810.0006405125249122414
    T1215.545.30.34160.05160.00230.27070.01160.03870.000526610224392453
    T139.426.30.35630.05380.00350.27460.01760.03830.0007361147246142424
    T1415.234.20.44350.05400.00330.27980.01690.03810.0007370137250132415
    T1512.423.00.54000.05540.00590.27330.02710.03830.0009428236245222426
    T1615.841.10.38360.05420.00360.28230.01770.03870.0009381149252142455
    T2019.164.10.29810.05210.00310.27380.01620.03860.0008290136246132445
    T2116.642.10.39420.05410.00410.28230.02060.03900.0008375171253162475
    T2214.534.60.41790.05140.00410.27190.02110.03920.0012258184244172487
    T2313.537.80.35890.05430.00330.28940.01800.03940.0008385138258142495
    T2410.731.60.33800.05290.00280.27380.01410.03910.0007324119246112475
    T2519.241.70.46100.05380.00320.27880.01480.03920.0006362136250122484
    T2616.048.10.33320.05180.00320.27010.01610.03830.0008274140243132425
    T2713.939.40.35190.05330.00280.28220.01420.03930.0006340118252112484
    T2911.228.60.39250.05500.00340.27500.01610.03850.0007410140247132444
    T3013.737.80.36170.05250.00280.27150.01330.03870.0006306121244112444
    T3120.863.70.32600.04910.00210.25930.01120.03860.000515010123492443
      注:测试单位为北京燕都中实测试技术有限公司,测试时间为2019年。
    下载: 导出CSV

    表  2   到木提岩体的常量元素(%)、稀土和微量元素数据(106)统计表

    Table  2   Major (%) and trace (10–6) element compositions of Daomuti intrusive rocks

