ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

滇西北铜厂沟矽卡岩−斑岩型钼铜矿床中石榴子石地球化学、U−Pb 年代学及地质意义

梁丰, 王艳军, 赵严, 李凯旋, 任志, 毛金伟, 陈涛亮, 冷成彪

梁丰, 王艳军, 赵严, 等. 滇西北铜厂沟矽卡岩−斑岩型钼铜矿床中石榴子石地球化学、U−Pb 年代学及地质意义[J]. 西北地质, 2023, 56(6): 219-241. DOI: 10.12401/j.nwg.2023142
引用本文: 梁丰, 王艳军, 赵严, 等. 滇西北铜厂沟矽卡岩−斑岩型钼铜矿床中石榴子石地球化学、U−Pb 年代学及地质意义[J]. 西北地质, 2023, 56(6): 219-241. DOI: 10.12401/j.nwg.2023142
LIANG Feng, WANG Yanjun, ZHAO Yan, et al. Geochemistry, U−Pb Chronology and Geological Significance of Garnet in the Skarn−Porphyry Molybdenum Copper Deposit in Tongchanggou, Northwest Yunnan Province[J]. Northwestern Geology, 2023, 56(6): 219-241. DOI: 10.12401/j.nwg.2023142
Citation: LIANG Feng, WANG Yanjun, ZHAO Yan, et al. Geochemistry, U−Pb Chronology and Geological Significance of Garnet in the Skarn−Porphyry Molybdenum Copper Deposit in Tongchanggou, Northwest Yunnan Province[J]. Northwestern Geology, 2023, 56(6): 219-241. DOI: 10.12401/j.nwg.2023142

滇西北铜厂沟矽卡岩−斑岩型钼铜矿床中石榴子石地球化学、U−Pb 年代学及地质意义

基金项目: 国家自然科学基金项目(42022021、92062101),第二次青藏高原综合科学考察研究项目(2021QZKK0301)联合资助
详细信息
    作者简介:

    梁丰(1999−),男,硕士研究生,从事斑岩型矿床研究工作。E−mail:1451829344@qq.com

    通讯作者:

    冷成彪(1982−),男,博士,教授,从事矿床学及地球化学的研究与教学工作。E−mail:lcb8207@163.com

  • 中图分类号: P578.947;P597.3;P618.41

Geochemistry, U−Pb Chronology and Geological Significance of Garnet in the Skarn−Porphyry Molybdenum Copper Deposit in Tongchanggou, Northwest Yunnan Province

  • 摘要:

    滇西北铜厂沟矽卡岩−斑岩型Mo−Cu矿床是扬子地块西缘新发现的大型钼铜矿床。矽卡岩在铜厂沟矿区广泛发育,是矿区最主要的赋矿岩石。笔者以铜厂沟矽卡岩中石榴子石(Grt)为研究对象,利用电子探针和LA−ICP−MS原位技术开展成分和年代学测试分析。根据矿物镜下特征,将矿区石榴子石分为早期(Grt I)和晚期(Grt II)两个世代。Grt I为浅黄色−黄白色、无环带石榴子石,Grt II为褐色−红褐色、具有明显环带的石榴子石。两期石榴子石的SiO2(34.41%~38.45%)、CaO(32.7%~35.25%)、Al2O3(6.64%~12.57%)和FeO(12.03%~22.63%)含量指示,二者均属于钙铁榴石−钙铝榴石系列(And34-64Gro34-58)。Grt I和Grt II均呈轻稀土和重稀土亏损、中稀土富集的“驼峰型”配分模式。相比于Grt I,Grt II具有更低的U含量和变化范围更大的Eu异常,分别指示晚期矽卡岩矿化流体氧逸度较高和pH变化较大。Grt II中显著的环带结构及变化较大的主量成分指示晚期石榴子石化经历了更为强烈的水岩反应,与pH值变化较大的特征一致。因此,铜厂沟两期石榴子石记录了矽卡岩体系由相对封闭到开放、逐渐氧化的过程。此外,Grt I原位LA−ICP−MS U−Pb 年代学分析获得的年龄为(85.4±5.6)Ma (MSWD=0.91),直接限定铜厂沟矽卡岩的形成时代为晚白垩世。铜厂沟矽卡岩作用与矿区内斑岩体侵位及钼矿化时代在误差范围内一致,表明铜厂沟Mo−Cu矿床记录了完整的斑岩−矽卡岩矿化过程。结合区域构造演化历史,提出铜厂沟及区域上同时代的Cu−Mo−W等多金属矿床是晚白垩世碰撞后斑岩热液体系的产物。

    Abstract:

    The Tongchanggou skarn−porphyry Mo−Cu deposit, located in the northwest Yunnan Province, is one of the newly−discovered large molybdenum−copper deposits in the western margin of the Yangtze Block. Skarn is widely exposed in the Tongchanggou deposit and is the most important ore−bearing body in the deposit. In this paper, both EPMA and LA−ICP−MS technology have been used to analyze the major and trace element compositions and U−Pb isotopes of garnet grains from the Tongchanggou skarn. Based on microscopic observation, the garnet in the Tongchanggou deposit can be divided into two generations: the early, light yellow to yellowish white, zoning−free to weakly zoning garnet (Grt I) and the late, brown to reddish brown, strongly zoning garnet (Grt II). The results of EPMA show that the two-generation garnet samples have SiO2 contents of 34.41%~38.45%, CaO contents of 32.7%~35.25%, Al2O3 contents of 6.64%~12.57% and FeO contents of 12.03%~22.63%, indicating both the two generations belong to the andradite−grossularite series (And34-64Gro34-58). Both Grt I and Grt II have similar “hump−type” rare earth element (REE) pattern with enrichments in middle REE and depletions in light and heavy REE. Relative to Grt I, Grt II have lower U concentrations and more obvious δEu anomalies, indicating it formed under higher oxygen fugacity (fO2) and more variable pH conditions. Meanwhile, stronger oscillatory zoning within Grt II than Grt I, together with more variable major elements, indicate more intensive water/rock interaction. The two-generation garnet of the Tongchanggou deposit record its an evolving hydrothermal system, accompanying with increasing oxygen fugacity and water/rock interaction degrees. In addition, LA−ICP−MS U−Pb dating results of Grt I yield an age of (85.4±5.6) Ma (MSWD= 0.91), which directly constrains the Tongchanggou mineralization age. Within uncertainties, this age is coeval with emplacement of porphyry intrusions and timing of Mo mineralization in the Tongchanggou area, indicating that the Tongchanggou skarn mineralization consists of an important part of the porphyry−hydrothermal mineralization system. Combined with regional tectonic evolution, it's proposed that the late Cretaceous Tongchanggou and regional coeval Cu−Mo−W deposits are products of post−collisional porphyry−hydrothermal system.

  • 图  1   铜厂沟钼铜矿床大地构造位置(据刘学龙等,2020

    Figure  1.   Geotectonic location of the Tongchanggou Mo−Cu deposit

    图  2   铜厂沟钼铜矿床地质简图(a)和地质剖面简图(b)(据李文昌等,2012高雪等,2017李凯旋等,2019修改)

    Figure  2.   (a) Simplified geological map and (b) cross−section map of the Tongchanggou Mo−Cu deposit

    图  3   铜厂沟钼铜矿床典型矿石照片

    a. 弱矿化花岗斑岩;b. 绿帘石化矽卡岩,含Grt I石榴子石;c. 辉钼矿大面积呈现,含少量Grt I石榴子石及少量残余方解石;d. 透辉石矽卡岩和石榴子石矽卡岩接触关系;e. 含石英脉和辉钼矿的Grt II石榴子石矽卡岩和大理岩接触关系;f. Grt II石榴子石矽卡岩被方解石脉切穿,后期石英、硫化物填充;Cal. 方解石;Ep. 绿帘石;Grt. 石榴子石;Kf. 钾长石;Mot. 辉钼矿;Qtz. 石英;Py. 黄铁矿

    Figure  3.   Photos of typical ores from the Tongchanggou Mo−Cu deposit

    图  4   铜厂沟钼铜矿床中两类石榴子石显微照片

    a. 早期黄白色石榴子石(Grt I);b~c. Grt I石榴子石震荡环带不发育;d. 晚期Grt II包裹早期Grt I石榴子石;e. 晚期红褐色石榴子石(Grt II);f. Grt II石榴子石震荡环带发育;Cal. 方解石;Di. 透辉石;Grt. 石榴子石;Mot. 辉钼矿;Qtz. 石英; Ser. 绢云母

    Figure  4.   Photomicrographs of two generations of garnet from the Tongchanggou Mo−Cu deposit

    图  5   铜厂沟钼铜矿床中两类石榴子石成分变化示意图

    Figure  5.   The composition variation diagrams of two generations of garnet from the Tongchanggou Mo–Cu deposit

