ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

西天山早寒武世夏特辉长岩:南天山洋早期俯冲的岩浆记录

李平, 朱涛, 吕鹏瑞, 王洪亮, 陈隽璐

李平,朱涛,吕鹏瑞,等. 西天山早寒武世夏特辉长岩:南天山洋早期俯冲的岩浆记录[J]. 西北地质,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146
引用本文: 李平,朱涛,吕鹏瑞,等. 西天山早寒武世夏特辉长岩:南天山洋早期俯冲的岩浆记录[J]. 西北地质,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146
LI Ping,ZHU Tao,LÜ Pengrui,et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146
Citation: LI Ping,ZHU Tao,LÜ Pengrui,et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146

西天山早寒武世夏特辉长岩:南天山洋早期俯冲的岩浆记录

基金项目: 中国地质调查局项目(DD20243439、DD20240073、DD20230228、12120114020501), 陕西省自然科学基础研究计划(2023-JC-YB-268、2023-JC-ZD-15、2022JM-149)和国家自然科学基金(40872061、41502061)联合资助。
详细信息
    作者简介:

    李平(1983−),男,正高级工程师,从事岩浆岩石学研究和地质矿产调查工作。E–mail:gogogis@qq.com

  • 中图分类号: P581

Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean

  • 摘要:

    相对于西天山晚古生代—中生代广泛存在的岩浆事件,其天山早古生代初期地质记录保存较少,此在很大程度上制约了学界对于亚洲洋早期演化的认识。此次选取的夏特辉长岩位于中天山南缘构造混杂岩带北侧,LA-ICPMS锆石U-Pb测年结果为(523±5)Ma,属早寒武世,其与中天山早古生代岩浆活动构成有“ 西早–东晚” 的时空分布特征,从而在一定程度上奠定了西天山“西早–东晚”的剪刀差式闭合事件。夏特辉长岩为钠质的钙碱性系列,岩石地球化学特征反映其形成过程中经历有橄榄石、尖晶石等矿物的分离结晶以及斜长石的堆晶作用。该辉长岩富集大离子亲石元素、亏损高场强元素,构造岩浆环境判别图解也进一步指示其为弧岩浆作用的产物。锆石Hf同位素特征具有正的εHf(t) 值(+1.47 ~+11.91),显示出亏损地幔的物质源区。此外,较高的Th/Nb原始地幔标准化比值和较低的Nb/La值,暗示了岩浆形成过程中存有俯冲物质的卷入。夏特辉长岩的形成表明南天山洋在早寒武世已经开始向中天山地块之下俯冲,伴随着中天山地块的俯冲、消减,沿中天山地块周缘于早寒武世已经形成有陆缘弧岩浆体系。

    Abstract:

    Compared with the widespread magmatic events between the late Paleozoic and the early Mesozoic in Western Tianshan, the intrusive magmatic record of the early Paleozoic are preserved less, which conatrained our understanding on the early evolution of the Asian Ocean. Xiate gabbro is exposed in the north of the Southern Margin of the Central Tianshan, and zircon LA-ICPMS U-Pb dating shows that the formation age is 523±5 Ma, suggesting the Early Cambrian emplacement. Combined with the research on the regional igneous rocks, we believe that the Paleozoic subduction of the Paleo-Asian Ocean initiated in the west and then gradually expanded to the east, which may lay the foundation for the scissors closure (earlier in the west and later in the east) of the Tianshan Ocean. The geochemical characteristics of the Sodium and calcium alkaline rocks studied show that they have experienced the fractional crystallization of olivine, spinels, and the cumulation of plagioclase during their formation. The gabbro is a sodic and calc-alkaline series rocks, rich in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). Discrimination diagrams of tectonic magmatic environment indicate that it is a product of arc magmatism. The ε Hf (t) values range from +1.47 to +11.91, indicating a distinct mantle material source; the higher (Th/Nb)PM and lower Nb/La ratios imply the involvement of subduction materials during magmatic evolution. The formation age and petrogenetic characteristics of the Xiate gabbro indicate that the South Tianshan Ocean began to subduct towards the Central Tianshan Block in the Early Cambrian, and the initial arc magmatism was formed during the tectonic event.

  • 注浆压力作用下产生的渗透–压密–劈裂效应,可有效提升岩土介质薄弱区域的强度和整体稳定性,保证工程安全和正常运营。注浆工程属于隐蔽工程,注浆效果的准确评价关系着工程的长期服役性能和经济效益(Park,2018; 张庆松等,2018)。在地质环境日趋复杂和恶劣的工程背景下,注浆加固的质量要求越来越高,建立科学合理的注浆效果评价体系,具有重要的理论意义和研究价值。

    李术才等(2019)运用TSP物探法、注浆压力-流量-时间(P-Q-t)法、检查孔法及数字摄像法,对青岛胶州湾海底隧道注浆效果进行了综合检验。Lu等(2020)推导了富水砂岩波速-渗透率理论模型,基于Wyllie-Clemenceau波速-孔隙率公式及Kozeny-Carman渗透方程,建立了富水砂岩注浆效果定量评价体系。Ballesteros 等(2021)运用灰色关联度分析法(GRA)和层次分析法(AHP),结合模糊数学基本原理对软土隧道注浆效果进行了评价分析。Yan等(2023)提出了基于模糊综合评价法的注浆效果评价模型,实现了岩溶帷幕注浆效果多层次、多维度的综合评价。

    上述研究大多是基于现场经验或物探检测结果,对注浆效果作出初步和直观的评价,定量深入分析则略显不足,且没有形成具有指导性的统一标准。为此笔者结合郑州地铁7号线隧道建设项目,针对其注浆加固效果进行深刻分析评价。首先通过抽取一级、二级评价指标确立层次评价体系,并结合专家意见与实际工况构建注浆效果评价数学模型,然后基于模糊数学的基本原理,将权向量作为评价因素的权重进行量化,通过矩阵运算实现了模糊现象的数学表达,完成了砂土隧道注浆效果的准确评价,对注浆效果评价从半经验化向定量化转变起到了推动作用,研究成果具有一定的工程实用价值。

    以郑州地铁工程项目建设为依托,针对砂土隧道不良地质注浆加固效果,建立系统、科学的评价方法。郑州地铁7号线陈砦–白庙站为更新世含黏土砂砾层,地质环境复杂,地下水赋存丰富。砂粒为石英质中粗砂,结构松散,静力触探锥尖阻力qc=5.93 MPa,标贯击数平均值为9.4击;砾石粒径不均一,分布范围约为2.91~14.42 cm,外观呈次圆–浑圆状。地下水以架空空隙和粒间间隙为赋存空间和运移通道,水流渗透速度快,侵蚀性强(图1)。