    岩性二长花岗岩花岗闪长岩闪长岩
    样品号2PM2-12PM37-13PM2-13PM3-13PM4-13PM10-13PM14-12PM8-12PM18-12PM30-13PM1-13PM5-13PM8-12PM47-12PM48-12PM48-2
    SiO274.4772.1277.0676.6176.6570.3277.0974.9872.9369.6576.5571.5769.0358.8250.0949.51
    TiO20.130.230.040.040.060.290.040.080.250.350.040.320.371.251.451.48
    Al2O313.6314.2412.2912.7112.4114.9712.4313.0913.4415.1912.6214.2215.2615.0618.6318.63
    TFe2O31.632.801.411.411.573.101.332.013.443.581.373.263.768.8013.4014.26
    MnO0.040.090.060.050.070.090.040.050.090.080.060.080.100.160.210.23
    MgO0.330.650.160.130.210.770.150.380.480.890.150.720.942.881.791.92
    CaO0.881.530.790.700.862.210.300.792.053.570.783.003.065.927.898.07
    Na2O5.154.183.923.823.754.183.603.984.464.023.813.873.912.743.293.23
    K2O2.733.003.613.983.712.744.814.001.751.494.091.912.452.341.080.87
    P2O50.060.070.020.020.020.090.010.040.060.110.020.080.120.130.480.48
    LOI0.900.990.650.360.491.140.310.970.770.700.350.580.671.501.080.71
    Total99.9499.91100.0199.8399.7999.89100.10100.3799.7299.6499.8399.5999.6699.6099.3999.40
    A/CNK1.051.101.041.071.051.081.061.061.041.031.041.021.040.840.890.89
    A/NK1.191.401.191.201.221.521.111.201.451.851.181.691.682.142.832.98
    Mg#28.4331.6018.5815.7720.8932.9418.3027.4721.5832.9317.7130.3733.1939.3320.9521.08
    K2O/Na2O0.530.720.921.040.990.661.331.010.390.371.070.490.630.850.330.27
    σ1.971.761.661.811.651.742.071.991.281.131.861.161.541.582.482.41
    La42.3634.0138.2836.2142.5653.7913.9018.7758.2519.0836.0370.0246.4121.6945.8042.20
    Ce70.6360.5263.9161.9672.3093.9933.3334.71108.1934.6563.26121.9384.3843.6283.5183.15
    Pr6.655.445.465.225.987.163.283.1610.003.035.609.096.514.568.408.37
    Nd25.8320.2823.4922.8926.2129.4818.4213.7539.9912.8523.5439.0328.0321.4341.7841.04
    Sm4.673.574.244.274.644.065.192.847.162.134.665.324.344.997.587.61
    Eu1.371.071.101.001.141.380.310.862.611.420.941.691.511.883.563.44
    Gd6.214.465.155.295.985.107.643.678.612.665.657.435.456.538.738.74
    Tb0.810.670.750.800.810.581.650.661.210.340.840.810.691.121.201.22
    Dy4.433.753.884.824.452.7410.174.175.671.654.883.713.286.005.835.91
    Ho0.890.820.871.020.930.592.330.921.240.361.010.840.741.361.291.35
    下载: 导出CSV
    续表2
    岩性二长花岗岩花岗闪长岩闪长岩
    样品号2PM2-12PM37-13PM2-13PM3-13PM4-13PM10-13PM14-12PM8-12PM18-12PM30-13PM1-13PM5-13PM8-12PM47-12PM48-12PM48-2
    Er2.502.452.553.062.751.766.582.833.431.092.992.432.133.783.663.84
    Tm0.390.400.400.500.460.290.990.480.460.190.480.370.310.530.500.52
    Yb2.482.592.573.192.991.746.493.132.671.303.062.432.093.353.133.25
    Lu0.380.390.340.420.400.250.700.470.380.240.400.330.270.460.450.47
    ∑REE169.59140.41153.00150.65171.60202.91110.9890.43249.8681.00153.33265.43186.12121.30215.43211.12
    LREE151.51124.88136.48131.55152.83189.8674.4474.09226.2073.16134.02247.08171.1798.17190.63185.82
    HREE18.0815.5316.5219.1018.7713.0536.5416.3323.677.8419.3218.3514.9523.1324.7925.30
    LREE/HREE8.388.048.266.898.1414.552.044.549.569.336.9413.4711.454.247.697.34
    δEu0.780.820.720.640.660.920.150.811.011.820.560.820.951.011.331.29
    Ba692.59775.971477.961330.701535.58956.45251.43895.83880.88659.551234.95761.41954.30549.35361.61261.73
    Th10.9723.7025.9330.3425.0617.6015.9422.3211.2512.0230.5314.7415.0911.729.108.75
    Nb10.4312.6315.1015.8912.5314.7721.9110.7418.5510.8915.5313.6912.6347.5316.6816.51
    Sr203.31192.3074.1578.71268.3363.2432.08137.87230.91303.6065.77247.06307.76290.15481.48465.38
    Zr126.42114.5061.9589.23104.56197.03113.27104.32240.48242.5674.99295.24203.41219.86416.36623.22
    Ti1059.901601.06448.00421.98558.292123.53413.66724.601843.012377.33385.922212.972361.558420.519460.819216.83
    Rb68.1680.9686.36110.23109.1758.06180.23110.8862.3658.14125.7456.9466.8288.9739.0432.11
    Ta0.920.941.141.011.510.742.281.261.370.581.190.790.652.290.840.84
    Hf4.163.452.433.263.865.336.033.576.766.452.787.775.695.288.7612.98
    U0.020.060.020.020.030.040.060.030.070.030.090.020.020.120.150.08
    Sc2.964.863.403.454.004.911.113.138.634.413.228.437.4040.4743.0345.41
    Cs0.831.730.802.033.520.491.661.381.381.702.712.031.400.891.181.55
    V9.9820.962.202.464.1126.051.999.6313.7735.261.6026.4730.99168.4185.7684.99
    Co1.953.750.930.891.104.130.782.293.235.680.774.644.9518.3813.1913.66
    Ni3.273.332.911.241.885.551.443.192.073.321.602.793.076.053.0216.55
    Y26.8724.4126.8330.9328.4816.3856.0427.8729.969.8430.4723.4319.7533.9431.9032.45
    Th/Ce0.160.390.410.490.350.190.480.640.100.350.480.120.180.270.110.11
    Th/La0.260.700.680.840.590.331.151.190.190.630.850.210.330.540.200.21
    Nb/Ta11.2913.4613.2914.5610.5116.849.608.5513.5818.7613.0217.2419.4420.7919.7619.66
     注:Mg#=100*Mg / (Mg+Fe);测试单位为北京燕都中实测试技术有限公司,测试时间为2019年。
    下载: 导出CSV
  • 陈国超, 裴先治, 李瑞保, 等. 东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义[J]. 地质学报, 2013, 87(10): 1525-1541