    图  6   铜厂沟钼铜矿床中两类石榴子石端元组分三角图解

    Alm. 铁铝榴石;And. 钙铁榴石;Gro. 钙铝榴石; Pyr. 镁铝榴石;Spe. 锰铝榴石;Ura. 钙铬榴石

    Figure  6.   The end member component diagrams of two generations of garnet from the Tongchanggou Mo–Cu deposit

    图  7   铜厂沟钼铜矿床中两类石榴子石微量元素组成图解

    Figure  7.   Diagrams of trace element compositions of two generations of the garnet from the Tongchanggou Mo–Cu deposit

    图  8   铜厂沟钼铜矿床中两类石榴子石稀土元素配分图(标准化值据Sun et al.,1989

    Figure  8.   Chondrite–normalized REE patterns of two generations of garnet from the Tongchanggou Mo–Cu deposit

    图  9   铜厂沟钼铜矿床中石榴子石LA–ICP–MS U–Pb定年结果图

    Figure  9.   Results of LA–ICP–MS U–Pb dating of garnet from the Tongchanggou Mo–Cu deposit

    图  10   铜厂沟石榴子石Ca与Mn、总REE与Y、Al+Fe与Ca+Mn+Mg、Si与Al+Fe协变图

    Figure  10.   Co-variations of Ca and Mn, total REE and Y, Al+Fe and Ca+Mn+Mg, Si and Al+Fe

    图  11   铜厂沟钼铜矿床中石榴子石总REE与总Al、Fe3+、Mg和Ca的关系图

    Figure  11.   Plots of total REE against total Al, Fe3+, Mg and Ca for the garnet from the Tongchanggou Mo–Cu deposit

    图  12   铜厂沟钼铜矿床中石榴子石中Fe3+/(Fe3++Fe2+)− U 和W−U关系图

    Figure  12.   Plots of Fe3+/(Fe3++Fe2+)− U and W−U for the garnets from the Tongchanggou Mo–Cu deposit

    图  13   铜厂沟钼铜矿床中石榴子石中Nd和δEu关系及核密度概率估计图

    Figure  13.   Relationship between and Kernel density estimation of Nd and δEu of the garnet from the Tongchanggou Mo–Cu deposit

    表  1   铜厂沟矿床石榴子石电子探针分析结果及端元组分表(%)

    Table  1   EPMA data and endmember compositions of garnets from the Tongchanggou deposit (%)

    样号TCG1-5-1-1TCG1-5-1-2TCG1-5-1-3TCG1-5-1-4
    世代
    点位1-11-21-31-41-52-12-22-32-42-53-13-23-33-44-14-24-34-4
    SiO237.7437.8838.4538.0937.6237.0337.2037.8137.7237.7134.4135.5935.3735.5334.7235.7035.6135.15
    TiO20.520.351.480.190.241.331.241.781.370.842.330.910.440.351.901.090.390.25
    Al2O38.438.4912.579.848.248.068.3611.229.769.116.6410.478.789.467.2911.008.767.97
    FeO19.0319.4112.0317.6319.4618.5918.1914.0115.9117.6221.5417.4420.8820.0121.6216.9320.8021.50
    MnO0.790.790.610.530.700.880.670.440.490.320.630.500.710.690.740.570.780.71
    MgO0.070.030.070.030.040.080.100.080.090.040.120.070.080.060.080.070.060.06
    CaO32.8432.9434.233.6633.2532.9533.2134.1334.0033.9433.8934.6933.8934.2533.9135.1734.0233.78
    Na2O0.040.030.030.020.010.020.010.030.030.030.030.030.010.010.03
    K2O0.010.010.01
    Cr2O30.0160.0080.1220.0390.0250.0130.0290.0140.0920.0080.080.270.030.01
    Total99.4699.9299.5499.9799.6098.9698.9999.5199.3599.5999.6799.72100.17100.45100.54100.57100.4399.47
    Si3.043.043.023.043.043.013.013.003.013.022.832.872.872.872.832.852.882.88
    Al0.830.841.190.960.820.800.831.080.950.890.671.030.880.940.731.070.870.81
    Ti0.030.020.090.010.010.080.080.110.080.050.140.060.030.020.120.070.020.02
    Fe3+0.930.940.590.850.960.950.920.700.810.881.140.901.041.001.110.871.041.10
    Fe2+0.350.370.200.330.350.320.310.230.250.300.330.280.370.350.360.260.360.37
    Mn0.050.050.040.040.050.060.050.030.030.020.040.030.050.050.050.040.050.05
    Mg0.010.010.010.010.010.010.010.010.010.010.010.010.010.01
    Cr0.010.010.010.02
    Ca2.842.842.882.882.872.872.882.902.912.912.983.002.952.962.963.012.952.97
    And53.6953.7933.5747.8755.0555.0453.6540.0246.950.6263.8247.3755.4352.4760.8045.7655.5258.84
    Gro43.8743.9864.1850.6742.8242.1444.0558.3751.3848.3833.6851.1142.5145.3736.0552.5042.3339.11
    Pyr+Spe+Ura+Alm2.442.222.251.462.132.822.311.611.730.992.491.522.072.163.151.742.152.05
    下载: 导出CSV
    续表1
    样号 TCG1-5-1-1 TCG1-5-1-2 TCG1-5-1-3 TCG1-5-1-4
    世代
    点位 5-1 5-2 5-3 5-4 1-1 1-2 1-3 2-1 2-2 2-3 2-4 1-1 2-1 2-2 3-1
    SiO2 35.40 35.90 35.79 35.65 34.64 34.91 34.90 35.22 35.06 35.70 34.93 36.10 35.77 35.73 35.85
    TiO2 0.32 0.26 0.14 0.22 0.87 0.83 0.62 0.26 0.87 0.52 1.05 0.38 0.79 0.51 0.59
    Al2O3 7.65 10.34 9.33 9.08 6.99 9.35 9.22 7.61 8.76 9.63 10.00 8.06 11.2 9.74 9.03
    FeO 22.63 18.69 20.72 20.55 21.78 17.51 18.45 22.08 18.42 18.46 16.97 21.27 16.83 18.81 18.54
    MnO 0.73 0.56 0.74 0.73 0.76 0.40 0.51 0.40 0.42 0.51 0.68 0.51 0.67 0.64 0.38
    MgO 0.05 0.03 0.05 0.05 0.08 0.13 0.05 0.05 0.22 0.07 0.06 0.03 0.04 0.05 0.07
    CaO 33.68 34.42 34.08 34.07 32.73 34.05 34.55 34.33 34.65 35.02 34.89 34.3 35.15 34.94 35.25
    Na2O 0.01 0.02 0.03 0.02 0.02 0.02 0.04 0.02 0.05 0.01
    K2O
    Cr2O3 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.04
    Total 100.46 100.20 100.87 100.39 97.88 97.20 98.33 99.96 98.45 99.91 98.61 100.71 100.46 100.43 99.74
    Si 2.88 2.89 2.88 2.88 2.89 2.89 2.87 2.88 2.88 2.88 2.85 2.91 2.86 2.87 2.90
    Al 0.77 1.02 0.92 0.90 0.72 0.95 0.93 0.77 0.88 0.95 1.00 0.80 1.09 0.96 0.90
    Ti 0.02 0.02 0.01 0.01 0.05 0.05 0.04 0.02 0.05 0.03 0.06 0.02 0.05 0.03 0.04
    Fe3+ 1.13 0.93 1.02 1.02 1.13 0.95 0.99 1.14 1.01 0.97 0.93 1.07 0.86 0.97 1.00
    Fe2+ 0.41 0.33 0.38 0.36 0.39 0.26 0.27 0.37 0.25 0.28 0.23 0.36 0.26 0.29 0.26
    Mn 0.05 0.04 0.05 0.05 0.05 0.03 0.04 0.03 0.03 0.03 0.05 0.04 0.05 0.04 0.03
    Mg 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.01 0.01 0.01
    Cr
    Ca 2.94 2.97 2.94 2.95 2.93 3.02 3.04 3.00 3.05 3.03 3.05 2.97 3.01 3.01 3.05
    And 60.66 48.58 53.46 54.21 62.18 50.97 52.63 60.82 54.41 51.43 49.15 58.33 45.28 51.26 53.60
    Gro 37.30 49.95 44.56 43.83 35.46 47.46 45.87 37.94 43.52 47.02 48.90 40.28 52.91 46.96 45.03
    Pyr+Spe+ Ura+Alm 2.04 1.47 1.99 1.96 2.36 1.58 1.50 1.24 2.07 1.54 1.95 1.40 1.81 1.77 1.36
      注:“−”低于检出限(BDL);基于12个氧原子为标准计算。
    下载: 导出CSV

    表  2   铜厂沟矿床石榴子石LA–ICP–MS微量元素(10−6 )测试结果统计表

    Table  2   Trace element analysis result (10−6) of the Tongchanggou garnets by LA–ICP–MS