    图  1  开挖、治理中的砂土隧道照片
    Figure  1.  Picture of sand tunnel under excavation and treatment

    2022年3月隧道左侧拱壁发生涌水、溃砂,导致隧道结构局部坍塌。为提高隧道洞室稳定性,保证后期施工顺利进行,现场采用水泥、水泥-水玻璃浆液,进行软弱区域注浆加固治理。注浆加固总长度1139 m,帷幕圈厚度2.6 m。注浆作业结束后,采用压力-注浆量-时间(P-Q-t)法、检查孔法、数字钻孔摄像技术分析法,及地球物理探测法对加固效果进行了评价。

    富水砂层等不良地质的注浆加固与改良处理,是多因素综合作用、交互影响的复杂系统工程,注浆效果的评价应从多方位、多层次着手,才能取得科学、客观和准确的结果(程少振等,2019贾杰等,2023)。笔者将注浆加固效果归纳为A、B、C、D 4个等级,A等级表明注浆作业实现预期目的,完全满足工程建设和运维的需要,D等级则表明注浆设计方案存在缺陷,未能起到必要的防渗加固效果。A→B→C→D等级变化过程中,注浆效果依次变差。

    目前P-Q-t 曲线法、物探检测法、注浆量核算法和检查孔分析法,在注浆效果评定方面应用较为普及,笔者将这4种方法定为一级指标;从一级指标中抽取关键因素形成二级指标,由此构建注浆效果评价的分级体系。P-Q-t 曲线法的关键因素为注浆过程中的P-t、Q-t曲线,物探检测法为时间域电磁法(TEM)和地质雷达法数据特征,注浆量核算法为注浆总量及浆液充填量与地质结构的契合度,检查孔分析法则为渗水量和芯样采取率。

    本研究综合采用P-Q-t 曲线法、物探检测法、注浆量核算法和检查孔分析法,对注浆效果进行评定。由于评价所考虑的因素多且类型复杂,传统处理方法很难取得满意的结果,为此采用模糊数学的方法来进行系统分析。模糊理论的基本思想是,对大规模、复杂不确定性现象进行子集划分、隶属判别,利用精确的数学手段实现其恰如其分的处理(钟登华等,2017Xin et al,2020)。

    在充分考虑专家意见及注浆效果各影响因素层次的基础上,模糊评价体系所建立的判断矩阵为:

    $$ J=\left[\begin{array}{ccc} 1 & \cdots & m_{1 \mathrm{j}} \\ \vdots & 1 & \vdots \\ m_{\mathrm{i} 1} & \cdots & 1 \end{array}\right] $$ (1)

    采用逐项求和的方法对模糊矩阵进行归一化处理,继而对处理后的各行要素求取算术平均值:

    $$ {z_i} = \frac{1}{n}\sum\limits_{j = 1}^n {J({m_{ij}})} (i = 1,2,3) $$ (2)

    结合矩阵运算和特征空间理论,可得与最大特征值相应的权向量为:

    $$ U = {({z_1},{z_2}, \ldots ,{z_n})^{\rm{T}}} $$ (3)

    为提高评价体系的准确性,可采用一致性指标IU对分析过程进行控制:

    $$ IU = \frac{{{\lambda _{\max }} - n}}{{n - 1}} $$ (4)
    $$ {\lambda _{\max }} = \sum\limits_{i = 1}^n {\sum\limits_{j = 1}^n {J({m_{ij}})} } {z_i} $$ (5)

    式中:IU为模糊判断矩阵一致性评价指标;λmax为一致性判断矩阵的最大特征根。由于专家意见的主观性和影响因素的离散性,IU指标有时不足以表征判断矩阵的一致性,为此可增加一项指标对IU值进行校正(陈湘生等,2020):

    $$ CU = \frac{{IU}}{{IA}} $$ (6)

    式中:CU为修正后的一致性指标;IA为平均随机一致性指标。当CU≤0.1时认为判断矩阵通过一致性检验,反之则需要反复调整直至符合要求(王学平等,2010)。

    郑州地铁7号线富水砂土隧道地质环境恶劣,注浆加固过程中联合使用了纯水泥浆、水泥-水玻璃双液浆及CW环氧树脂等多种材料。与加固材料和工艺相适应,注浆机械采用的是BW150型活塞式注浆泵、3ZBQS12/10型煤矿用气动双液注浆泵等新型设备。水泥浆液现场配置,水灰比由1.5∶1至0.6∶1逐级变浓,密度大致为1.29~1.74 g/cm3。水泥-水玻璃双液浆体积比设计为3∶1~5∶1,水玻璃浆液浓度为36~43 Be。CW环氧树脂采用初始黏度6~20 mPa·s、密度1.02~1.06 g/cm3的高性能环保材料。

    P-Q-t曲线法通过对自动监测设备,所记录注浆压力P、注浆速度Q等参数的分析,实现注浆加固效果的评判。P-Q-t曲线法不需现场开挖,具有简洁、智能、高效的优势。

    注浆作业中采用LJ型三参数记录仪,对注浆参量P、Q及t进行追踪,根据采集到的数据绘制P-t、Q-t曲线,客观评价注浆加固效果。

    (1)P-Q-t曲线分析。A5、A35钻孔P-t、Q-t曲线变化趋势见图2图3,从图中可以看出,注浆压力P随时间t呈上升趋势,注浆速率Q随时间t呈增减波动趋势。分析原因是由于注浆初期压力起升较慢,浆液以渗透方式扩散,浆液充填了砂土结构中的不密实区域。15 min后浆液转向砂土的粒间孔隙扩散,注浆速率逐步下降,浆液积聚导致扩散通道上的压力升高,砂层内部产生轻微劈裂破坏。

    图  2  P-t曲线特征
    Figure  2.  P-t curve characteristics
    图  3  Q-t曲线特征
    Figure  3.  Q-t curve characteristics

    (2)P-Q-t权重。注浆压力决定着浆液的扩散形态和结石体的宏观结构,因而是注浆效果评价中的关键因素。相较于Q-t曲线,P-t曲线及其变化特征更具有实际工程意义。将a12权重设定为5,得其判断矩阵

    $$ G_1=\left[\begin{array}{cc} 1 & 5 \\ 1 / 5 & 1 \end{array}\right] $$ (7)

    根据式(2)、(3),可得权向量:

    $$ {U_1} = (0.83,0.17) $$ (8)