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Geochronology and genesis of the Helegang Xilikete granitic plutons from the southern margin of the Eastern East Kunlun Orogenic Belt and Their Tectonic Significance[J]. Acta Geologica Sinica, 2013, 87(10): 1525-1541.

    陈国超, 裴先治, 李瑞保, 等. 东昆仑东段香加南山花岗岩基的岩浆混合成因: 来自镁铁质微粒包体的证据[J]. 地学前缘, 2016, 23(4): 226-240

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen: Evidence from mafic microgranular Enclaves(MMEs) [J]. Earth Science Frontiers, 2016, 23(4): 226-240.

    陈国超, 裴先治, 李瑞保, 等. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义[J]. 大地构造与成矿学, 2017, 41(06): 1097-1115

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Age and Petrogenesis of Jialuhe Basic-Intermediate Pluton in Xiangjia’nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt, and its Geological Significance[J]. Geotectonica et Metallogenia, 2017, 41(06): 1097-1115.

    陈国超, 裴先治, 李瑞保, 等. 东昆仑东段可日正长花岗岩年龄和岩石成因对东昆仑中三叠世构造演化的制约[J]. 岩石学报, 2018a, 34(03): 567-585

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic tectonic evolution of East Kunlun[J]. Acta Petrologica Sinica, 2018a, 34(3): 567-585.

    陈国超, 裴先治, 李瑞保, 等. 东昆仑东段三叠纪岩浆混合作用: 以香加南山花岗岩基为例[J]. 岩石学报, 2018b, 34(08): 2441-2480

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. , Triassic magma mixing and mingling at thethe eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith[J]. Acta Petrologica Sinica, 2018b 34( 8): 2441-2480.

    高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(06): 1647-1665.

    GAO Yongbao, LI Wenyuan, QIAN Bing, et al. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 2014, 30( 6) : 1647 - 1665.

    韩建军, 李运冬, 宋传中, 等. 东昆仑东段都兰热水花岗岩锆石U-Pb年龄、地球化学及构造意义. 地质学报, 2020, 94(3): 768~781

    HAN Jianjun, LI Yundong, SONG Chuanzhong, et al. Zircon U-Pb dating and geochemistry of granite in the Reshui area of Dulan County, eastern section of east Kunlun orogeny and its tectonic implications. Acta Geologica Sinica, 2020, 94(3): 768~781.

    雷玮琰, 施光海, 刘迎新. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 2013, 20(04): 273-284

    LEI Weiyan, SHI Guanghai, LIU Yingxin. Research progress on trace element characteristics of zircons of different origins[J]. Earth Science Frontiers, 2013, 20(4): 273-284.

    李碧乐, 孙丰月, 于晓飞, 等. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J]. 岩石学报, 2012, 28(4): 1163-1172

    LI Bile, SUN Fengyue, YU Xiaofei, et al. U-Pb dating and geochemistry of diorite in the easternsection from eastern Kunlun middle uplifted basement and granitic belt[J]. Acta Petrologica Sinica, 2012, 28(4): 1163-1172.

    李积清, 张鑫利, 王涛, 等. 东昆仑战红山地区花岗斑岩LA-ICP-MAS锆石U-Pb测年及岩石地球化学特征[J]. 西北地质, 2021, 54(1): 30-40

    LI Jiqing, ZHANG Xinli, WANG Tao, et al. Zircon U-Pb dating and geochemical characteristics of granite porphyry in zhanhongshan area, east Kunlun[J]. Northwestern Geology, 2021, 54(1): 30-40.