    样号TCG1-5-1-1TCG1-5-1-2TCG1-5-1-3TCG1-5-1-4
    世代
    点位1-11-21-31-41-52-12-22-32-42-53-13-23-33-44-14-24-34-4
    Mg731537521387396754799657637595519508499524851492453470
    Ca247400241200252000256000252000237700245100244400254000245300225300236100237100243500236200241500244300233400
    Sc43.45.902.1018.511.62.961.269.913.031.2846.14.541.471.67
    Ti5120200026202120183378708390738070007230574043002289209214240440025772310
    V12910914511712212812614811111991.4132115121110119118117
    Cr43126.0158117104149025.021760.028.0156066.026.732.0
    Mn564059805090408050605660601039004279413050205620564054705410499051505920
    Fe127800130200120600123100128900129200128900109200125200117300126500113100124600130300127600119000127300127900
    Co0.62
    Ni
    Sr4.700.980.350.700.540.61
    Y26.98.304.712.102.4525.723.812.011.310.320.413.47.944.8042.115.98.807.20
    Zr16026.017.715.65.5011592.089.467.558.618457.222.828.026266.136.031.9
    Nb8.804.003.364.003.6013.411.011.511.111.69.009.005.104.6920.46.514.603.23
    Mo5.10
    Cs0.190.430.28
    Hf10.44.993.161.502.161.204.361.5513.01.400.85
    Ta1.460.220.161.151.020.800.720.610.760.660.300.214.800.590.170.33
    W5.905.538.106.008.605.034.123.944.875.307.405.506.919.006.608.106.907.00
    Pb1.910.981.51
    Th1.010.460.210.560.410.240.220.190.180.621.562.041.271.08
    U0.360.310.200.320.310.270.230.270.330.150.220.260.510.230.100.16
    La4.900.150.180.230.140.210.20
    Ce13.72.103.054.704.571.741.051.202.191.983.731.143.544.461.551.534.053.01
    Pr2.270.720.991.351.510.710.460.580.790.571.390.381.211.320.650.561.301.05
    Nd13.18.208.209.809.705.994.505.106.907.009.303.709.3011.85.404.8310.69.60
    Sm3.872.222.171.651.533.132.561.853.172.913.262.632.822.154.931.503.102.41
    Eu1.251.020.651.000.930.820.740.850.810.660.800.670.791.260.710.631.170.59
    Gd3.241.201.711.231.493.793.253.443.623.632.942.171.941.806.002.332.302.45
    Tb0.590.260.220.150.860.500.480.660.460.390.410.210.221.000.470.310.14
    Dy5.301.641.120.580.444.634.092.502.242.032.992.791.340.936.892.671.551.36
    Ho0.820.280.161.050.770.400.530.400.600.520.280.181.460.590.300.33
    Er3.090.700.682.732.141.120.980.771.881.340.650.425.451.980.800.54
    Tm0.450.380.260.130.170.090.260.210.070.760.270.13
    Yb3.780.832.272.000.850.420.652.141.180.695.901.310.620.80
    Lu0.440.110.030.310.220.070.110.060.410.180.880.22
    ∑REE56.819.419.020.320.528.422.518.622.621.230.317.323.024.841.618.926.422.3
    LREE39.114.415.118.518.412.49.319.5813.913.118.78.5217.821.213.29.0520.416.7
    HREE17.75.023.891.842.0816.013.28.998.738.1011.68.805.183.5428.39.846.005.62
    LREE/HREE2.212.873.8710.08.870.770.701.071.591.621.610.973.445.980.470.923.402.96
    (La/Yb)N0.930.130.080.140.23
    δEu1.081.911.032.151.880.730.781.030.730.620.790.861.031.960.401.031.340.74
    δCe1.011.592.151.612.152.071.94
    下载: 导出CSV
    续表2
    样号 TCG1-5-1-5 TCG1-4-1-1 TCG1-4-1-2 TCG1-1-2-1 TCG1-1-2-2 TCG1-1-2-3
    世代
    点位 5-1 5-2 5-3 5-4 1-1 1-2 1-3 2-1 2-2 2-3 2-4 1-1 2-1 2-2 3-1
    Mg 501 377 419 392 419 644 835 522 885 868 842 1300 569 495 492
    Ca 236700 237300 238400 232000 238100 240100 229500 235800 234000 239800 244900 241200 239600 238700 240700
    Sc 2.00 1.55 1.66 1.53 3.93 1.52 4.97
    Ti 2168 1463 1589 1203 2750 4870 2820 2369 4070 4560 3560 4060 4220 4030 3580
    V 107 92.8 107 113 126 88.5 87.4 225 373 181 104 100 115 9030 97.0
    Cr 33
    Mn 5140 4583 5490 5540 3420 3409 3572 4040 5850 4140 4197 4140 3653 4270 3610
    Fe 145400 119300 130500 123400 126400 118700 108000 141700 132700 121700 102300 116300 107100 111400 121300
    Co 0.18 1.71 3.08 2.49 4.60 5.20 4.30 2.80 5.50 2.67 3.60 2.96
    Ni 0.59 11.1 5.10 7.20 7.20 9.30 6.10 5.20 5.70
    Sr 1.38 0.68 11.0 2.30 2.21 3.80 0.84 0.66 0.52
    Y 4.97 4.11 3.21 2.02 5.57 6.47 4.29 5.05 6.06 8.90 4.85 8.60 22.0 8.00 18.1
    Zr 17.8 8.30 7.20 5.80 19.7 24.1 23.4 22.9 48.7 54.3 36.2 45.5 67.0 50.5 43.6
    Nb 3.96 2.93 2.14 2.17 4.20 4.11 2.38 4.26 9.10 8.10 2.15 2.26 0.87 2.07 2.74
    Mo 32.0
    Cs 0.26 2.48 0.35
    Hf 0.73 0.26 1.39 0.85 0.71 0.83 0.60 0.69
    Ta 0.11 0.10 0.27 0.39 0.25 0.17 0.28 0.53 0.24 0.17 0.24 0.22
    W 35.3 13.8 16.5 13.5 3.00 0.45 9.60 3.66 0.28 0.58 0.26 0.98
    Pb 0.68 2.58 0.16 0.79 7.40 1.80
    Th 1.09 0.21 0.19 0.34 0.70 0.33 0.84 1.15 0.36 0.28 2.66 0.81 0.16 0.50
    U 0.38 0.15 0.18 0.22 3.50 3.45 0.51 6.26 8.93 2.87 0.78 1.99 1.92 1.40 1.61
    La 0.50 0.24 0.13 1.10 1.07 0.82 1.87 1.71 0.86 0.46 4.00 1.54 0.80 1.15
    Ce 8.67 3.17 4.24 3.23 10.6 12.9 8.08 11.3 10.9 6.80 3.86 16.8 13.3 10.6 13.1
    Pr 2.51 0.62 1.03 0.94 2.95 3.36 2.05 2.83 1.82 1.90 1.04 3.99 3.60 3.58 3.85
    Nd 12.9 2.64 7.31 6.10 19.4 20.5 14.2 15.2 10.8 10.6 8.70 25.0 25.0 21.7 28.0
    Sm 1.91 0.57 1.14 2.53 4.11 2.67 2.27 1.40 2.78 2.34 4.15 5.68 3.76 4.63
    Eu 0.97 0.49 0.92 0.71 1.13 1.45 0.97 1.03 0.70 1.09 0.64 1.64 1.42 1.17 1.81
    Gd 1.03 0.78 1.23 2.54 2.04 1.68 1.25 2.12 1.74 2.64 3.91 2.19 4.04
    Tb 0.11 0.20 0.39 0.13 0.21 0.26 0.27 0.19 0.45 0.64 0.37 0.52
    Dy 1.38 0.61 0.64 1.20 1.66 0.78 1.20 0.94 1.34 1.20 1.62 3.78 1.86 3.46
    Ho 0.18 0.12 0.14 0.17 0.24 0.29 0.45 0.19 0.29 0.68 0.20 0.64
    Er 0.49 0.28 0.35 0.73 0.76 0.28 0.55 0.58 1.08 0.68 0.94 2.74 0.46 1.93
    Tm 0.08 0.11 0.28 0.08 0.21
    Yb 1.10 0.85 0.66 0.37 0.41 0.75 0.50 0.48 0.34 2.19 1.61
    Lu 0.12 0.07 0.07 0.09 0.15 0.10 0.28 0.24
    ∑REE 31.5 9.23 15.8 12.6 41.8 49.2 32.0 38.9 31.5 29.9 21.5 62.1 65.0 46.8 65.1
    LREE 27.5 7.16 14.1 12.3 37.7 43.4 28.8 34.5 27.3 24.0 17.0 55.6 50.5 41.6 52.5
    HREE 4.00 2.07 1.77 0.35 4.16 5.89 3.23 4.35 4.17 5.90 4.48 6.49 14.5 5.16 12.7
    LREE/HREE 6.90 3.45 7.94 35.0 9.06 7.36 8.92 7.93 6.55 4.07 3.80 8.56 3.49 8.06 4.15
    (La/Yb)N 0.33 0.20 1.20 2.07 3.27 1.64 1.23 0.69 8.44 0.50 0.51
    δEu 2.11 4.22 1.96 1.37 1.27 1.61 1.62 1.37 0.97 1.51 0.92 1.25 1.28
    δCe 1.90 2.01 2.25 1.44 1.66 1.53 1.20 1.51 1.30 1.37 1.03 1.38 1.54 1.52
    下载: 导出CSV
    续表2
    样号 TCG1-5-1-6 TCG1-5-1-7 TCG1-5-1-8
    世代
    点位 6-1 6-2 6-3 6-4 6-5 6-6 6-7 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 8-1
    La 0.15 0.18 0.18 0.19 0.16 0.17 0.11 0.07 0.11 0.11 0.09 0.10 0.16 0.14 0.08 0.09 0.12 0.05
    Ce 3.17 3.45 3.72 3.19 3.24 3.29 2.74 2.05 2.70 2.32 1.63 2.48 3.16 3.32 2.57 2.03 2.65 1.41