    针对富水砂土隧道的构造特点,采用地质雷达法、瞬变电磁法对注浆加固后的地质体进行探测。通过分析电磁波、感应电流的变化,推测注浆加固体的物理形态,进而评价加固效果(图4图5)。

    图  4  Zond地质雷达现场探测
    Figure  4.  Zond detecting system
    图  5  雷达探测结果分析
    Figure  5.  Analysis of radar detection results

    (1)地质雷达法。使用Zond探地雷达,对隧道核心区段电阻率、介电常数等性能参数进行了检测。分析DK18+136-138拱圈、侧壁雷达反射波与透射波波形,发现浆液在隧道结构内分布均匀、连续,隧道结构坚固、完整。仅DK18+137局部区域信号异常,存在不密实部位,地质雷达探测结果与P-Q-t法推测结果基本一致。

    (2)TEM法。使用YCS200瞬变电磁仪对注浆区段防水性能进行检测,结合相关资料对探测结果进行了合理解译。根据电磁感应的强弱和一维反演,推测注浆加固区段电阻率呈较高态势,表明注浆帷幕起到了良好止水效果,地下水向反方向迁移。

    (3)物探法权重。地质雷达携带方便,现场测试较瞬变电磁法受外界干扰小,分析结果更加真实可信,因此将a12的权重定为2。

    $$ G_2=\left[\begin{array}{cc} 1 & 2 \\ 1 / 2 & 1 \end{array}\right] $$ (9)

    根据式(2)、(3),可得权向量:

    $$ {U_2} = (0.67,0.33) $$ (10)

    综合考虑工程地质、水文地质条件及长期运营耐久性要求,本工程注浆帷幕厚度设计为2.6 m,注浆压力1.6~2.2 MPa。注浆孔排距1.6 m,一次成孔,分序灌注(图6)。注浆管分段长度2 m,管口与注浆泵使用高压胶管连接。根据注浆总量及浆液充填量与地质构造的契合性,对注浆加固区实际效果进行整体评价。

    图  6  注浆孔横剖面布置(a)和纵剖面布置图(b)
    Figure  6.  (a) Cross section layout of grouting holes and (b) Vertical section layout

    (1)注浆总量分析。注浆设计方案中水泥用量为9.6 t,而实际施工中水泥消耗量达到了11.8 t,比原计划超出22.9 %。分析原因是砂砾石地层存在架空结构,松散结构的卵砾石层吸收了部分水泥、水玻璃浆液,使得注浆总量增加。

    (2)浆液充填量与地质构造的契合度分析。由于砂土结构的天然复杂性和自然变异性,隧道断面岩性成分改变较大,浆液充填量明显受地质构造影响,注浆量区域分布呈现较大的离散性。左侧拱及穹顶为稳定地质结构,浆液充填量偏少,右侧拱土质成分复杂,注浆量较其他区域显著偏多。部分钻孔注浆量(m3)见表1

    表  1  单孔注浆量统计(m3
    Table  1.  Single hole grouting quantity statistics(m3
    A1-A5 A6-A10 A31-A35 A36-A40 A66-A70 A91-A95 A96-A100 A115-A120 A135-A140 A135-A140
    27.4 25.9 41.1 39.1 29.9 30.9 29.1 27.4 28.4 27.9
    31.7 33.7 35.7 37.7 34.8 35.4 34.8 33.3 33.8 30.3
    37.6 28.4 35.2 27.9 40.1 39.1 40.3 29.1 41.2 29.3
    35.7 33.1 36.1 33.1 32.8 34.4 30.8 37.8 30.7 30.8
    35.7 37.9 34.8 35.8 38.1 37.1 39.1 31.1 34.6 38.5
    下载: 导出CSV 
    | 显示表格

    (3)注浆量权重。根据专家经验及富水砂土隧道灾害治理的特征,认为注浆总量相较于浆液充填量与地质构造的契合度作用更加突出,是衡量注浆效果的显著因素,因而将m12的权重定为3。 由此构建的注浆量分析法判断矩阵为:

    $$ G_3=\left[\begin{array}{cc} 1 & 3 \\ 1 / 3 & 1 \end{array}\right] $$ (11)

    根据模糊判断矩阵归一化处理方法及线性代数运算准则,可得最大特征值相应的权向量为(Wu et al,2020Yan et al,2020):

    $$ {U_3} = (0.75,0.25) $$ (12)

    通过施打检查孔可直观察看结石体胶结质量,准确计算渗漏涌水量,检查孔布置遵循“均匀连续、适度加密”的准则,力求全面、准确反映砂土隧道的加固质量。现场检测时共施打孔位17处,占总设计注浆孔数量的10%,基本覆盖隧道不良地质区域。

    (1)取心率。对隧道结构控制性部位和成分变化性大的区域,进行取心率法以检测注浆效果。实测表明注浆加固后砂土心样采取率平均可达80%,局部地质区段达90%~93%。心样外观连续完整,仅部分发生折断、残损。浆液充填不饱满的区位主要为粉细砂,注浆压力衰减在此不足以有效注入。宏观而论,砂土物理力学性状整体得到了显著改善。

    (2)涌水量分析。隧址区地下水丰富,帷幕注浆钻孔施打期间,地下水急速涌出,水泥-水玻璃浆液被冲释。注浆作业单位及时调整浆液浓度、配比,提高浆液抗冲释能力,逐步实现了不良区域封堵、加固治理。探孔检测时发现,部分孔位涌水量大幅减少,涌水位置向深部转移,注浆封堵、加固取得明显效果。

    以D3和D12注浆检查孔为例进行对比分析,D3钻孔在水文地质勘察期间实测涌水量为64 m3/h,注浆治理后涌水量降低为0.2 m3/h;D12钻孔勘察时实测涌水量为22 m3/h,注浆治理后涌水量降低为0.1 m3/h。注浆封堵率平均达到95%左右,实现了预期治理效果。检查孔涌水量统计分析见表2

    表  2  检查孔涌水量统计分析
    Table  2.  Statistical analysis of water inflow from inspection hole
    号别 孔位深度(m) 单点涌水量(m3/h) 平均涌水量(L/(min·m)) 号别 孔位深度(m) 单点涌水量(m3/h) 平均涌水量(L/(min·m))
    D1 26 1.10 0.90 D11 27 0.90 0.30
    D3 25 0.20 0.08 D13 25 0.10 0.02
    D5 27 0 0 D15 26 0 0
    D9 28 0.80 0.10 D17 27 0 0
    下载: 导出CSV 
    | 显示表格