    李荣社, 计文化, 杨永成, 等. 昆仑山及邻区地质[M]. 北京: 地质出版社, 2008: 1−400

    LI Rongshe, JI Wenhua, YANG Yongcheng, et al. Geology of Kunlun Mountain and adjacent areas[M]. Beijing: Geological Publishing House, 2008: 1−400.

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244-254

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun[J]. Earth Science Frontiers, 2012, 19(5): 244-254.

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复[J]. 地质通报, 2015, 34(12): 2302-2314

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. The depositional sequence and prototype basin forLower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains[J]. Geological Bulletin of China, 2015, 34(12): 2302-2314.

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段古特提斯洋俯冲作用——乌妥花岗岩体锆石U-Pb年代学和地球化学证据[J]. 岩石学报, 2018, 34(11): 3399-3421

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Paleo-Tethys Ocean subduction ineastern section of East Kunlun Orogen: Evidence from the geochronology and geochemistry of the Wutuo pluton[J]. Acta Petrologica Sinica, 2018, 34(11): 3399-3421.

    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.

    罗明非, 莫宣学, 喻学惠, 等. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J]. 岩石学报, 2014, 30(11): 3229-3241

    LUO Mingfei, MO Xuanxue, YU Xuehui, et al. Zircon LA-ICP-MS U-Pb age dating, petrogenesis andtectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3229-3241.

    罗照华, 柯珊, 曹永清, 等. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 2002, 21(6): 292-297 doi: 10.3969/j.issn.1671-2552.2002.06.003

    LUO Zhaohua, KE Shan, CAO Yongqing, et al. Late indosinian mantle-derived magmatism in the East Kunlun[J]. Geoliogical Bulletin of China, 2002, 21(6): 292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003

    马昌前, 熊富浩, 张金阳, 等. 从板块俯冲到造山后阶段俯冲板片对岩浆作用的影响: 东昆仑早二叠世-晚三叠世镁铁质岩墙群的证据[J]. 地质学报, 2013, 87(增刊): 79-81

    MA Changqian, XIONG Fuhao, ZHANG Jinyang, et al. Impact of subducted slabs on magmatism from plate subduction to post-orogenic stage: Evidence from the Early Permian-Late Triassic Magnesite Wall Group in East Kunlun [J]. Acta Geologica Sinica, 2013, 87(supp): 79-81.

    马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555-3568

    MA Changqian, XIONG Fuhao, YIN Shuo, et al. Intensity and cyclicity of orogenic magmatism: An example from aPaleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2015, 31(12): 3555-3568.

    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(03): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010

    MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and crustal growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 13(03): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2Ga B.P.伸展-裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 486−503.

    NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2Ga B.P. in the central segment of northern margin of North China Craton [J], Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(4): 486−503.

    祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 30(11): 3345-3356

    QI Shengsheng, SONG Shuguang, SHI Lianchang, et al. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3345-3356.

    祁晓鹏, 范显刚, 杨杰, 等. 青海省都兰县尕日当地区1: 5万I47E002011、I47E003011、I47E004011、I47E004012四幅区域地质调查成果报告[R]. 陕西省核工业地质调查院, 2016a.

    QI Xiaopeng, FAN Xiangang, YANG Jie, et al. Report from 1: 50000 regional geological survey results in the Jiedang area, Dulan County, Qinghai[R]. Shanxi Institute of Nuclear Geology, 2016a.

    祁晓鹏, 范显刚, 杨杰, 等. 2016b, 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义[J]. 地质通报, 35(11): 1771-1783

    QI Xiaopeng, FAN Xiangang, YANG Jie, et al. The discovery of Early Paleozoic eclogite in the upper reaches of Langmuri in eastern East Kunlun Mountains and its significance[J]. Geological Bulletin of China, 2016b, 35(11): 1771-1783.