    Pr 1.00 0.97 1.12 1.00 0.91 0.92 0.85 0.77 0.88 0.83 0.61 0.87 0.97 1.13 0.87 0.75 0.89 0.51
    Nd 6.27 6.64 6.77 6.25 6.05 6.35 5.21 5.81 6.57 6.10 4.97 6.64 7.19 7.68 6.98 6.08 6.70 4.80
    Sm 0.96 1.03 0.92 1.02 0.92 1.18 0.87 1.11 1.52 1.38 1.62 1.46 1.98 1.72 1.51 1.48 2.29 2.16
    Eu 0.80 0.80 0.82 0.73 0.72 0.82 0.63 0.69 0.65 0.68 0.54 0.66 0.67 0.66 0.80 0.68 0.73 0.71
    Gd 0.45 0.49 0.33 0.32 0.35 0.34 0.42 0.78 0.93 0.98 1.83 1.35 1.71 1.30 0.91 1.11 1.86 2.85
    Tb 0.03 0.05 0.03 0.03 0.04 0.04 0.05 0.11 0.12 0.13 0.29 0.20 0.21 0.19 0.10 0.10 0.20 0.35
    Dy 0.18 0.15 0.09 0.10 0.15 0.13 0.28 0.55 0.70 0.79 1.87 0.97 1.26 1.02 0.50 0.62 1.19 1.68
    Ho 0.02 0.02 0.01 0.02 0.02 0.03 0.04 0.10 0.12 0.14 0.37 0.19 0.23 0.18 0.07 0.11 0.24 0.20
    Er 0.04 0.03 0.02 0.05 0.03 0.03 0.12 0.29 0.29 0.35 1.05 0.52 0.58 0.55 0.15 0.28 0.66 0.54
    Tm 0.01 0.01 0.01 0.01 0.03 0.03 0.04 0.14 0.08 0.07 0.05 0.02 0.04 0.09 0.05
    Yb 0.02 0.01 0.03 0.04 0.04 0.03 0.15 0.24 0.23 0.34 0.95 0.44 0.54 0.36 0.17 0.20 0.54 0.25
    Lu 0.01 0.01 0.01 0.02 0.03 0.04 0.15 0.06 0.06 0.05 0.02 0.03 0.08 0.05
    ∑REE 13.1 13.8 14.0 13.0 12.6 13.4 11.5 12.6 14.9 14.2 16.1 16.0 18.8 18.4 14.8 13.6 18.2 15.6
    LREE 12.4 13.1 13.5 12.4 12.0 12.7 10.4 10.5 12.4 11.4 9.45 12.2 14.1 14.7 12.8 11.10 13.4 9.6
    HREE 0.74 0.74 0.51 0.56 0.64 0.62 1.08 2.12 2.45 2.80 6.65 3.80 4.66 3.70 1.93 2.50 4.86 5.96
    LREE/HREE 16.6 17.7 26.6 22.0 18.7 20.7 9.61 4.95 5.06 4.08 1.42 3.22 3.03 3.96 6.64 4.44 2.75 1.61
    (La/Yb)N 5.81 11.7 4.23 3.46 3.23 4.00 0.54 0.22 0.34 0.23 0.06 0.16 0.21 0.28 0.36 0.33 0.15 0.15
    δEu 3.75 3.43 4.53 3.96 3.89 3.98 3.17 2.25 1.66 1.80 0.95 1.44 1.12 1.35 2.09 1.61 1.08 0.87
    δCe 1.98 2.03 2.05 1.80 2.07 2.02 2.17 2.14 2.12 1.89 1.76 2.07 1.97 2.04 2.33 1.90 2.03 2.16
    下载: 导出CSV
    样号 TCG1-5-1-8 TCG1-5-1-9 TCG1-5-1-10
    世代
    点位 8-2 8-3 8-4 8-5 8-6 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 10-1 10-2 10-3 10-4
    La 0.04 0.04 0.04 0.09 0.03 0.09 0.15 0.20 0.14 0.13 0.07 0.14 0.15 0.13 0.08 0.12 0.07 0.02
    Ce 1.16 1.15 0.75 1.53 0.87 2.34 2.39 3.91 3.31 2.49 1.96 2.47 2.54 2.55 1.99 2.12 1.33 0.63
    Pr 0.42 0.49 0.37 0.56 0.37 0.78 0.76 1.10 1.07 0.83 0.71 0.75 0.79 0.76 0.70 0.75 0.53 0.34
    Nd 3.58 4.30 3.49 4.74 3.64 5.66 6.02 6.35 6.88 5.84 5.46 5.62 5.64 5.61 5.37 5.43 4.87 3.88
    Sm 1.56 1.64 1.84 2.29 1.92 1.28 1.66 1.10 1.36 1.33 1.51 1.27 1.42 1.31 1.73 1.92 2.49 2.40
    Eu 0.69 0.72 0.61 0.70 0.71 0.70 0.73 0.61 0.75 0.70 0.81 0.70 0.67 0.59 0.73 0.83 0.66 0.72
    Gd 1.88 2.26 2.27 2.51 2.53 1.06 1.32 0.73 1.07 1.30 1.32 1.33 1.05 0.96 1.29 2.30 2.81 0.86
    Tb 0.26 0.31 0.40 0.34 0.43 0.12 0.18 0.08 0.14 0.14 0.19 0.16 0.13 0.10 0.12 0.29 0.50 0.08
    Dy 1.38 1.97 2.76 1.47 2.95 0.66 0.83 0.39 0.79 0.81 1.01 0.90 0.68 0.53 0.54 1.18 3.55 0.15
    Ho 0.19 0.31 0.49 0.22 0.53 0.10 0.14 0.04 0.10 0.14 0.19 0.13 0.10 0.08 0.09 0.17 0.62 0.01
    Er 0.42 0.95 1.39 0.47 1.19 0.20 0.33 0.14 0.22 0.26 0.65 0.27 0.26 0.18 0.11 0.38 1.57 0.01
    Tm 0.03 0.08 0.16 0.04 0.19 0.04 0.04 0.01 0.03 0.03 0.06 0.04 0.03 0.02 0.03 0.05 0.23
    Yb 0.20 0.60 1.07 0.38 1.03 0.16 0.22 0.08 0.12 0.25 0.50 0.21 0.14 0.15 0.17 0.29 1.33 0.04
    Lu 0.03 0.09 0.14 0.03 0.12 0.01 0.02 0.01 0.02 0.03 0.07 0.04 0.02 0.01 0.01 0.03 0.18
    ∑REE 11.8 14.9 15.8 15.4 16.5 13.2 14.8 14.7 16.0 14.3 14.5 14.0 13.6 13.0 13.0 15.9 20.7 9.14
    LREE 7.45 8.35 7.10 9.92 7.54 10.9 11.7 13.3 13.5 11.3 10.5 11.0 11.2 11.0 10.6 11.2 9.95 7.99
    HREE 4.37 6.58 8.67 5.46 8.97 2.35 3.09 1.47 2.50 2.97 3.99 3.07 2.41 2.03 2.36 4.69 10.8 1.15
    LREE/HREE 1.70 1.27 0.82 1.82 0.84 4.61 3.80 9.00 5.44 3.82 2.64 3.57 4.65 5.39 4.50 2.38 0.92 6.95
    (La/Yb)N 0.14 0.05 0.03 0.17 0.02 0.41 0.49 1.82 0.86 0.39 0.09 0.47 0.79 0.64 0.34 0.29 0.04 0.36
    δEu 1.23 1.15 0.91 0.90 0.99 1.84 1.52 2.07 1.91 1.63 1.76 1.64 1.69 1.59 1.49 1.20 0.76 1.54
    δCe 2.19 1.94 1.47 1.65 2.00 2.16 1.72 2.07 2.07 1.83 2.22 1.89 1.81 1.98 2.09 1.74 1.68 1.92
    下载: 导出CSV
    续表2
    样号TCG1-5-1-10TCG1-1-2-4
    世代
    点位10-54-14-24-34-44-54-64-74-84-94-104-114-124-134-144-154-164-17
    La 0.04 0.69 0.81 0.66 0.69 0.61 0.81 2.04 0.72 0.67 0.73 0.76 0.53 0.51 0.61 0.64 0.69 0.75
    Ce 1.03 9.27 10.7 7.98 8.97 8.54 9.96 10.5 9.62 9.27 9.09 8.44 7.13 6.63 9.07 8.90 8.90 7.85
    Pr 0.47 2.82 3.28 2.71 2.83 2.79 2.93 2.57 3.18 2.92 3.12 2.64 2.36 2.08 2.94 2.83 2.64 2.22
    Nd 4.90 18.5 19.2 17.7 19.5 19.4 17.8 16.3 21.4 19.5 22.0 15.1 14.6 11.7 20.7 19.1 15.4 15.7
    Sm 2.22 3.21 3.59 3.26 3.79 3.53 3.70 2.68 3.82 3.93 3.95 3.01 1.96 1.65 4.64 3.64 2.50 3.13
    Eu 0.67 1.16 1.21 1.16 1.25 1.20 1.08 1.01 1.29 1.27 1.39 0.87 1.03 0.74 1.38 1.10 0.99 1.03
    Gd 3.15 2.04 2.13 2.02 2.54 2.10 2.50 1.53 2.15 2.65 2.24 1.51 1.65 1.30 2.74 2.11 1.72 2.05
    Tb 0.46 0.25 0.21 0.21 0.36 0.24 0.33 0.23 0.28 0.31 0.26 0.18 0.17 0.14 0.35 0.23 0.22 0.25
    Dy 3.37 1.13 1.22 1.20 2.16 1.04 2.44 1.22 1.39 1.85 1.38 0.88 0.97 0.80 2.07 1.23 1.20 1.60
    Ho 0.63 0.24 0.22 0.22 0.43 0.19 0.51 0.19 0.23 0.35 0.26 0.18 0.14 0.14 0.35 0.23 0.20 0.30
    Er 1.75 0.56 0.49 0.54 1.32 0.49 1.48 0.43 0.62 0.88 0.64 0.43 0.48 0.32 0.74 0.54 0.46 0.85
    Tm 0.27 0.07 0.07 0.07 0.18 0.08 0.19 0.08 0.06 0.14 0.08 0.06 0.04 0.03 0.13 0.06 0.06 0.11
    Yb 1.71 0.43 0.40 0.40 1.00 0.46 1.39 0.40 0.37 0.83 0.55 0.40 0.35 0.27 0.62 0.32 0.52 0.85
    Lu 0.21 0.07 0.05 0.07 0.17 0.05 0.18 0.04 0.05 0.12 0.08 0.04 0.05 0.04 0.08 0.05 0.06 0.12
    ∑REE 20.8 40.5 43.6 38.2 45.2 40.7 45.4 39.2 45.2 44.7 45.7 34.5 31.4 26.4 46.4 41.0 35.6 36.8
    LREE 9.29 35.7 38.8 33.5 37.1 36.1 36.3 35.1 40.0 37.5 40.2 30.8 27.6 23.3 39.3 36.2 31.1 30.7
    HREE 11.6 4.78 4.79 4.73 8.16 4.65 9.03 4.12 5.14 7.14 5.49 3.68 3.85 3.03 7.08 4.77 4.44 6.13
    LREE/HREE 0.80 7.47 8.09 7.08 4.54 7.75 4.02 8.52 7.79 5.26 7.33 8.36 7.17 7.69 5.55 7.60 7.01 5.01
    (La/Yb)N 0.02 1.15 1.43 1.18 0.49 0.95 0.42 3.66 1.42 0.58 0.95 1.36 1.07 1.37 0.71 1.43 0.95 0.63
    δEu 0.78 1.39 1.34 1.38 1.23 1.35 1.09 1.52 1.38 1.20 1.43 1.24 1.76 1.55 1.18 1.21 1.45 1.24
    δCe 1.79 1.63 1.61 1.47 1.58 1.60 1.59 1.13 1.56 1.63 1.47 1.46 1.56 1.58 1.66 1.62 1.61 1.49
      注:“–”低于检出限(BDL)。
    下载: 导出CSV