    (3)检查孔权重。涌水量接近于0的探查孔数量越多,表明注浆结石体的完整性越好。涌水量比取心率权重高,将其设为4,得判断矩阵:

    $$ G_4=\left[\begin{array}{cc} 1 & 4 \\ 1 / 4 & 1 \end{array}\right] $$ (13)

    权向量经线性运算为:

    $$ {U_4} = (0.8,0.2) $$ (14)

    基于模糊理论的综合评价法消除了单一评价方法的不足,具有结果清晰、系统性强的特点,非常适宜于复杂不确性问题的分析处理(Shi et al,2016Feng et al,2018)。前述4种评价方法的重要程度依次为:注浆量核算法、检查孔分析法、P-Q-t曲线法、物探检测法。模糊综合评价判断矩阵为:

    $$ J=\left[\begin{array}{cccc} 1 & 2 & 5 & 7 \\ 1 / 2 & 1 & 4 & 6 \\ 1 / 5 & 1 / 4 & 1 & 3 \\ 1 / 7 & 1 / 6 & 1 / 3 & 1 \end{array}\right] $$ (15)

    相应的权向量为$ U = \left( {0.51,0.33,0.11,0.05} \right) $,一致性检验符合要求。

    依据模糊综合评价基本原理,针对4种评价方法的二级指标,建立单因素评价矩阵VAi表3),进行一级综合评价。因素权重按A、B、C、D顺序逐级赋值(李培楠等,2020)。

    表  3  单因素模糊评价矩阵
    Table  3.  Single factor fuzzy evaluation matrix
    评价指标 因素权重(A/B/C/D) 评价指标 因素权重(A/B/C/D)
    总注浆量 0.25 0.50 0.15 0.10 P-t 特征 0.50 0.25 0.15 0.10
    地层契合度 0.20 0.60 0.15 0.05 Q-t 特征 0.35 0.25 0.30 0.10
    涌水量 0.10 0.50 0.30 0.10 地质雷达法 0.30 0.20 0.40 0.10
    取心率 0.15 0.45 0.30 0.10 TEM 法 0.05 0.35 0.50 0.10
    下载: 导出CSV 
    | 显示表格

    将指标权重向量U与单因素评价矩阵VAi相乘,可以得出各模糊评价集的隶属向量,进而可逐级对注浆效果作出准确、客观的评价。隶属向量计算方法为(魏久传等,2019):

    $$\begin{array}{l}\\[-6pt] V_1 = U_3 \times V_{A 1}= ( 0.75 \; \; \; \; 0.25 ) \cdot \left[ \begin{array}{cccc} 0.25 \; \; \; \; 0.50 \; \; \; \; 0.15 \; \; \; \; 0.10 \\ 0.20 \; \; \; \; 0.60 \; \; \; \; 0.15 \; \; \; \; 0.05 \end{array} \right] \\ \quad \; =(0.24,0.53,0.15,0.07) \end{array} $$ (16)

    同理,其他隶属向量可依次计算求得:V2 =(0.11,0.49,0.30,0.10);V3 =(0.47,0.25,0.18,0.10);V4 =(0.22,0.25,0.43,0.10)。将隶属向量组合、整理,构成二级指标评价的模糊矩阵,然后将其与相应的权向量相乘,得到二级综合模糊评价结果(张连震等,2018)。

    $$\begin{split} V= & U \times R^{\prime}=(0.51,0.33,0.11,0.05) \cdot \\& \left[\begin{array}{cccc} 0.24 \;\;\;\; 0.53 \;\;\;\; 0.15 \;\;\;\; 0.07 \\ 0.11 \;\;\;\; 0.49 \;\;\;\; 0.30 \;\;\;\; 0.10 \\ 0.47 \;\;\;\; 0.25 \;\;\;\; 0.18 \;\;\;\; 0.10 \\ 0.22 \;\;\;\; 0.25 \;\;\;\; 0.43 \;\;\;\; 0.10 \end{array}\right] \\& =(0.22,0.47,0.22,0.08) \end{split}$$ (17)

    利用模糊矩阵单值化方法对注效果进行定量分析,以确定注浆结果的具体等级。将A、B、C、D 4个等级赋予数值,分别为c1=0、c2=2、c3=4、c4=6。将其与最终指标评价结果加权平均,可分析出最终效果(邓聚龙等,2016)。

    $$\begin{split} T= & \sum_{i=1}^n v_i c_i / \sum_{i=1}^n v_i=(0 \times 0.22+2 \times0.47+4 \times \\& 0.22+ 6 \times 0.08) / 12=0.19 \end{split} $$ (18)

    根据模糊综合评判,并适当参考专家经验,T值对应4个等级(表4)。分析认为注浆效果评定为B,隧道开挖中不会出现威胁施工的地质灾害,注浆加固实现了预期目的。

    表  4  模糊评价等级划分
    Table  4.  Fuzzy evaluation level
    等级 指标取值 工程表现 等级 指标取值 工程表现
    A0<T≤0.1注浆加固完全达到预期设想 C0.3<T≤0.6需做二次处理以预防工程事故
    B0.1<T≤0.3发生工程事故的可能性很小D0.6<T≤ 1注浆失败,需重新设定预案
    下载: 导出CSV 
    | 显示表格

    (1)针对注浆效果评价方法中的一级、二级因素进行综合分析,通过抽取主要评价指标确立层次评价体系,并结合专家意见与实际工况构建了注浆效果评价数学模型。

    (2)基于模糊数学的基本原理,将权向量作为评价因素的权重进行量化,通过矩阵运算实现了模糊现象的数学表达,完成了砂土隧道注浆效果的准确评价。

    (3)以郑州地铁7号线砂土隧道为例,通过模糊评价综合分析,认为注浆效果等级为B。隧道实际开挖期间,未出现任何形式的水文、地质干扰,表明评价结果真实可信,可为其他工程施工提供指导或参考。

  • 图  1   中国西天山地质简图(a)(据Gao et al., 2009; Xu et al., 2013修)和夏特地区地质图(b)(据新疆维吾尔自治区地质局区域地质调查大队, 1981; Qian et al., 2009修)

    Figure  1.   (a) Simplified geological map of Chinese western Tianshan and (b) the geological map of the Xiate

    图  2   夏特辉长岩的野外产出及镜下特征

    a.辉长岩野外露头;b.辉长岩结构;c.正交偏光(CPL)矿物组成特征;d.单偏光(PPL)矿物组成特征;Pl.斜长石;Cpx.单斜辉石;Hbl.角闪石;Ep.绿帘石

    Figure  2.   Outcrops and micro-structure features for the Xiate grabbo

    图  3   夏特辉长岩锆石阴极发光照片(圆圈为测试位置,数字为测试点号)