    史连昌, 常革红, 祁生胜, 等. 东昆仑大灶火沟-万宝沟晚二叠世陆缘弧火山岩的发现及意义[J]. 地质通报, 2016, 35(7): 1115-1122 doi: 10.3969/j.issn.1671-2552.2016.07.007

    SHI Lianchang, CHANG Gehong, QI Shengsheng, et al. The discovery of Dazaohuogou-Wanbaogou Late Permian epicontinental arc volcanic rocks in Eastern Kunlun Mountains and its significance[J]. Geological Bulletin of China, 2016, 35(7): 1115-1122. doi: 10.3969/j.issn.1671-2552.2016.07.007

    王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600.

    WANG Zitong, WANG Genghou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China [J], Journal of Chengdu University of Technology (Science Technology Edition), 2022, 49(5): 586−600.

    吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92−108.

    WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92−108.

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604 doi: 10.3321/j.issn:0023-074X.2004.16.002

    WU Yuanbao, ZHENG Yongfei. Study on the mineralogy of zircon and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    熊富浩, 马昌前, 张金阳, 等. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J]. 岩石学报, 2011, 27(11): 3350-3364

    XIONG Fuhao, MA Changqian, ZHANG Jinyang, et al. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotopegeochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt[J]. Acta Petrologica Sinica, 2011, 27(11): 3350-3364.

    许荣华, Harris N B W, Lewis C L, 等. 拉萨至格尔木的同位素地球化学. 青藏高原地质演化[M]. 北京: 科学出版社, 1990: 282−302

    XU Ronghua, Harris N B W, Lewis C L, et al. Isotope geochemistry of the Tibet Geotraverse, Lhasa to Golmud. The geological evolution of the Tibet Plateau[M]. Beijing: Science Press, 1990: 282−302.

    许长坤, 刘世宝, 赵子基, 等. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J]. 地质学报, 2012, 86(10): 1621-1678 doi: 10.3969/j.issn.0001-5717.2012.10.006

    XU Changkun, LIU Shibao, ZHAO Ziji, et al. Metallogenic law and prospect direction of iron deposits in the East Kunlun metallogenic belt in Qinghai[J]. Acta Geologica Sinica, 2012, 86(10): 1621-1678. doi: 10.3969/j.issn.0001-5717.2012.10.006

    许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999, 73(03): 193-205 doi: 10.3321/j.issn:0001-5717.1999.03.001

    XU Zhiqin, YANG Jingsui, ZHANG jianxin, et al. A ComParison between the Teetonic Units on the Two Sides of the AItun Sinistral Strike-sliP Fault and the Meehanism of Lithospheric Shearing[J]. Acta geologica sinica, 1999, 73(03): 193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001

    许志琴, 杨经绥, 李海兵, 等. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 2006, 80(12): 1793-1806 doi: 10.3321/j.issn:0001-5717.2006.12.002

    XU Zhiqin, YANG Jingsui, LI Haibing, et al. The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure ( HP) and Ultra-High Pressure ( UHP) MetamorphicBelts at the Central Orogenic Belt ( COB) [J]. Acta geologica sinica, 2006, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002

    杨经绥, 刘福来, 吴才来, 等. 中央碰撞造山带中两期超高压变质作用: 来自含柯石英锆石的定年证据. [J]地质学报, 2003, 77(4): 463-477 doi: 10.3321/j.issn:0001-5717.2003.04.003

    YANG Jingsui, LIU Fulai, WU Cailai, et al. Two Ultrahigh Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-bearing Zireons[J]. Acta geologica sinica, 2003, 77(4): 463-477. doi: 10.3321/j.issn:0001-5717.2003.04.003

    杨经绥, 许志琴, 李海兵, 等. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J]. 岩石矿物学杂志, 2005, 24(5): 369-380 doi: 10.3969/j.issn.1000-6524.2005.05.004

    YANG Jingsui, XU Zhiqin, LI Haibing, et al. The paleo-Tethyan volcanism and plate tectonic regime in the A nyemaqen region of East Kunlun, northern Tibet Plateau[J]. Acta Petrologica et Mineralogica, 2005, 24(5): 369-380. doi: 10.3969/j.issn.1000-6524.2005.05.004

    袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 2000, 46(2): 203-211 doi: 10.3321/j.issn:0371-5736.2000.02.012

    YUAN Wanming, MO Xuanxue, YU Xuehui, et al. The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains[J]. Geological review, 2000, 46(2): 203-211. doi: 10.3321/j.issn:0371-5736.2000.02.012

    张照伟, 钱兵, 李文渊, 等. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U-Pb定年证据[J]. 中国地质, 2017, 44(04): 816-817

    ZHANG Zhaowei, QIAN Bing, LI Wenyuan, et al. The discovery of Early Paleozoic eclogite from the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt: Zircon U-Pb chronologic evidence[J]. Geology in china, 2017, 44(04): 816-817.

    Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605-626. doi: 10.1016/S0024-4937(98)00085-1

    Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.

    Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80: 189-200. doi: 10.1007/BF00374895

    Frey F A and Prinz M. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis[J]. Earth and Planetary Science Letters, 1978, 38: 129-176. doi: 10.1016/0012-821X(78)90130-9

    Green T H, Watson E B. Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to ‘orogenic’rock series[J]. Contributions to mineralogy and petrology, 1982, 79(1): 96-105. doi: 10.1007/BF00376966

    Green T H. Significance of Nb /Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3): 347-359.

    Irvine T N and Baragar W R A. A guide to chemical classification of the common volcanic rock[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. doi: 10.1139/e71-055

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt- peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Maniar PD, Piccoli PM. Tectonic discrimination of granitoids. GSA Bullentin, 1989, 101(5): 635−643.

    McDonough WF and Sun SS. The composition of the Earth[J]. Chemical Geology, 1995, 120( 3-4) : 223-253. doi: 10.1016/0009-2541(94)00140-4

    Meng F C, Zhang J X and Cui M H. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance[J]. Gondwana Research, 2013, 23( 2) : 825-836. doi: 10.1016/j.gr.2012.06.007

    Middlemost EAK. Naming materials in the magma /igneous rock system[J]. Earth-Science Review, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    Pearce J A, Harris N B W and Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    Rogers G and Hawkesworth C J. Reply to comment of C. R. Sternon “A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge” [J]. Earth and Planetary Science Letters, 1990, 101(1): 134–137. doi: 10.1016/0012-821X(90)90135-K

    Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from the western Alps[J]. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany. 2000, 373-400.

    Sajona F G, Maury R C, Bellon H, et al. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao ( Philippines) [J]. Journal of Petrology, 1996, 37(3): 693-726. doi: 10.1093/petrology/37.3.693

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. magmatism in the ocean basins[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Taylor S R and Mclennan S M. The continental crust: Its composition and evolution[J]. Journal of Geology, 1985, 94(4): 632-633.

    Vavra G, Gebauer D, Schmid R. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): Anion microprobe (SHRIMP) study[J]. Contrib Mineral Petrol, 1996, 122(4): 337~358. doi: 10.1007/s004100050132

    Weyer S, Münker C and Mezger K. Nb /Ta, Zr /Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system[J]. Earth and Planetary Science Letters, 2003, 205( 3-4) : 309-324. doi: 10.1016/S0012-821X(02)01059-2

    Wolf M B and London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms[J]. Geochimica et Cosmochimica Acta, 1994, 58(19) : 4127 -4145. doi: 10.1016/0016-7037(94)90269-0

    Xiong F H, Ma C Q, Zhang J Y, et al. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 2014, 171( 6) : 847-863. doi: 10.1144/jgs2013-038

    Zhang J Y, Ma C Q, Xiong F H, et al. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calcalkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine, 2012, 149( 5) : 892-908. doi: 10.1017/S0016756811001142

图(7)  /  表(3)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  12
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-14
  • 修回日期:  2022-04-23
  • 网络出版日期:  2023-09-24
  • 刊出日期:  2023-12-19

目录

/

返回文章
返回