    表  3   铜厂沟钼铜矿床石榴子石原位LA–ICP–MS U–Pb同位素测年结果统计表

    Table  3   LA–ICP–MS U–Pb isotope data for garnet from the Tongchanggou Mo–Cu deposit

    测点PbThU同位素比值年龄(Ma)
    (×10−6207Pb/206Pb1 s%207Pb/235U1 s%206Pb/238U1 s%206Pb/238U2 s
    11.250.608.470.48179.93423.270619.37880.036811.366723050
    21.050.593.630.71695.77846.84596.93240.06965.670443247
    30.950.805.460.66465.93403.87354.76430.04585.204528829
    40.380.321.251.170720.832813.15569.21560.115611.0331684139
    50.170.412.710.379760.07551.073624.65070.019215.832412138
    60.120.211.790.215927.13680.311728.94290.01477.87489415
    70.080.491.080.586335.72251.045726.58980.021310.494014332
    80.060.360.960.314562.15750.268274.49370.019910.201012625
    90.250.351.530.573119.26893.195120.32080.039618.288924382
    100.122.481.810.201532.40080.357223.81380.01587.973110116
    110.170.401.130.489122.94423.945815.86190.043210.725826956
    120.111.080.491.105811.47687.67889.46710.06847.697042263
    130.150.531.270.561119.58472.222311.35840.03439.261121539
    140.080.291.110.220133.12130.681323.80710.020310.089712926
    150.100.311.490.234941.40560.413027.93910.01669.008210619
    160.070.241.240.308931.63570.485529.37570.015711.182610022
    170.110.301.250.225140.47750.751823.08910.023210.025314729
    180.070.171.310.218855.93910.246754.14150.013114.25268424
    190.180.321.500.243949.70132.492121.49390.030014.231518853
    200.080.271.420.138266.29800.115781.81680.013013.28018222
    210.070.401.310.0440287.17760.445433.71130.012713.52488624
    220.270.871.540.622418.77764.754811.88540.05069.187231557
    230.070.241.220.0234628.87880.186372.27640.015911.926010124
    240.060.201.260.215060.74320.012912.26378220
    250.090.271.660.140052.00890.0704117.26890.013412.24098521
    260.120.261.510.0857103.04790.340438.65360.019612.490512431
    270.080.221.280.482733.44081.093718.73880.016410.690510422
    280.090.181.350.0840191.94190.357340.89950.016111.306910223
    290.090.211.720.0785121.89850.0591153.76530.012912.87768321
    300.070.261.230.453734.11620.016013.335410127
    310.300.241.220.871121.48214.457620.71950.044014.523427376
    320.080.241.420.0399197.87400.153278.86450.014310.94829120
    330.101.571.470.469132.57390.708924.19880.018211.336211526
    340.130.381.290.440826.73791.422518.93760.024410.924815433
    350.090.241.320.529927.81651.014718.33440.017811.898511327
    360.070.150.960.244248.81800.641937.66900.018811.639311928
    370.090.290.931.053923.02620.024811.292215735
    380.100.221.400.371837.07760.192289.64740.015015.60959530
    390.090.291.450.1137110.42890.387333.97980.015210.39009720
    下载: 导出CSV
  • 艾永富, 金玲年. 石榴石成分与矿化关系的初步研究[J]. 北京大学学报, 1981, 1981, (1): 83-90

    AI Yongfu, JIN Lingnian. The Study of Relationship Between the Mineralization and the Garnet in the Skarn Ore Deposits[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1981, (1): 83-90.

    边晓龙, 张静, 王佳琳, 等. 滇西北红山矽卡岩型铜矿床石榴子石原位成分及其地质意义[J]. 岩石学报, 2019, 35(05): 1463-1477.

    BIAN Xiaolong, ZHANG Jing, WANG Jialin, et al. In Situ analysis of garnets from the Hongshan skarn copper deposit in Northwest Yunnan Province and its geological implications[J]. Acta Petrologica Sinica, 2019, 35(5) : 1463-1477,

    高雪, 孟健寅. 滇西北铜厂沟Mo-Cu矿床成矿流体和成矿物质来源: 矽卡岩矿物学与稳定同位素证据[J]. 岩石学报, 2017, 33(7): 2161-2174

    GAO Xue, MENG JianYan. The Source of ore-forming fluids and materials in the Tongchanggou Mo-Cu deposit, northwestern Yunnan, China: Constrains from skarn mineralogy and stable isotopes[J]. Acta Petrologica Sinica, 2017, 33(7): 2161-2174

    洪东铭, 简星, 黄鑫, 等. 石榴子石微量元素地球化学及其在沉积物源分析中的应用[J]. 地学前缘, 2020, 27(3): 191-201

    HONG Dongming, JIAN Xing, HUANG Xin, et al. Garnet trace elemental geochemistry and its application in sedimentary provenance analysis[J]. Earth Science Frontiers, 2020, 27(3): 191-201.