    Figure  3.   Cathodoluminescence (CL) images of typical zircons from the Xiate gabbro

    图  4   夏特辉长岩锆石LA-ICPMS U-Pb同位素年龄谐和图(a)及加权平均年龄图(b)

    Figure  4.   (a) Zircon U-Pb age Concordia diagram and (b) the weighted average age diagram for Xiate grabbo

    图  5   夏特辉长岩SiO2-(Na2O+K2O) 图解(a)(Irvine et al, 1971; Middlemost, 1994)和SiO2-FeOT/MgO图解(b)(Miyashiro, 1975

    Figure  5.   (a) SiO2 versus Na2O+K2O Diagram and (b) SiO2-FeOT/MgO Diagram for Xiate grabbo

    图  6   稀土元素球粒陨石标准化图解(a)和微量元素原始地幔标准化图解(b)(标准化数据均自Sun et al., 1989)

    Figure  6.   (a) Chondrite-normalized REE distribution patterns and (b) Primitive mantle-normalized multi-element variation diagram for the Xiate grabbo

    图  7   西天山夏特辉长岩Mg#—多元素含量协变图

    Figure  7.   the covariant diagram of Mg # versus multi-elements for Xiate hornblende gabbro

    图  8   夏特辉长岩εHf(t)-t图 (a) 和 176Hf/177Hf-t图 (b)

    Figure  8.   (a) εHf(t) versus t Diagram and (b) 176Hf/177Hf versus t Diagram for the Xiate grabbo

    图  9   夏特辉长岩构造环境判别图

    a.Hf/3-Th-Nb/16图(Pearce, 1983); b.TiO2-10×MnO-10×P2O5图(Mullen, 1983);c.Ta/Yb-Th/Yb(Wood, 1980 );d. Sm/La-Th/La图(McCarthy et al., 2021

    Figure  9.   Geotectonic discrimation diagrams for the Xiate grabbo

    图  10   中天山南缘地区早古生代早期构造岩浆模式图

    Figure  10.   Tectonic magmatic model of the south margin of the Central Tianshan mountains in the Early Paleozoic

    表  1   夏特辉长角闪石岩 LA-ICPMS 锆石 U-Pb 定年测试数据

    Table  1   Zircon La-ICPMS U-Pb analytical data of the Xiate gabbro

    样品 比值 年龄(Ma) 组成(×10−6 Th/U
    207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 204Pb 206Pb 207Pb 208Pb 232Th 238U
    10XT01-01 0.0623 0.0028 0.71412 0.02924 0.08311 0.00219 0.02627 0.00082 684 45 547 17 515 13 524 16 0 173.21 40.34 518.80 940.69 868.61 1.08
    10XT01-03 0.0586 0.00283 0.69377 0.03079 0.08584 0.00229 0.02616 0.00085 552 52 535 18 531 14 522 17 45.09 138.86 31.02 343.95 628.35 672.61 0.93
    10XT01-04 0.06604 0.00315 0.77993 0.03414 0.08563 0.00229 0.03049 0.00108 808 49 585 19 530 14 607 21 36.71 127.20 31.92 171.75 265.41 617.16 0.43
    10XT01-05 0.05859 0.00309 0.68918 0.03377 0.0853 0.00231 0.02511 0.00087 552 61 532 20 528 14 501 17 0 112.90 24.93 253.24 495.69 563.28 0.88
    10XT01-06 0.05666 0.00374 0.66858 0.04165 0.08556 0.00244 0.0254 0.00103 478 88 520 25 529 14 507 20 0 67.49 14.86 142.22 262.07 335.28 0.78
    10XT01-07 0.05824 0.00283 0.68717 0.03072 0.08557 0.00228 0.02557 0.00088 539 53 531 18 529 14 510 17 0 144.87 32.33 253.11 474.13 703.62 0.67
    10XT01-08 0.05875 0.00265 0.69429 0.02843 0.0857 0.00225 0.02609 0.00085 558 46 535 17 530 13 521 17 3.95 208.02 46.05 395.91 719.86 1007.33 0.71
    10XT01-09 0.05836 0.00314 0.68957 0.03451 0.08568 0.00232 0.02512 0.00089 543 63 533 21 530 14 501 18 50.93 114.31 25.59 260.77 504.86 565.03 0.89
    10XT01-11 0.05707 0.00337 0.66172 0.0365 0.08408 0.00233 0.02531 0.00098 494 73 516 22 520 14 505 19 0 73.67 16.73 143.46 272.58 366.21 0.74
    10XT01-14 0.06276 0.00317 0.71896 0.03339 0.08307 0.00223 0.02585 0.00088 700 55 550 20 514 13 516 17 38.42 222.70 52.82 712.09 1350.88 1136.37 1.19
    10XT01-15 0.06023 0.00322 0.6766 0.03344 0.08147 0.00221 0.02378 0.00082 612 61 525 20 505 13 475 16 0 138.97 32.55 480.61 943.80 717.13 1.32
    10XT01-16 0.05988 0.00312 0.68814 0.03307 0.08333 0.00224 0.02549 0.00091 599 59 532 20 516 13 509 18 32.74 106.48 24.33 273.43 518.86 529.13 0.98
    10XT01-17 0.05833 0.00303 0.68165 0.03255 0.08474 0.00227 0.02538 0.0009 542 59 528 20 524 13 507 18 6.56 129.47 29.56 375.78 694.03 630.93 1.1
    10XT01-18 0.05961 0.00331 0.69006 0.03553 0.08394 0.00229 0.02585 0.00097 589 65 533 21 520 14 516 19 31.67 95.15 21.92 227.71 425.71 469.38 0.91
    10XT01-19 0.06089 0.00392 0.7208 0.04356 0.08584 0.00244 0.02597 0.00104 635 82 551 26 531 14 518 20 0 50.04 12.35 141.99 264.08 242.38 1.09
    10XT01-20 0.06152 0.00378 0.71367 0.04095 0.08413 0.00236 0.02633 0.00109 657 76 547 24 521 14 525 21 22.11 65.99 15.76 130.72 247.99 334.09 0.74
    10XT01-22 0.06039 0.00338 0.71072 0.03681 0.08534 0.00233 0.02629 0.00099 618 66 545 22 528 14 525 19 3.97 116.51 26.88 531.74 974.88 567.21 1.72
    10XT01-23 0.05924 0.00361 0.70792 0.04018 0.08666 0.00241 0.0276 0.00112 576 76 544 24 536 14 550 22 8.80 87.68 20.21 243.98 426.10 421.75 1.01
    10XT01-24 0.05834 0.00364 0.67331 0.03916 0.08369 0.00234 0.02617 0.0011 543 79 523 24 518 14 522 22 6.30 87.32 21.28 195.61 366.56 436.64 0.84
    10XT01-27 0.05926 0.00358 0.69413 0.03886 0.08494 0.00236 0.02528 0.00105 577 74 535 23 526 14 505 21 0 91.82 21.04 283.90 542.23 448.34 1.21
    10XT01-28 0.06049 0.00347 0.69389 0.03671 0.08318 0.00228 0.02621 0.00107 621 68 535 22 515 14 523 21 10.14 130.16 29.37 428.91 790.50 641.71 1.23
    10XT01-29 0.06065 0.00384 0.71196 0.042 0.08513 0.0024 0.02671 0.00115 627 79 546 25 527 14 533 23 14.08 78.48 19.14 229.51 412.28 377.53 1.09
    下载: 导出CSV