    侯立玮, 戴丙春, 俞如龙, 等. 四川西部义敦岛弧碰撞造山带与主要成矿系列[M]. 北京: 地质出版社, 1994

    HOU Liwei, DAI Bingchun, YU Rulong, et al. Collision Orogenic Belt and the Main Metallogenic Series at Yidun Arc, Western Sichuan [M]. Beijing: Geological Publishing House, 1994.

    侯增谦, 莫宣学, 谭劲, 等. “三江”义敦岛弧带玄武岩喷发序列与裂谷-岛弧转化[J]. 中国地质科学院院报, 1993, 26: 49-67

    HOU Zengqian, MO Xuanxue, TAN Jin, et al. The Eruption Sequences of Basalts in the Yidun Island-Arc, Sanjiang Region and Evolution of Rift to Island-Arc[J]. Bulletin of the Chinese Academy of Geological Sciences, 1993, 26: 49-67.

    侯增谦, 杨岳清, 曲晓明, 等. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 2004, 78(1): 109-120

    HOU Zengqian, YANG Yueqing, QU Xiaoming, et al. Tectonic Evolution and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China[J]. Acta Geologica Sinica, 2004, 78(1): 109-120.

    姜丽莉, 薛传东, 侯增谦, 等. 滇西北甭哥正长岩体成因: 锆石U-Pb年龄、Hf 同位素和地球化学证据[J]. 岩石学报, 2015, 31(11): 3234-3246

    JIANG Lili, XUE Chuandong, HOU Zengqian, et al. Petrogenesis of the Bengge Syenites, Northwestern Yunnan: Geochemistry, Geochronology and Hf Isotopes Evidence[J]. Acta Petrologica Sinica, 2015, 31(11): 3234-3246.

    冷成彪, 张兴春, 王守旭, 等. 滇西北雪鸡坪斑岩铜矿 S, Pb 同位素组成及对成矿物质来源的示踪[J]. 矿物岩石, 2008, 28(4): 80-88

    LENG Chengbiao, ZHANG Xingchun, WANG Shouxu, et al. Sulfur and Lead Isotope Compositions of the Xuejiping Porphyry Copper Deposit in Northwest Yunnan, China: Tracing for the Source of Metals[J]. Mineralogy and Petrology, 2008, 28(4): 80-88.

    冷成彪. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约. 地学前缘, 2017, 24(6): 162-175.

    LENG Chengbiao. Genesis of Hongshan Cu Polymetallic Large Deposit in the Zhongdian Area, NW Yunnan: Constraints from LA-ICP-MS Trace Elements of Pyrite and Pyrrhotite[J]. Earth Science Frontiers, 2017, 24(6): 162-175

    李博, 邹少浩, 许德如, 等. 湘南新田岭矽卡岩型白钨矿床中石榴子石的成分特征及其对钨成矿作用的启示[J]. 黄金科学技术, 2023, 31(2): 232-251

    LI Bo, ZOU Shaohao, XU Deru, et al. Composition Characteristics of Garnet in Xintianling Skarn-type Scheelite Deposit, South Hunan Province and Its Implications for the Tungsten Mineralization[J]. Gold Science and Technology, 2023, 31(2): 232-251.

    李凯旋, 梁华英, 黄文婷, 等. 滇西北铜厂沟夕卡岩-斑岩型Mo-Cu矿床成矿岩体的高氧逸度特征及区内斑岩矿床成矿元素组合差异控制因素分析[J]. 地球化学, 2019, 48(02): 101-113

    LI Kaixuan, LIANG Huaying, HUANG Wenting, et al. Highly Oxidized Characteristics of Tongchanggou Porphyry Associated with Skarn-Porphyry Mo-Cu Mineralization and Key Factors Controlling the Elemental Association of Porphyry Deposits in Northwestern Yunnan Province[J]. Geochimica, 2019, 48(02): 101-113.

    李文昌, 曾普胜. 云南普朗超大型斑岩铜矿特征及成矿模型[J]. 成都理工大学学报: 自然科学版, 2007, 34(4): 436-446

    LI Wenchang, ZENG Pusheng. Characteristics and Metallogenic Model of the Pulang Superl Arge Porphyry Copper Deposit in Yunnan, China[J]. Journal of Chengdu University Of Technology (Science & Technology Edition), 2007, 34(4): 436-446.

    李文昌, 尹光候, 卢映祥, 等. 西南“三江”格咱火山-岩浆弧中红山-属都蛇绿混杂岩带的厘定及其意义[J]. 岩石学报, 2010, 26(06): 1661-1671

    LI Wenchang, ‚YIN Guanghou, LU Yingxiang, et al. Delineation of Hongshan-Shudu Ophiolite Mélangein Geza Volcanic Magmatic-Arc and its significance‚Southwest“Jinsha-Lancang-Nurivers”[J]. Acta Petrologica Sinica, 2010, 26(6): 1661-1671.

    李文昌, 余海军, 尹光候, 等. 滇西北铜厂沟钼多金属矿床辉钼矿 Re-Os 同位素年龄及其成矿环境. 矿床地质, 2012, 31(2): 282-292

    LI Wenchang, YU Haijun‚YIN Guanghou, et al. Re-Os Dating of Molybdenite from Tongchanggou Mo-Polymetallic Deposit in Northwest Yunnan and its Metallogenic Environment[J]. Mineral Deposits, 2012, 31(2): 282-292.

    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.

    梁祥济. 钙铝-钙铁系列石榴子石的特征及其交代机理[J]. 岩石矿物学杂志, 1994, 13(4): 342-352

    LIANG Xiangji. Garnets of Grossular-Andradite Series: Their Characteristics and Metasomatic Mechanism[J]. Acta Petrologica Et Mineralogica, 1994, 13(4): 342-352.

    刘军. 云南铜厂沟铜钼矿矿床地质特征及找矿方向[J]. 西部探矿工程, 2013, 25(03): 105-107 doi: 10.3969/j.issn.1004-5716.2013.03.038

    LIU Jun. Deposit Geology and Prospecting Direction of the Tongchanggou Cu-Mo Deposit, Yunnan[J]. West-China Exploration Engineering, 2013, 25(3): 105-107. doi: 10.3969/j.issn.1004-5716.2013.03.038

    刘学龙, 李文昌, 张娜, 等. 云南格咱岛弧带南缘铜厂沟斑岩型铜钼矿床硫铅同位素特征与成矿物质来源示踪[J]. 中国地质, 2016, 43(01): 209-220 doi: 10.12029/gc20160115

    LIU Xuelong, LI Wenchang, ZHANG Na, et al. Characteristics of Sulfur and Lead Isotopes and Tracing of Mineral Sources in the Tongchanggou Porphyry Mo (Cu) Deposit at the Southern Edge of Geza Arc Belt, Yunnan[J]. Geology in China, 2016, 43(1): 209-220. doi: 10.12029/gc20160115

    刘学龙, 李文昌, 张娜, 等. 滇西北中甸地区铜厂沟斑岩钼铜矿床热液蚀变分带、脉体系统及找矿标志[J]. 矿床地质, 2020, 39(05): 845-866

    LIU Xuelong, LI Wenchang, ZHANG Na, et al. Tongchanggou Porphyry Mo-Cu Deposit in Zhongdian Area of Northwestern Yunnan: Hydrothermal Alteration Zone, Vein System And Prospecting Indicator[J]. Mineral Deposits, 2020, 39(05): 845-866.

    刘益, 孔志岗, 陈港, 等. 滇东南官房钨矿床石榴子石原位LA-SF-ICP-MS U-Pb定年及地质意义[J]. 岩石学报, 2021, 37(03): 847-864 doi: 10.18654/1000-0569/2021.03.13

    LIU Yi, KONG Zhigang, CHEN Gang, et al. In-situ LA-SF-ICP-MS U-Pb Dating of Garnet from Guanfang Tungsten Deposit in Southeastern Yunnan Province and its Geological Significance[J]. Acta Petrologica Sinica, 2021, 37(3): 847-864. doi: 10.18654/1000-0569/2021.03.13

    毛景文, 周振华, 丰成友, 等. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 2012, 39(6): 1437-1471

    MAO Jingwen, ZHOU Zhenhua, FENG Chengyou, et al. A Preliminary Study of the Triassic Large-Scale Mineralization in China and its Geodynamic Setting[J]. Geology in China, 2012, 39(6): 1437-1471.

    彭惠娟, 张长青, 周云满, 等. 云南省中甸红牛铜矿床地质地球化学特征[J]. 中国地质, 2012, 39(6): 1743-1758

    PENG Huijuan, ZHANG Changqing, ZHOU Yunman, et al. Geological and Geochemical Characteristics of the Hongniu Copper Deposit in Zhongdian Area, Northeastern Yunnan Province[J]. Geology in China, 2012, 39(6): 1743-1758.

    王守旭, 张兴春, 冷成彪, 等. 中甸红山矽卡岩铜矿稳定同位素特征及其对成矿过程的指示[J]. 岩石学报, 2008, 24(3): 480-488

    WANG Shouxu, ZHANG Xingchun, LENG Chengbiao, et al. . Stable Isotopic Compositions of the Hongshan Skarn Copper Dsposit in the Zhongdian Area and its Implication for the Copper Mineralization Process[J]. Acta Petrologica Sinica, 2008, 24(3): 480-488.

    王新松, 毕献武, 胡瑞忠, 等. 滇西北中甸地区休瓦促岩浆热液型Mo-W矿床S、Pb同位素对成矿物质来源的约束[J]. 岩石学报, 2015, 31(11): 3171-3188

    WANG Xinsong, BI Xianwu, HU Ruizhong, et al. S-Pb Isotopic Geochemistry of Xiuwacu Magmatic Hydrothermal Mo-W Deposit in Zhongdian Area, NW Yunnan: Constrains on the Sources of Metal[J]. Acta Petrologica Sinica, 2015, 31(11): 3171-3188.

    王潇逸, 张静, 边晓龙, 等. 云南马厂箐铜钼矿床石榴子石LA-ICP-MS原位U-Pb定年及成分研究[J]. 岩石学报, 2022, 38(01): 124-142 doi: 10.18654/1000-0569/2022.01.09

    WANG Xiaoyi, ZHANG Jing, BIAN Xiaolong, et al. LA-ICP-MS In Situ U-Pb Dating and Composition Analyzing on the Garnets from Machangqing Cu-Mo Deposit in Yunnan Province[J]. Acta Petrologica Sinica, 2022, 38(01): 124-142. doi: 10.18654/1000-0569/2022.01.09

    杨岳清, 侯增谦, 黄典豪, 等. 中甸弧碰撞造山作用和岩浆成矿系统[J]. 地球学报, 2002, 23(1): 17-24 doi: 10.3321/j.issn:1006-3021.2002.01.004

    YANG Yueqing, HOU Zengqian, HUANG Dianhao, et al. Collision Orogenic Process and Magmatic Metallogenic System in Zhongdian Arc[J]. Acta Geoscientia Sinica, 2002, 23(1): 17-24. doi: 10.3321/j.issn:1006-3021.2002.01.004

    姚雪, 李文昌, 刘学龙, 等. 滇西北格咱岛弧带南缘铜厂沟斑岩铜钼矿床花岗闪长斑岩地球化学特征、锆石U-Pb年龄及其地质意义[J]. 地质通报, 2017, 36(10): 1800-1813

    YAO Xue, LI Wenchang, LIU Xuelong, et al. Geochemistry and Zircon U- Pb Age of the Tongchanggou Porphyry Cu-Mo Deposit on The Southern Margin of Geza Arc, Northwest Yunnan Province, and its Geological Significance[J]. Geological Bulletin of China, 2017, 36(10): 1800-1813.

    郁凡, 舒启海, 曾庆文, 等. 湘南新田岭矽卡岩型钨矿床石榴子石成分特征及其地质意义[J]. 岩石学报, 2022, 38(1): 78-90 doi: 10.18654/1000-0569/2022.01.06

    YU Fan, SHU Qihai, ZENG Qingwen, et al. Chemical Composition of Garnet from the Xintianling Skarn W Deposit in Southern Hunan and its Geological Significance[J]. Acta Petrologica Sinica, 2022, 38(1): 78-90. doi: 10.18654/1000-0569/2022.01.06

    余海军, 李文昌, 尹光候, 等. 滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义[J]. 岩石学报, 2015, 31(11): 3217-3233

    YU Haijun, LI Wenchang, YIN Guanghou, et al. Geochronology, Geochemistry and Geological Significance of the Intrusion from the Tongchanggou Mo-Cu Deposit, Northwestern Yunnan[J]. Acta Petrologica Sinica, 2015, 31(11): 3217-3233.

    曾普胜, 莫宣学, 喻学惠, 等. 滇西北中甸斑岩及斑岩铜矿[J]. 矿床地质, 2003, 22(4): 393-400 doi: 10.3969/j.issn.0258-7106.2003.04.008

    ZENG Pusheng, MO Xuanxue, YU Xuehui, et al. Porphyries and Porphyry Copper Deposits in Zhongdian Area‚ Northwestern Yunna[J]. Mineral Deposits, 2003, 22(4): 393-400. doi: 10.3969/j.issn.0258-7106.2003.04.008

    张银平, 邵拥军, 熊伊曲, 等. 云南个旧锡铜矿集区石榴子石地球化学特征及成矿指示[J]. 矿床地质, 2022, 41(04): 682-701

    ZHANG Yinping, SHAO Yongjun, XIONG Yiqu, et al. Metallogenic Indication from Geochemical Characteristics of Garnet in Gejiu Sn-Cu Ore-Concentrated Area, Yunnan Province[J]. Mineral Deposits, 2022, 41(04): 682-701.

    赵斌, 李统锦, 李昭平. 夕卡岩形成的物理化学条件实验研究[J]. 地球化学, 1983, (3): 256-267

    ZHAO Bin, LI Tongjin, LI Zhaopin. Experimental Study of Physico-Chemical Conditions of the Formayion of Skarns[J]. Geochimica, 1983, (3): 256-267.

    郑震, 杜杨松, 曹毅, 等. 安徽冬瓜山矽卡岩铜矿石榴石成分特征及其成因探讨[J]. 岩石矿物学杂志, 2012, 31(02): 235-242

    ZHENG Zhen, DU Yangsong, CAO Yi, et al. The Composition Characteristics And Origin of Garnets in the Dongguashan Skarn Copper Deposit, Anhui Province[J]. Acta Petrologica Et Mineralogica, 2012, 31(02): 235-242.

    Allegre C J, Provost A. , Jaupart C. Oscillatory zoning: a pathological case of crystal growth[J]. Nature, 1981, 294: 223–228. doi: 10.1038/294223a0

    Bau M. Rare⁃earth element mobility during hydrothermal and metamorphic fluid⁃rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 1991, 93 (3-4): 219-230. doi: 10.1016/0009-2541(91)90115-8

    Carlson W D. Ratesand mechanism of Y, REE, and Cr diffusionin garnet[J]. American Mineralogist, 2012, 97: 1598-1618. doi: 10.2138/am.2012.4108

    Chang Z S, Shu Q H, Meinert L D. Skarn deposits of China[J]. Economic Geology, 2019, 22: 189-234.

    Deng J, Wang Q F, Li G J, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China [J]. Gondwana Research, 2014, 26(2): 419-437. doi: 10.1016/j.gr.2013.08.002

    Ding T, Ma D S, Lu J J, et al. Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan Province, China[J]. Ore Geology Reviews, 2018, 94: 193-211. doi: 10.1016/j.oregeorev.2018.01.029

    Duan Z, Gleeson S A, Gao W S, et al. Garnet U-Pb dating of the Yinan Au-Cu skarn deposit, Luxi District, North China Craton: Implications for district-wide coeval Au-Cu and Fe skarn mineralization[J]. Ore Geology Reviews, 2020, 118: 103310.

    Enami M, Cong B, Yoshida T, et al. A mechanism for Na incorporation ingarnet: an example from garnet in orthogneiss from the Su-Lu terrane, eastern China[J]. American Mineralogist, 1995, 80: 475-482. doi: 10.2138/am-1995-5-608

    Fu Y, Sun X M, Li D F, et al. U-Pb Geochronology and Geochemistry of U-Rich Garnet from the Giant Beiya Gold-Polymetallic Deposit in SW China: con-straints on Skarn Mineralization Process[J]. Minerals, 2018, 8(4): 1-19.

    Gaspar M, Knaack C, Meinert L D, et al. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 185-205. doi: 10.1016/j.gca.2007.09.033

    Gao X, Yang L Q, Zhang R G, et al. Nature and origin of Mesozoic granitoids and associated mineralization in the Sanjiang Tethys Orogeny, SW China: the Xiuwacu complex example[J]. International Geology Review, 2019, 61(7): 795-820. doi: 10.1080/00206814.2018.1464405

    Grew E S, Marsh J H, Yates M G, et al. Menzerite-(Y), a new species, {(Y, Ree)(Ca, Fe2+)2}[(Mg, Fe2+) (Fe3+, Al)](Si3)O12, from a felsicgranulite, Parry Sound, Ontario, and a new garnet end-member, {Y2Ca}[Mg2](Si3)O12[J]. Canadian Mineralogist, 2010, 48: 727-749.

    Haas J R. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic proper‐ties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 1995, 59(21): 4329-4350. doi: 10.1016/0016-7037(95)00314-P

    He J, Wang B, Wang L, et al. Geochemistry and geochronology of the Late Cretaceous Tongchanggou Mo-Cu deposit, Yidun Terrane, SE Tibet;implications for post-collisional metallogenesis[J]. Journal of Asian Earth Sciences, 2019, 172(APR. 1): 308-327.