    表  2   夏特辉长岩锆石Hf同位素组分表

    Table  2   Zircons Hf isotopic compositions for the Xiate gabbro

    样品176Yb/177Hf176Lu/177Hf176Hf/177Hf176Hf/177HfεHf(0)εHf(tTDM1(Hf)fLu/Hf
    10XT01-020.053820.0019360.2827370.2827140.000028−2.058.8782−0.94
    10XT01-030.0415860.0014250.282620.2825970.000022−6.194.84939−0.96
    10XT01-040.0442780.001740.2827950.2827720.000025−0.0110.92695−0.95
    10XT01-050.0200270.0006780.2825880.2825650.000021−7.333.96965−0.98
    10XT01-060.0170060.0006310.2827140.2826910.000019−2.878.44788−0.98
    10XT01-070.0208140.0007790.2827830.282760.000018−0.4210.84694−0.98
    10XT01-080.0244050.0008530.2827990.2827760.000020.1311.37673−0.97
    10XT01-090.0254080.0009280.282690.2826670.000023−3.77.51827−0.97
    10XT01-100.0349560.0012530.2827480.2827250.00003−1.669.43753−0.96
    10XT01-110.0140020.0005080.2826680.2826450.000018−4.56.85850−0.98
    10XT01-120.0210020.0007690.282810.2827870.0000230.5411.81655−0.98
    10XT01-130.0289950.0009810.2827210.2826980.000029−2.618.58785−0.97
    10XT01-150.0238460.000840.2827990.2827760.0000230.1611.4672−0.97
    10XT01-160.0468490.0016360.2827790.2827560.000029−0.5810.38716−0.95
    10XT01-170.0584280.0020520.2826290.2826050.000035−5.894.92942−0.94
    10XT01-180.036250.0012550.2827960.2827730.0000280.0311.13684−0.96
    10XT01-190.062740.0021170.2825650.2825420.000035−8.142.651036−0.94
    10XT01-200.0131120.0004890.2827860.2827630.000031−0.3311.03685−0.99
    10XT01-210.0539370.0019390.2825990.2825760.000041−6.923.93982−0.94
    10XT01-220.0250450.0009470.2827580.2827350.000032−1.39.9732−0.97
    10XT01-230.0207440.0007620.2827510.2827280.000044−1.579.69739−0.98
    10XT01-240.0249520.0008960.2827320.2827090.000023−2.248.98769−0.97
    10XT01-250.0281150.0009330.282720.2826970.000032−2.668.54786−0.97
    10XT01-260.0324190.001090.2826980.2826750.000036−3.447.71821−0.97
    10XT01-270.0524590.0018580.2828240.2828010.0000421.0211.91655−0.94
    10XT01-280.0626450.0019850.2825510.2825280.000038−8.642.191053−0.94
    10XT01-300.0456560.0015510.2827190.2826960.000036−2.688.31800−0.95
    下载: 导出CSV

    表  3   夏特辉长岩主量元素(%)和微量元素(10−6)分析结果

    Table  3   Major elements (%) and trace elements (10−6) compositions of the Xiate gabbro

    样品号 10XT01-1 10XT01-3 10XT01-5 10XT01-6 10XT01-7
    SiO2 49.57 49.20 49.25 50.54 49.52
    Al2O3 16.86 17.10 16.15 17.39 17.02
    Fe2O3 1.16 0.94 1.39 1.37 1.71
    FeO 4.59 5.28 4.98 4.47 5.00
    Fe2O3T 6.26 6.81 6.92 6.34 7.27
    CaO 13.19 12.89 12.44 11.04 11.48
    MgO 9.36 9.89 9.85 8.06 8.88
    K2O 0.34 0.31 0.71 0.95 0.90
    Na2O 1.69 1.77 1.69 2.46 1.84
    TiO2 0.26 0.27 0.29 0.42 0.35
    P2O5 0.04 0.03 0.03 0.05 0.05
    MnO 0.11 0.11 0.12 0.11 0.12
    LOI 2.74 2.14 2.98 2.99 3.04
    Total 99.91 99.93 99.88 99.85 99.91
    Cu 144.0 59.0 73.3 97.7 65.3
    Pb 28.2 11.5 36.4 5.85 9.06
    Zn 38.6 34.3 66.4 48.5 47.1
    Cr 769 617 689 579 463
    Ni 146 149 141 106 108
    Co 38.2 36.5 38.0 31.8 37.3
    Li 8.6 4.65 11.0 18.6 12.6
    Rb 11.9 8.91 22.2 29.2 26.0
    Cs 0.55 0.41 0.70 1.09 0.96
    Mo 0.35 0.62 0.34 0.36 0.25
    Sr 193 162 159 175 212
    Ba 74.6 53.8 106 172 161
    V 152 138 164 170 136
    Sc 38.0 34.5 38.2 37.5 31.8
    Nb 0.65 0.87 0.52 1.18 1.43
    Ta 0.27 0.40 0.26 0.21 0.34
    Zr 13.1 14.3 9.51 23.7 24.2
    Hf 0.48 0.44 0.34 0.76 0.72
    Ga 11.4 11.5 11.2 11.5 11.9
    U 0.13 0.10 0.05 0.11 0.14
    Th 0.67 0.70 0.31 0.59 0.64
    La 1.61 1.45 0.91 2.46 2.31
    Ce 3.47 4.17 2.25 5.40 5.16
    Pr 0.48 0.46 0.40 0.73 0.69
    Nd 2.39 2.22 1.98 3.94 3.16
    Sm 0.76 0.75 0.72 1.01 0.94
    Eu 0.37 0.33 0.39 0.53 0.47
    注:Mg#=mol MgO/(MgO+FeOtot), FeOtot=FeO+0.89Fe2O3(扣除烧失量后),表中标准化数据引自Sun et al. (1989)
    下载: 导出CSV
    续表3
    样品号 10XT01-1 10XT01-3 10XT01-5 10XT01-6 10XT01-7
    Dy 1.28 1.35 1.39 1.77 1.51
    Ho 0.32 0.32 0.37 0.49 0.34
    Er 0.78 0.78 0.88 1.06 0.88
    Tm 0.14 0.13 0.17 0.22 0.15
    Yb 0.97 0.89 1.05 1.34 0.95
    Lu 0.12 0.11 0.13 0.17 0.13
    Y 7.77 7.93 8.90 11.50 9.02
    Mg# 74.98 74.43 74.04 71.83 71.02
    (La/Sm)N 1.37 1.25 0.82 1.57 1.59
    (Gd/Yb)N 0.80 1.03 0.78 0.99 1.07
    (La/Yb)N 1.20 1.18 0.63 1.33 1.76
    REE 21.57 22.19 20.73 32.54 27.15
    δEu 1.35 1.11 1.42 1.28 1.34
    Sr/Y 24.84 20.43 17.87 15.22 23.5
    Sr/Yb 198.97 182.02 151.43 130.6 223.16
     注:Mg#=mol MgO/(MgO+FeOtot), FeOtot=FeO+0.89Fe2O3(扣除烧失量后),标准化数据引自Sun et al. (1989)
    下载: 导出CSV
  • 冯益民, 李智配, 陈隽璐, 等. 中国西北部大地构造图(1∶2 000 000)及说明书[M]. 北京: 地质出版社, 2021.
    高俊, 龙灵利, 钱青, 等. 南天山: 晚古生代还是三叠纪碰撞造山带?[J]. 岩石学报, 2006, 225): 10491061.

    GAO Jun, LONG Lingli, QIAN Qing, et al. South Tianshan: a Late Paleozoic or a Triassic orogen?[J]. Acta Petrologica Sinica, 2006, 225): 10491061.

    李平, 王洪亮, 徐学义, 等. 西准噶尔早泥盆世马拉苏组火山岩岩石成因研究[J]. 岩石学报, 2014, 3012): 35533568.

    LI Ping, WANG Hongliang, XU Xueyi, et al. Petrogenesis of volcanic rocks from Early Devonian Marasu Formation, West Junggar[J]. Acta Petrologica Sinica, 2014, 3012): 35533568.

    李平, 徐学义, 王洪亮, 等. 中天山南缘那拉提碱性花岗岩岩石成因——来自锆石微量元素和Hf同位素的证据[J]. 地质通报, 2012, 3112): 19491964.

    LI Ping, XU Xueyi, WANG Hongliang, et al. Petrogenesis of Nalati alkali granites in South Central Tianshan Mountains: Evidence from zircon trace elements and Hf isotope[J]. Geological Bulletin of China, 2012, 3112): 19491964.

    李平. 中天山中西段古生代花岗岩成因及对天山洋陆转换时限的制约[D]. 西安: 长安大学, 2011.

    LI Ping. The Petrogenesis of Paleozoic Granites in the Middle and West Segment of the Central Tianshan and Constrain to the Process of the Ocean-continent Transition of the Tianshan [D]. Xi’an: Chang’an University, 2011.

    李舢, 王涛, 肖文交, 等. 中亚造山带东南缘从俯冲-增生到碰撞的构造-岩浆演化记录[J]. 岩石学报, 2023, 39(5): 1261-1275.

    LI Shan, WANG Tao, XIAO WenJiao, et al. Tectono-magmatic evolution from accretion to collision in the southern margin of the Central Asian Orogenic Belt. Acta Petrologica Sinica, 2023, 39(5): 1261-1275.

    龙灵利, 高俊, 熊贤明, 等. 新疆中天山南缘比开(地区)花岗岩地球化学特征及年代学研究[J]. 岩石学报, 2007, 234): 719732.

    LONG Lingli, GAO Jun, XIONG Xianming, et al. Geochemistry and geochronology of granitoids in Bikai region, southern Central-Tianshan mountains, Xinjiang[J]. Acta Petrologica Sinica, 2007, 234): 719732.

    钱青, 徐守礼, 何国琦, 等. 那拉提山北缘寒武纪玄武岩的元素地球化学特征及构造意义[J]. 岩石学报, 2007, 23(7): 1708-1720.

    QIAN Qing, XU Shouli, HE Guoqi, et al. Elemental geochemistry and tectonic significance of Cambrian basalts from basalts fron the northern side of the Nalati Mountain. Acta Petrologica Sinica, 2007, 23(7): 1708-1720.

    茹艳娇. 西天山大哈拉军山组火山岩地层序列、岩石成因与构造环境[D]. 西安: 长安大学, 2012.

    RU Yanjiao. The Stratigraphic Sequanence, Petrogenesis and Tectonic Setting of the Volcanic Rocks of the Dahalajunshan Formation, Western Tianshan Mountain, China [D]. Xi’an: Chang’an University, 2012.

    夏林圻, 夏祖春, 徐学义, 等. 天山及邻区石炭纪—早二叠世裂谷火山岩岩石成因[J]. 西北地质, 2008, 414): 168.

    XIA Linqi, XIA Zuchun, XU Xueyi, et al. Petrogenesis of Caboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and its Neighboring Areas, Northwestern China[J]. Northwestern Geology, 2008, 414): 168.

    夏林圻, 夏祖春, 徐学义, 等. 天山岩浆作用[M]. 北京: 地质出版社, 2007.
    肖文交, 宋东方, WINDLEY BF, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 4910): 15121545.

    XIAO Wenjiao, SONG Dongfang, WINDLEY BF, et al. Research progresses of the accretionary processes andmetallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2019, 4910): 15121545.

    新疆维吾尔自治区地质局. 1∶20万汗腾格里峰幅(K-44XV)地质矿产图[R].1981.
    徐学义, 王洪亮, 马国林, 等. 西天山那拉提地区古生代花岗岩的年代学和锆石Hf同位素研究[J]. 岩石矿物学杂志, 2010, 296): 691706.

    XU Xueyi, WANG Hongliang, MA Guolin, et al. Geochronology and Hf isotope characteristics of the Paleozoic granite in Nalati area, West Tianshan Mountains[J]. Acta Petrologica et Mineralogical, 2010, 296): 691706.

    徐义刚, 王强, 唐功建, 等. 弧玄武岩的成因: 进展与问题[J]. 中国科学(地球科学), 2020, 6312): 19691991.