    Hou Z Q, Yang Z M, Lu Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in Tibet [J]. Geology, 2015, 43: 247-250.

    Huang M L, Gao J F, Bi X W, et al. The role of early sulfide saturation in the formation of the Yulong porphyry Cu-Mo deposit: Evidence from mineralogy of sulfide melt inclusions and platinum-group element geochemistry[J]. Ore Geology Reviews, 2020, 124: 103644. doi: 10.1016/j.oregeorev.2020.103644

    Jamtveit B, Wogelius R A, Fraser D G. Zonation patterns of skarn garnets: Records of hydrothermal system evolution[J]. Geology, 1993, 21(2): 113-116. doi: 10.1130/0091-7613(1993)021<0113:ZPOSGR>2.3.CO;2

    Jamtveit B, Ragnarsdottir K V, Wood B. J. On the origin of zoned grossularandradite garnets in hydrothermal systems[J]. European Journal of Mineralogy, 1995, 7: 1399–1410.

    Li J K, Li W C, Wang D H, et al. Re–Os dating for ore-forming event in the late of Yanshan epoch and research of ore-forming regularity in Zhongdian arc[J]. Acta Petrologica Sinica, 2007, 23 (10): 2415-2422.

    Mao J W, Pirajno F, Lehmann B, et al. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings[J]. Journal of Asian Earth Sciences, 2013, 79(Part B): 576-585.

    McIntire, W L. Trace element partition coefficients–a review of theory and applications to geology[J]. Geochim Cosmochim Acta, 1963, 27: 1209-1264.

    Meinert L D, Dipple G, Nicolescu S. World skarn deposits[J]. Economic Geology, 2005, 100: 299-336.

    Meng J Y, Yang L Q, Lü L, Gao X, et al. Re–Os dating of molybdenite from the Hongshan Cu-Mo deposit in Northwest Yunnan and its implications for mineralization[J]. Acta Petrologica Sinica, 2013, 29 (4): 1214-1222.

    Mezger K, Hanson GN, Bohlen SR. U-Pb systematics ofgarnet: Dating the growth of garnet in the Late Archean Pikwitoneigranulite domain at Cauchon and Natawahunan Lakes, Manitoba Canada[J]. Contributions to Mineralogy and Petrology, 1989, 101(2): 136-148.

    Misra K C. Understanding mineral deposits[M]. Dordrecht: Klu-wer Academic Publishers, 2000.

    Paton C, Hellstrom J, Paul B, et al. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518.

    Park C, Choi W, Kim H, et al. Oscillatoryzoning in skarn garnet: Implications for tungsten ore exploration [J]. Ore Geology Reviews, 2017, 89: 1006-1018.

    Peng H J, Mao J W, Pe R F, et al. Geochronology of the Hongniu-Hongshan porphyry and skarn Cu deposit, northwestern Yunnan province, China: Implications for mineralization of the Zhongdian arc[J]. Journal of Asian Earth Sciences, 2014, 79(2): 682-695.

    Peng H J, Zhang C Q, Mao J W, et al. Garnets in porphyry-skarn systems: A LA-ICP-MS, fluid inclusion, and stable isotope study of garnets from the Hongniu-Hongshan copper deposit, Zhongdian area, NW Yunnan Province, China[J]. Journal of Asian Earth Sciences, 2015, 103: 229-251.

    Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767.

    Smith M P, Henderson P, Jeffries T E R, et al. The rare earth elements and uranium in garnets from the Beinnan Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system[J]. Journal of Petrology, 2004, 45: 457-484.

    Sun S S , McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313−345.

    Tian Z D, Leng C B, Zhang X C, et al. Chemical composition, genesis and exploration implication of garnet from the Hongshan Cu-Mo skarn deposit, SW China[J]. Ore Geology Reviews, 2019, 112: 103016.41(4): 682-701.

    Wang C M, Deng J, Carranza EJM, et al. Tin metallogenesis associated with granitoids in the southwestern sanjiang tethyan domain: Nature, deposit types, and tectonic setting[J]. Gondwana Research, 2014, 26(2): 576-593.

    Wang X S, Bi X W, Leng C B, et al. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China: implications for metallogenisis and geodynamic setting[J]. Ore Geology Reviews, 2014a, 61, 73-95.

    Wang X S, Hu R Z, Bi X W, et al. Petrogenesis of Late Cretaceous I-type granites in the southern Yidun terrane: new constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J]. Lithos, 2014b, 208-209, 202-219.

    Wang Y F, Merino E. Dynamic model of oscillatory zoning of trace elements in calcite: Double layer, inhibition, and self-organization[J]. Geochimica et Cosmochimica Acta, 1992, 56: 587–596.

    Xie S X, Yang LQ, He W, et al. Garnet trace element geochemistry of Yangla Cu deposit in NW Yunnan, China: Implications for multistage ore-fluid activities in skarn system[J]. Ore Geology Reviews, 2022, 141: 104662.

    Xu X W, Cai X P, Xiao Q B, et al. Porphyry Cu–Au and associated polymetallic Fe-Cu-Au deposits in the Beiya Area, western Yunnan Province, south China[J]. Ore Geology Reviews, 2007, 31 (1): 224-246.

    Yang L Q, Deng J, Dilek Y, et al. Melt source and evolution of I-type granitoids in theSE Tibetan Plateau: Late Cretaceous magmatism and mineralizationdriven by collision-induced transtensional tectonics[J]. Lithos, 2016, 245: 258-273.

    Yang L Q, Deng J, Gao X, et al. Timing of formation and origin of theTongchanggou porphyry-skarn deposit: Implications for Late Cre‐taceous Mo-Cu metallogenesis in the southern Yidun Terrane, SETibetan Plateau[J]. Ore Geology Reviews, 2017, 81: 1015-1032.

    Yang Q, Ren Y S, Chen S B, et al. Geological, Geochronological, and Geochemical Insights into the Formation of the Giant Pulang Porphyry Cu (-Mo-Au) Deposit in Northwestern Yunnan Province, SW China[J]. Minerals, 2019, 9(3): 191-216.

    Yang S Y, Jiang S Y, Mao Q, et al. Electron probe microanalysis in geosciences: Analytical procedures and recent advances[J]. Atomic Spectroscopy, 2022, 43(2): 186-200.

    Yuan S D, Peng J T, Hu R Z, et al. Aprecise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit(Hunan, South China)[J]. Mineralium Deposita, 2008, 43(4): 375-382.

    Zhai D G, Liu J J, Zhang H Y, et a. Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: In situ LA-ICP-MS evidence[J]. Lithosl, 2014, 190-191: 279-291.

    Zhang R X, Yang S Y. A mathematical model for determining carbon coating thickness and its application in electron probe microanalysis[J]. Microscopy and Microanalysis, 2016, 22(6): 1374-1380.

    Zhang Y, Shao Y J, Wu C D, et al. LA-ICP-MS trace element geochemistry of garnets: Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu-S-Fe-Au deposit, eastern China[J]. Ore Geology Reviews, 2017, 86: 426-439.

    Zu B, Xue C J, Zhao Y, et al. Late Cretaceous metallogeny in the Zhongdian area: constraints from Re–Os dating of molybdenite and pyrrhotite from the Hongshan Cu deposit, Yunnan, China[J]. Ore Geology Reviews, 2015, 64: 1-12.

  • 期刊类型引用(6)

    1. 赵志远,葛超英,徐雯佳. 时序InSAR技术对淮扬区域地面沉降监测. 四川地质学报. 2025(01): 162-169 . 百度学术
    2. 彭彧. 基于SBAS-InSAR技术的采矿区沉降监测研究. 安徽地质. 2025(01): 65-68 . 百度学术
    3. 张忠辉,杜钊锋,薛贵东,孙祺,李少峰. 基于多源监测数据的大雁塔近40年变形特征分析. 测绘科学. 2024(06): 29-37 . 百度学术
    4. 褚洪义,杨博,魏东琦,李汶洪,黄兆欢,张茗爽,乔冈. 多年冻土InSAR地表变形监测与土壤水热过程研究. 西北地质. 2024(06): 244-254 . 本站查看
    5. 史元博,朱兴国,卢全中,杨利荣,刘聪,龚方圆,岳乐平. 西安凹陷f12地裂缝发育区第四系及裂缝沉降特征. 西北地质. 2023(05): 185-196 . 本站查看
    6. 程霞,王辉,王国瑞,杜灵通,魏采用,周峰. 基于DinSAR技术的宁东煤炭基地区域性地表沉降监测. 西北地质. 2023(06): 369-375 . 本站查看

    其他类型引用(1)

图(13)  /  表(8)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  30
  • PDF下载量:  290
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-06-15
  • 修回日期:  2023-09-28
  • 网络出版日期:  2023-08-23
  • 刊出日期:  2023-12-19

目录

    /

    返回文章
    返回