    XU Yigang, WANG Qiang, TANG Gongjian, et al. The origin of arc basalts: New advances and remaining questions[J]. Science China Earth Sciences, 2020, 6312): 19691991.

    张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 564): 139.

    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 564): 139.

    Allen M B, Windley B F, Zhang C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia[J]. Tectonophysics, 1993, 220: 89115. doi: 10.1016/0040-1951(93)90225-9

    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192: 5979. doi: 10.1016/S0009-2541(02)00195-X

    Belousova E, Griffin W, Oreilly S, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

    Blichert T, Albarède. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planet Science Letters, 1997, 148: 243258. doi: 10.1016/S0012-821X(97)00040-X

    Chen W, Zhang G, Ruan M, et al. Genesis of intermediate and silicic arc magmas constrained by Nb/Ta fractionation[J]. Journal of Geophysical Research Solid Earth, 2021, 126.

    Ernst R E, Buchan K L, Campbell I H. Frontiers in large igneous province research[J]. Lithos, 2005, 79: 271297. doi: 10.1016/j.lithos.2004.09.004

    Ewart A, Collerson K D, Regelous M, et al. Geochemical evolution within the Tonga–Kermadec–Lau arc–back-arc systems: the role of varying mantle wedge composition in space and time[J]. Journal of Petrology, 1998, 39: 331368. doi: 10.1093/petroj/39.3.331

    Frisch W, Meschede M, Blakey R. Plate tectonics: Continental drift and mountain building [M]. Berlin Heidelberg: Springer, 2011.

    Gao Jun, Long Lingli, Klemd R, et al. Tectonic evolution of the South Tianshan Orogen, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal Of Earth Sciences, 2009, 98: 12211238. doi: 10.1007/s00531-008-0370-8

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64: 133147. doi: 10.1016/S0016-7037(99)00343-9

    Handley H K, Macpherson C G, Davidson J P, et al. Constraining Fluid and Sediment to Subduction-Related Magmatism in Indonesia: IjenVolcanic Complex[J]. Journal of Petrology, 2007, 48: 11551183. doi: 10.1093/petrology/egm013

    Huang He, Wang Tao, Tong Ying, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 103255. doi: 10.1016/j.earscirev.2020.103255

    Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90: 297314. doi: 10.1016/0012-821X(88)90132-X

    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523548. doi: 10.1139/e71-055

    Hoskin P, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Rev Mineral Geochem, 2003, 53: 2762.

    Lizuka T, Hirata T. Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique[J]. Chemical Geology, 2005, 220: 121137. doi: 10.1016/j.chemgeo.2005.03.010

    Long Lingli, Gao Jun, Klemd R, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt[J]. Lithos, 2011, 126: 321340. doi: 10.1016/j.lithos.2011.07.015

    Ludwig K R. User's Manual for Isoplot 3.00, a geochronological Toolkit for Microsoft Excel[J]. Be rkeley Geochronological Center Special Publication, 2003, 4: 2532.

    Marini J C, Chauvel C, Maury R C. Hf isotope compositions of northern Luzonarc lavas suggest involvement of pelagic sediments in their source[J]. Contributions to Mineralogy and Petrology, 2005, 149: 216232. doi: 10.1007/s00410-004-0645-4

    Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79: 124. doi: 10.1016/j.lithos.2004.04.048

    Mccarthy A, Yogodzinski G M, Bizimis M, et al. Volcaniclastic sandstones record the influence of subducted Pacific MORB on magmatism at the early Izu-Bonin arc[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 2021, 296: 170188. doi: 10.1016/j.gca.2021.01.006

    Middlemost E A H. Naming materials in magma-igneous rock system[J]. Earth-Science Reviews, 1994, 7: 215224.

    Miyashiro A. Classification, characteristics, and origin of ophiolites[J]. The Journal of Geology, 1975, 83: 249281. doi: 10.1086/628085

    Mullen E D. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters, 1983, 62: 5362. doi: 10.1016/0012-821X(83)90070-5

    Niu Y L, O’Hara M J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle[J]. Lithos, 2009, 112: 117.

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[A]. In: Hawkesworth C J, Norry M J (eds.). Continental Basalts and Mantle Xenoliths[M]. Cambridge: Shiva Publishing Ltd., 1983.

    PLANK T. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents[J]. Journal of Petrology, 2005, 46: 921944. doi: 10.1093/petrology/egi005

    Qian Qing, Gao Jun, Klemd R, et al. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U–Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China[J]. International Journal Of Earth Sciences, 2009, 98: 551569. doi: 10.1007/s00531-007-0268-x

    Scherer E, Münker C, Mezger K. Calibration of the Lutetium-Hafnium clock[J]. Science, 2001: 683687.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313345. doi: 10.1144/GSL.SP.1989.042.01.19

    Tang M, Lee C T A, Chen K, et al. Nb/Ta systematics in arcmagma differentiation and the role of arclogites in continent formation[J]. Nature Communications, 2019, 10: 235. doi: 10.1038/s41467-018-08198-3

    Wang Tao, Tong Ying, Huang He, et al. Granitic record of the assembly of the Asian continent[J]. Earth-Science Reviews, 2023, 237: 104298. doi: 10.1016/j.earscirev.2022.104298

    Windley B F, Alexeiev D, Xiao WJ, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 3147. doi: 10.1144/0016-76492006-022

    Wood D A. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 1980, 50: 1130. doi: 10.1016/0012-821X(80)90116-8

    Xia Linqi, Xu Xueyi, Xia Zuchun, et al. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, Northwestern China[J]. Geol. Soc. Am. Bull., 2004, 116: 419433. doi: 10.1130/B25243.1

    Xia Linqi. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139: 195212. doi: 10.1016/j.earscirev.2014.09.006

    Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32: 102117. doi: 10.1016/j.jseaes.2007.10.008

    Xu Xueyi, Wang Hongliang, Li Ping, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution[J]. Journal Fwaof Asian Earth Sciences, 2013, 72: 3362. doi: 10.1016/j.jseaes.2012.11.023

    Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasmas mass spectrometry[J]. Geostandard and Geoanalytical Research, 2004, 28: 353370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    Zhu M S, Yan H Y, Pastor G D, et al. Do microcontinents nucleate subduction initiation?[J]. Geology, 2023, 7: 668672.

图(10)  /  表(4)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  21
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-28
  • 修回日期:  2023-07-15
  • 录用日期:  2023-07-23
  • 网络出版日期:  2024-03-25

目录

/

返回文章
返回